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Abstract

We define multifractional Hermite processes which generalize and extend both multifractional
Brownian motion and Hermite processes. It is done by substituting the Hurst parameter in the definition
of Hermite processes as a multiple Wiener—It6 integral by a Hurst function. Then, we study the pointwise
regularity of these processes, their local asymptotic self-similarity and some fractal dimensions of their
graph. Our results show that the fundamental properties of multifractional Hermite processes are, as
desired, governed by the Hurst function. Complements are given in the second order Wiener chaos,
using facts from Malliavin calculus.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Fractional Brownian motion with Hurst parameter 4 € (0, 1) is known to be the unique
Gaussian process with Bj(0) = 0, mean zero and covariance function

E[By(1)By(s)] = %’“ (112 + 151" — |t — s1) ,

where ¢;, is a positive constant only depending on A4. It was introduced by Kolmogorov, in
1940, to generate Gaussian “spirals” in Hilbert spaces [38]. It is itself a generalization of the
famous Brownian motion, when h = 1/2, defined by the botanist Robert Brown to describe
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the movements of pollen grains of the plant Clarkia Pulchella suspended in the water [21]. The
first systematic study of fractional Brownian motion goes back to the famous paper [49] by
Mandelbrot and Van Ness, in 1968. Since then, fractional Brownian motion has appeared in
many real-life applications in various domains, such as telecommunications, biology, finance,
image processing and much more [29].

Among its most fundamental properties, fractional Brownian motion has stationary in-
crements and is A-self-similar, meaning that, for all @ > 0, the processes {a " B,(at)};cr
and {Bj(#)};cr have the same finite-dimensional distributions. The Hurst parameter also
rules the regularity of the process since the uniform and pointwise Holder exponents (see
Section 2 for a definition) of Bj are almost surely h. Actually, it appears that, for some
applications, these properties are undesirable. For instance, fractional Brownian motion was
used in image synthesis to model artificial mountains [16] but then, the obtained relief has
the same (ir)regularity everywhere, which is not realistic. To overcome this drawback, the
two papers [17,55] introduced independently and from two different perspectives the so-
called multifractional Brownian motion. It is defined by substituting the Hurst parameter i
by a Hurst function H(-) with values in a compact interval of (0, 1). Under some regularity
assumptions for the Hurst function, see Conditions 2.8(a), (b) and (c), one can show that, almost
surely, the function H governed the Holder regularity of the multifractional Brownian motion.
Also, the self-similarity property is turned into a local asymptotic self-similarity property, see
Definition 2.12.

Since the introduction of the multifractional Brownian motion, many authors studied this
process, from various perspectives. One can cite for instance the papers [19,20] concerning
the local time of this process, [24,43] for statistical estimation of the Hurst function, [23,62]
where fractal dimensions are computed, [31,45] for studies of the precise pointwise regularity,
and [41,42,44] where a stochastic calculus with respect to multifractional Brownian motion is
defined. Also, different generalizations has been given such as in [3,13,14], where a larger class
of Hurst functions are considered, in order that the Holder exponent of the process is, almost
surely, of the most general form given in [1,26], or in [4,12,15] where the Hurst function is also
random. Finally, various extensions have been given, using larger classes of processes closely
related to the fractional Brownian motion like, for instance, the linear multifractional stable
motion [10,11] or the Surgailis multifractional process [7,57]. We also refer to the book [5] for
a very clear view on the known facts about multifractional Brownian motion and related fields.
The aim of the current paper is to define an extension of multifractional Brownian motion in
an arbitrary Wiener chaos, using the affiliation of fractional Brownian motion in the class of
Hermite processes.

All along this paper, given' d € N* and a symmetric function f € L*(R¢), I;,(f) stands for
the d-multiple Wiener—It6 integral of f with respect to the Brownian motion {B(#)};cr defined
on a probability space ({2, F,P). If f is of the form

n

F= 2 @il ® O Lig, . M

.....

..........

1 We use the notation N* for the set of strictly positive integer numbers.
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¢ <d, [Sj/, l‘j() N [Sjg,, tjl’) = (J, then
n

1a(f) = Z aj....jg(Bt) — B(sj)) x -+ - (B(tj,) = B(sj,)). @

Jseesja=1

It is straightforward that this last random variable belongs to L2(£2). For a general symmetric
f e L2 RY), I,(f) is then defined using the density of functions of the form (1) within the
set of symmetric square integrable function and by checking that the corresponding random
variables (2) converge in L?({2). Among many properties that enjoys this integral, we will
mainly use the so-called isometry property: for all f, g symmetric function in L*(R?) and
L%(R?) respectively,
ElL(Dla(g) = {48 1T d=d 3
0 otherwise,
where (-, -) stands for the canonical scalar product in L>(R?). The dth Wiener chaos is defined
as the closed linear subspace of L?(f2) generated by the random variables of the form I,(f),
with f symmetric function in L2(RY).
Now, given h € (%, 1), we define, for all s > 0, the function
d h—1_1
fu(s. @)t R Ry o x> [Jes —x), ™ 2 )
=1

It is easy to show that, for all # > 0, the function

/ fn(s, ®)ds
0

is symmetric and belongs to L2(R?). Then, the Hermite process of order d and Hurst parameter
h is defined as

{Id (/ fn(s, ®) ds)} . (®)]
0 teRy

When d = 1, this process reduces to the fractional Brownian motion of Hurst parameter &. As
soon as d > 1, the Hermite process of order d is known to be non-Gaussian. Hermite processes
first appeared as limit of partial sums of correlated random variables, in the so-called Non-
Central Limit Theorem, see [28,58,59]. Apart from Gaussianity, Hermite processes share many
properties with fractional Brownian motion such as the stationarity of increments, the h-self
similarity, the Holder regularity. These facts are particularly interesting in application where we
have to model a phenomena for which the Gaussianity is not a reasonable assumption. See for
instance [61] where the asymptotic distributions in a model for the unit root testing problem,
with errors being non-linear transforms of linear processes, are shown to be functionals of
Hermite processes.

Remark 1.1. For all & € (%, 1) and d € N*, we define the constant c,(k) by

@ (s — 12+, 2%

2 _
Wh ="y
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with B(-,-) the usual Euler Beta function. Using the isometry property (3) for Wiener—Ito
integrals, one can show that, for all # > 0,

t 2
E [(Id ( / fu(s, -)ds>> ] = cqa(h)*t*",
0

see for instance the recent book [60]. For this reason, some authors used the normalized
definition {Id(Tih) fot Su(s, @) ds)},cr, for the Hermite process of order d and Hurst parameter
h. In our context, let us remark that, for all d € N*, the function i +— c4(h) is continuous on
(3. 1.

In this paper we define multifractional Hermite processes by substituting the constant Hurst
parameter in (5) by a Hurst function with values in a compact interval of (1/2, 1). In order
to do so, we first introduce the following fields, called “generators of Multifractional Hermite
processes”.

Definition 1.2. Given d € N*, the generator of the multifractional Hermite process of order
d is the real-valued centred field {X,(z, h)}(t,h)eR+x(%,l) defined, for all (¢, h) € Ry x (%, 1),
by the multiple Wiener-Ito integral

Xat, h) =1 (/ (s, o)ds) . ©6)
0

Let us remark that, if 2 € (1/2,1) is fixed, {Xq(t, h)};cr, is the standard Hermite
process of order d and Hurst parameter h. In Proposition 2.4, we show that, for all d,
there exist a modification of {X,(t, h)}icr, nei/2,1) and 2%, an event of probability 1, such
that, on (2%, the trajectories of this modification are (Holder) continuous. Then, we identify
{Xa(t, M}ier, neq/2,1) With this modification and define multifractional Hermite processes as
follows.

Definition 1.3. Given d € N*, a compact interval K of (%, 1) and a function H : R, —

K, the multifractional Hermite process of order d and Hurst function H is the process
(X)) er, defined, for all t € Ry, by

X7 = Xa(t, H@)). )

Remark 1.4. Of course, the trajectories of multifractional Hermite processes and their
associated generators depend on the additional parameter w € 2. In order to ease the notations,
all along this paper, when the context is clear, we allow ourself not to explicitly mention
this dependence and to write Xf(')(t) and X,(¢, h) instead of Xf(')(a), t) and Xy(w,t,h)
respectively.

When d = 2, the multifractional Hermite process corresponds to the multifractional
Rosenblatt process previously introduced in the paper [56]. Nevertheless, Wiener—Itd integrals
of order 2 enjoy specific properties (see the end of Sections 2 and 8 in the present paper).
Thus, the study undertook here is more general. Moreover, some facts proved in this paper
are not considered in [56]. Among other things, in Section 4 we compute the exact Holder
exponents of the multifractional Rosenblatt process (only upper bounds are given in [56]) and
in Section 5 we establish a law of iterated logarithm. Also, in Section 8, we prove the existence
of a continuous and bounded density for increments of the multifractional Rosenblatt process,
with the help of Malliavin calculus. It helps us to refine some facts explored in this paper.

468



L. Loosveldt Stochastic Processes and their Applications 165 (2023) 465-500

Other multifractional processes in arbitrary Wiener chaoses have already been defined in the
literature. In the paper [8], the authors consider a multifractional generalization of processes
introduced in [2]. They are defined with an alternative kernel which facilitates the computation
of a wavelet-type expansion. Also, in the papers [50,51], the author obtains some multifractional
processes in arbitrary Wiener chaoses as limits of weighted sums of multifractional Gaussian
fields. These processes are a priori not directly related to the ones defined in this paper, as it
is already the case in the first order chaos, see [25].

With this paper, we hope to open the door to further investigations concerning multifractional
Hermite processes. We believe that many interesting research questions could be addressed,
similarly to what have been done with the multifractional Brownian motion. Also, we think
that multifractional Hermite processes could be used in applications to model phenomena where
both Gaussianity and constant regularity cannot be assumed. To motivate the introduction of
multifractional Hermite processes, we focus on some first important properties concerning
the behaviour of stochastic processes: Holder regularity, the law of iterated logarithm, local
asymptotic self-similarity and fractal dimensions for the graph. These notions are defined in
Section 2 as well as the main strategies used to state and prove our main theorems. Section 3
is mainly concerned in giving an uniform modulus of continuity for multifractional Hermite
processes. In Section 4, we provide a lower bound for the oscillations of multifractional
Hermite processes. Section 5 is devoted to prove a law of iterated logarithm. In Section 6,
the local asymptotic self-similarity is discussed. Section 7 deals with estimates for the
Hausdorff and box-counting dimensions of the graph of multifractional Hermite processes.
Finally, in Section 8, some complements concerning the fractal dimensions of the graph of the
multifractional Rosenblatt process are given, using specific arguments from the Wiener chaos
of order 2 and Malliavin calculus.

Our results show that, as desired, fundamental properties of multifractional Hermite pro-
cesses are governed by their associated Hurst function.

2. Preliminaries, strategy and main results

As stated in the Introduction, the definition of a multifractional Hermite process relies on a
modification of its generator which is almost surely Holder continuous. Let us start by recalling
the definition of this notion.

Definition 2.1. If f is a (deterministic) continuous function defined on a compact interval /
of R, the oscillation of f on I is defined by

Osc(f, I) = sup | f() = f(s)]. ®

t,sel

We say that f belongs to the pointwise Holder space at ty € I and of order o € (0, 1) if there
exist R > 0 and C > 0O such that, for all 0 < r < R,

Osc(f, [to—r, to+rINI)<Cr®. ©
In this case, we note f € C%(ty). It is easy to check that, if o < B, then C#(ty) C C%(1o).
Therefore, the pointwise Holder exponent of f at 7y is defined as

h(to) == sup{ € (0, 1) : f € C*(tp)}.

If, for all ty € I, f € C*(ty), with an uniform constant C > 0 in (9), we say that f is uniformly
Holder on I of order o and we note f € C*(I). The uniform Holder exponent of f on [ is
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then naturally defined as
Hi(I):=supla € (0,1) : f e C*'()}.
Of course, for all #5 € I, we have h¢(t9) > Hp(I).

