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Abstract

We define multifractional Hermite processes which generalize and ex-
tend both multifractional Brownian motion and Hermite processes. It is
done by substituting the Hurst parameter in the definition of Hermite
processes as a multiple Wiener-Itô integral by a Hurst function. Then, we
study the pointwise regularity of these processes, their local asymptotic
self-similarity and some fractal dimensions of their graph. Our results
show that the fundamental properties of multifractional Hermite processes
are, as desired, governed by the Hurst function. Complements are given
in the second order Wiener chaos, using facts from Malliavin calculus.
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1 Introduction
Fractional Brownian motion with Hurst parameter h ∈ (0, 1) is known to be the
unique Gaussian process with Bh(0) = 0, mean zero and covariance function

E[Bh(t)Bh(s)] =
ch
2

(
|t|2h + |s|2h − |t− s|2h

)
,

where ch is a positive constant only depending on h. It was introduced by
Kolmogorov, in 1940, to generate Gaussian “spirals” in Hilbert spaces [38]. It is
itself a generalization of the famous Brownian motion, when h = 1/2, defined
by the botanist Robert Brown to describe the movements of pollen grains of the
plant Clarkia Pulchella suspended in the water [21]. The first systematic study
of fractional Brownian motion goes back to the famous paper [49] by Mandelbrot
and Van Ness, in 1968. Since then, fractional Brownian motion has appeared
in many real-life applications in various domains, such as telecommunications,
biology, finance, image processing and much more [29].

Among its most fundamental properties, fractional Brownian motion has
stationary increments and is h-self-similar, meaning that, for all a > 0, the
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processes {a−hBh(at)}t∈R and {Bh(t)}t∈R have the same finite-dimensional dis-
tributions. The Hurst parameter also rules the regularity of the process since
the uniform and pointwise Hölder exponents (see Section 2 for a definition) of
Bh are almost surely h. Actually, it appears that, for some applications, these
properties are undesirable. For instance, fractional Brownian motion was used
in image synthesis to model artificial mountains [16] but then, the obtained re-
lief has the same (ir)regularity everywhere, which is not realistic. To overcome
this drawback, the two papers [55] and [17] introduced independently and from
two different perspectives the so-called multifractional Brownian motion. It is
defined by substituting the Hurst parameter h by a Hurst function H(·) with
values in a compact interval of (0, 1). Under some regularity assumptions for
the Hurst function, see Conditions 2.8 (a), (b) and (c) below, one can show that,
almost surely, the function H governed the Hölder regularity of the multifrac-
tional Brownian motion. Also, the self-similarity property is turned into a local
asymptotic self-similarity property, see Definition 2.12 below.

Since the introduction of the multifractional Brownian motion, many authors
studied this process, from various perspectives. One can cite for instance the
papers [20, 19] concerning the local time of this process, [24, 43] for statistical
estimation of the Hurst function, [61, 23] where fractal dimensions are computed,
[45, 30] for studies of the precise pointwise regularity, and [41, 42, 44] where a
stochastic calculus with respect to multifractional Brownian motion is defined.
Also, different generalizations has been given such as in [13, 14, 3], where a larger
class of Hurst functions are considered, in order that the Hölder exponent of
the process is, almost surely, of the most general form given in [1, 26], or in
[15, 12, 4] where the Hurst function is also random. Finally, various extensions
have been given, using larger classes of processes closely related to the fractional
Brownian motion like, for instance, the linear multifractional stable motion
[10, 11] or the Surgailis multifractional process [57, 7]. We also refer to the
book [5] for a very clear view on the known facts about multifractional Brownian
motion and related fields. The aim of the current paper is to define an extension
of multifractional Brownian motion in an arbitrary Wiener chaos, using the
affiliation of fractional Brownian motion in the class of Hermite processes.

All along this paper, given1 d ∈ N∗ and a symmetric function f ∈ L2(Rd),
Id(f) stands for the d-multiple Wiener-Itô integral of f with respect to the
Brownian motion {B(t)}t∈R defined on a probability space (Ω,F ,P). If f is of
the form

f =

n∑
j1,...,jd=1

aj1,...,jd1[sj1 ,tj1 ) ⊗ · · · ⊗ 1[sjd ,tjd ), (1)

where, ⊗ stands for the tensor product, aj1,...,jd are such that, for all permuta-
tion σ, aσ(j1),...,σ(jd) = aj1,...,jd and aj1,...,jd = 0 as soon as two indices j1, . . . , jd
are equal and, for all 1 ≤ ` 6= `′ ≤ d, [sj` , tj`) ∩ [sj`′ , tj`′ ) = ∅, then

Id(f) :=

n∑
j1,...,jd=1

aj1,...,jd(B(tj1)−B(sj1))× . . . (B(tjd)−B(sjd)). (2)

It is straightforward that this last random variable belongs to L2(Ω). For a
general symmetric f ∈ L2(Rd), Id(f) is then defined using the density of func-
tions of the form (1) within the set of symmetric square integrable function and

1We use the notation N∗ for the set of strictly positive integer numbers.
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by checking that the corresponding random variables (2) converge in L2(Ω).
Among many properties that enjoys this integral, we will mainly use the so-
called isometry property: for all f, g symmetric function in L2(Rd) and L2(Rd′)
respectively,

E [Id(f)Id′(g)] =

{
d!〈f, g〉 if d = d′

0 otherwise,
(3)

where 〈·, ·〉 stands for the canonical scalar product in L2(Rd). The dth Wiener
chaos is defined as the closed linear subspace of L2(Ω) generated by the random
variables of the form Id(f), with f symmetric function in L2(Rd).

Now, given h ∈ ( 1
2 , 1), we define, for all s ≥ 0, the function

fh(s, •) : Rd → R+ : x 7→
d∏
`=1

(s− x`)
h−1
d −

1
2

+ . (4)

It is easy to show that, for all t ≥ 0, the function∫ t

0

fh(s, •) ds

is symmetric and belongs to L2(Rd). Then, the Hermite process of order d and
Hurst parameter h is defined as{

Id

(∫ t

0

fh(s, •) ds
)}

t∈R+

. (5)

When d = 1, this process reduces to the fractional Brownian motion of Hurst
parameter h. As soon as d > 1, the Hermite process of order d is known to
be non-Gaussian. Hermite processes first appeared as limit of partial sums of
correlated random variables, in the so-called Non-Central Limit Theorem, see
[28, 58, 59]. Apart from Gaussianity, Hermite processes share many properties
with fractional Brownian motion such as the stationarity of increments, the h-
self similarity, the Hölder regularity. These facts are particularly interesting in
application where we have to model a phenomena for which the Gaussianity
is not a reasonable assumption. See for instance [62] where the asymptotic
distributions in a model for the unit root testing problem, with errors being
non-linear transforms of linear processes, are shown to be functionals of Hermite
processes.

Remark 1.1. For all h ∈ ( 1
2 , 1) and d ∈ N∗, we define the constant cd(h) by

cd(h)2 =
d!β
(

1
2 −

1−h
d , 2−2h

d

)
h(2h− 1)

,

with β(·, ·) the usual Euler Beta function. Using the isometry property (3) for
Wiener-Itô integrals, one can show that, for all t ≥ 0,

E

[(
Id

(∫ t

0

fh(s, •) ds
))2

]
= cd(h)2t2h,

see for instance the recent book [60]. For this reason, some authors used the
normalized definition {Id( 1

cd(h)

∫ t
0
fh(s, •) ds)}t∈R+

for the Hermite process of
order d and Hurst parameter h. In our context, let us remark that, for all
d ∈ N∗, the function h 7→ cd(h) is continuous on ( 1

2 , 1).
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In this paper we define multifractional Hermite processes by substituting the
constant Hurst parameter in (5) by a Hurst function with values in a compact
interval of (1/2, 1). In order to do so, we first introduce the following fields,
called “generators of Multifractional Hermite processes”.

Definition 1.2. Given d ∈ N∗, the generator of the multifractional Hermite
process of order d is the real-valued centred field {Xd(t, h)}(t,h)∈R+×( 1

2 ,1) defined,
for all (t, h) ∈ R+ × ( 1

2 , 1), by the multiple Wiener-Itô integral

Xd(t, h) := Id

(∫ t

0

fh(s, •) ds
)
. (6)

Let us remark that, if h ∈ (1/2, 1) is fixed, {Xd(t, h)}t∈R+
is the standard

Hermite process of order d and Hurst parameter h. In Proposition 2.4 below, we
show that, for all d, there exist a modification of {Xd(t, h)}t∈R+,h∈(1/2,1) and Ω∗,
an event of probability 1, such that, on Ω∗, the trajectories of this modification
are (Hölder) continuous. Then, we identify {Xd(t, h)}t∈R+,h∈(1/2,1) with this
modification and define multifractional Hermite processes as follows.

Definition 1.3. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a function

H : R+ → K, the multifractional Hermite process of order d and Hurst function
H is the process {XH(·)

d (t)}t∈R+
defined, for all t ∈ R+, by

X
H(·)
d (t) = Xd(t,H(t)). (7)

Remark 1.4. Of course, the trajectories of multifractional Hermite processes
and their associated generators depend on the additional parameter ω ∈ Ω. In
order to ease the notations, all along this paper, when the context is clear, we
allow ourself not to explicitly mention this dependence and to write XH(·)

d (t)

and Xd(t, h) instead of XH(·)
d (ω, t) and Xd(ω, t, h) respectively.

When d = 2, the multifractional Hermite process corresponds to the mul-
tifractional Rosenblatt process previously introduced in the paper [56]. Never-
theless, Wiener-Itô integrals of order 2 enjoy specific properties (see the end of
Section 2 and Section 8 in the present paper). Thus, the study undertook here
is more general. Moreover, some facts proved in this paper are not considered in
[56]. Among other things, in Section 4 we compute the exact Hölder exponents
of the multifractionnal Rosenblatt process (only upper bounds are given in [56])
and in Section 5 we establish a law of iterated logarithm. Also, in Section 8, we
prove the existence of a continuous and bounded density for increments of the
multifractional Rosenblatt process, with the help of Malliavin calculus. It helps
us to refine some facts explored in this paper.

Other multifractional processes in arbitrary Wiener chaoses have already
been defined in the literature. In the paper [8], the authors consider a multi-
fractional generalization of processes introduced in [2]. They are defined with an
alternative kernel which facilitates the computation of a wavelet-type expansion.
Also, in the papers [50, 51], the author obtains some multifractional processes in
arbitrary Wiener chaoses as limits of weighted sums of multifractional Gaussian
fields. These processes are a priori not directly related to the ones defined in
this paper, as it is already the case in the first order chaos, see [25].
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With this paper, we hope to open the door to further investigations con-
cerning multifractional Hermite processes. We believe that many interesting
research questions could be addressed, similarly to what have been done with
the multifractional Brownian motion. Also, we think that multifractional Her-
mite processes could be used in applications to model phenomena where both
Gaussianity and constant regularity can not be assumed. To motivate the intro-
duction of multifractional Hermite processes, we focus on some first important
properties concerning the behaviour of stochastic processes: Hölder regularity,
the law of iterated logarithm, local asymptotic self-similarity and fractal di-
mensions for the graph. These notions are defined in Section 2 as well as the
main strategies used to state and prove our main theorems. Section 3 is mainly
concerned in giving an uniform modulus of continuity for multifractional Her-
mite processes. In section 4, we provide a lower bound for the oscillations of
multifractional Hermite processes. Section 5 is devoted to prove a law of iter-
ated logarithm. In Section 6, the local asymptotic self-similarity is discussed.
Section 7 deals with estimates for the Hausdorff and box-counting dimensions
of the graph of multifractional Hermite processes. Finally, in Section 8, some
complements concerning the fractal dimensions of the graph of the multifrac-
tional Rosenblatt process are given, using specific arguments from the Wiener
chaos of order 2 and Malliavin calculus.

Our results show that, as desired, fundamental properties of multifractional
Hermite processes are governed by their associated Hurst function.

2 Preliminaries, strategy and main results
As stated in the Introduction, the definition of a multifractional Hermite process
relies on a modification of its generator which is almost surely Hölder continuous.
Let us start by recalling the definition of this notion.