One of the easiest and most standard way to provide information concerning the Holder
regularity of a stochastic process is to use Kolmogorov continuity theorem. On this purpose,
one has to obtain bounds for the norms in L”(f2) of the increments of the process. It is precisely
the aim of the next proposition. In fact, this result will be crucial in numerous occasions all
along this paper.

Proposition 2.2. Let d € N*, K be a compact interval of (%, 1) and I be a compact interval
of R. There exist two positive deterministic constant cy, ¢, only depending on d an K, and
a positive deterministic constant c3, only depending on d, K and I, such that, for all t,u € 1
and /’ll, hz eK,

1 Xa(t, h1) — Xa(u, ho)ll12¢0)
is bounded from above by c |t — u|™™" "2} L cs\hy — hy| and from below by c;|t — u|™"1-h2)

c3lhy — hol.

Proof. Let us write K = [a, b] with % < a < b < 1 and let us assume, without loss of
generality, h; < h,. For all t,u € I and hy, hy € K, of course, we have

I Xa(t, h1) = XaQu, hi)ll 200y — 1 Xa(u, hi) — Xa(u, ho)ll 20y <
1 Xa(t, ki) = Xa(u, ho)|| 1200
< I1Xa(t, h1) — Xa(u, h)ll 20y + 1 Xa(u, hy) — Xa(u, o)l 120 (10)

Using the self-similarity and stationarity of increments of Hermite processes, we know that
there exists a deterministic constant c;(k1) > 0, such that

1Xa(t, ) — XaCu, 1)l 20y = cathn)le — ul™.
In view of Remark 1.1, we take

c1 = sup cy(h) and ¢, = inf cy(h).
hek hek

Thus, it only remains to bound || X, (u, h1) — Xa(u, ha)ll2(g)- In the sequel, we write dx for
dx; ...dx,. Let us also recall the notation (4). Using the isometry property (3) for Wiener—Ito
integrals and Definition 1.2 we have

| Xa(u, h1) — Xa(u, i)l 120
1

u 2 2
=d! / (f fhl(s,x)—fhz(s,x)ds> ax| . (11
R4 \Jo

For all (s, x) with ]_[‘g:l(s —x¢)4+ > 0 fixed, by mean value theorem, there is 4’ € [k, hy] such

that
d
In (H(s - xm)

=1

1
[y (5, %) — [y (5, %) = E'hl — ha| fiw (s, %)
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Now, using the fact that, for all ¢ > 0,

I
lim xlogx~) = 0% and  lim &%) _
x—0+t x—>+o00 x¢

0t,

one can choose ¢ > 0 such that % <a—¢ < b+¢e < 1 and find a deterministic constant
¢, > 0 for which, for all x € R?,

/(; I (8,X) = fuy (s, X)ds

Plugging this into (11) and using again the isometry property (3) for Wiener-Ito integrals, we
get

=< celhy — hzl[ Ja—e($.X) + fore(s, X)ds. (12)
0

| Xa(u, h1) — Xa(u, i)l 120
< celhy = ha| (1 Xa(, a = &)l 1200) + | Xa(u. b + )l 120))
< cacelhy — ol (||~ + [u]"**)
< cslhi — hal,
for a positive deterministic constant ¢3 > 0 only depending on d, K and /. [

The next corollary is then a direct consequence of the hypercontractivity property on Wiener
chaoses, see [52, Theorem 2.7.2].

Corollary 2.3. Given d € N* and K a compact interval of (%, 1), let I be a compact interval
of Ry. For any p > 1 there exists a positive deterministic constant c,, only depending on d,
p, K and I, such that, for all t,u € I and h{, h, € K,

I Xa(t, 1) = Xa(u, h)llrcoy < cp (It — u™™ 0020 7y — hy)). (13)

Inequality (13) combined with Kolmogorov continuity theorem are enough to consider the
Holder regularity of generators of multifractional Hermite processes.

Proposition 2.4. Given d € N*, there exist a modification of the field { X (t, h)}¢ nyery x(1/2,1)»
also denoted by {X (t, h)}i.mer, x1/2,1), and {2%, an event of probability 1, such that, on (2%,
given I, a compact interval of R, and K, a compact interval of(%, 1), forall 0 < a < infK,
there exists a finite positive random variable C such that, for all t,u € I and hy, h, € K,

[ Xa(t, hi) — Xa(u, ho)| < C(|t —u| + |hy — ha)". (14)

Proof. Using (13), we see that, for all p > 0 there exists a deterministic constant ¢ > 0, only
depending ond, p, I and K, such that, for all r,u € I and hy, hy € K,

1 Xa(t, h1) — Xa(u, b))l Loy < et — ul + |hy — ha|)™¥

and the conclusion follows by applying a strong version of Kolmogorov continuity theorem,
see for instance [37, Theorem 2.5.1 pages 165 and 166]. [

Starting from now, we identify the generators of the multifractional Hermite processes
with their continuous modification. Once this identification done, the multifractional Hermite
process, of order d and Hurst function H, {Xf(')(t)},eR , is defined by the equality (7). Let us
now present our main results which focus on fundamental properties of these processes. Holder
regularity provide nice information about the pointwise and global behaviour of the functions
we consider. Nevertheless, often we are interested by more precise bound for the oscillations.
It can be done by the mean of moduli of continuity.
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Definition 2.5. If f is a (deterministic) function defined on a compact interval / of R, we
say that a continuous increasing function p defined on R, and such that lim,_ ¢+ p(r) = 0 is

a modulus of continuity for f atfy € I if
Osc(f, [to—r, ¢ NI
lim sup s/ llo = o +7] ) < +o00. (15)
r—0+t o(r)

Moreover, if

) sup,,e; Osc(f, [to —r, 2o +r])
lim sup <
r—0t Io(r)
we say that p is an uniform modulus of continuity for f on I.

+00

Remark 2.6. Of course, if f is «-Holder, the function r +— r® is a modulus of continuity
for f. Holder regularity only compares the oscillations with power functions while, with
moduli of continuity, one can deduce more precise and relevant information concerning the
analysed function. It is particularly true when we consider stochastic processes, see for in-
stance [27,30,31]. Note that one can define generalized Holder spaces associated with modulus
of continuity [39,40,46] and that these spaces lead to specific multifractal formalisms [47,48].

While considering the multifractional Hermite process Xf(‘), we say that A (resp. p) is a
(pointwise or uniform) Holder exponent (resp. modulus of continuity) for X MO it it is a Holder
exponent (resp. modulus of continuity) for all the sample paths ¢ +— Xf(' (t) on an event of
probability 1.

Notation 2.7. Given d € N*, a compact interval K of (%, 1) and a continuous function
H : Ry — K, if I is a compact interval of R, we note

H(I) :=min{H(I)} and H(I) = max{H(I)}.

While studying multifractional processes, authors generally require a regularity assumption
for the function H in order to consider the regularity of the process itself, see for instance [5,
17,55]. Here, we will also work with such conditions.

Condition 2.8. Given d € N* and a compact interval K of (%, 1), we say that the Hurst
function H : R, — K satisfies

(a) the uniform min-Holder regularity condition if, for all compact interval I of R, there
exists y € (H(I), 1) such that H € CY(I),

(b) the pointwise Holder condition if, for all t € R, there exists y € (H(t), 1) such that
H e C7 (),

(c) the local Holder condition if, for all t € Ry, there exist a compact interval I, C R,
and y € (H(t), 1) such that t € I, and H € CY(1,);

All along this paper, to be as general as possible, we use alternatively Condition 2.8(a), (b)
or (c) to state and prove our results. Note that if the Hurst function H : Ry — K is such
that, for all compact interval I of R, there exists y € (H(I), 1) for which H € C”(I), then
Conditions 2.8(a), (b) and (c) are obviously satisfied.

Our first main result consists in providing, under Condition 2.8(a), an uniform modulus of
continuity for each multifractional Hermite processes. In Section 3, we prove the following
Theorem.
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Theorem 2.9. Given d € N*, a compact interval K of (%, 1) and a Hurst function
H : R, — K satisfying Condition 2.8(a), there exists (2, an event of probability 1, such
that, on (X, for all compact interval I of Ry

. sup,e; Ose(Xy, [t —r to+r1NT)

lim sup y
r—0+ rdlogr-1)2

< +00.

Under Condition 2.8(b), one can compute the pointwise Holder regularity of the process.
As desired, it is governed by the Hurst function, as stated in our second main Theorem, proved
in Section 4.

Theorem 2.10. Given d € N*, a compact interval K of (%, 1) and a Hurst function
H : R, — K satisfying Condition 2.8(b), there exists (25, an event of probability 1, such
that on §25, for all ty € R, we have

hxgu-)(lo) = H(1).

In fact, Theorem 2.10 is a consequence of the stronger Theorem 4.1 which gives a lower
bound for the oscillations of multifractional Hermite processes.

When we study the pointwise regularity of a stochastic process, we are often interested in
providing a so-called law of iterated logarithm. It shows that, almost surely, the oscillations
at most of the points (in the sense of Lebesgue measure) can be bounded from below and
above by a modulus of continuity featuring an iterated logarithm. In Section 5, we show that
multifractional Hermite processes enjoy this property.

Theorem 2.11. Given d € N*, a compact interval K of (%, 1) and a Hurst function
H : Ry — K satisfying Condition 2.8(c), there exists {2, an event of probability 1, such
that on (2, for (Lebesgue) almost every ty € R, we have

, Ose(X" [t —r, 19 + 11N RY)
0 < limsup 7 < 00
r—0+ ri®(log(logr=1))2
As shown by Theorem 2.10, if the function H is non constant, almost surely, the pointwise
Holder exponent of the multifractional Hermite process Xg(') changes from one point to
another. In particular, there is no hope that it is a self-similar process, see [5, Proposition

1.60]. For this reason, one prefers to check a weaker assumption, the so-called local asymptotic
self-similarity.

(16)

Definition 2.12. A real-valued stochastic process {X(¢)};cr, is weakly locally asymptotically
self-similar of order h > 0 at the point #, with non-degenerate tangent process {Y (¢)},>¢ if the
sequence of process {e (X (ty+ 1) — X (to))}ser , converges to the process {Y (¢)};cr, in finite
dimensional distributions, as ¢ — 0. When {X(#)};er + and {Y(t)};er, have, almost surely,
continuous path and if the previous convergence also holds in the sense of continuous function
over an arbitrary compact set of R, we say that {X(#)},er, is strongly locally asymptotically
self-similar of order h > 0 at the point 7, with tangent process {Y (¢)};cr, -

Of course, the strong local asymptotic self-similarity implies the weak local asymptotic
self-similarity. Conversely, let us assume {X(#)};cr, is weakly locally asymptotically self-
similar of order # > 0 at the point #, with tangent process {Y(¢)};cr,. Let @ > 0 be an
arbitrary fixed real-number and, for ¢ > 0, let P be the probability measure induced by
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{e™"(X(ty + et) — X(t))}ier, on the Borel o-algebra of?> C([0, a], R). In order, to show that
the convergence holds in the strong sense, it suffices to show, since a > 0 is arbitrary, that the
family (IP%);~0 is relatively compact. Using Prohorov’s criterion (see [18, Section 5 in Chapter
1] for a comprehensive view), it reduces to show that, for all § > 0

X(tg + 1) — X(to + &5)
oh

lim limsupP ( sup

=0t oo+ s,t€l0,al,|t—s|<n

> 5) — 0. (17)

In Section 6, we use this technique to prove the local asymptotic self-similarity of the
multifractional Hermite process.

Theorem 2.13. Let d € N*, K be a compact interval of (%, 1)and H : Ry — K be a
Hurst function. If H satisfies Condition 2.8(b) then, for all ty > 0, the multifractional Hermite
process {Xf(') (t) : t = 0} is weakly locally asymptotically self-similar of order H (ty) at ty with
tangent process {X4(t, H(ty)) : t > 0}, the Hermite process of order d and Hurst parameter
H(ty). Moreover, if H satisfies Condition 2.8(c), then this property also holds in the strong
sense.

The last notions that we consider in this paper to study the behaviour of a given multifrac-
tional Hermite process are the Hausdorff and box-counting dimensions of its graph. We refer
to the fundamental book [32] for details and proofs concerning these quantities.

Definition 2.14. Given d € N*, a set A CR? and ¢, h > 0, the quantity

HE(A) = inf{) _ diam"(A;): A €| JA; and, Vj, diam(4;) < e}
J J

where, as usual, diam stands for the diameter, is called the (4, ¢)-Hausdorff outer measure of
A. Moreover, for all 1 > 0, the application ¢ — ’Hf;(A) is decreasing and it follows that the
h-dimensional Hausdorff outer measure

H'(A) = lim H"'(A)
e—0T1
is well-defined.

The crucial property of Hausdorff outer measures is that, for any non-empty set A, there
exists a critical value & such that

H'(A) =00 Vh <hy and H'"(A)=0Vh > hy.

Definition 2.15. Given d € N* and a non-empty set A C R4, the Hausdorff dimension of A is
dimy(A) = sup{h > 0 : H"(A) = oo} = inf{h > 0 : H"(A) = 0},
while, by convention, dimy () = —o0.

An alternative notion of dimensions for fractal sets are given by the box-counting dimen-
sions.

2 As usual, C([0, a], R) stands for the set of real continuous function on [0, a].
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Definition 2.16. Given d € N*, a non-empty bounded set A € R? and & > 0, let N,(A) be
the smallest number of sets of diameter at most ¢ which can cover A. The quantities
log(N:(A N ) log(N:(A
dimgz(A) := lim infM and dimpg(A) = lim sup M
e—0t  —log(e) emo+  —log(e)
are, respectively, the lower and upper box-counting dimensions of A. If they are equal, the
common value is refereed as the box-counting dimension of A and we denote it dimg(A).

We also refer to [32] for all the properties of these dimensions and a clear presentation
of their respective utilities and interpretations. Here, we will mainly use the fact that, for any
non-empty bounded set A C R4,

dimg(A) < dimg(A) < dimg(A). (18)
Also, we use the fact that, for all A, B subset of R,
(A C B) = dimy(A) < dimy(B) (19)

In this paper, given d € N*, a compact interval K of ( %, 1), a Hurst function H : Ry — K
and a compact interval / C Ry, we are interested in the dimensions of the graph

Ga(D) = {(t, XJ0)) - 1 € 1)

In view of inequalities (18), our strategy consists in bounding from above the (upper) box-
counting dimension and from below the Hausdorff dimension. The main Theorem of Section 7
can then be stated as follows.

Theorem 2.17. Given d € N*, a compact interval K of(%, 1), a Hurst function H : Ry — K
satisfying Condition 2.8(a) and a compact interval I C R, there exists {2, an event of
probability 1, such that on {2, we have

1 -H{I) _ . -
—F = dimy (G4(I1)) < dimp (G4(1)) <2 — H(I).

When d = 1, inequalities in Theorem 2.17 are equalities and we recover the well-known
result of [55]. Unfortunately, for d > 1, we have a disparity between the lower and upper
bounds for the fractal dimensions. It comes from the estimates that can be made on the
probabilities

P(XYOw) — xJOw) < x), (20)

1+

for t,u, x > 0, see Proposition 7.6 below. It is unknown whether a general (multifractional)
Hermite process admits a continuous and bounded density and thus we have to estimate (20)
with the so-called Carbery—Wright inequality, Lemma 7.5 in this paper, which induces this
factor %. Nevertheless, for d = 2, one can use specific arguments from the second order Wiener
chaos, [52, Section 2.4]. Indeed, if f is a symmetric function in L2(R?), let us consider the

Hilbert—Schmidt operator defined as
Aj 1 L’(R) > L*(R) : g > / fFCog)dy.
R

Then, let {A/;};en and {ey ;};en indicate, respectively, the eigenvalues of A, and the corre-
sponding eigenvectors. The system {ey, ;} ey is orthonormal in L?*(R), the sequence {Arj}jen
belongs to £7, for all p > 2, and f has the expansion

f= Z)\f.,jef,j ey,
jeN
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with convergence in L?(R?). In particular, from this last equality, one can write

L(f) = hpj(htes? —1), @1

jeN

with convergence in L2(£2). Let us also note that the orthonormality of {e 1.j}jen entails

11 2y = DA% (22)
jeN
In Section 8, we take advantage of this expansion, together with arguments from Malliavin
calculus and the paper [35], to prove the following improvement of Theorem 2.17 in the second
order Wiener chaos. We recall that, in this case, the multifractional Hermite process corresponds
to the multifractional Rosenblatt process.

Theorem 2.18. Given a compact interval K of (%, 1), a Hurst function H : Ry — K
satisfying Condition 2.8(a) and a compact interval 1 C Ry, there exists (&, an event of
probability 1, such that on (2, we have

dimy; (G2(1)) = dimg (G2(1)) =2 — H(I).

Note that this disparity of results also appeared in the standard case, where the Hurst function
is constant, see [2]. We conjecture that, in fact, the equality holds for any (multifractional)
Hermite processes. A strategy to prove this fact would be to show that (multifractional) Hermite
processes admit continuous and bounded densities. It is still an open question which goes far
beyond the scope of this paper.

3. Uniform modulus of continuity

Let us now focus on the continuity and regularity of multifractional Hermite processes. Let
us first remark that, on the event 2* induced by Proposition 2.4, Xf(') is always continuous at
0. Indeed, if w € £2* is fixed and (¢;); is a sequence which converges to 0, then let us consider
a subsequence (f(j)); of (7;);. As H has its image in the compact set K, there is a subsequence
(fix(jy); such that H(#uy) — Ho, for some Hy € K. Then, inequality (14) entails

X4 (@, i) = Xa(@, tiagiys Htign) = Xa(@,0, Hy) = 0= X3 (@, 0).

Thus, any subsequence of (Xf(')(w, t;)); has a subsequence which converges to 0, which means
that (Xg(')(a), tj)); also converges to 0.

Of course, if H is a continuous function, (7) and (14) imply that, on 2*, Xf(') is continuous
on R.. At the opposite, if H is discontinuous at a point #y 7# 0, using again the fact that
the image of H is in included in K, we know that there exists (¢;); such that 7; — #, and
tj = Hy # H(ty). Then, from the isometry property (3) for Wiener—It6 integrals, we get

| Xa(to, Ho) — Xa(to, H(to)) 1202

1
1 2 2
=d! (/]Rd (/0 fHO(S, X) — fH(lo)(S, X)dS) dX) .
d

9 H(p)-1 1 Hy—H (1) g :
=d! / / [Je—xos @ (] —x0s & —1)ds| dx
R 0 =1

=1

> 0.
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It means that one can find an event fJ;, of probability 1 such that, for all w € (2, Xf(') is
discontinuous at f.

From this discussion, we see that in order to insure the almost sure continuity of multifrac-
tional Hermite processes, we have to assume that the Hurst function is continuous. Therefore,
starting from now and until the end of this paper, the Hurst function is always assumed to be a
continuous function. In fact, we will even make stronger assumptions on this function, namely
Condition 2.8(a), (b) or (c).

Under Condition 2.8(a), by Proposition 2.4, one easily see that, almost surely, for all compact
interval I of R, X[If(') is Holder continuous on 7, with Holder exponent at least H(I).

Here, we aim at giving a more precise result by providing an almost sure uniform modulus
of continuity for Xf('). On this purpose, let us recall the following important fact, see for
instance [36, Theorem 6.7].

Lemma 3.1. For all d € N*, there exists an universal deterministic constant c; > 0 such
that, for any random variable X in the Wiener chaos of order d, and y > 2,

2
P(X| = ylI Xl 20) < exp(—cay?).

Let us introduce some notations. For all j € N and 7 € Ry, k; (¢) is the unique non negative
integer such that ¢ € [kj_(t)Z’f, (k; () + 1)27/) and we set kf(t) =k (1) + 1. Let us remark
that, for all t € R, kj_(t)2‘j, k;f(t)2‘j — t as j — +o0. Also, note that, for all j € N,

k7o (0, k(D) C (2K (1), 27 (1) + 1, 265 (1) +2)
— (2K} (1), 2k (1) — 1,2k F (1) — 2).

Proof of Theorem 2.9. For all (j, k) € N2, we write Xjp = Xf(‘)(kZ‘j). Letus fixn e N
d

and, if ¢, is the constant given by Lemma 3.1, let ¢ > (%)7. For all j € N, let us consider
the event A; defined by

>cj2

. X1 —X;
<30§k§n21,k’e{2k,2kil,2kj:2}: Xjrin = Xl d>.

1 X 10 — Xjkll L2
If j is sufficiently large, by Lemma 3.1, we have P (A;) < 5n2/ exp(—cdc% j). Thus, as
d

. 120P(A)) < oo. Borel-Cantelli Lemma entails the existence of

{2, 1, an event of probability 1, such that, on {2, 1, there exists J; € N for which, for all j > J,
and for all 0 < k < n2/, k' € {2k, 2k £ 1,2k + 2},

c > (@)2 we have Y TP

d
[Xjw — Xjul < cj2 1 Xjrin — Xjull L2 (23)

Now, let us fix a compact interval I C [0, n]. There exists J, € N such that, for all j > J,,
227/ < diam(I). In particular, it means that, for all € I and for all j > J,, k;(t)Z‘j el or
kj(t)+2fj € 1. In the sequel, for all such ¢ and j, we choose k;(t) € {kj_(t), k;L(t)} such that
k;j(t)27/ € I. On the event {2* given by Proposition 2.4, we can write, for all jo > J,

H(-
X0 = X jo.kjy ) + Z(Xjﬂ,kjﬂ(t) — Xjkj)-
Ji=Jo
Therefore, on the event (2, = f2,; N * of probability 1, if s,# € [ are such that
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2-Uo+tD) < |s —¢| < 27/ for some jy > max{J;, J»}, we write
H( H(
1X @ = X7 < 1X 00 = Xjgkjy 0]
+ ) X ka0 — Xkl
Jj=Jo
+ D 1X 1k — Xkl (24)
Jj=Jo
From Proposition 2.2 and inequality (23), as H satisfies Condition 2.8(a), there is a constant
c1, only depending on d, I, K and c such that, for all j > jj,

4 H(I)(j+1
max{|X 14,10 — Xjkoh 1 Xjt14;500 = Xjkol} < cj 227200,

Also, as |k; ()27 — k;(s)277/| < 227/0 4270 < 27402 we have, still from Proposition 2.2
and inequality (23),

4 )
X k00 — Xkl < iy 2~HOGo+2)

In total, we get the existence of a constant c,, only depending on d, I, K and c, such that, for
all s,¢ € I with 270D < |g —¢| <270
d
H(- H(- .7 n—H(I)j 4 H(I
X700 = X V@) < eajg 2P0 < ¢l log |s — 1|7 |s — 1| HD.

The conclusion follows by taking 2 =), 2,. O

4. Pointwise Holder exponent

Now, we want to show that the pointwise regularity of the process is governed by the Hurst
function. Under Condition 2.8(b), it is easy to show, with the help of Proposition 2.4, that,
almost surely, for any 7y € R,

hy o (t0) = H(1o).
d

To show the reverse inequality, we will prove the following Theorem.