Definition 2.1. If f a is (deterministic) continuous function defined on a com-
pact interval I of R, the oscillation of f on I is defined by

Osc(f, I) := sup
t,s∈I

|f(t)− f(s)|. (8)

We say that f belongs to the pointwise Hölder space at t0 ∈ I and of order
α ∈ (0, 1) if there exist R > 0 and C > 0 such that, for all 0 < r < R,

Osc(f, [t0 − r, t0 + r] ∩ I) ≤ Crα. (9)

In this case, we note f ∈ Cα(t0). It is easy to check that, if α < β, then
Cβ(t0) ⊆ Cα(t0). Therefore, the pointwise Hölder exponent of f at t0 is defined
as

hf (t0) := sup{α ∈ (0, 1) : f ∈ Cα(t0)}.

If, for all t0 ∈ I, f ∈ Cα(t0), with an uniform constant C > 0 in (9), we say
that f is uniformly Hölder on I of order α and we note f ∈ Cα(I). The uniform
Hölder exponent of f on I is then naturally defined as

Hf (I) := sup{α ∈ (0, 1) : f ∈ Cα(I)}.

Of course, for all t0 ∈ I, we have hf (t0) ≥ Hf (I).
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One of the easiest and most standard way to provide information concerning
the Hölder regularity of a stochastic process is to use Kolmogorov continuity
theorem. On this purpose, one has to obtain bounds for the norms in Lp(Ω) of
the increments of the process. It is precisely the aim of the next proposition.
In fact, this result will be crucial in numerous occasions all along this paper.

Proposition 2.2. Let d ∈ N∗, K be a compact interval of ( 1
2 , 1) and I be a com-

pact interval of R+. There exist two positive deterministic constant c1, c2, only
depending on d an K, and a positive deterministic constant c3, only depending
on d, K and I, such that, for all t, u ∈ I and h1, h2 ∈ K,

‖Xd(t, h1)−Xd(u, h2)‖L2(Ω)

is bounded from above by c1|t − u|min{h1,h2} + c3|h1 − h2| and from below by
c2|t− u|min{h1,h2} − c3|h1 − h2|.

Proof. Let us write K = [a, b] with 1
2 < a < b < 1 and let us assume, without

loss of generality, h1 < h2. For all t, u ∈ I and h1, h2 ∈ K, of course, we have

‖Xd(t, h1)−Xd(u, h1)‖L2(Ω) − ‖Xd(u, h1)−Xd(u, h2)‖L2(Ω) ≤
‖Xd(t, h1)−Xd(u, h2)‖L2(Ω)

≤ ‖Xd(t, h1)−Xd(u, h1)‖L2(Ω) + ‖Xd(u, h1)−Xd(u, h2)‖L2(Ω). (10)

Using the self-similarity and stationarity of increments of Hermite processes,
we know that there exists a deterministic constant cd(h1) > 0, such that

‖Xd(t, h1)−Xd(u, h1)‖L2(Ω) = cd(h1)|t− u|h1 .

In view of Remark 1.1, we take

c1 = sup
h∈K

cd(h) and c2 = inf
h∈K

cd(h).

Thus, it only remains to bound ‖Xd(u, h1)−Xd(u, h2)‖L2(Ω). In the sequel,
we write dx for dx1 . . . dxd. Let us also recall the notation (4). Using the
isometry property (3) for Wiener-Itô integrals and Definition 1.2 we have

‖Xd(u, h1)−Xd(u, h2)‖L2(Ω)

= d!

(∫
Rd

(∫ u

0

fh1(s,x)− fh2(s,x) ds

)2

dx

) 1
2

. (11)

For all (s,x) with
∏d
`=1(s − x`)+ > 0 fixed, by mean value theorem, there is

h′ ∈ [h1, h2] such that

|fh1
(s,x)− fh2

(s,x)| = 1

d
|h1 − h2|fh′(s,x)

∣∣∣∣∣ln
(

d∏
`=1

(s− x`)+

)∣∣∣∣∣ .
Now, using the fact that, for all ε > 0,

lim
x→0+

xε log(x−1) = 0+ and lim
x→+∞

log(x)

xε
= 0+,
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one can choose ε > 0 such that 1
2 < a− ε < b+ ε < 1 and find a deterministic

constant cε > 0 for which, for all x ∈ Rd,∣∣∣∣∫ u

0

fh1
(s,x)− fh2

(s,x) ds

∣∣∣∣ ≤ cε|h1 − h2|
∫ u

0

fa−ε(s,x) + fb+ε(s,x) ds. (12)

Plugging this into (11) and using again the isometry property (3) for Wiener-Itô
integrals, we get

‖Xd(u, h1)−Xd(u, h2)‖L2(Ω)

≤ cε|h1 − h2|
(
‖Xd(u, a− ε)‖L2(Ω) + ‖Xd(u, b+ ε)‖L2(Ω)

)
≤ cdcε|h1 − h2|(|u|a−ε + |u|b+ε)
≤ c3|h1 − h2|,

for a positive deterministic constant c3 > 0 only depending on d, K and I.

The next corollary is then a direct consequence of the hypercontractivity
property on Wiener chaoses, see [52, Theorem 2.7.2].

Corollary 2.3. Given d ∈ N∗ and K a compact interval of ( 1
2 , 1), let I be a

compact interval of R+. For any p ≥ 1 there exists a positive deterministic
constant cp, only depending on d, p, K and I, such that, for all t, u ∈ I and
h1, h2 ∈ K,

‖Xd(t, h1)−Xd(u, h2)‖Lp(Ω) ≤ cp
(
|t− u|min{h1,h2} + |h1 − h2|

)
. (13)

Inequality (13) combined with Kolmogorov continuity theorem are enough to
consider the Hölder regularity of generators of multifractional Hermite processes.

Proposition 2.4. Given d ∈ N∗, there exist a modification of the field
{Xd(t, h)}(t,h)∈R+×(1/2,1), also denoted by {Xd(t, h)}(t,h)∈R+×(1/2,1), and Ω∗, an
event of probability 1, such that, on Ω∗, given I, a compact interval of R+, and
K, a compact interval of ( 1

2 , 1), for all 0 < a < inf K, there exists a finite
positive random variable C such that, for all t, u ∈ I and h1, h2 ∈ K,

|Xd(t, h1)−Xd(u, h2)| ≤ C(|t− u|+ |h1 − h2|)a. (14)

Proof. Using (13), we see that, for all p > 0 there exists a deterministic constant
c > 0, only depending ond, p, I and K, such that, for all t, u ∈ I and h1, h2 ∈ K,

‖Xd(t, h1)−Xd(u, h2)‖Lp(Ω) ≤ c(|t− u|+ |h1 − h2|)inf K

and the conclusion follows by applying a strong version of Kolmogorov continuity
theorem, see for instance [37, Theorem 2.5.1 pages 165 and 166].

Starting from now, we identify the generators of the multifractional Her-
mite processes with their continuous modification. Once this identification
done, the multifractional Hermite process, of order d and Hurst function H,
{XH(·)

d (t)}t∈R+ is defined by the equality (7). Let us now present our main
results which focus on fundamental properties of these processes.

Hölder regularity provide nice information about the pointwise and global
behaviour of the functions we consider. Nevertheless, often we are interested by
more precise bound for the oscillations. It can be done by the mean of moduli
of continuity.
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Definition 2.5. If f a is (deterministic) function defined on a compact interval
I of R, we say that a continuous increasing function ρ defined on R+ and such
that limr→0+ ρ(r) = 0 is a modulus of continuity for f at t0 ∈ I if

lim sup
r→0+

Osc(f, [t0 − r, t0 + r] ∩ I)

ρ(r)
< +∞. (15)

Moreover, if

lim sup
r→0+

supt0∈I Osc(f, [t0 − r, t0 + r])

ρ(r)
< +∞

we say that ρ is an uniform modulus of continuity for f on I.

Remark 2.6. Of course, if f is α-Hölder, the function r 7→ rα is a modulus of
continuity for f . Hölder regularity only compares the oscillations with power
functions while, with moduli of continuity, one can deduce more precise and
relevant information concerning the analysed function. It is particularly true
when we consider stochastic processes, see for instance [31, 27, 30]. Note that
one can define generalized Hölder spaces associated with modulus of continuity
[39, 40, 46] and that these spaces lead to specific multifractal formalisms [47, 48].

While considering the multifractional Hermite process XH(·)
d , we say that

h (resp. ρ) is a (pointwise or uniform) Hölder exponent (resp. modulus of
continuity) for XH(·)

d if it is a Hölder exponent (resp. modulus of continuity)
for all the sample paths t 7→ X

H(·)
d (t) on an event of probability 1.

Notation 2.7. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a continuous

function H : R+ → K, if I is a compact interval of R+, we note

H(I) := min{H(I)} and H(I) := max{H(I)}.

While studying multifractional processes, authors generally require a regu-
larity assumption for the function H in order to consider the regularity of the
process itself, see for instance [5, 17, 55]. Here, we will also work with such
conditions.

Condition 2.8. Given d ∈ N∗ and a compact interval K of ( 1
2 , 1), we say that

the Hurst function H : R+ → K satisfies

(a) the uniform min-Hölder regularity condition if, for all compact interval I of
R+, there exists γ ∈ (H(I), 1) such that H ∈ Cγ(I);

(b) the pointwise Hölder condition if, for all t ∈ R+, there exists γ ∈ (H(t), 1)
such that H ∈ Cγ(t);

(c) the local Hölder condition if, for all t ∈ R+, there exist a compact interval
It ⊂ R+ and γ ∈ (H(t), 1) such that t ∈ It and H ∈ Cγ(It);

All along this paper, to be as general as possible, we use alternatively Con-
dition 2.8 (a), (b) or (c) to state and prove our results. Note that if the Hurst
function H : R+ → K is such that, for all compact interval I of R+, there
exists γ ∈ (H(I), 1) for which H ∈ Cγ(I), then Conditions 2.8 (a), (b) and (c)
are obviously satisfied.

Our first main result consists in providing, under Condition 2.8 (a), an uni-
form modulus of continuity for each multifractional Hermite processes. In Sec-
tion 3, we prove the following Theorem.
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Theorem 2.9. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst

function H : R+ → K satisfying Condition 2.8 (a), there exists Ω∗1, an event
of probability 1, such that, on Ω∗1, for all compact interval I of R+

lim sup
r→0+

supt0∈I Osc(XH(·)
d , [t0 − r, t0 + r] ∩ I)

rH(I)(log r−1)
d
2

< +∞.

Under Condition 2.8 (b), one can compute the pointwise Hölder regularity
of the process. As desired, it is governed by the Hurst function, as stated in our
second main Theorem, proved in Section 4.

Theorem 2.10. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst

function H : R+ → K satisfying Condition 2.8 (b), there exists Ω∗2, an event
of probability 1, such that on Ω∗2, for all t0 ∈ R+, we have

h
X
H(·)
d

(t0) = H(t0).

In fact, Theorem 2.10 is a consequence of the stronger Theorem 4.1 below
which gives a lower bound for the oscillations of multifractional Hermite pro-
cesses.

When we study the pointwise regularity of a stochastic process, we are often
interested in providing a so-called law of iterated logarithm. It shows that,
almost surely, the oscillations at most of the points (in the sense of Lebesgue
measure) can be bounded from below and above by a modulus of continuity
featuring an iterated logarithm. In Section 5, we show that multifractional
Hermite processes enjoy this property.

Theorem 2.11. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst

function H : R+ → K satisfying Condition 2.8 (c), there exists Ω, an event of
probability 1, such that on Ω, for (Lebesgue) almost every t0 ∈ R+, we have

0 < lim sup
r→0+

Osc(XH(·)
d , [t0 − r, t0 + r] ∩ R+)

rH(t)(log(log r−1))
d
2

<∞. (16)

As shown by Theorem 2.10, if the function H is non constant, almost surely,
the pointwise Hölder exponent of the multifractional Hermite process XH(·)

d

changes from one point to another. In particular, there is no hope that it is
a self-similar process, see [5, Proposition 1.60]. For this reason, one prefers to
check a weaker assumption, the so-called local asymptotic self-similarity.

Definition 2.12. A real-valued stochastic process {X(t)}t∈R+
is weakly lo-

cally asymptotically self-similar of order h > 0 at the point t0 with non-
degenerate tangent process {Y (t)}t≥0 if the sequence of process {ε−h(X(t0 +
εt)−X(t0))}t∈R+ converges to the process {Y (t)}t∈R+ in finite dimensional dis-
tributions, as ε → 0+. When {X(t)}t∈R+ and {Y (t)}t∈R+ have, almost surely,
continuous path and if the previous convergence also holds in the sense of con-
tinuous function over an arbitrary compact set of R+, we say that {X(t)}t∈R+

is strongly locally asymptotically self-similar of order h > 0 at the point t0, with
tangent process {Y (t)}t∈R+ .