Theorem 4.1. Given d € N* a compact interval K of (%, 1) and a Hurst function
H : R, — K satisfying Condition 2.8(b), there exists {2, an event of probability 1, such
that, on £2, for all ty € R,

Ose(X2 [t —r, 10 +r1NRY)
>0
—d2H(1p)
rH(ZO)(log 1 ) 2(T—H(t))

lim sup
r—0t

(25)

On this purpose, we use a generalization of a combination of previous ideas from the
papers [6,9,27]. First, remark that, similarly to the proof of Theorem 2.9, it suffices to show
that, for all n € N, there is £2,, an event of probability 1, such that, on £2,, for all y € [n, n+1],
(25) holds. The conclusion comes by taking {2 = (), oy £2,,. For the sake simpleness in notation,
we prove this result for n = 0.

Let us fix some notations. For all (j, k) € N2, A .k stands for the dyadic interval of scale
j explicitly given by [k27/, (k + 1)27/), A; is the set of all dyadic intervals of scale j and
A= Uj Aj. If A =Xj, € Aj, 31 is the set {Xjx—1,Xjk, Ajrt1}. Finally, for all j € N and
to € R4, Aj(to) is the unique interval in A; such that fp € A;(f). If x € [0, 1] and A € A, we
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allow ourself to write x € 3X to state that there exists A’ € 3A for which x € A’. Similarly,
A" C 3A means that there exists A’ € 3\ for which A” C A’.
For all (j, k) e Nx {0,...,2/ —1}, let us set

) (k+1 ) k
. H() H()
Aji =Xy (2—j> — Xy (2—,>

k+1 k+1 k k
2/ 27 2 2]

If A =X, we also write A, for A; . It is clear that, for all j € N,

sup |A;] < Ose(XJO, [t — 2277, 1 +2277)). (26)
1S3 (1)

Recalling (6) and the notation (4), we write

S(k+1 (k1 koo (k+1
W5 (50)) - (e (57))

jas}
_ 1, (/kz./ fy(ﬂ)(s’ o)ds)
& 27

27

k1
— I (1(%,(;_1]4 (/k_” Fa(t)(s: ) ds))

27

%, %1], fH v+ (8, X) vanishes whenever x ¢ (—oo, ’%l]d. The brilliant
. . o 2J, . . .
idea from [6] is then to split this last integral in two parts, where one is “negligible” compared

to the other one which enjoys some independence property.

since, as long as s € [

Definition 4.2. Given a real number M > 0, for all (j, k) € N x {0, ..., 2/ — 1}, we consider
the enlarged dyadic cube

o (k=M k+17,
JeTNC 20 0 2i

and the random variables

kil
At =1 (%Mk (/k B fy(w)(& O)dS)> 27
Js ke 27
2

J

k+1
Aj =1l (Looﬁ%dv% (/A Ta(r)(s:®) ds)) :

27

and

For all (j, k) e N x {0,...,2/ — 1}, if we also set

— k k+1 k k
(b (51)) 5 0(5)

given M > 0, of course, we have

~M ~M —
Ajg=A +Aj +A4j4.
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.. . .. ~ M . .
Moreover, from the definition of Wiener—It6 integrals, we know that A; ;" is measurable with
respect to the o-algebra

o({B() — B(t) : h, 1y € M),

see [6 Lemma 2.1]. Thus, if My, ..., M, are fixed positive real numbers, the random variables
—— My
Aj ok 1, ..., A, r,  are independent as soon as the condition
M M,
Ajszzﬂkjifk =f@foralll1 <{, ¢ <n (28)

is satisfied.

Let us now give some lower and upper bounds for the norm in L2(f2) of these random
variables. The following proposition is inspired by [6, Lemmata 2.2 and 2.3] where the main
modifications come from the fact that we are working here with a Hurst function instead of a
constant Hurst parameter.

Proposition 4.3. Given d € N* a compact interval K of (%, 1) and a Hurst function
H : R, — K, there exists a positive deterministic constant c, only depending on d and
K, such that, for all (j, k) € N x {0, ...,2) — 1} and M > 0, one has

1 ol (JI)4<||A]k 200 < €2° (k“)f’.

M H(5 ) kt1

— Cu(kY;
2‘ ”é-kk ||L2(Q) f cM 2 (2./ )J’-
3. Akl < ¢ Osc(H, Ajg).

Proof. Let us start by showing the first point. Using the isometry property for Wiener—Ito
integrals, we get, for all N x Z and M > 0, with the changes of variable s — 27/ (u + k) and
w=2/x—kl,

k+1 2
2J
||A/k ”LZ(Q)_d!/;M </k fH(k;;u)(S,X)ds> dx

-k

2
_ —2H( )j !
=dn /(M’”d (/o fH(k;jl)(u,w)du> dw.

Let us remark that if (x, w) € [0, 1] x [0, 1]¢, ]—[?:](u — wy)y € [0, 1] and thus
fH(w)(l’h W) 2 fSupK(uv W)
2]
Therefore, we conclude
— _ (kL
1AM 2 = Va2 (5

(M, o)du Lz([O,I]d)'

For the reverse inequality, it suffices to remark that
2

/ ] </ (u w)du) dw
(—o00,1]
2

1
/ </ fian(bt,W)—i-fsupK(u,w)du) dw.
00,114 0
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. k1) _q
For the second point, let us write, for all (j, k) e N x {0,...,2/ —1}, H;; := % — %
Again from the isometry property (3) for Wiener—It6 integrals, we get
—M ,
”Aj,k ||L2(Q)
- kel d 2
< d!/;:: (E —xl)ZH/?kdx] X /Rd?l (/ l_[ s —xg)+’ ds) dx;...dxy.
3 =2

First, we have

k=M k+1
Sk ()
f UG ity = (M2
—00

On the other hand, from the isometry property (3) for Wiener—It6 integrals and Proposition 2.2,
there exists a deterministic constant ¢; > 0, only depending on d, K and [0, 1], for which

A+1 2
(d—l)!/ (/ l_l(s—)Cg)Jr ds) dxy...dxy
RA= 3 0=
k41 @—DH (%) +1 v @=DH ()1 |
= Xd—]( 2] ) d _Xd l(_ d ) LZ(Q)
@-nH( L)1
fclz—zfi(dz )

In total, we have found a positive deterministic constant c¢;, only depending on d and K and
[0, 1], such that

—M supK—1 (k1)
1E oo < cam ™27 (5D,

The third and last point is a straightforward consequence of Proposition 2.2. [J

In view of the last proposition, we say that the random variables of the form Zi” are
dominant.

Finally, let us recall the following important fact about random variables in a given Wiener
chaos, see [36, Theorem 6.9 and Remark 6.10] for a proof.

Lemma 4.4. Given d € N*, there exists an universal deterministic constant y; € [0, 1) such
that, for any random variable X in the Wiener chaos of order d, one has

1
IP)(|X| < E”X“LZ(Q)) < Ya-

We now have enough material to give a lower bound for the oscillations of the multifrac-
tional Hermite process.

Proof of Theorem 4.1. As already explained, we can reduce our attention to the interval [0, 1).

d
If ¢; > 0 is the constant in Lemma 3.1, we fix ¢/ > (%) *. Let also ¢ be the constant

given by Proposition 4.3. For all A;; € A, we define
d

— (8¢ j%) (H') . (29)
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First, we consider the dominant random variables. We need to fix some notations. If L = A
is a dyadic interval and m € N, S, ,, = Sjkm» stands for the finite set of cardinality 2™
whose elements are the dyadic intervals of scale j + m included in A;y, formally speaking
Sj,k,m ={re Aj+m A C )\j,k}-

If y4 € [0, 1) is the constant given in Lemma 4.4, one can find £; € N such that

,}/Kd < 271 . (30)

If the dyadic interval A;; and m € N are fixed and § € S; ,,» we define the sequences of
dyadic intervals (/,)o<n<m and (T,)1<n<m in the following way:

o [y = )\,j!kl
o [, =23,
eforalll<n<m,Il,_1=1,UT,.
Now, for any 1 < n < m, there are £, dyadic intervals (Tn'Z = )‘j“) k(l))]s[f(d in

STmUng([dMT,, S| such that, for all 1 < ¢ < ¥,

kO — My, kO +1
(o K1)

2/n 2Jn
and, if £ #£ ¢/,
(B K1) (0 K041
YIRS ) T
1<t<ty

Therefore, the dyadic intervals (T,f) satisfy condition (28) (with M, = Mr,) which
A Mz, 1<t<ty
)

insures the independence of the random variables (ATnz 1<n=m -
From this, for all S € S ,» we define the Bernoulli random variable

Bjim($) = 1_[ L& M gy £, M
T}l Tn

Snz=m,1=t=

1<n<m

T ll 20"

A My, \1<t=<¢
)= =4 we conclude

Using Lemma 4.4 and the independence of the random variables (AT,{ 1=n=m >
E[Bjkm(S)] < y™.
Therefore, if we define the random variable

gj,k,m - Z Bj,k,m(S)

SESj,k’m

then E[G; i.m] < 2y %)™ Tt follows from inequality (30) and Fatou Lemma that

5 imineGyan | =0
As a consequence, () = ﬂj€N70§k<2_, {w : liminf, 40 Gk m(w) = 0} is an event of
probability 1.

Now if w € §2; and 1 € [0, 1), we take j € N and k = k;(#y) and since, for all m, Qj,kj(,o),m
has values in {0, ..., 2™} we conclude that there are infinitely many m for which, for every
S e Sjykj(;jo)"m, Bjxm(S) = 0. Considering such a m and S = X;,,(f) then we first remark
that, for all 1 <n <m, I, = Xj1,(to) and thus T, € 3X;4,(t9). Now, as Bj k. m(Xj1m(tp)) =0,
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one can find 1 <n <m and 1 < ¢ < {4 such that
A, M, 1 7=,
|ATHZ (@) = E”AT’f ||L2(Q)'

In short, we have shown that for all w € (2 and 7y € [0, 1), there exist infinitely many
J € N such that there is A € 31;(f) and A" € Si. llogy(¢aMy) | +1 for which

A% )] = ||A27A||Lz<m. (31)
On the other hand, from Lemma 3.1, we know that, for all j large enough,
—M. d || 5—M,
}P’(EIA € Aj, ) € Sy llogy(tay)l+1 - ‘Aw K‘ >cjr||Aw ’ LZ(Q))

<204 sup M;27 exp(—ca(c) j).
)»E/lj

d
Thus, as ¢’ > (%) ‘) recalling the explicit expression (29), we have

VMA

>c]2 A)J

ZIP’ (EIA € Aj, X € Sy llogy(taM))+1 )AN
j=0

LZ(Q)> <

We can then deduce from Borel-Cantelli Lemma the existence of (2, an event of probability
1, such that, for all @ € (2, there exists J, € N for which, for all j > J,, A € A; and
A€ Si llogy(ea ;)| +15

M,

—M —
‘A)J A(60)‘ <cjt | &

L2 (32)

Similarly, we prove the existence of {2, an event of probability 1 such that, for all w € (2,
there exists J3 € N such that, for all j > J3, A € A; and 1" € S) j10g,y(e4M;))+1>

LZ(Q)' (33)

Now, if w is such that inequalities (31), (32) and (33) hold, with 1 € 3A;(f) and A" =
Ajr k€ Si,llogy(eaMy) +1 then, from Proposition 4.3, we deduce

1Av)] < i | By

A@) 2 147 @) - (|7 @) + [Zo@))
1

H(—" .“)71
2]
— ’
c —"H(k +1
J
—2

i’ )—CC, (SC ]2) (k+1> j%z_j/H(k/;—l

> ) + Osc(H, \)

First, by Condition 2.8(b), we know that there is ¢” > 0 and y > H(#) such that
Osc(H, ) < 277, (34)

Let us remark that

) d
= 1' 1 / -
j—y—&I-loo exp | In(/) 2
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and, as
K+1 k+1
A i & | O
k+1 1-— K
|- H (Lj sup
we get
H("/Jr,l -1
fl+—2 <
. . 1-H M)
lim j Y =1.
J—>+0o0o

Similarly, we also have

’
H("—*,' -1
2J

k1

lim (8¢%¢) (i) (82!,
Jj—>+o0o

In particular, if j is large enough, H (k’]—fl) is also strictly less that ¥ and one can write
e
- _g( kL (KL

cc’ Osc(H, \) < %(sczc’j%) (85 (457,

Putting all of these together, we conclude that, for all j sufficiently large,
/\,/
| | ()
- o (K41 - _g( kL (K41
@)z 52 ") - et i) i (5)
()

C%(Sczc’j%) (k) i (), (35)

v

v

In total, on 2y N (2, N {2, which is an event of probability 1, for all #, € [0, 1), we have,
from Eqgs. (26), (35) and Condition 2.8(b) for H,

Osc(X 19 — 2277, 1o+ 22771 NRy)
>

_ d%H(yp)
2—JHt) j~ 2AT=H)

lim sup 0. O

Jj—>+oo
Theorem 2.10 is then a direct consequence of Proposition 2.4 and Theorem 4.1.
Proof of Theorem 2.10. Let us consider the events {2* and {2 given by Proposition 2.4 and
Theorem 4.1 respectively. Then, £2* N {2 is an event of probability 1 on which:
e forall t > 0, hXHw(lo) > H(ty), by Proposition 2.4 and Condition 2.8(b);
d
e forall 7 > 0, hyn(to) < H(t), by Theorem 4.1. [
d

Remark 4.5. Let us recall that, for all continuous function f, all interval I and all £y € I,
H¢(I) < hys(t). Thus, an immediate consequence of Theorems 2.9 and 2.10 is that, if the
Hurst function H satisfies Conditions 2.8(a) and (b), on the event 2] N {2; of probability 1,
for all interval 7 C R,

Hyno(I) = H(I). (36)
d
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Let us note that only Condition (a) is required to deduce this fact. Indeed, if #p € I is such
that H(ty) = H(I), then it is still possible to reach the bounds (34) at 7y and then (35). Then,
on {2, (25) holds at #y. It follows that, on {2

Hy no(I) < hyno(t) < H(ty) = H(I)
d d
and the equality (36) holds on {2 N 2*.

5. Law of iterated logarithm

Let us now prove that multifractional Hermite processes enjoy a law of iterated logarithm.
We use similar arguments as in Sections 3 and 4 but somehow “localize” them. This localization
helps us to deduce, at each point, a sharper modulus of continuity which bounds, both from
above and below, the oscillations of the process around this point. Let us start by showing the
finiteness of the limit in (16).

Proposition 5.1. Given d € N* a compact interval K of (%, 1) and a Hurst function
H : Ry — K satisfying Condition 2.8(c), there exists {21, an event of probability 1, such
that on §21, for (Lebesgue) almost every ty € Ry, we have

. Ose(X! [t —r, 10+ 11 NRY)
lim sup < 00

r—0t rH®)(log(log r1))?

(37)

Proof. We use the notation introduced before the proof of Theorem 2.9. Let us fix #y € [0, 1)
-2

and ¢ > ch, with ¢; > 0 the constant in Lemma 3.1. For all jy € N, let A (¢) be the event
defined by

X — Xkl
1 Xk — Xjull L2

. . 4. . d
<5|] > Jos Ak, js Ak j S 3hj,(fo) > clog(jo)2(j — jo + 1)2> .

If jo is sufficiently large, we have, by Lemma 3.1,
j i 2 . . .
P(Ajy(0) < ) 327750 exp(—ccd log(jo)(j — jo+ 1)
Jzjo
< ¢’ exp(—cyei log(jo)),
-2

for a deterministic constant ¢’ > 0 independent of any relevant quantities. Thus, as ¢ > ch,

we have Zj;)fo P(Aj,(t)) < oo and Borel-Cantelli Lemma entails the existence of (2, an

event of probability 1, such that, on (2, there exists J € N, for which, for all j > j, > J,
)"k,j’ )"k/,j g 3)\]0(t0)’
cd ., d
[Xjx — Xkl < clog(jo)2(j — jo+ D21 Xju — Xjkllr2c)- (38)

Let us then consider j, > J and s,t € [ty — r, tg + r] with 2=U0tD < » < 2=Jo_ For any
J = joand x € {s,1}, A;j(x) € 34j,(t%). Thus, increasing jp if necessary, from Proposition 2.2
and the Condition 2.8(c) for H, one can write,

1X 4,00 = Xkl 12002y < €1 (27jmi“{H(kf(t)z_")’H(kf(”z_'/)} + 2””“‘”)
< (2—1min{H(t),H(s)}z—jzf-"”“m + zfjH(tm)
< 2612*1' min{H (19), H(t), H(s)} (39)
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for a deterministic constant ¢; > 0, only depending on d, K and [0, 1].
On the event (2, given by Proposition 2.4, one can write

HE) HO oy
Xg @) = X5 (8) = Xjokjy0r = Xjikjo )
+ Z (Xj+1,k_,-+1(t) = Xjr1ki6) — Xjkyo + Xj,kjcs)) :
J=Jo

It then follows from inequalities (38) and (39) that, on £2* N (2, there exists a constant ¢; > 0,
only depending on d, K and [0, 1] such that

|Xf(')(t) _ Xf(')(s)| < sz—jomiH{H(lo),H(t),H(S)} log(jo)%.

Increasing jo if necessary, the Condition 2.8(c) for H and the inequalities 2-U0tD < <27/
finally give

IXITO1) — XHO(s)] < 2¢,r" (log(log(r)))?.
In total, we have proved that for any # € [0, 1] there exists (2;,, an event of probability 1, on

which (37) holds. The conclusion follows by countable intersection and Fubini theorem. [

Let us now focus on the positiveness of the limit in (16). We use again the random variables
introduced in Definition 4.2. First, we need to bound from below the probabilities

P (|Z§‘»?k| > ysz(k?f)> (40)

for (j,k) e N x {0,..., 2/ — 1} and M > 0. We know that for any variable X in the Wiener
chaos of order d, there exist two deterministic constants yp > 0 and ¢ > 0 such that, for all

Yy = Yo,
2
P(X] = y) = exp(—cyd),

see [36, Theorem 6.12]. But, unfortunately, these constants depend on the law of X and are
not universal, which is undesirable in our context. Nevertheless, using some convergences in
L?(£2), we still manage to “uniformly” bound the probabilities (40) from below.

Lemma 5.2. Let d € N*, K be a compact interval of (%, 1)and H : R, — K be a

continuous Hurst function. For all ty € Ry, there exist four deterministic constants c¢;, > 0,

Yio > 0, jo € Nand Mg > 0 such that, for all A € 3 (t0), M > Mg and y > y,, we have
k+1 2

POAY | > y2 () > exp(—cyy ). 1)

Proof. For all j € N, k € {0, ...,27 —1}and M € N, by auto-similarity and stationarity of
increments for standard Hermite processes, we know that the random variables

~ - (kL k+1
AM 4+ AY and 2 (5 x, (1, H (%))

are equals in law. We also know that there exist two deterministic constants c,‘0 > 0 and y,l0 >0
such that, for all y > y,

2
P (1X4(1, 10)| = y) = exp(—cy y?).
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For all y > 0, we write

QA|>ﬂf<ﬂ)

= (o (57)

By Lemma 3.1 and Proposition 4.3, we know that, for all j, k, and all M and y sufficiently
large,

z%) PAY| > y2 i (57))

ket
(|A ol > 2 ~ (21 )) <exp|—cs|yeo'M—a

2
< exp <_Cd (yC_IMl s;pK)d)

As 1 —supK > 0, if M is large enough, one can then reach

+1

1
QA|>ﬂ’“ﬂDsZwm4%ﬁy
On the other hand, we have
1
P (x (1 (55)) =)
2
k+1
>P(Xa(1,10)| = 3y) =P | Xo(1, H(to)) — Xa | 1, H T >y]).

Using again Lemma 3.1, from Proposition 2.2, we know that there exists a deterministic
constant ¢, > 0, only depending on d, K and [0, 1], such that, for all j, large enough,

P (‘Xd(l, H (1)) — X4 (1 H (k; 1))‘ g y)
LZ(Q)y )

k+1
< exp <—Cd Xq(1, H(ty)) — X4 (1 H( oy ))

-2
k+1\|“ 2

H (1) — < > ) yd>'

The continuity of H insures that, if j is large enough,

k+1 1
P(‘Xd(l, H(ty)) — Xq (1 H( ; ))‘ > y) < Zexp(—3c}0y%).

Putting everything together, we conclude the existence of ¢;, > 0 and y;, > 0 with the desired
property. [

U

< exp (—cdc2

Let us use this last Lemma to prove the positiveness of the limit in (16).

Proposition 5.3. Given d € N* a compact interval K of (%, 1) and a Hurst function
H : R, — K satisfying Condition 2.8(b), there exists §2,, an event of probability 1, such
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that on (25, for (Lebesgue) almost every ty € R.., we have

, Osc(X} ”[O—rt0+r]mR+)
0 < limsup
r—0+ rH@) (log(log r—1))

Proof. We use the same notation as in the proof of Theorem 4.1. Let us fix 7, € [0, 1). We
take M and j are sufficiently large such that (41) holds for all large enough y. Then, for any
m € Nand A € 5)\_,-(:0),m, let (1,)o<n<m and (7,)i<,<m be the sequences of dyadic intervals
with Iy = A;(t9); I, = A and, forall 1 <n <m, I,y = [,UT,. Forall 1 < n < m,
let also T, = Ak,.j, € ST, llogy,(m))+1 such that (T*)M C T,. In particular, for all n # n’,
(THY N (Tn*)M % and the random variables (A "1<n<m are independent.

If ¢;, > 0 is the constant given in Lemma 5.2 and ¢ is a deterministic constant such that
2

0< ctocl“ < 1, let us consider the event

~

Al 4
Eimty) = jw e 2 : max z > c1log(2 m)z? ¢ .
: 1<n<m —j,,H(k”.'H)
2 2Jn

Using the independence of the random variables (Z’}{),Snim, Lemma 5.2 and the inequality
log(1 — x) < —x for all x € (0, 1), we get, if m is large enough,

AM
P} m(to)) = 1 — HP( —
n=1 2 —n (2/n )

>1—-(1-— exp(—c,ocl‘i log(2 m))™)

< ¢y log(2 m)g)

m
>1—exp 7
@2 m)“oct
2
mlfc,cld
=1—exp 7
20,001‘1

2
Thus, as 0 < ¢,cff < 1, we get

> P (1)) = 00
peN
and Borel-Cantelli Lemma, combined with the independence of the events (E» r(f9)), entails
P (lim sup & o0 (t0)> =1
p—>+o0

In other words, there exists Qtt, an event of probability 1, such that, for all w € Q,h, there are
infinitely many j € N such that, there exist A € 31 () and )Jj,_k, € S).,llogy(m))+1 for which

- _i/H k’tl
1A% ()| = e log(H32 (2’ ) (42)
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=)
On the other hand, if ¢, is a deterministic constant such that ¢, > cd" , we have, by
Lemma 3.1 and Proposition 4.3, for all j € N

AM
AY

> d
P (3)~ € 34(to), ' € Sy, llogy(m))+1 : ‘AQ//I > cylog(j)? LZ(Q))

d
< 3M exp(—cqc; log(j)).