Of course, the strong local asymptotic self-similarity implies the weak lo-
cal asymptotic self-similarity. Conversely, let us assume {X(t)}t∈R+

is weakly
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locally asymptotically self-similar of order h > 0 at the point t0 with tangent
process {Y (t)}t∈R+

. Let a > 0 be an arbitrary fixed real-number and, for ε > 0,
let Paε be the probability measure induced by {ε−h(X(t0 + εt)−X(t0))}t∈R+

on
the Borel σ-algebra of2 C([0, a],R). In order, to show that the convergence holds
in the strong sense, it suffices to show, since a > 0 is arbitrary, that the family
(Paε)ε>0 is relatively compact. Using Prohorov’s criterion (see [18, Section 5 in
Chapter 1] for a comprehensive view), it reduces to show that, for all δ > 0

lim
η→0+

lim sup
ε→0+

P

(
sup

s,t∈[0,a],|t−s|≤η

∣∣∣∣X(t0 + εt)−X(t0 + εs)

εh

∣∣∣∣ ≥ δ
)

= 0. (17)

In Section 6, we use this technique to prove the local asymptotic self-similarity
of the multifractional Hermite process.

Theorem 2.13. Let d ∈ N∗, K be a compact interval of ( 1
2 , 1) and H : R+ →

K be a Hurst function. If H satisfies Condition 2.8 (b) then, for all t0 ≥ 0, the
multifractional Hermite process {XH(·)

d (t) : t ≥ 0} is weakly locally asymptoti-
cally self-similar of order H(t0) at t0 with tangent process {Xd(t,H(t0)) : t ≥
0}, the Hermite process of order d and Hurst parameter H(t0). Moreover, if H
satisfies Condition 2.8 (c), then this property also holds in the strong sense.

The last notions that we consider in this paper to study the behaviour of
a given multifractional Hermite process are the Hausdorff and box-counting
dimensions of its graph. We refer to the fundamental book [32] for details and
proofs concerning these quantities.

Definition 2.14. Given d ∈ N∗, a set A ⊆ Rd and ε, h > 0, the quantity

Hhε (A) := inf{
∑
j

diamh(Aj) : A ⊆
⋃
j

Aj and, ∀j,diam(Aj) < ε}

where, as usual, diam stands for the diameter, is called the (h, ε)-Hausdorff
outer measure of A. Moreover, for all h > 0, the application ε 7→ Hhε (A) is
decreasing and it follows that the h-dimensional Hausdorff outer measure

Hh(A) := lim
ε→0+

Hhε (A)

is well-defined.

The crucial property of Hausdorff outer measures is that, for any non-empty
set A, there exists a critical value h0 such that

Hh(A) =∞ ∀h < h0 and Hh(A) = 0 ∀h > h0.

Definition 2.15. Given d ∈ N∗ and a non-empty set A ⊆ Rd, the Hausdorff
dimension of A is

dimH(A) = sup{h > 0 : Hh(A) =∞} = inf{h > 0 : Hh(A) = 0},

while, by convention, dimH(∅) = −∞.
2As usual, C([0, a],R) stands for the set of real continuous function on [0, a].
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An alternative notion of dimensions for fractal sets are given by the box-
counting dimensions.

Definition 2.16. Given d ∈ N∗, a non-empty bounded set A ⊆ Rd and ε > 0,
let Nε(A) be the smallest number of sets of diameter at most ε which can cover
A. The quantities

dimB(A) := lim inf
ε→0+

log(Nε(A))

− log(ε)
and dimB(A) := lim sup

ε→0+

log(Nε(A))

− log(ε)

are, respectively, the lower and upper box-counting dimensions of A. If they are
equal, the common value is refereed as the box-counting dimension of A and we
denote it dimB(A).

We also refer to [32] for all the properties of these dimensions and a clear pre-
sentation of their respective utilities and interpretations. Here, we will mainly
use the fact that, for any non-empty bounded set A ⊆ Rd,

dimH(A) ≤ dimB(A) ≤ dimB(A). (18)

Also, we use the fact that, for all A,B subset of Rd,

(A ⊆ B)⇒ dimH(A) ≤ dimH(B) (19)

In this paper, given d ∈ N∗, a compact interval K of ( 1
2 , 1), a Hurst func-

tion H : R+ → K and a compact interval I ⊂ R+, we are interested in the
dimensions of the graph

Gd(I) := {(t,XH(·)
d (t)) : t ∈ I}

In view of inequalities (18), our strategy consists in bounding from above the
(upper) box-counting dimension and from below the Hausdorff dimension. The
main Theorem of Section 7 can then be stated as follows.

Theorem 2.17. Given d ∈ N∗, a compact interval K of ( 1
2 , 1), a Hurst function

H : R+ → K satisfying Condition 2.8 (a) and a compact interval I ⊂ R+, there
exists Ω̃, an event of probability 1, such that on Ω̃, we have

1 +
1−H(I)

d
≤ dimH (Gd(I)) ≤ dimB (Gd(I)) ≤ 2−H(I).

When d = 1, inequalities in Theorem 2.17 are equalities and we recover
the well-known result of [55]. Unfortunately, for d > 1, we have a disparity
between the lower and upper bounds for the fractal dimensions. It comes from
the estimates that can be made on the probabilities

P(|XH(·)
d (t)−XH(·)

d (u)| ≤ x), (20)

for t, u, x ≥ 0, see Proposition 7.6 below. It is unknown whether a general
(multifractional) Hermite process admits a continuous and bounded density
and thus we have to estimate (20) with the so-called Carbery-Wright inequality,
Lemma 7.5 in this paper, which induces this factor 1

d . Nevertheless, for d = 2,
one can use specific arguments from the second order Wiener chaos, [52, Section
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2.4]. Indeed, if f is a symmetric function in L2(R2), let us consider the Hilbert-
Schmidt operator defined as

Af : L2(R)→ L2(R) : g 7→
∫
R
f(·, y)g(y) dy.

Then, let {λf,j}j∈N and {ef,j}j∈N indicate, respectively, the eigenvalues of Af
and the corresponding eigenvectors. The system {ef,j}j∈N is orthonormal in
L2(R), the sequence {λf,j}j∈N belongs to `p, for all p ≥ 2, and f has the
expansion

f =
∑
j∈N

λf,jef,j ⊗ ef,j ,

with convergence in L2(R2). In particular, from this last equality, one can write

I2(f) =
∑
j∈N

λf,j
(
I1(ef,j)

2 − 1
)
, (21)

with convergence in L2(Ω). Let us also note that the orthonormality of {ef,j}j∈N
entails

‖f‖2L2(R2 =
∑
j∈N

λ2
f,j . (22)

In Section 8, we take advantage of this expansion, together with arguments
from Malliavin calculus and the paper [35], to prove the following improvement
of Theorem 2.17 in the second order Wiener chaos. We recall that, in this case,
the multifractional Hermite process corresponds to the multifractional Rosen-
blatt process.

Theorem 2.18. Given a compact interval K of ( 1
2 , 1), a Hurst function H :

R+ → K satisfying Condition 2.8 (a) and a compact interval I ⊂ R+, there
exists Ω̃2, an event of probability 1, such that on Ω̃2, we have

dimH (G2(I)) = dimB (G2(I)) = 2−H(I).

Note that this disparity of results also appeared in the standard case, where
the Hurst function is constant, see [2]. We conjecture that, in fact, the equality
holds for any (multifractional) Hermite processes. A strategy to prove this fact
would be to show that (multifractional) Hermite processes admit continuous
and bounded densities. It is still an open question which goes far beyond the
scope of this paper.

3 Uniform modulus of continuity
Let us now focus on the continuity and regularity of multifractional Hermite
processes. Let us first remark that, on the event Ω∗ induced by Proposition
2.4, XH(·)

d is always continuous at 0. Indeed, if ω ∈ Ω∗ is fixed and (tj)j is a
sequence which converges to 0, then let us consider a subsequence (tk(j))j of
(tj)j . As H has a compact image, there is a subsequence (tl(k(j)))j such that
H(tl(k(j)))→ H̃0, for some H̃0 ∈ K. Then, inequality (14) entails

X
H(·)
d (ω, tl(k(j))) = Xd(ω, tl(k(j)), H(tl(k(j))))→ Xd(ω, 0, H̃0) = 0 = X

H(·)
d (ω, 0).

12



Thus, any subsequence of (X
H(·)
d (ω, tj))j has a subsequence which converges to

0, which means that (X
H(·)
d (ω, tj))j also converges to 0.

Of course, if H is a continuous function, (7) and (14) imply that, on Ω∗,
X
H(·)
d is continuous on R+. At the opposite, if H is discontinuous at a point

t0 6= 0, using again the fact that the image of H is compact, we know that there
exists (tj)j such that tj → t0 and tj → H0 6= H(t0). Then, from the isometry
property (3) for Wiener-Itô integrals, we get

‖Xd(t0, H0)−Xd(t0, H(t0))‖L2(Ω)

= d!

(∫
Rd

(∫ t0

0

fH0
(s,x)− fH(t0)(s,x) ds

)2

dx

) 1
2

.

= d!

∫
Rd

(∫ t0

0

d∏
`=1

(s− x`)
H(t0)−1

d − 1
2

+

(
d∏
`=1

(s− x`)
H0−H(t0)

d
+ − 1

)
ds

)2

dx

 1
2

> 0.

It means that one can find an event Ωt0 of probability 1 such that, for all
ω ∈ Ωt0 , X

H(·)
d is discontinuous at t0.

From this discussion, we see that in order to insure the almost sure continuity
of multifractional Hermite processes, we have to assume that the Hurst function
is continuous. Therefore, starting from now and until the end of this paper, the
Hurst function is always assumed to be a continuous function. In fact, we will
even make stronger assumptions on this function, namely Condition 2.8 (a), (b)
or (c).

Under Condition 2.8 (a), by Proposition 2.4, one easily see that, almost
surely, for all compact interval I of R+, X

H(·)
d is Hölder continuous on I, with

Hölder exponent at least H(I).
Here, we aim at giving a more precise result by providing an almost sure

uniform modulus of continuity for XH(·)
d . On this purpose, let us recall the

following important fact, see for instance [36, Theorem 6.7].

Lemma 3.1. For all d ∈ N∗, there exists an universal deterministic constant
cd > 0 such that, for any random variable X in the Wiener chaos of order d,
and y ≥ 2,

P(|X| ≥ y‖X‖L2(Ω)) ≤ exp(−cdy
2
d ).

Let us introduce some notations. For all j ∈ N and t ∈ R+, k−j (t) is the
unique non negative integer such that t ∈ [k−j (t)2−j , (k−j (t) + 1)2−j) and we set
k+
j (t) := k−j (t) + 1. Let us remark that, for all t ∈ R+, k−j (t)2−j , k+

j (t)2−j → t
as j → +∞. Also, note that, for all j ∈ N,

{k−j+1(t), k+
j+1(t)} ⊂ {2k−j (t), 2k−j (t) + 1, 2k−j (t) + 2}

= {2k+
j (t), 2k+

j (t)− 1, 2k+
j (t)− 2}.

Proof of Theorem 2.9. For all (j, k) ∈ N2, we write Xj,k := X
H(·)
d (k2−j). Let

us fix n ∈ N and, if cd is the constant given by Lemma 3.1, let c >
(

ln(2)
cd

) d
2

.
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For all j ∈ N, let us consider the event Aj defined by(
∃0 ≤ k ≤ n2j , k′ ∈ {2k, 2k ± 1, 2k ± 2} :

|Xj+1,k′ −Xj,k|
‖Xj+1,k′ −Xj,k‖L2(Ω)

≥ cj d2
)
.

If j is sufficiently large, by Lemma 3.1, we have P (Aj) ≤ 5n2j exp(−cdc
2
d j).

Thus, as c >
(

ln(2)
cd

) d
2

, we have
∑+∞
j=0 P (Aj) <∞. Borel-Cantelli Lemma entails

the existence of Ωn,1, an event of probability 1, such that, on Ωn,1, there exists
J1 ∈ N for which, for all j ≥ J1 and for all 0 ≤ k ≤ n2j , k′ ∈ {2k, 2k±1, 2k±2},

|Xj+1,k′ −Xj,k| ≤ cj
d
2 ‖Xj+1,k′ −Xj,k‖L2(Ω). (23)

Now, let us fix a compact interval I ⊆ [0, n]. There exists J2 ∈ N such that,
for all j ≥ J2, 22−j ≤ diam(I). In particular, it means that, for all t ∈ I and
for all j ≥ J2, k−j (t)2−j ∈ I or kj(t)+2−j ∈ I. In the sequel, for all such t and
j, we choose kj(t) ∈ {k−j (t), k+

j (t)} such that kj(t)2−j ∈ I. On the event Ω∗

given by Proposition 2.4, we can write, for all j0 ≥ J2

X
H(·)
d (t) = Xj0,kj0 (t) +

∑
j≥j0

(Xj+1,kj+1(t) −Xj,kj(t)).