-2
The fact that ¢, > ¢ dd and Borel-Cantelli Lemma entails the existence of Q%, an event of

probability 1, such that, for all w € Q%, there exists J € N for which, for all j > J, A € 34;()
and )‘;",k’ € Sy, llogy(M)]+1>
K41

) d fj/H<k/tl>
22 S cM 4 log(j)22 27, (43)

AV ()] < ¢ HA%

where ¢ > 0 is the deterministic constant given by Proposition 4.3. Similarly, there exists _Q%,
an event of probability 1, such that, for all w € Q%, there exists J € N for which, for all
Jj=J, A e3r;(ty) and X' € S; [1og,(a)] 41>

1A (@)] < caclog(j)? Osc(H, 1'). (44)

sup K—1
As sup K < 1, by increasing M if necessary, we can reach, co,cM P < %. Also, from the
Condition 2.8(b) on H, there exits ¢3 > 0 and y > H(#y) such that, for all ' € Si. logy(M)]+15

Osc(H, \) < c32797 < esM?2797 .
Increasing j if necessary, we can reach
e —i'H(EHL
crc Osc(H, \) < 212 ! <21 )

If inequalities (42), (43) and (44) hold, we thus have, for all M and j big enough

_i'H k/tl

| As()] > %log(j)%z r(5)
(K g K4

> 5 log() M n(5) (),

In total, from the Condition 2.8(b) for H and inequality (26), we deduce that, for all # € [0, 1),
on the event 2 N 22 N 2} of probability 1, we have

. Osc(X", [ty — 2277, 19 + 2277))
lim sup >0

00 2-iHW) log(j)?

The conclusion follows again by countable intersection and Fubini theorem. [

Theorem 2.11 is then an immediate consequence of Propositions 5.1 and 5.3.
Proof of Theorem 2.11. If 0,  and 12, are the events of probability 1 given by Propositions 5.1
and 5.3 respectively, on {2, N {2;, we have, for (Lebesgue) almost every fy € Ry,

. Ose(Xy', [t — r to + r1NRy)
0 < limsup < 00

y O
r—0+ rH@ (log(logr—1))2
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6. Local asymptotic self-similarity

Let us start this section by showing that the multifractional Hermite process {Xf(')(t)},eR 418
weakly locally asymptotically self-similar. Our main ingredient is the following lemma, which
is sometimes refereed as Slutsky’s theorem (see for instance [34, Page 318]).

Lemma 6.1. Let (X;); and (Y;); be two sequences of random variables such that (X;);
converge in distribution to a random variable X and (Y;); converges in probability to a
deterministic constant c, then the sequence (X; +Y;); converges in distribution to X + c.

Proposition 6.2. Let d € N*, K be a compact interval of (%, 1)and H : Ry — K be a
Hurst function satisfying Condition 2.8(b). For all ty > 0, the multifractional Hermite process
{X;I(') ®)}ier, is weakly locally asymptotically self-similar of order H(ty) at ty with tangent
process {Xq(t, H(t))}:>0, the Hermite process of Hurst parameter H (ty).

Proof. Let us fix tg > 0. For all t > 0 and ¢ > 0, we write
e~ (X100 + en) - X[ty
=710 (X,(tg + et, H(tg + &1)) — Xa(to + et, H(1p)))
+ & 1) (X (to + et, H(ty)) — Xa(to, H(ty))) .

First, from the well-known self-similarity and stationary of increments for the standard Hermite
process, we know that the process

(e (Xa(to + et, H(10)) — Xa(to, H(t0))}r=0
is equal in finite-dimensional distribution to

{Xa(t, H(t0))}s>0-
On the other hand, from Proposition 2.2, we know that, for all + > 0 and ¢ > 0,
€77 (Xt + &1, H(to + 1)) — Xalto + &1, Ht0))) || 120
< e " | H(ty + &t) — H(1o)| .

If t > 0 is fixed, Condition 2.8(b) insures that one can give find y > H(f) and ¢ > 0 such
that, for all ¢ > 0 sufficiently small

|H(ty + et) — H(ty)| < ce77.
In particular, for all fixed # > 0, the sequence of random variables
(87 (Xy(to + e, H(to + £1)) — Xa(to + &t, H(t)))),_,

converges to 0 in L2({2), and thus in probability, when & — 0%.
The conclusion follows from Lemma 6.1. [

Now, we want to show that the local asymptotic self-similarity also holds in the strong sense.
As already explained in Section 2, it suffices to show that (17) holds, with X = X;I('). On this
purpose, we recall the Garsia—Rodemich—Rumsey inequality in the following lemma, a proof
can be read in [33].
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Lemma 6.3. Let ¥ be a non-negative even function on R and p be a non-negative even
function on [—1, 1]. Assume also that both ¥ and p are non decreasing on Ry. If f is a
continuous function for which

// <f(x) f(y))dxdy§B<oo,
(0,172 px —y)

then, for all s, t € [0, 1],
ls=] 4B
1) — Fl <8 / ! (ﬁ) dp(u).
0

1
Applying this last Lemma to the functions ¥ : u +> |ul” and p :+> lu|** 7, for p > 1
and o > é then, with an obvious change of variable, we conclude that, for all a > 0, there
exists a deterministic constant ¢, , o such that, for any f € C([0,a],R) and t € [0, a]

|f() = FOI” < capat™! / 1) = fF@IPIr = v~ drdv. (45)

[0,a]?
We use this fact to prove Theorem 2.13.

Proof of Theorem 2.13. It remains us to prove the strong local asymptotic self-similarity in
the case where the Hurst function H satisfies Condition 2.8(c). Let us fix a > 0 and 7y > 0.
For all ¢, n,§ > 0, we set

5) |

0

P(e, n, 8) < § Pe PHWE [ sup | X"O®y + et) — Xty + ss)|"] )

s,t€[0,al,|t—s|<n

XHO(ty + e1) — XHO(ty + )
cH()

Pe,n,8) =P < sup

s,1€[0,al,|t—s|<n

We have to show that, for all § > 0, lim,_, o+ limsup, o+ P(¢, 1, 8) =
Of course, the Markov inequality entails, for any p > 1,

Then, we use inequality (45) to write, for o > é,
E sup | X"ty + et) — XHO(tg + e5)|"
s,t€[0,al,|t—s|<n

< Capan™! //[O . E [|XH<'>(zO +et) — XHO1y + es)]p] It — 5|7~V dsdr.
Moreover, we know from Corollary 2.3 that, for all s, ¢ € [0, a],
E[[X"O + 1) = X"t + e9)|” |
< ((e]t — s|ymintHUoten HUo e 4| (8 + 1) — H(to + e5)])”

By Condition 2.8(c), there exits a deterministic constant ¢ > 0 such that, for all ¢ > 0
sufficiently small and s, ¢ € [0, a], s # ¢,

|H(tg + et) — H(fp + )| < c(e|t — s)110) < cgll0)|p — g|infK
and
(e|t — S|)min{H(t0+st),H(to+as)} < SH(zo)lt _ S|ian87(as)H(’0> < ZSH(to)lt _ S|inf1<_
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In total, we have obtained that, for all ¢ > 0 sufficiently small,

P(e, 1, 8) < 2¢q. pad P! / f |t — s|PfK==1 goqs.
[0,a]?

One can then choose, for instance, o = % and p = % in order that the last integral is finite,
1

because p(inf K —a)— 1 =1, and, as « > >
lim limsupP(e, n,8) =0. O

n—>0t e—0t

7. Fractal dimensions of the graph

Given a compact interval I C Ry, let us start by providing an upper bound for the box-
counting dimensions of the set G,(/). From the results proved in Sections 2 and 3, it is in fact
an easy task, thanks to the following lemma, see [32, Corollary 11.2] for a proof.

Lemma 7.1. Let I C Ry be a compact interval and f : I — R be a continuous function
for which there exist ¢ > 0 and 1 < o < 2 such that, for all s,t € I,

|f(s) = f(O)] <clt — s,
then
dimg ({(t, x7Ow) i re I}) <a

One can then directly state the following proposition.

Proposition 7.2. Given d € N*, a compact interval K of (%, 1), a Hurst function H : Ry —
K satisfying Condition 2.8(a) and a compact interval I C Ry, there exists {2, an event of
probability 1, such that, on (2|, we have

dimg (Ga(1)) <2 — H().

Proof. It is an immediate consequence of Theorem 2.9 and Lemma 7.1. O

To obtain a lower bound on the Hausdorff dimension, we use the notion of potential.

Definition 7.3. Let d € N* and s > 0. The s-potential at a point x € R? to the measure 1 on
R? is the quantity

du(y)

lx —yP°

The s-energy of u is then defined as

dp(x)d
Ii(w) = /gbs(x)du(x) _ // w(x) ;Ey)

Often, potentials and energies are used to get a lower bound for the Hausdorff dimension,
as stated in the following Lemma, see [32, Theorem 4.13] for a proof.

bs(x) =

Lemma 7.4. Let d € N* and A be a subset of RY. If there is a non vanishing finite measure
W with non-empty support included in A with I() < oo, then H*(A) = oo and dimy(A) > s.
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In order to apply Lemma 7.4 in our context, we have to find upper bounds for negative
moments of the multifractional Hermite process. On this purpose, we use the following result,
known as Carbery—Wright inequality, see [22, Theorem 8§].

Lemma 7.5. There is an absolute deterministic constant ¢ > 0 such that, for any n,d > 1,
1 < p < 0o any polynomial Q : R? — R of degree at most n, any Gaussian random vector
X1,...,Xq) and any x > 0,

p_1 1
E[QXy, ..., X)l"1PP(Q(Xy, ..., Xo)| = x) < cpxr.
In the sequel, if a compact interval I C R, fyp € I and ¢ > 0 are fixed, we set
Htg, &) = H([tg — &, tg + €] N I).

The proof of the following Lemma uses ideas from [2, Lemma 14] and [53, Lemma 4.3],
with modifications again mainly due to the fact that we are working with a non-constant Hurst
function. As this Lemma is the main reason for the disparity between the lower and upper
bounds for the fractal dimensions in Theorem 2.17, we believe that it is useful to write it in
full details so that the readers can directly understand where it comes from.

Proposition 7.6. Given d € N*, a compact interval K of (%, 1), a Hurst function H
R, — K satisfying Condition 2.8(a) and a compact interval I C Ry. If ty € I is such that
H(ty) = H(I), there exist two deterministic constants ¢ > 0,& > 0, both only depending on
d, H and I, such that, forall0 <e <& x> 0and t,u eI N[ty —¢, 1)+ €],

. . 1 _ H(p.e)
PUXTO0) — XTOw) < x) < exd |t —u| 4

Proof. Let us fix ¢, u € I. The symmetric function
t u
t'z,(') RS R:we / S, w)ds —/ Sraw(s, w)ds
0 0

belongs to L>(RY). By definition,
1 (110) = (400 = x[Ow).

Given {e;}en an orthonormal basis of L?*(R), the sequence of functions

J
HOW H()
m= ) e 00,0006, |
J1seesja=1 J

where © stands for the symmetric tensor product, converges to f,{’;(') in L?>(RY), see [52,
Appendix B.3.].

For all (ji, ..., ji) € N¢, we know that
P
1, (€j| Q-0 ejd) = H H,, </ eﬁ(x)dB(x)> ,
=1 R
where n, is the number of occurrence of ]’2 in (ji, ..., jo) and H,, is the Hermite polynomial

of degree ny, see [54, Page 14]. In particular, since, for all f € L*(R) with || fll L2R) = 1,
Li(f) ~N(0, 1), Lemma 7.5 with p = 2d and n = d entails, for all J,

. 1 _1
BAL (£17) 1 = 20 < 2dxd g (1) 14,
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Now, from the isometry property for Wiener—It6 integrals, we know that
1 (F197) =, (%00 — x0)

in L2(£2). In particular, there exists a subsequence ( f,ﬁ(')’h’ )r for which the convergence holds
almost surely. Then, by Fatou’s Lemma,

P (1x°0) = X[Vl < x) < timinfP (12, (1177 1 < %)

1
< ¢2dx? liminf H I ( ) L;’(Q)

k—+o00

= c2dxd | XHO0) — xHOw)|

L2<9>

We use Proposition 2.2 to affirm that there exist two deterministic constants ¢y, ¢; > 0, only
depending on d, K and I, such that

| x0@ = x|

Since H satisfies Condition 2.8(a), there exists y > H(I) = H(ty) such that H € C”(I). Then,
if £ > 0 is sufficiently small, for all 0 < & < £, we also have H(t, €) < y. By reducing again
& > 0 if necessary, we have, forall 0 <e <& and t,u e I N[ty — ¢, tp + €]

L2 = cilt — u™MHFOHWY _ o | H(t) — H(u)|.