Therefore, on the event Ωn = Ωn,1 ∩ Ω∗ of probability 1, if s, t ∈ I are such
that 2−(j0+1) ≤ |s− t| ≤ 2−j0 for some j0 ≥ max{J1, J2}, we write

|XH(·)
d (t)−XH(·)

d (s)| ≤ |Xj0,kj0 (t) −Xj0,kj0 (s)|

+
∑
j≥j0

|Xj+1,kj+1(t) −Xj,kj(t)|

+
∑
j≥j0

|Xj+1,kj+1(s) −Xj,kj(s)|. (24)

From Proposition 2.2 and inequality (23), as H satisfies Condition 2.8 (a), there
is a constant c1, only depending on d, I, K and c such that, for all j ≥ j0,

max{|Xj+1,kj+1(t) −Xj,kj(t)|, |Xj+1,kj+1(s) −Xj,kj(s)|} ≤ c1j
d
2 2−H(I)(j+1).

Also, as |kj(t)2−j − kj(s)2
−j | ≤ 22−j0 + 2−j0 ≤ 2−j0+2, we have, still from

Proposition 2.2 and inequality (23),

|Xj,kj(t) −Xj,kj(s)| ≤ c1j
d
2
0 2−H(I)(j0+2).

In total, we get the existence of a constant c2, only depending on d, I, K and
c, such that, for all s, t ∈ I with 2−(j0+1) ≤ |s− t| ≤ 2−j0

|XH(·)
d (t)−XH(·)

d (s)| ≤ c2j
d
2
0 2−H(I)j0 ≤ c2| log |s− t|| d2 |s− t|H(I).

The conclusion follows by taking Ω∗1 =
⋂
n Ωn.
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4 Pointwise Hölder exponent
Now, we want to show that the pointwise regularity of the process is governed
by the Hurst function. Under Condition 2.8 (b), it is easy to show, with the
help of Proposition 2.4, that, almost surely, for any t0 ∈ R+,

h
X
H(·)
d

(t0) ≥ H(t0).

To show the reverse inequality, we will prove the following Theorem.

Theorem 4.1. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst

function H : R+ → K satisfying Condition 2.8 (b), there exists Ω, an event of
probability 1, such that, on Ω, for all t0 ∈ R+,

lim sup
r→0+

Osc(XH(·)
d , [t0 − r, t0 + r] ∩ R+)

rH(t0)(log r−1)
−d2H(t0)

2(1−H(t0))

> 0. (25)

On this purpose, we use a generalization of a combination of previous ideas
from the papers [6, 9, 27]. First, remark that, similarly to the proof of Theorem
2.9, it suffices to show that, for all n ∈ N, there is Ωn, an event of probability
1, such that, on Ωn, for all t0 ∈ [n, n+ 1], (25) holds. The conclusion comes by
taking Ω =

⋂
n∈N Ωn. For the sake simpleness in notation, we prove this result

for n = 0.
Let us fix some notations. For all (j, k) ∈ N2, λj,k stands for the dyadic

interval of scale j explicitly given by [k2−j , (k + 1)2−j), Λj is the set of all
dyadic intervals of scale j and Λ :=

⋃
j Λj . If λ = λj,k ∈ Λj , 3λ is the set

{λj,k−1, λj,k, λj,k+1}. Finally, for all j ∈ N and t0 ∈ R+, λj(t0) is the unique
interval in Λj such that t0 ∈ λj(t0). If x ∈ [0, 1] and λ ∈ Λ, we allow ourself
to write x ∈ 3λ to state that there exists λ′ ∈ 3λ for which x ∈ λ′. Similarly,
λ′′ ⊆ 3λ means that there exists λ′ ∈ 3λ for which λ′′ ⊆ λ′.

For all (j, k) ∈ N× {0, . . . , 2j − 1}, let us set

∆j,k := X
H(·)
d

(
k + 1

2j

)
−XH(·)

d

(
k

2j

)
= Xd

(
k + 1

2j
, H

(
k + 1

2j

))
−Xd

(
k

2j
, H

(
k

2j

))
.

If λ = λj,k, we also write ∆λ for ∆j,k. It is clear that, for all j ∈ N,

sup
λ⊆3λj(t)

|∆λ| ≤ Osc(XH(·)
d , [t− 22−j , t+ 22−j ]). (26)

Recalling (6) and the notation (4), we write

X
H(·)
d

(
k + 1

2j
, H

(
k + 1

2j

))
−Xd

(
k

2j
, H

(
k + 1

2j

))
= Id

(∫ k+1

2j

k

2j

fH( k+1

2j
)(s, •) ds

)

= Id

(
1(−∞, k+1

2j
]d

(∫ k+1

2j

k

2j

fH( k+1

2j
)(s, •) ds

))
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since, as long as s ∈ [ k2j ,
k+1
2j ], fH( y+k

2j
)(s,x) vanishes whenever x /∈ (−∞, k+1

2j ]d.
The brilliant idea from [6] is then to split this last integral in two parts, where
one is “negligible” compared to the other one which enjoys some independence
property.

Definition 4.2. Given a real numberM ≥ 0, for all (j, k) ∈ N×{0, . . . , 2j−1},
we consider the enlarged dyadic cube

λMj,k :=

(
k −M

2j
,
k + 1

2j

]d
and the random variables

∆̃j,k

M
:= Id

(
1λMj,k

(∫ k+1

2j

k

2j

fH( k+1

2j
)(s, •) ds

))
(27)

and

~∆j,k

M
:= Id

(
1(−∞, k+1

2j
]d\λMj,k

(∫ k+1

2j

k

2j

fH( k+1

2j
)(s, •) ds

))
.

For all (j, k) ∈ N× {0, . . . , 2j − 1}, if we also set

z∆j,k := Xd

(
k

2j
, H

(
k + 1

2j

))
−Xd

(
k

2j
, H

(
k

2j

))
,

given M ≥ 0, of course, we have

∆j,k = ∆̃j,k

M
+ ~∆j,k

M
+ z∆j,k.

Moreover, from the definition of Wiener-Itô integrals, we know that ∆̃j,k

M
is

measurable with respect to the σ-algebra

σ({B(t2)−B(t1) : t1, t2 ∈ λMj,k}),

see [6, Lemma 2.1]. Thus, if M1, . . . ,Mn are fixed positive real numbers, the

random variables ∆̃j1,k1

M1

, . . . , ∆̃jn,kn

Mn

are independent as soon as the con-
dition

λM`

j`,k`
∩ λM`′

j`′ ,k`′
= ∅ for all 1 ≤ `, `′ ≤ n (28)

is satisfied.
Let us now give some lower and upper bounds for the norm in L2(Ω) of these

random variables. The following proposition is inspired by [6, Lemmata 2.2 and
2.3] where the main modifications come from the fact that we are working here
with a Hurst function instead of a constant Hurst parameter.

Proposition 4.3. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst

function H : R+ → K, there exists a positive deterministic constant c, only
depending on d and K, such that, for all (j, k) ∈ N×{0, . . . , 2j−1} and M > 0,
one has

1. c−12−H( k+1

2j
)j ≤ ‖∆̃j,k

M
‖L2(Ω) ≤ c2−H( k+1

2j
)j;
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2. ‖~∆j,k

M
‖L2(Ω) ≤ cM

H( k+1

2j
)−1

d 2−H( k+1

2j
)j;

3. ‖z∆j,k‖L2(Ω) ≤ c Osc(H,λj,k).

Proof. Let us start by showing the first point. Using the isometry property for
Wiener-Itô integrals, we get, for all N × Z and M > 0, with the changes of
variable s 7→ 2−j(u+ k) and w = 2jx− k1,

‖∆̃j,k

M
‖2L2(Ω) = d!

∫
λMj,k

(∫ k+1

2j

k

2j

fH( k+1

2j
)(s,x) ds

)2

dx

= d!2−2H( k+1

2j
)j
∫

(−M,1]d

(∫ 1

0

fH( k+1

2j
)(u,w) du

)2

dw.

Let us remark that if (u,w) ∈ [0, 1]× [0, 1]d,
∏d
`=1(u− w`)+ ∈ [0, 1] and thus

fH( k+1

2j
)(u,w) ≥ fsupK(u,w).

Therefore, we conclude

‖∆̃j,k

M
‖L2(Ω) ≥

√
d!2−H( k+1

2j
)j
∥∥∥∥∫ 1

0

fsupK(u, •) du
∥∥∥∥
L2([0,1]d)

.

For the reverse inequality, it suffices to remark that∫
(−∞,1]d

(∫ 1

0

fH( k+1

2j
)(u,w) du

)2

dw

≤
∫

(−∞,1]d

(∫ 1

0

(finf K(u,w) + (fsupK(u,w))du

)2

dw.

For the second point, let us write, for all (j, k) ∈ N × {0, . . . , 2j − 1},
Hj,k :=

H( k+1

2j
)−1

d − 1
2 . Again from the isometry property (3) for Wiener-Itô

integrals, we get

‖~∆j,k

M
‖2L2(Ω)

≤ d!

∫ k−M
2j

−∞
(
k

2j
− x1)2Hj,kdx1 ×

∫
Rd−1

(∫ k+1

2j

k

2j

d∏
`=2

(s− x`)
Hj,k
+ ds

)2

dx2 . . . dxd.

First, we have ∫ k−M
2j

−∞
(
k

2j
− x1)2Hj,kdx1 = (M2−j)2

(H( k+1

2j
)−1)

d

On the other hand, from the isometry property (3) for Wiener-Itô integrals and
Proposition 2.2, there exists a deterministic constant c1 > 0, only depending on
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d, K and [0, 1], for which

(d− 1)!

∫
Rd−1

(∫ k+1

2j

k

2j

d∏
`=2

(s− x`)
Hj,k
+ ds

)2

dx2 . . . dxd

=

∥∥∥∥∥Xd−1(
k + 1

2j
,

(d− 1)H
(
k+1
2j

)
+ 1

d
)−Xd−1(

k

2j
,

(d− 1)H
(
k+1
2j

)
+ 1

d
)

∥∥∥∥∥
2

L2(Ω)

≤ c12−2j
(d−1)H( k+1

2j
)+1

d .

In total, we have found a positive deterministic constant c2, only depending on
d and K and [0, 1], such that

‖~∆j,k

M
‖L2(Ω) ≤ c2M

supK−1
d 2−H( k+1

2j
)j .

The third and last point is a straightforward consequence of Proposition
2.2.

In view of the last proposition, we say that the random variables of the form
∆̃M
λ are dominant.
Finally, let us recall the following important fact about random variables in

a given Wiener chaos, see [36, Theorem 6.9 and Remark 6.10] for a proof.

Lemma 4.4. Given d ∈ N∗, there exists an universal deterministic constant
γd ∈ [0, 1) such that, for any random variable X in the Wiener chaos of order
d, one has

P
(
|X| ≤ 1

2
‖X‖L2(Ω)

)
≤ γd.

We now have enough material to give a lower bound for the oscillations of
the multifractional Hermite process.

Proof of Theorem 4.1. As already explained, we can reduce our attention to the
interval [0, 1).

If cd > 0 is the constant in Lemma 3.1, we fix c′ >
(

ln(2)
cd

) d
2

. Let also c be
the constant given by Proposition 4.3. For all λj,k ∈ Λ, we define

Mλ := (8c2c′j
d
2 )

d

1−H( k+1

2j
) . (29)

First, we consider the dominant random variables. We need to fix some
notations. If λ = λj,k is a dyadic interval and m ∈ N, Sλ,m = Sj,k,m stands for
the finite set of cardinality 2m whose elements are the dyadic intervals of scale
j +m included in λj,k, formally speaking Sj,k,m := {λ ∈ Λj+m : λ ⊂ λj,k}.

If γd ∈ [0, 1) is the constant given in Lemma 4.4, one can find `d ∈ N such
that

γ`d < 2−1. (30)

If the dyadic interval λj,k and m ∈ N are fixed and S ∈ Sj,k,m we define the
sequences of dyadic intervals (In)0≤n≤m and (Tn)1≤n≤m in the following way:

• I0 = λj,k:
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• Im = S;

• for all 1 ≤ n ≤ m, In−1 = In ∪ Tn.

Now, for any 1 ≤ n ≤ m, there are `d dyadic intervals (T `n = λ
j
(`)
n ,k

(`)
n

)1≤`≤`d in
STn,blog2(`dMTn )c+1 such that, for all 1 ≤ ` ≤ `d(

k
(`)
n −MTn

2j
(`)
n

,
k

(`)
n + 1

2j
(`)
n

)
⊆ Tn

and, if ` 6= `′,(
k

(`)
n −MTn

2j
(`)
n

,
k

(`)
n + 1

2j
(`)
n

)
∩

(
k

(`′)
n −MTn

2j
(`′)
n

,
k

(`′)
n + 1

2j
(`′)
n

)
= ∅.

Therefore, the dyadic intervals (T `n)1≤`≤`d
1≤n≤m satisfy condition (28) (with Mn =

MTn) which insures the independence of the random variables (∆̃T `n

MTn
)1≤`≤`d
1≤n≤m.

From this, for all S ∈ Sj,k,m we define the Bernoulli random variable

Bj,k,m(S) =
∏

1≤n≤m,1≤`≤`d

1{|∆̃
T`n

MTn |<2−1‖∆̃
T`n

MTn ‖L2(Ω)}
.

Using Lemma 4.4 and the independence of the random variables (∆̃T `n

MTn
)1≤`≤`d
1≤n≤m,

we conclude
E[Bj,k,m(S)] ≤ γm`d .

Therefore, if we define the random variable

Gj,k,m =
∑

S∈Sj,k,m

Bj,k,m(S)

then E[Gj,k,m] ≤ (2γ`d)m. It follows from inequality (30) and Fatou Lemma
that

E
[

lim inf
m→+∞

Gj,k,m
]

= 0.

As a consequence, Ω1 =
⋂
j∈N,0≤k<2j{ω : lim infm→+∞ Gj,k,m(ω) = 0} is an

event of probability 1.
Now if ω ∈ Ω1 and t0 ∈ [0, 1), we take j ∈ N and k = kj(t0) and since, for

all m, Gj,kj(t0),m has values in {0, . . . , 2m} we conclude that there are infinitely
many m for which, for every S ∈ Sj,kj(t0),m, Bj,k,m(S) = 0. Considering such a
m and S = λj+m(t0) then we first remark that, for all 1 ≤ n ≤ m, In = λj+n(t0)
and thus Tn ∈ 3λj+n(t0). Now, as Bj,k,m(λj+m(t0)) = 0, one can find 1 ≤ n ≤ m
and 1 ≤ ` ≤ `d such that

|∆̃T `n

MTn
(ω)| ≥ 1

2
‖∆̃T `n

MTn ‖L2(Ω).

In short, we have shown that for all ω ∈ Ω1 and t0 ∈ [0, 1), there exist
infinitely many j ∈ N such that there is λ ∈ 3λj(t0) and λ′ ∈ Sλ,blog2(`dMλ)c+1

for which
|∆̃Mλ

λ′ (ω)| ≥ 1

2
‖∆̃Mλ

λ′ ‖L2(Ω). (31)
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On the other hand, from Lemma 3.1, we know that, for all j large enough,

P
(
∃λ ∈ Λj , λ

′ ∈ Sλ,blog2(`dMλ)c+1 :
∣∣∣}∆λ′

Mλ
∣∣∣ ≥ c′j d2 ∥∥∥}∆λ′

Mλ
∥∥∥
L2(Ω)

)
≤ 2`d sup

λ∈Λj

Mλ2j exp(−cd(c′)
2
d j).

Thus, as c′ >
(

ln(2)
cd

) d
2

, recalling the explicit expression (29), we have

+∞∑
j=0

P
(
∃λ ∈ Λj , λ

′ ∈ Sλ,blog2(`dMλ)c+1 :
∣∣∣}∆λ′

Mλ
∣∣∣ ≥ c′j d2 ∥∥∥}∆λ′

Mλ
∥∥∥
L2(Ω)

)
<∞

We can then deduce from Borel-Cantelli Lemma the existence of Ω2, an event
of probability 1, such that, for all ω ∈ Ω2, there exists J2 ∈ N for which, for all
j ≥ J2, λ ∈ Λj and λ′ ∈ Sλ,blog2(`dMλ)c+1,∣∣∣}∆λ′

Mλ

(ω)
∣∣∣ ≤ c′j d2 ∥∥∥}∆λ′

Mλ
∥∥∥
L2(Ω)

. (32)

Similarly, we prove the existence of Ω3, an event of probability 1 such that,
for all ω ∈ Ω3, there exists J3 ∈ N such that, for all j ≥ J3, λ ∈ Λj and
λ′ ∈ Sλ,blog2(`dMλ)c+1, ∣∣∣y∆λ′(ω)

∣∣∣ ≤ c′j d2 ∥∥∥y∆λ′

∥∥∥
L2(Ω)

. (33)

Now, if ω is such that inequalities (31), (32) and (33) hold, with λ ∈ 3λj(t0)
and λ′ = λj′,k′ ∈ Sλ,blog2(`dMλ)c+1 then, from Proposition 4.3, we deduce

|∆λ′(ω)| ≥ |∆̃Mλ

λ′ (ω)| −
(∣∣∣}∆λ′

Mλ

(ω)
∣∣∣+
∣∣∣y∆λ′(ω)

∣∣∣)
≥ c−1

2
2
−j′H

(
k′+1
j′

)
− cc′

(8c2c′j
d
2 )

H

(
k′+1

2j
′

)
−1

1−H( k+1

2j
) j

d
2 2
−j′H

(
k′+1
j′

)
+ Osc(H,λ′)

 .

First, by Condition 2.8 (b), we know that there is c′′ > 0 and γ > H(t0) such
that

Osc(H,λ′) ≤ c′′2−γj . (34)

Let us remark that

lim
j→+∞

j

d
2

1+
H

(
k′+1

2j
′

)
−1

1−H( k+1

2j
)


= lim
j→+∞

exp

ln(j)
d

2

H
(
k′+1
2j′

)
−H

(
k+1
2j

)
1−H

(
k+1
2j

)


and, as ∣∣∣∣∣∣
H
(
k′+1
2j′

)
−H

(
k+1
2j

)
1−H

(
k+1
2j

)
∣∣∣∣∣∣ ≤ c′′ 2−γj

1− supK
,
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we get

lim
j→+∞

j

d
2

1+
H

(
k′+1

2j
′

)
−1

1−H( k+1

2j
)


= 1.

Similarly, we also have

lim
j→+∞

(8c2c′)

H

(
k′+1

2j
′

)
−1

1−H( k+1

2j
) = (8c2c′)−1.

In particular, if j is large enough, H
(
k′+1
j′

)
is also strictly less that γ and one

can write

cc′ Osc(H,λ′) ≤ c−1

8
(8c2c′j

d
2 )
−
dH

(
k′+1
j′

)
1−H( k+1

2j
) 2
−jH

(
k′+1
j′

)
.

Putting all of these together, we conclude that, for all j sufficiently large,

|∆λ′(ω)| ≥ c−1

4
2
−j′H

(
k′+1
j′

)
− c−1

8
(8c2c′j

d
2 )
−
dH

(
k′+1
j′

)
1−H( k+1

2j
) 2
−jH

(
k′+1
j′

)

≥ c−1

8
(8c2c′j

d
2 )
−
dH

(
k′+1
j′

)
1−H( k+1

2j
) 2
−jH

(
k′+1
j′

)
. (35)

In total, on Ω1∩Ω2∩Ω3, which is an event of probability 1, for all t0 ∈ [0, 1),
we have, from equations (26), (35) and Condition 2.8 (b) for H,

lim sup
j→+∞

Osc(XH(·)
d , [t0 − 22−j , t0 + 22−j ] ∩ R+)

2−jH(t0)j
− d2H(t0)

2(1−H(t0))

> 0.

Theorem 2.10 is then a direct consequence of Proposition 2.4 and Theorem
4.1.

Proof of Theorem 2.10. Let us consider the events Ω∗ and Ω given by Proposi-
tion 2.4 and Theorem 4.1 respectively. Then, Ω∗ ∩ Ω is an event of probability
1 on which:

• for all t ≥ 0, h
X
H(·)
d

(t0) ≥ H(t0), by Proposition 2.4 and Condition 2.8
(b);

• for all t ≥ 0, h
X
H(·)
d

(t0) ≤ H(t0), by Theorem 4.1.

Remark 4.5. Let us recall that, for all continuous function f , all interval I
and all t0 ∈ I, Hf (I) ≤ hf (t0). Thus, an immediate consequence of Theorems
2.9 and 2.10 is that, if the Hurst function H satisfies Conditions 2.8 (a) and (b),
on the event Ω∗1 ∩ Ω∗2 of probability 1, for all interval I ⊆ R+

H
X
H(·)
d

(I) = H(I). (36)
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Let us note that only Condition (a) is required to deduce this fact. Indeed, if
t0 ∈ I is such that H(t0) = H(I), then it is still possible possible to reach the
bounds (34) at t0 and then (35). Then, on Ω, (25) holds at t0. It follows that,
on Ω

H
X
H(·)
d

(I) ≤ h
X
H(·)
d

(t0) ≤ H(t0) = H(I)

and the equality (36) holds on Ω ∩ Ω∗.

5 Law of iterated logarithm
Let us now prove that multifractional Hermite processes enjoy a law of iterated
logarithm. We use similar arguments as in Sections 3 and 4 but somehow
“localize” them. This localization helps us to deduce, at each point, a sharper
modulus of continuity which bounds, both from above and below, the oscillations
of the process around this point. Let us start by showing the finiteness of the
limit in (16).

Proposition 5.1. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst

function H : R+ → K satisfying Condition 2.8 (c), there exists Ω1, an event
of probability 1, such that on Ω1, for (Lebesgue) almost every t0 ∈ R+, we have

lim sup
r→0+

Osc(XH(·)
d , [t0 − r, t0 + r] ∩ R+)

rH(t0)(log(log r−1))
d
2

<∞. (37)

Proof. We use the notation introduced before the proof of Theorem 2.9. Let
us fix t0 ∈ [0, 1) and c > c

−2
d

d , with cd > 0 the constant in Lemma 3.1. For all
j0 ∈ N, let Aj0(t) be the event defined by(
∃j ≥ j0, λk,j , λk′,j ⊆ 3λj0(t0) :

|Xj,k′ −Xj,k|
‖Xj,k′ −Xj,k‖L2(Ω)

≥ c log(j0)
d
2 (j − j0 + 1)

d
2

)
.

If j0 is sufficiently large, we have, by Lemma 3.1,

P(Aj0(t)) ≤
∑
j≥j0

32j−j0 exp(−cdc
2
d log(j0)(j − j0 + 1))

≤ c′ exp(−cdc
2
d log(j0)),

for a deterministic constant c′ > 0 independent of any relevant quantities. Thus,
as c > c

−2
d

d , we have
∑+∞
j0=0 P(Aj0(t)) < ∞ and Borel-Cantelli Lemma entails

the existence of Ωt0 , an event of probability 1, such that, on Ωt0 , there exists
J ∈ N, for which, for all j ≥ j0 ≥ J , λk,j , λk′,j ⊆ 3λj0(t0),

|Xj,k′ −Xj,k| ≤ c log(j0)
d
2 (j − j0 + 1)

d
2 ‖Xj,k′ −Xj,k‖L2(Ω). (38)

Let us then consider j0 ≥ J and s, t ∈ [t0−r, t0+r] with 2−(j0+1) ≤ r ≤ 2−j0 .
For any j ≥ j0 and x ∈ {s, t}, λj(x) ⊆ 3λj0(t0). Thus, increasing j0 if necessary,
from Proposition 2.2 and the Condition 2.8 (c) for H, one can write,

‖Xj,kj(t) −Xj,kj(s)‖L2(Ω) ≤ c1
(

2−jmin{H(kj(t)2
−j),H(kj(s)2

−j)} + 2−jH(t0)
)

≤ c1
(

2−jmin{H(t),H(s)}2−j2
−jH(t0)

+ 2−jH(t0)
)

≤ 2c12−jmin{H(t0),H(t),H(s)} (39)
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for a deterministic constant c1 > 0, only depending on d, K and [0, 1].
On the event Ω∗ given by Proposition 2.4, one can write

X
H(·)
d (t)−XH(·)

d (s) = Xj0,kj0 (t) −Xj,kj0 (s)

+
∑
j≥j0

(
Xj+1,kj+1(t) −Xj+1,kj+1(s) −Xj,kj(t) +Xj,kj(s)

)
.