CalH() = Hw) = S 1t —u 7.

In total, we have obtained, for all such ¢ and ¢, u,

(fo 8)

P(|X§'('>(t)— ””(u)|<x)<c2d(2 )" Axd |t — u|” 0

We can now prove Theorem 2.17.

Proof of Theorem 2.17. Let #; € I be such that H(ty) = H(I). Let & > 0 be given by
Proposition 7.6 and j € N* with % < &.Forallt,r > Osuchthatt, t4r € [tg—j !, to+j 1N
and s > 0, we have, by Proposition 7.6,

E [(|x§'<'>(¢ +r) = XHOm + rz)_§i|

= f P <<|X§I(')(t +r)— Xf(')(t)l2 + r2>77 > x) dx
0

+00 \
=s [ yoraryie (|X§’<‘)<t +1) = X[OWl = ) dy
0

oo 2-5— 1 )
<cs y(y +r ) ar d dy

0

T, —1 r +00
< C/r7% (}’52/ y1+$ dy +[ y7571+$ dy)

0 r
Hag.j~!

< c”ré_‘g_%, (46)

where ¢ > 0 is given by Proposition 7.6 and ¢/, ¢” > 0 are deterministic constants only
depending on s, d and c.
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Thus, if we consider the random measure py, ; defined for all Borel sets A C R? by
. - H(-
pxj(A) =Ll €lto— 1o+ 10T =, X/00) € A},

with £ the Lebesgue measure in R, we get

E (// dMX,j(X)dMX,j(y)>
lx —yI*
=// E[(|xj;’<')(t)—Xj’('>(u)|2+|t—u|2)2] dt du
(lto—j~ o+~ 1IN

1 7ﬁ(lo,£)
gc”// |t —u|d ™" "d dtdu.
(lto—j L to+j~1IND)2

Ifs < 1+ %O'rl), then this last integral is finite. Therefore, for all g; € Q with

“Htp.i~1 . ~ 1. ~
0<g; <1+ %, there exists .Qj,,,/., an event of probability 1, such that on, “Qj"li’

// iy j@dpx,; ) _

[x — y|%

By Lemma 7.4 and (19), it means that, on sz,qj

q; < dimy (Ga(lto — j~ ", 1o+ j ' 1N D)) < dimy (Gu(D)).

ﬁs H is a continuous function, it follows that on the event [ j N 4 12; 4; of probability 1, we
ave

1+ # < dimy, (G(1)) .

It suffices to intersect this event with (2; from Proposition 7.2 to get the conclusion. [

Remark 7.7. Let us note that the proof or Proposition 7.6 only requires that, if #p € [
is such that H(tp) = H(I), there exist £ > 0 and y > 0 such that y > H(t, £) and
H € C"([ty — &, 10 + &) N I). In particular the lower bound for the Hausdorff dimension
of G,(I) still holds in this case.

8. Complements for the multifractional Rosenblatt process

In this last section, we take advantage of the expression (21) to improve Theorem 2.17 in
the case d = 2, where the multifractional Hermite process is the multifractional Rosenblatt
process. Let us start by introducing the notions of Malliavin calculus that we are going to use.
Details can be read in the fundamental books [52,54].

Generally speaking, let H be a real separable Hilbert space with inner product (-, -)3; and
associated norm || - ||. We call isonormal Gaussian process over H any centred Gaussian
family X = {X(f) : f € H} defined on a probability space ({2, F, IP) and such that, for every
f, g € H, E[X(f)X(g)] = (f, g)#. One can assume that F is the o-field generated by X. For
all m > 1, H® is the mth symmetric tensor product of H and L%(£2, H®m) is the class of
HOm _valuated random elements F which are F-measurable and such that E[||F ||%{®m] < 0.
Let S be the set of all cylindrical random variables of the form

F=gX(f),.... X(fa) (47)
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with n > 1, f; € H and g infinitely differentiable such that all its partial derivatives have
polynomial growth. If F € S is of the form (47), the mth Malliavin derivative of F is the
element of L2(£2, H®") defined by

D"F = jl“%:l T T XD s XUPNS, ® - [

For all m > 1 and p > 1, D™ 7? denote the closure of S with respect to the norm
1

I llwp = F > |ELOFIPI+ Y EIDFIL 6 1) (48)
j=1
For all p > 1, D®? = ﬂmzl Dm-p
In the sequel, we will heavily use the following fact which is contained in [35, Theorem
3.1].

Lemma 8.1. If F € D** is such that E[|F|*"] < oo and IE[||DF||;{2’] < oo for p,r,s > 1
satisfying % + % + % =1, then F has continuous and bounded density fr with

-2
sup | fr(x)| < ¢, [IDFIZ | reay I F s,
xeR

where ¢, > 0 is a deterministic constant only depending on p.

In our context, we work with H = L*(R) and, for all f € L?>(R), X(f) = L(f) is the
Wiener-It6 integral of f with respect to the Brownian motion. For all p,d > 1, I,(f) € D*?
and, for all ¢ > 1,

(di_!q)!ldfq(f) ifg=<d
0 otherwise,

D1y(f) = !

where, in I;_4(f), the stochastic integral is taken with respect to d — g variables, resulting
in a random variable belonging to L2(£2, L?(R%)). In particular, DI;(f) = d!f. In the case
d = 2, we can use the expansion (21) and write

DL(f) =2 hpjhies ey,
jeN
which entails, given the orthogonality of the system {e; ;},

1

2

IDL(P) 2y =2 | DA% hier ) | (49)
jeN

In particular, as {I;(ey;)}; are i.i.d. A(0, 1) random variables, we deduce from (22) that

E[IDR g | =4[ D43, | = 4111 (50)
jeN
Now, let us state [35, Lemma 7.1] which gives an estimate for the negative moments of
random variables of the form (49), which is particularly useful to apply Lemma 8.1.
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1
Lemma 8.2. Let G = (ZjeN MX?)Z where {A;}jen satisfies |\j| > |Ajq] forall j =1

and {X j} jen are i.i.d. standard normal. For all v > 1, E[G%] < oo if and only if there exists
N > 2r such that |Ay| > 0 and, in this case,

E[G™] < ¢, N7 |AI™%, (51
with ¢, > 0 a deterministic constant only depending on r.
Let use Lemma 8.1 to improve Proposition 7.6 in the second order Wiener chaos.
Proposition 8.3. Given d € N* a compact interval K of (%, 1) and a Hurst function
H : Ry — K satisfying Condition 2.8(a) and a compact interval I C Ry. If to € I is

such that H(ty) = H(I), there exist two deterministic constants ¢ > 0,& > 0, both only
depending on d, H and I, such that, for all 0 <e¢ <&, x >0andt,u € I N[ty — &, 1ty + €],

P(X; ) — X O] < x) < exlr —u] 700,
Proof. Let us fix t, u € I, we assume without loss of generality u < t. We keep the notation

! u
IO R SR wes | fup(s, wds — / Frw(s, wds
0 0

introduced in the proof of Proposition 7.6 and also consider the function

t
,z(t) TRZ>R:we / SH (s, w)ds.
u

Note that I, (f,H(’)> = Xy, H(t)) — Xq(u, H(t)). Let {A;}jeny be the eigenvalues of the
Hilbert-Schmidt operator A FHO ordered with |A;| > |A;41|. On one hand, one can check, with
1,0

some obvious changes of variables, that {1t — u"ON i}jen are the eigenvalues of A #(). On the

other hand, we know from the proof of [56, Theorem 3.1] that 13 # 0. Finally, inectilulality (22)
allows to affirm that, if {é”“} jen are the eigenvalues of the Hilbert—Schmidt operator A4 FHW
tu

ordered with |§;,u| > |$;+”1|

, H H() H()
1657 > 11 = ul" sl = 1 £57 = fild 2oy
From Proposition 2.2, we know that there exists c,, only depending on K and H, such that
H H(t
1£” = £ o) < c2l H@) = Hw)l.

Now, from the Condition 2.8(a) for H, one can conclude, just as in the proof of Proposition 7.6,
that there exists & > 0, a deterministic constant, only depending on H and I, such that, for all
O<e<é&andrt,uelNfty—e tog+el

|S'§ u| | 3| | u|ﬁ(t0,£).

It follows from Lemma 8.2, that, for all such ¢ and ¢, u and, for all r € (1, %), that
H() H()

[1D (xf00 = xw) 13,

with ¢, > 0 a deterministic constant depending only on r. For all p > 1, E [(Xf(')(t)—
P
X:I(')(u)) ] < 00. Finally, from (48), equality (50), Proposition 2.2 and Condition 2.8(a), we

497

4 _
2 21,
@) < Cr§|)x3| |t — u| 200,




L. Loosveldt Stochastic Processes and their Applications 165 (2023) 465-500

deduce the existence of a deterministic constant ¢; > 0, only depending on H and I, such that,
forall0 <e<&andt,u e IN[ty—e,ty+ €]

H (Xg’@(;) — Xf(')(u)) H 22 <ot — u|ﬁ(t0,s)'

Since, as a consequence of the hypercontractivity property on the Ornstein—Uhlenbeck semi
group [52, Theorem 2.7.2], all the || - ||,,,, norms are equivalent in any finite sum of Wiener
chaoses, one can conclude, by Lemma 8.1, the existence of two deterministic constants c, & >
0, both only depending on H and I, such that, forall 0 < e <& and tr,u € I N[ty — ¢, o+ €],

Xf(')(t) — Xf(')(u) has a continuous density bounded by c|t — u|~7®_ The conclusion
follows immediately. [

The proof of Theorem 2.18 is then a direct adoption of the one of Theorem 2.17, using the
improved estimate given by Proposition 8.3.

Proof of Theorem 2.18. It suffices to repeat the proof of Theorem 2.17 using Proposition 8.3
instead of Proposition 7.6. Therefore, we remove the factor 5 in the computations (46) and get

s

2 -3 —
E[(IXf")(tﬂ)—Xf(')(t)l +1?) 2} < /im0

Remark 8.4. As previously, we can note that the proof for the lower bound for the Hausdorff
dimension requires a weaker assumption for the Hurst function H, see Remark 7.7 here over.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The author is grateful to two referees for their valuable comments and suggestions which
helped to improve the presentation of the paper.

A significant portion of this paper was written while the author was a postdoctoral researcher
within the team of Ivan Nourdin at the University of Luxembourg. The author wishes to express
his sincere gratitude to Ivan and his team for making these two years a wonderful experience,
both from a personal and a scientific point of view.

References

[1] P. Andersson, Characterization of pointwise Holder regularity, Appl. Comput. Harmon. Anal. 4 (4) (1997)
429-443.

[2] B. Arras, On a class of self-similar processes with stationary increments in higher order Wiener chaoses,
Stochastic Process. Appl. 124 (7) (2014) 2415-2441.

[3] A. Ayache, The generalized multifractional field: a nice tool for the study of the generalized multifractional
Brownian motion, J. Fourier Anal. Appl. 8 (6) (2002) 581-601.

[4] A. Ayache, Continuous Gaussian multifractional processes with random pointwise Holder regularity, J. Theoret.
Probab. 26 (1) (2013) 72-93.

[5] A. Ayache, Multifractional Stochastic Fields, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019,
xiv+220, Wavelet strategies in multifractional frameworks.

[6] A. Ayache, Lower bound for local oscillations of Hermite processes, Stochastic Process. Appl. 130 (8) (2020)
4593-4607.