It then follows from inequalities (38) and (39) that, on Ω∗ ∩ Ωt0 , there exists a
constant c2 > 0, only depending on d, K and [0, 1] such that

|XH(·)
d (t)−XH(·)

d (s)| ≤ c22−j0 min{H(t0),H(t),H(s)} log(j0)
d
2 .

Increasing j0 if necessary, the Condition 2.8 (c) for H and the inequalities
2−(j0+1) ≤ r ≤ 2−j0 finally give

|XH(·)
d (t)−XH(·)

d (s)| ≤ 2c2r
H(t0)(log(log(r−1))

d
2 .

In total, we have proved that for any t0 ∈ [0, 1] there exists Ωt0 , an event
of probability 1, on which (37) holds. The conclusion follows by countable
intersection and Fubini theorem.

Let us now focus on the positiveness of the limit in (16). We use again the
random variables introduced in Definition 4.2. First, we need to bound from
below the probabilities

P
(
|∆̃M

j,k| ≥ y2−jH( k+1

2j
)
)

(40)

for (j, k) ∈ N×{0, . . . , 2j − 1} and M > 0. We know that for any variable X in
the Wiener chaos of order d, there exist two deterministic constants y0 ≥ 0 and
c > 0 such that, for all y ≥ y0,

P(|X| ≥ y) ≥ exp(−cy 2
d ),

see [36, Theorem 6.12]. But, unfortunately, these constants depend on the law
of X and are not universal, which is undesirable in our context. Nevertheless,
using some convergences in L2(Ω), we still manage to “uniformly” bound the
probabilities (40) from below.

Lemma 5.2. Let d ∈ N∗, K be a compact interval of ( 1
2 , 1) and H : R+ → K

be a continuous Hurst function. For all t0 ∈ R+, there exist four deterministic
constants ct0 > 0, yt0 > 0, j0 ∈ N and M0 > 0 such that, for all λj,k ⊆ 3λj0(t0),
M ≥M0 and y > yt0 , we have

P(|∆̃M
j,k| ≥ y2−jH( k+1

2j
)) ≥ exp(−ct0y

2
d ). (41)

Proof. For all j ∈ N, k ∈ {0, . . . 2j − 1} and M ∈ N, by auto-similarity and
stationarity of increments for standard Hermite processes, we know that the
random variables

∆̃M
j,k + q∆M

j,k and 2−jH( k+1

2j
)Xd

(
1, H

(
k + 1

2j

))
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are equals in law. We also know that there exist two deterministic constants
c1t0 > 0 and y1

t0 > 0 such that, for all y > y1
t0

P (|Xd(1, t0)| ≥ y) ≥ exp(−c1t0y
2
d ).

For all y > 0, we write

P
(

(|∆̃M
j,k| ≥ y2−jH( k+1

2j
)
)

≥ P
(∣∣∣∣Xd

(
1, H

(
k + 1

2j

))∣∣∣∣ ≥ 2y

)
− P(|q∆M

j,k| > y2−jH( k+1

2j
)).

By Lemma 3.1 and Proposition 4.3, we know that, for all j, k, and all M and y
sufficiently large,

P
(
|q∆M

j,k| > y2−jH( k+1

2j
)
)
≤ exp

−cd(yc−1M
1−H( k+1

2j
)

d

) 2
d


≤ exp

(
−cd

(
yc−1M

1−supK
d

) 2
d

)
As 1− supK > 0, if M is large enough, one can then reach

P
(
|q∆M

j,k| > y2−jH( k+1

2j
)
)
≤ 1

4
exp(−3c1t0y

2
d ).

On the other hand, we have

P
(∣∣∣∣Xd

(
1, H

(
k + 1

2j

))∣∣∣∣ ≥ 2y

)
≥ P (|Xd(1, t0)| ≥ 3y)− P

(∣∣∣∣Xd(1, H(t0))−Xd

(
1, H

(
k + 1

2j

))∣∣∣∣ > y

)
.

Using again Lemma 3.1, from Proposition 2.2, we know that there exists a
deterministic constant c2 > 0, only depending on d, K and [0, 1], such that, for
all j0 large enough,

P
(∣∣∣∣Xd(1, H(t0))−Xd

(
1, H

(
k + 1

2j

))∣∣∣∣ > y

)
≤ exp

(
−cd

∥∥∥∥Xd(1, H(t0))−Xd

(
1, H

(
k + 1

2j

))∥∥∥∥−2
d

L2(Ω)

y
2
d

)

≤ exp

(
−cdc

−2
d

2

∣∣∣∣H(t0)−H
(
k + 1

2j

)∣∣∣∣−2
d

y
2
d

)
.

The continuity of H insures that, if j is large enough,

P
(∣∣∣∣Xd(1, H(t0))−Xd

(
1, H

(
k + 1

2j

))∣∣∣∣ > y

)
≤ 1

4
exp(−3c1t0y

2
d ).

Putting everything together, we conclude the existence of ct0 > 0 and yt0 > 0
with the desired property.
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Let us use this last Lemma to prove the positiveness of the limit in (16).

Proposition 5.3. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst

function H : R+ → K satisfying Condition 2.8 (b), there exists Ω2, an event
of probability 1, such that on Ω2, for (Lebesgue) almost every t0 ∈ R+, we have

0 < lim sup
r→0+

Osc(XH(·)
d , [t0 − r, t0 + r] ∩ R+)

rH(t0)(log(log r−1))
d
2

.

Proof. We use the same notation as in the proof of Theorem 4.1. Let us fix
t0 ∈ [0, 1). We take M and j are sufficiently large such that (41) holds for
all large enough y. Then, for any m ∈ N and λ ∈ Sλj(t0),m, let (In)0≤n≤m
and (Tn)1≤n≤m be the sequences of dyadic intervals with I0 = λj(t0); Im = λ
and, for all 1 ≤ n ≤ m, In−1 = In ∪ Tn. For all 1 ≤ n ≤ m, let also T ?n =
λkn,jn ∈ STn,blog2(M)c+1 such that (T ?n)M ⊆ Tn. In particular, for all n 6= n′,
(T ?n)M ∩ (T ?n′)

M = ∅ and the random variables (∆̃M
T?n

)1≤n≤m are independent.
If ct0 > 0 is the constant given in Lemma 5.2 and c1 is a deterministic

constant such that 0 < ct0c
2
d
1 < 1, let us consider the event

Ej,m(t0) =

{
ω ∈ Ω : max

1≤n≤m

∣∣∣∣∣ ∆̃M
T?n

2−jnH( kn+1

2jn
)

∣∣∣∣∣ ≥ c1 log(2m)
d
2

}
.

Using the independence of the random variables (∆̃M
T?n

)1≤n≤m, Lemma 5.2 and
the inequality log(1− x) ≤ −x for all x ∈ (0, 1), we get, if m is large enough,

P(Ej,m(t0)) = 1−
m∏
n=1

P

(∣∣∣∣∣ ∆̃M
T?n

2−jnH( kn+1

2jn
)

∣∣∣∣∣ < c1 log(2m)
d
2

)
≥ 1− (1− exp(−ct0c

2
d
1 log(2m))m

≥ 1− exp

 m

(2m)ct0c
2
d
1


= 1− exp

m1−ctc
2
d
1

2ct0c
2
d
1

 .

Thus, as 0 < ct0c
2
d
1 < 1, we get∑

p∈N
P(E2p,2p(t0)) =∞

and Borel-Cantelli Lemma, combined with the independence of the events (E2p,2p(t0))p
entails

P
(

lim sup
p→+∞

E2p,2p(t0)

)
= 1.

In other words, there exists Ω1
t0 , an event of probability 1, such that, for all

ω ∈ Ω1
t0 , there are infinitely many j ∈ N such that, there exist λ ∈ 3λj(t0) and

λ′j′,k′ ∈ Sλ,blog2(M)c+1 for which

|∆̃M
λ′ (ω)| ≥ c1 log(j)

d
2 2
−j′H

(
k′+1

2j
′

)
. (42)
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On the other hand, if c2 is a deterministic constant such that c2 > c
−2
d

d , we
have, by Lemma 3.1 and Proposition 4.3, for all j ∈ N

P
(
∃λ ∈ 3λj(t0), λ′ ∈ Sλ,blog2(M)c+1 :

∣∣∣q∆M
λ′

∣∣∣ ≥ c2 log(j)
d
2

∥∥∥q∆M
λ′

∥∥∥
L2(Ω)

)
≤ 3M exp(−cdc

d
2
2 log(j)).

The fact that c2 > c
−2
d

d and Borel-Cantelli Lemma entails the existence of Ω2
t0 ,

an event of probability 1, such that, for all ω ∈ Ω2
t0 , there exists J ∈ N for

which, for all j ≥ J , λ ∈ 3λj(t0) and λ′j′,k′ ∈ Sλ,blog2(M)c+1,

|q∆M
λ′ (ω)| ≤ c2

∥∥∥q∆M
λ′

∥∥∥
L2(Ω)

≤ c2cM
H

(
k′+1

2j
′

)
−1

d log(j)
d
2 2
−j′H

(
k′+1

2j
′

)
, (43)

where c > 0 is the deterministic constant given by Proposition 4.3. Similarly,
there exists Ω3

t0 , an event of probability 1, such that, for all ω ∈ Ω3
t0 , there exists

J ∈ N for which, for all j ≥ J , λ ∈ 3λj(t0) and λ′ ∈ Sλ,blog2(M)c+1,

|p∆λ′(ω)| ≤ c2c log(j)
d
2 Osc(H,λ′). (44)

As supK < 1, by increasing M if necessary, we can reach, c2cM
supK−1

d < c1
4 .

Also, from the Condition 2.8 (b) on H, there exits c3 > 0 and γ > H(t0) such
that, for all λ′ ∈ Sλ,blog2(M)c+1,

Osc(H,λ′) ≤ c32−jγ ≤ c3Mγ2−j
′γ .

Increasing j if necessary, we can reach

c2c Osc(H,λ′) ≤ c1
4

2
−j′H

(
k′+1

2j
′

)
.

If inequalities (42), (43) and (44) hold, we thus have, for all M and j big
enough

|∆λ′(ω)| ≥ c1
2

log(j)
d
2 2
−j′H

(
k′+1

2j
′

)

≥ c1
2

log(j)
d
2M

−H
(
k′+1

2j
′

)
2
−jH

(
k′+1

2j
′

)
.

In total, from the Condition 2.8 (b) for H and inequality (26), we deduce that,
for all t0 ∈ [0, 1), on the event Ω1

t0 ∩ Ω2
t0 ∩ Ω3

t0 of probability 1, we have

lim sup
j→+∞

Osc(XH(·)
d , [t0 − 22−j , t0 + 22−j ])

2−jH(t0) log(j)
d
2

> 0.

The conclusion follows again by countable intersection and Fubini theorem.

Theorem 2.11 is then an immediate consequence of Propositions 5.1 and 5.3.

Proof of Theorem 2.11. If Ω1 and Ω2 are the events of probability 1 given by
Proposition 5.1 and 5.3 respectively, on Ω1∩Ω2, we have, for (Lebesgue) almost
every t0 ∈ R+,

0 < lim sup
r→0+

Osc(XH(·)
d , [t0 − r, t0 + r] ∩ R+)

rH(t0)(log(log r−1))
d
2

<∞.
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6 Local asymptotic self-similarity
Let us start this section by showing that the multifractional Hermite process
{XH(·)

d (t)}t∈R+
is weakly locally asymptotically self-similar. Our main ingredi-

ent is the following lemma, which is sometimes refereed as Slutsky’s theorem
(see for instance [34, Page 318]).

Lemma 6.1. Let (Xj)j and (Yj)j be two sequences of random variables such
that (Xj)j converge in distribution to a random variable X and (Yj)j converges
in probability to a deterministic constant c, then the sequence (Xj + Yj)j con-
verges in distribution to X + c.

Proposition 6.2. Let d ∈ N∗, K be a compact interval of ( 1
2 , 1) and H :

R+ → K be a Hurst function satisfying Condition 2.8 (b). For all t0 ≥ 0, the
multifractional Hermite process {XH(·)

d (t)}t∈R+ is weakly locally asymptotically
self-similar of order H(t0) at t0 with tangent process {Xd(t,H(t0))}t≥0, the
Hermite process of Hurst parameter H(t0).

Proof. Let us fix t0 ≥ 0. For all t ≥ 0 and ε > 0, we write

ε−H(t0)
(
X
H(·)
d (t0 + εt)−XH(·)

d (t0)
)

= ε−H(t0) (Xd(t0 + εt,H(t0 + εt))−Xd(t0 + εt,H(t0)))

+ ε−H(t0) (Xd(t0 + εt,H(t0))−Xd(t0, H(t0))) .

First, from the well-known self-similarity and stationary of increments for the
standard Hermite process, we know that the process

{ε−H(t0) (Xd(t0 + εt,H(t0))−Xd(t0, H(t0)))}t≥0

is equal in finite-dimensional distribution to

{Xd(t,H(t0))}t≥0.

On the other hand, from Proposition 2.2, we know that, for all t ≥ 0 and ε > 0,

‖ε−H(t0) (Xd(t0 + εt,H(t0 + εt))−Xd(t0 + εt,H(t0))) ‖L2(Ω)

≤ c2ε−H(t0) |H(t0 + εt)−H(t0)| .

If t ≥ 0 is fixed, Condition 2.8 (b) insures that one can give find γ > H(t0) and
c > 0 such that, for all ε > 0 sufficiently small

|H(t0 + εt)−H(t0)| ≤ cε−γ .

In particular, for all fixed t ≥ 0, the sequence of random variables(
ε−H(t0) (Xd(t0 + εt,H(t0 + εt))−Xd(t0 + εt,H(t0)))

)
ε>0

converges to 0 in L2(Ω), and thus in probability, when ε→ 0+.
The conclusion follows from Lemma 6.1.

Now, we want to show that the local asymptotic self-similarity also holds
in the strong sense. As already explained in Section 2, it suffices to show that
(17) holds, with X = X

H(·)
d . On this purpose, we recall the Garsia-Rodemich-

Rumsey inequality in the following lemma, a proof can be read in [33].
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Lemma 6.3. Let Ψ be a non-negative even function on R and ρ be a non-
negative even function on [−1, 1]. Assume also that both Ψ and ρ are non
decreasing on R+. If f is a continuous function for which∫∫

[0,1]2
Ψ

(
f(x)− f(y)

ρ(x− y)

)
dxdy ≤ B <∞,

then, for all s, t ∈ [0, 1],

|f(s)− f(t)| ≤ 8

∫ |s−t|
0

Ψ−1

(
4B

u2

)
dρ(u).

Applying this last Lemma to the functions Ψ : u 7→ |u|p and ρ : 7→ |u|α+ 1
p ,

for p ≥ 1 and α ≥ 1
p then, with an obvious change of variable, we conclude

that, for all a > 0, there exists a deterministic constant ca,p,α such that, for any
f ∈ C([0, a],R) and t ∈ [0, a]

|f(t)− f(0)|p ≤ ca,p,αtαp−1

∫∫
[0,a]2

|f(r)− f(v)|p|r − v|−αp−1 drdv. (45)

We use this fact to prove Theorem 2.13.

Proof of Theorem 2.13. It remains us to prove the strong local asymptotic self-
similarity in the case where the Hurst function H satisfies Condition 2.8 (c).
Let us fix a > 0 and t0 ≥ 0. For all ε, η, δ > 0, we set

P(ε, η, δ) := P

(
sup

s,t∈[0,a],|t−s|≤η

∣∣∣∣XH(·)(t0 + εt)−XH(·)(t0 + εs)

εH(t0)

∣∣∣∣ ≥ δ
)
.

We have to show that, for all δ > 0, limη→0+ lim supε→0+ P(ε, η, δ) = 0.
Of course, the Markov inequality entails, for any p ≥ 1,

P(ε, η, δ) ≤ δ−pε−pH(t0)E

[
sup

s,t∈[0,a],|t−s|≤η

∣∣∣XH(·)(t0 + εt)−XH(·)(t0 + εs)
∣∣∣p] .

Then, we use inequality (45) to write, for α ≥ 1
p ,

E

[
sup

s,t∈[0,a],|t−s|≤η

∣∣∣XH(·)(t0 + εt)−XH(·)(t0 + εs)
∣∣∣p]

≤ ca,p,αηαp−1

∫∫
[0,a]2

E
[∣∣∣XH(·)(t0 + εt)−XH(·)(t0 + εs)

∣∣∣p] |t− s|−αp−1 dsdt.

Moreover, we know from Corollary 2.3 that, for all s, t ∈ [0, a],

E
[∣∣∣XH(·)(t0 + εt)−XH(·)(t0 + εs)

∣∣∣p]
≤
(

(ε|t− s|)min{H(t0+εt),H(t0+εs)} + |H(t0 + εt)−H(t0 + εs)|
)p
.

By Condition 2.8 (c), there exits a deterministic constant c > 0 such that, for
all ε > 0 sufficiently small and s, t ∈ [0, a], s 6= t,

|H(t0 + εt)−H(t0 + εs)| ≤ c(ε|t− s|)H(t0) ≤ cεH(t0)|t− s|inf K
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and

(ε|t− s|)min{H(t0+εt),H(t0+εs)} ≤ εH(t0)|t− s|inf Kε−(aε)H(t0)

≤ 2εH(t0)|t− s|inf K .

In total, we have obtained that, for all ε > 0 sufficiently small,

P(ε, η, δ) ≤ 2ca,p,αδ
−pηαp−1

∫∫
[0,a]2

|t− s|p(inf K−α)−1 dsdt.

One can then choose, for instance, α = inf K
2 and p = 2

α in order that the last
integral is finite, because p(inf K − α)− 1 = 1, and, as α > 1

p ,

lim
η→0+

lim sup
ε→0+

P(ε, η, δ) = 0.

7 Fractal dimensions of the graph
Given a compact interval I ⊂ R+, let us start by providing an upper bound
for the box-counting dimensions of the set Gd(I). From the results proved in
Sections 2 and 3, it is in fact an easy task, thanks to the following lemma, see
[32, Corollary 11.2] for a proof.

Lemma 7.1. Let I ⊂ R+ be a compact interval and f : I → R be a continuous
function for which there exist c ≥ 0 and 1 ≤ α ≤ 2 such that, for all s, t ∈ I,

|f(s)− f(t)| ≤ c|t− s|2−α,

then
dimB

(
{(t,XH(·)

d (t)) : t ∈ I}
)
≤ α.

One can then directly state the following proposition.

Proposition 7.2. Given d ∈ N∗, a compact interval K of ( 1
2 , 1), a Hurst

function H : R+ → K satisfying Condition 2.8 (a) and a compact interval
I ⊂ R+, there exists Ω̃1, an event of probability 1, such that, on Ω̃1, we have

dimB (Gd(I)) ≤ 2−H(I).

Proof. It is an immediate consequence of Theorem 2.9 and Lemma 7.1.

To obtain a lower bound on the Hausdorff dimension, we use the notion of
potential.

Definition 7.3. Let d ∈ N∗ and s ≥ 0. The s-potential at a point x ∈ Rd to
the measure µ on Rd is the quantity

φs(x) =

∫
dµ(y)

|x− y|s
.

The s-energy of µ is then defined as

Is(µ) =

∫
φs(x) dµ(x) =

∫∫
dµ(x)dµ(y)

|x− y|s
.
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Often, potentials and energies are used to get a lower bound for the Hausdorff
dimension, as stated in the following Lemma, see [32, Theorem 4.13] for a proof.

Lemma 7.4. Let d ∈ N∗ and A be a subset of Rd. If there is a non vanishing
finite measure µ with non-empty support included in A with Is(µ) < ∞, then
Hs(A) =∞ and dimH(A) ≥ s.

In order to apply Lemma 7.4 in our context, we have to find upper bounds for
negative moments of the multifractional Hermite process. On this purpose, we
use the following result, known as Carbery-Wright inequality, see [22, Theorem
8].

Lemma 7.5. There is an absolute deterministic constant c > 0 such that, for
any n, d ≥ 1, 1 < p <∞ any polynomial Q : Rd → R of degree at most n, any
Gaussian random vector (X1, . . . , Xd) and any x > 0,

E[|Q(X1, . . . , Xd)|
p
n ]

1
pP(|Q(X1, . . . , Xd)| ≤ x) ≤ cpx 1

n .

In the sequel, if a compact interval I ⊂ R+, t0 ∈ I and ε > 0 are fixed, we
set

H(t0, ε) := H([t0 − ε, t0 + ε] ∩ I).

The proof of the following Lemma uses ideas from [2, Lemma 14] and [53,
Lemma 4.3], with modifications again mainly due to the fact that we are working
with a non-constant Hurst function. As this Lemma is the main reason for the
disparity between the lower and upper bounds for the fractal dimensions in
Theorem 2.17, we believe that it is useful to write it in full details so that the
readers can directly understand where it comes from.

Proposition 7.6. Given d ∈ N∗, a compact interval K of ( 1
2 , 1), a Hurst

function H : R+ → K satisfying Condition 2.8 (a) and a compact interval
I ⊂ R+. If t0 ∈ I is such that H(t0) = H(I), there exist two deterministic
constants c > 0, ξ > 0, both only depending on d, H and I, such that, for all
0 < ε < ξ, x ≥ 0 and t, u ∈ I ∩ [t0 − ε, t0 + ε],

P(|XH(·)
d (t)−XH(·)

d (u)| ≤ x) ≤ cx 1
d |t− u|−

H(t0,ε)
d .

Proof. Let us fix t, u ∈ I. The symmetric function

f
H(·)
t,u : Rd → R : w 7→

∫ t

0

fH(t)(s,w) ds−
∫ u

0

fH(u)(s,w) ds

belongs to L2(Rd). By definition,

Id

(
f
H(·)
t,u

)
=
(
X
H(·)
d (t)−XH(·)

d (u)
)
.

Given {ej}j∈N an orthonormal basis of L2(R), the sequence of functionsfH(·),J
t,u :=

J∑
j1,...,jd=1

〈fH(·)
t,u , ej1 � · · · � ejd〉ej1 � · · · � ejd


J

,

where � stands for the symmetric tensor product, converges to fH(·)
t,u in L2(Rd),

see [52, Appendix B.3.].
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For all (j1, . . . , jd) ∈ Nd, we know that

Id (ej1 � · · · � ejd) =

p∏
`=1

Hn`

(∫
R
ej̃`(x) dB(x)

)
,

where n` is the number of occurrence of j̃` in (j1, . . . , jd) and Hn` is the Hermite
polynomial of degree n`, see [54, Page 14]. In particular, since, for all f ∈ L2(R)
with ‖f‖L2(R) = 1, I1(f) ∼ N (0, 1), Lemma 7.5 with p = 2d and n = d entails,
for all J ,

P(|Id
(
f
H(·),J
t,u

)
| ≤ x) ≤ c2dx 1

d ‖Id
(
fJt,u
)
‖−

1
d

L2(Ω).

Now, from the isometry property for Wiener-Itô integrals, we know that

Id

(
f
H(·),J
t,u

)
−→
J→∞

(
X
H(·)
d (t)−XH(·)

d (u)
)

in L2(Ω). In particular, there exists a subsequence (f
H(·),Jk
t,u )k for which the

convergence holds almost surely. Then, by Fatou’s Lemma,

P
(
|XH(·)

d (t)−XH(·)
d (u)| ≤ x

)
≤ lim inf

k→+∞
P
(
|Id
(
f
H(·),Jk
t,u

)
| ≤ x

)
≤ c2dx 1

d lim inf
k→+∞

∥∥∥Id (fJkt,u)∥∥∥− 1
d

L2(Ω)

= c2dx
1
d

∥∥∥XH(·)
d (t)−XH(·)

d (u)
∥∥∥− 1

d

L2(Ω)
.

We use Proposition 2.2 to affirm that there exist two deterministic constants
c1, c2 > 0, only depending on d, K and I, such that∥∥∥XH(·)

d (t)−XH(·)
d (u)

∥∥∥
L2(Ω)

≥ c1|t− u|min{H(t),H(u)} − c2|H(t)−H(u)|.

Since H satisfies Condition 2.8 (a), there exists γ > H(I) = H(t0) such that
H ∈ Cγ(I). Then, if ξ > 0 is sufficiently small, for all 0 < ε < ξ, we also have
H(t0, ε) < γ. By reducing again ξ > 0 if necessary, we have, for all 0 < ε < ξ
and t, u ∈ I ∩ [t0 − ε, t0 + ε]

c2|H(t)−H(u)| ≤ c1
2
|t− u|H(t0,ε).

In total, we have obtained, for all such ε and t, u,

P
(
|XH(·)

d (t)−XH(·)
d (u)| ≤ x

)
≤ c2d(2−1c1)−

1
dx

1
d |t− u|−

H(t0,ε)
d .

We can now prove Theorem 2.17.

Proof of Theorem 2.17. Let t0 ∈ I be such that H(t0) = H(I). Let ξ > 0 be
given by Proposition 7.6 and j ∈ N∗ with 1

j < ξ. For all t, r ≥ 0 such that
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t, t+ r ∈ [t0 − j−1, t0 + j−1] ∩ I and s > 0, we have, by Proposition 7.6,

E
[(
|XH(·)

d (t+ r)−XH(·)
d (t)|2 + r2

)− s2 ]
=

∫ r−s

0

P
((
|XH(·)

d (t+ r)−XH(·)
d (t)|2 + r2

)− s2 ≥ x) dx

= s

∫ +∞

0

y(y2 + r2)−
s
2−1P

(
|XH(·)

d (t+ r)−XH(·)
d (t)| ≤ y

)
dy

≤ cs
∫ +∞

0

y(y2 + r2)−
s
2−1y

1
d r−

H(t0,j
−1)

d dy

≤ c′r−
H(t0,j

−1)
d

(
r−s−2

∫ r

0

y1+ 1
d dy +

∫ +∞

r

y−s−1+ 1
d dy

)
≤ c′′r 1

d−s−
H(t0,j

−1)
d , (46)

where c > 0 is given by Proposition 7.6 and c′, c′′ > 0 are deterministic constants
only depending on s, d and c.

Thus, if we consider the random measure µX,j defined for all Borel sets
A ⊆ R2 by

µX,j(A) := L{t ∈ [t0 − j−1, t0 + j−1] ∩ I : (t,X
H(·)
d (t)) ∈ A},

with L the Lebesgue measure in R, we get

E
(∫∫

dµX,j(x)dµX,j(y)

|x− y|s

)
=

∫∫
([t0−j−1,t0+j−1]∩I)2

E
[(
|XH(·)

d (t)−XH(·)
d (u)|2 + |t− u|2

)− s2 ]
dt du

≤ c′′
∫∫

([t0−j−1,t0+j−1]∩I)2

|t− u| 1d−s−
H(t0,ε)

d dt du.

If s < 1 + 1−H(t0,j
−1)

d , then this last integral is finite. Therefore, for all qj ∈ Q
with 0 < qj ≤ 1 + 1−H(t0,j

−1)
d , there exists Ω̃j,qj , an event of probability 1, such

that on, Ω̃j,qj , ∫∫
dµX,j(x)dµX,j(y)

|x− y|qj
< +∞.

By Lemma 7.4 and (19), it means that, on Ω̃j,qj

qj ≤ dimH
(
Gd([t0 − j−1, t0 + j−1] ∩ I)

)
≤ dimH (Gd(I)) .

As H is a continuous function, it follows that on the event
⋂
j

⋂
qj

Ω̃j,qj of
probability 1, we have

1 +
1−H(I)

d
≤ dimH (Gd(I)) .

It suffices to intersect this event with Ω1 from Proposition 7.2 to get the con-
clusion.
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Remark 7.7. Let us note that the proof or Proposition 7.6 only requires that,
if t0 ∈ I is such that H(t0) = H(I), there exist ξ > 0 and γ > 0 such that
γ > H(t0, ξ) and H ∈ Cγ([t0 − ξ, t0 + ξ)∩ I). In particular the lower bound for
the Hausdorff dimension of Gd(I) still holds in this case.

8 Complements for the multifractionnal Rosen-
blatt process

In this last section, we take advantage of the expression (21) to improve The-
orem 2.17 in the case d = 2, where the multifractional Hermite process is the
multifractional Rosenblatt process. Let us start by introducing the notions of
Malliavin calculus that we are going to use. Details can be read in the funda-
mental books [52, 54].

Generally speaking, let H be a real separable Hilbert space with inner prod-
uct 〈·, ·〉H and associated norm ‖ · ‖H. We call isonormal Gaussian process over
H any centred Gaussian family X = {X(f) : f ∈ H} defined on a probability
space (Ω,F ,P) and such that, for every f, g ∈ H, E[X(f)X(g)] = 〈f, g〉H. One
can assume that F is the σ-field generated by X. For allm ≥ 1, H�m is themth
symmetric tensor product of H and L2(Ω,H�m) is the class of H�m -valuated
random elements F which are F-measurable and such that E[‖F‖2H�m ] < ∞.
Let S be the set of all cylindrical random variables of the form

F = g(X(f1), . . . , X(fn)) (47)

with n ≥ 1, fj ∈ H and g infinitely differentiable such that all its partial
derivatives have polynomial growth. If F ∈ S is of the form (47), the mth
Malliavin derivative of F is the element of L2(Ω,H�m) defined by

DmF =

n∑
j1,...,jm=1

∂mg

∂xj1 . . . ∂xjm
(X(f1), . . . , X(fn))fj1 ⊗ · · · ⊗ fjm .

For all m ≥ 1 and p ≥ 1, Dm,p denote the closure of S with respect to the norm

‖ · ‖m,p : F 7→

E[|F |p] +

m∑
j=1

E[‖DjF‖p
H⊗j

]

 1
p

. (48)

For all p ≥ 1, D∞,p =
⋂
m≥1 Dm,p

In the sequel, we will heavily use the following fact which is contained in [35,
Theorem 3.1].

Lemma 8.1. If F ∈ D2,s is such that E[|F |2p] <∞ and E[‖DF‖−2r
H ] <∞ for

p, r, s > 1 satisfying 1
p + 1

r + 1
s = 1, then F has continuous and bounded density

fF with
sup
x∈R
|fF (x)| ≤ cp

∥∥‖DF‖−2
H
∥∥
Lr(Ω)

‖F‖2,s,

where cp > 0 is a deterministic constant only depending on p.
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In our context, we work with H = L2(R) and, for all f ∈ L2(R), X(f) =
I1(f) is the Wiener-Itô integral of f with respect to the Brownian motion. For
all p, d ≥ 1, Id(f) ∈ D∞,p and, for all q ≥ 1,

DqId(f) =

{
d!

(d−q)!Id−q(f) if q ≤ d
0 otherwise,

where, in Id−q(f), the stochastic integral is taken with respect to d − q vari-
ables, resulting in a random variable belonging to L2(Ω, L2(Rq)). In particular,
DdId(f) = d!f . In the case d = 2, we can use the expansion (21) and write

DI2(f) = 2
∑
j∈N

λf,jI1(ef,j)ef,j

which entails, given the orthogonality of the system {ef,j},

‖DI2(f)‖L2(R) = 2

∑
j∈N

λ2
f,jI1(ef,j)

2

 1
2

. (49)

In particular, as {I1(ef,j}j are i.i.d. N (0, 1) random variables, we deduce from
(22) that

E
[
‖DI2(f)‖2L2(R)

]
= 4

∑
j∈N

λ2
f,j

 = 4‖f‖2. (50)

Now, let us state [35, Lemma 7.1] which gives an estimate for the negative
moments of random variables of the form (49), which is particularly useful to
apply Lemma 8.1.

Lemma 8.2. Let G :=
(∑

j∈N λjX
2
j

) 1
2

where {λj}j∈N satisfies |λj | ≥ |λj+1| for
all j ≥ 1 and {Xj}j∈N are i.i.d. standard normal. For all r > 1, E[G−2r] <∞
if and only if there exists N > 2r such that |λN | > 0 and, in this case,

E[G−2r] ≤ cpN−r|λ|−2r, (51)

with cr > 0 a deterministic constant only depending on r.

Let use Lemma 8.1 to improve Proposition 7.6 in the second order Wiener
chaos.

Proposition 8.3. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst

function H : R+ → K satisfying Condition 2.8 (a) and a compact interval
I ⊂ R+. If t0 ∈ I is such that H(t0) = H(I), there exist two deterministic
constants c > 0, ξ > 0, both only depending on d, H and I, such that, for all
0 < ε < ξ, x ≥ 0 and t, u ∈ I ∩ [t0 − ε, t0 + ε],

P(|XH(·)
d (t)−XH(·)

d (u)| ≤ x) ≤ cx|t− u|−H(t0,ε).

Proof. Let us fix t, u ∈ I, we assume without loss of generality u < t. We keep
the notation

f
H(·)
t,u : R2 → R : w 7→

∫ t

0

fH(t)(s,w) ds−
∫ u

0

fH(u)(s,w) ds
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introduced in the proof of Proposition 7.6 and also consider the function

f
H(t)
t,u : R2 → R : w 7→

∫ t

u

fH(t)(s,w) ds.

Note that I2
(
f
H(t)
t,u

)
= Xd(t,H(t)) − Xd(u,H(t)). Let {λj}j∈N be the eigen-

values of the Hilbert-Schmidt operator A
f
H(t)
1,0

ordered with |λj | ≥ |λj+1|. On
one hand, one can check, with some obvious changes of variables, that {|t −
u|H(t)λj}j∈N are the eigenvalues of A

f
H(t)
t,u

. On the other hand, we know from
the proof of [56, Theorem 3.1] that λ3 6= 0. Finally, inequality (22) allows
to affirm that, if {ξt,uj }j∈N are the eigenvalues of the Hilbert-Schmidt operator
A
f
H(u)
t,u

ordered with |ξt,uj | ≥ |ξ
t,u
j+1|

|ξt,u3 | > |t− u|H(t)|λ3| − ‖fH(·)
t,u − fH(t)

t,u ‖L2(R2).

From Proposition 2.2, we know that there exists c2, only depending on K and
H, such that

‖fH(·)
t,u − fH(t)

t,u ‖L2(R2) ≤ c2|H(t)−H(u)|.

Now, from the Condition 2.8 (a) for H, one can conclude, just as in the proof of
Proposition 7.6, that there exists ξ > 0, a deterministic constant, only depending
on H and I, such that, for all 0 < ε < ξ and t, u ∈ I ∩ [t0 − ε, t0 + ε],

|ξt,u3 | >
|λ3|
2
|t− u|H(t0,ε).

It follows from Lemma 8.2, that, for all such ε and t, u and, for all r ∈ (1, 3
2 ),

that ∥∥∥‖D (XH(·)
d (t)−XH(·)

d (u)
)
‖−2
L2(R)

∥∥∥
Lr(Ω)

≤ cr
4

3
|λ3|−2|t− u|−2H(t0,ε),

with cr > 0 a deterministic constant depending only on r. For all p > 1,
E
[(
X
H(·)
d (t)−XH(·)

d (u)
)p]

<∞. Finally, from (48), equality (50), Proposition
2.2 and Condition 2.8 (a), we deduce the existence of a deterministic constant
c1 > 0, only depending on H and I, such that, for all 0 < ε < ξ and t, u ∈
I ∩ [t0 − ε, t0 + ε]∥∥∥(XH(·)

d (t)−XH(·)
d (u)

)∥∥∥
2,2
≤ c1|t− u|H(t0,ε).

Since, as a consequence of the hypercontractivity property on the Ornstein-
Uhlenbeck semi group [52, Theorem 2.7.2], all the ‖·‖m,p norms are equivalent in
any finite sum of Wiener chaoses, one can conclude, by Lemma 8.1, the existence
of two deterministic constants c, ξ > 0, both only depending on H and I, such
that, for all 0 < ε < ξ and t, u ∈ I ∩ [t0 − ε, t0 + ε],

(
X
H(·)
d (t)−XH(·)

d (u)
)

has a continuous density bounded by c|t − u|−H(t0,ε). The conclusion follows
immediately

The proof of Theorem 2.18 is then a direct adoption of the one of Theorem
2.17, using the improved estimate given by Proposition 8.3.
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Proof of Theorem 2.18. It suffices to repeat the proof of Theorem 2.17 using
Proposition 8.3 instead of Proposition 7.6. Therefore, we remove the factor 1

d
in the computations (46) and get

E
[(
|XH(·)

d (t+ r)−XH(·)
d (t)|2 + r2

)− s2 ] ≤ c′′r1−s−H(t0,j
−1).

Remark 8.4. As previously, we can note that the proof for the lower bound for
the Hausdorff dimension requires a weaker assumption for the Hurst function
H, see Remark 7.7 here over.
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