498


http://refhub.elsevier.com/S0304-4149(23)00180-1/sb1
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb1
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb1
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb2
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb2
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb2
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb3
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb3
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb3
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb4
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb4
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb4
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb5
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb5
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb5
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb6
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb6
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb6

L. Loosveldt Stochastic Processes and their Applications 165 (2023) 465-500

(7]
(8]
[9]

[10]

(11

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]
[25]

[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]

A. Ayache, F. Bouly, On local path behavior of surgailis multifractional processes, Theory Probab. Math.
Statist. (106) (2022) 3-26.

A. Ayache, Y. Esmili, Wavelet analysis of a multifractional process in an arbitrary Wiener chaos, Teor. Imovir.
Mat. Stat. (98) (2018) 29-50.

A. Ayache, C. Esser, T. Kleyntssens, Different possible behaviors of wavelet leaders of the Brownian motion,
Statist. Probab. Lett. 150 (2019) 54-60.

A. Ayache, J. Hamonier, Linear multifractional stable motion: fine path properties, Rev. Mat. Iberoam. 30 (4)
(2014) 1301-1354.

A. Ayache, J. Hamonier, Behaviour of linear multifractional stable motion: membership of a critical Holder
space, Stochastics 89 (5) (2017) 709-725.

A. Ayache, S. Jaffard, M.S. Taqqu, Wavelet construction of generalized multifractional processes, Rev. Mat.
Iberoam. 23 (1) (2007) 327-370.

A. Ayache, J. Lévy Véhel, Generalized multifractional Brownian motion: definition and preliminary results,
in: Fractals: Theory and Applications in Engineering, Springer, London, 1999, pp. 17-32.

A. Ayache, J. Levy Vehel, The generalized multifractional Brownian motion, Stat. Inference Stoch. Process.
3 (1-2) (2000) 7-18, 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998).

A. Ayache, M.S. Taqqu, Multifractional processes with random exponent, Publ. Mat. 49 (2) (2005) 459—486.
M.F. Barnsley, R.L. Devaney, B.B. Mandelbrot, H.-O. Peitgen, D. Saupe, R.F. Voss, The science of fractal
images, 1988, p. xiv+312, http://dx.doi.org/10.1007/978-1-4612-3784-6, With contributions by Yuval Fisher
and Michael McGuire.

A. Benassi, S. Jaffard, D. Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoamericana 13 (1) (1997)
19-90.

P. Billingsley, Convergence of Probability Measures, second ed., in: Wiley Series in Probability and Statistics:
Probability and Statistics, John Wiley & Sons, Inc., New York, 1999, x+277, A Wiley-Interscience Publication.
B. Boufoussi, M. Dozzi, R. Guerbaz, On the local time of multifractional Brownian motion, Stochastics 78
(1) (2006) 33-49.

B. Boufoussi, M. Dozzi, R. Guerbaz, Sample path properties of the local time of multifractional Brownian
motion, Bernoulli 13 (3) (2007) 849-867.

R. Brown, A brief Account of Microscopical Observations made in the Months of June, July, and August,
1827, on the Particles contained in the Pollen of Plants; and on the general Existence of active Molecules in
Organic and Inorganic Bodies, Edinburgh New Philos. J. 5 (1828) 358—371.

A. Carbery, J. Wright, Distributional and L9 norm inequalities for polynomials over convex bodies in R”,
Math. Res. Lett. 8 (3) (2001) 233-248.

Z.L. Chen, Hitting probabilities and fractal dimensions of multiparameter multifractional Brownian motion,
Acta Math. Sin. (Engl. Ser.) 29 (9) (2013) 1723-1742.

J.-F. Coeurjolly, Identification of multifractional Brownian motion, Bernoulli 11 (6) (2005) 987-1008.

S. Cohen, R. Marty, Invariance principle, multifractional Gaussian processes and long-range dependence, Ann.
Inst. Henri Poincaré Probab. Stat. 44 (3) (2008) 475-489.

K. Daoudi, J. Lévy Véhel, Y. Meyer, Construction of continuous functions with prescribed local regularity,
Constr. Approx. 14 (3) (1998) 349-385.

L. Daw, L. Loosveldt, Wavelet methods to study the pointwise regularity of the generalized rosenblatt process,
Electron. J. Probab. 27 (2022) 1-45.

R.L. Dobrushin, P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z.
Wahrscheinlichkeitstheor. Verwandte Geb. 50 (1) (1979) 27-52.

P. Doukhan, G. Oppenheim, M.S. Taqqu (Eds.), Theory and Applications of Long-Range Dependence,
Birkhduser Boston, Inc., Boston, MA, 2003, xii+719.

C. Esser, L. Loosveldt, Slow, ordinary and rapid points for gaussian wavelets series and application to fractional
Brownian motions, ALEA Lat. Am. J. Probab. Math. Stat. 19 (2) (2022) 1471-1495.

C. Esser, L. Loosveldt, On the pointwise regularity of the multifractional Brownian motion and some
extensions, Theory Probab. Math. Stat. 110 (2024) (in press).

K. Falconer, Fractal Geometry, third ed., John Wiley & Sons, Ltd., Chichester, 2014, xxx+368, Mathematical
foundations and applications.

AM. Garsia, E. Rodemich, H. Rumsey Jr., A real variable lemma and the continuity of paths of some
Gaussian processes, Indiana Univ. Math. J. 20 (1970/71) 565-578.

G.R. Grimmett, D.R. Stirzaker, Probability and Random Processes, third ed., Oxford University Press, New
York, 2001, xii+596.

499


http://refhub.elsevier.com/S0304-4149(23)00180-1/sb7
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb7
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb7
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb8
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb8
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb8
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb9
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb9
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb9
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb10
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb10
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb10
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb11
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb11
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb11
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb12
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb12
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb12
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb13
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb13
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb13
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb14
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb14
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb14
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb15
http://dx.doi.org/10.1007/978-1-4612-3784-6
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb17
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb17
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb17
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb18
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb18
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb18
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb19
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb19
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb19
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb20
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb20
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb20
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb21
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb21
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb21
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb21
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb21
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb22
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb22
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb22
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb23
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb23
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb23
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb24
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb25
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb25
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb25
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb26
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb26
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb26
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb27
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb27
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb27
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb28
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb28
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb28
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb29
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb29
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb29
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb30
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb30
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb30
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb31
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb31
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb31
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb32
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb32
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb32
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb33
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb33
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb33
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb34
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb34
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb34

L. Loosveldt Stochastic Processes and their Applications 165 (2023) 465-500

[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]

[50]
[51]

[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]

[61]
[62]

Y. Hu, E. Lu, D. Nualart, Convergence of densities of some functionals of Gaussian processes, J. Funct. Anal.
266 (2) (2014) 814-875.

S. Janson, Gaussian Hilbert Spaces, in: Cambridge Tracts in Mathematics, Vol. 129, Cambridge University
Press, Cambridge, 1997, x+340.

D. Khoshnevisan, Multiparameter Processes, in: Springer Monographs in Mathematics, Springer-Verlag, New
York, 2002, xx+584, An introduction to random fields.

A.N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R.
(Doklady) Acad. Sci. URSS (N.S.) 26 (1940) 115-118.

D. Kreit, S. Nicolay, Some characterizations of generalized Holder spaces, Math. Nachr. 285 (17-18) (2012)
2157-2172.

D. Kreit, S. Nicolay, Generalized pointwise Holder spaces defined via admissible sequences, J. Funct. Spaces
(2018) Art. ID 8276258, 11.

J. Lebovits, From stochastic integral w.r.t. fractional Brownian motion to stochastic integral w.r.z. multifractional
Brownian motion, Ann. Univ. Buchar. Math. Ser. 4(LXII) (1) (2013) 397-413.

J. Lebovits, J. Lévy Véhel, E. Herbin, Stochastic integration with respect to multifractional Brownian motion
via tangent fractional Brownian motions, Stochastic Process. Appl. 124 (1) (2014) 678-708.

J. Lebovits, M. Podolskij, Estimation of the global regularity of a multifractional Brownian motion, Electron.
J. Stat. 11 (1) (2017) 78-98.

J. Lebovits, J.L. Véhel, White noise-based stochastic calculus with respect to multifractional Brownian motion,
Stochastics 86 (1) (2014) 87-124.

Z. Lin, How big are the increments of a multifractional Brownian motion? Sci. China Ser. A 45 (10) (2002)
1291-1300.

L. Loosveldt, S. Nicolay, Some equivalent definitions of Besov spaces of generalized smoothness, Math.
Nachr. 292 (10) (2019) 2262-2282.

L. Loosveldt, S. Nicolay, Generalized spaces of pointwise regularity: toward a general framework for the
WLM, Nonlinearity 34 (9) (2021) 6561-6586.

L. Loosveldt, S. Nicolay, Some prevalent sets in multifractal analysis: how smooth is almost every function
in T;‘(x), J. Fourier Anal. Appl. 28 (4) (2022) Paper No. 58, 22.

B.B. Mandelbrot, J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev.
10 (1968) 422-437.

R. Marty, From Hermite polynomials to multifractional processes, J. Appl. Probab. 50 (2) (2013) 323-343.
R. Marty, Multifractional processes and nonlinear functionals of Gaussian random fields, Archive ouvert HAL
(2021) hal-03277874.

1. Nourdin, G. Peccati, Normal Approximations with Malliavin Calculus, in: Cambridge Tracts in Mathematics,
Vol. 192, Cambridge University Press, Cambridge, 2012, xiv+239, From Stein’s method to universality.

I. Nourdin, G. Poly, Convergence in total variation on Wiener chaos, Stochastic Process. Appl. 123 (2) (2013)
651-674.

D. Nualart, The Malliavin Calculus and Related Topics, second ed., in: Probability and its Applications (New
York), Springer-Verlag, Berlin, 2006, xiv+382.

R.F. Peltier, J. Lévy Véhel, Multifractional brownian motion : definition and preliminary results, Rapport de
recherche de I'INRIA 2645 (1995).

G. Shevchenko, Properties of trajectories of the multifractional Rosenblatt process, Teor. Imovir. Mat. Stat.
(83) (2010) 138-147.

D. Surgailis, Nonhomogeneous fractional integration and multifractional processes, Stochastic Process. Appl.
118 (2) (2008) 171-198.

M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z.
Wahrscheinlichkeitstheor. Verwandte Geb. 31 (1974/75) 287-302.

M.S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrscheinlichkeitstheor.
Verwandte Geb. 50 (1) (1979) 53-83.

C. Tudor, Non-Gaussian Selfsimilar Stochastic Processes, in: Number 1 in Springer Briefs in Probability and
Mathematical Statistics, Springer Cham, 2023.

W.B. Wu, Unit root testing for functionals of linear processes, Econom. Theory 22 (1) (2006) 1-14.

D. Wu, Dimension results of multifractional Brownian sheets, J. Math. Phys. 48 (7) (2007) 073511, 11.

500


http://refhub.elsevier.com/S0304-4149(23)00180-1/sb35
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb35
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb35
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb36
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb36
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb36
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb37
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb37
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb37
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb38
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb38
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb38
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb39
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb39
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb39
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb40
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb40
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb40
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb41
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb41
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb41
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb42
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb42
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb42
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb43
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb43
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb43
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb44
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb44
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb44
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb45
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb45
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb45
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb46
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb46
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb46
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb47
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb47
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb47
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb48
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb48
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb48
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb49
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb49
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb49
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb50
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb51
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb51
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb51
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb52
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb52
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb52
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb53
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb53
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb53
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb54
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb54
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb54
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb55
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb55
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb55
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb56
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb56
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb56
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb57
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb57
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb57
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb58
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb58
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb58
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb59
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb59
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb59
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb60
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb60
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb60
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb61
http://refhub.elsevier.com/S0304-4149(23)00180-1/sb62

	Multifractional Hermite processes: Definition and first properties
	Introduction
	Preliminaries, strategy and main results
	Uniform modulus of continuity
	Pointwise Holder exponent
	Law of iterated logarithm
	Local asymptotic self-similarity
	Fractal dimensions of the graph
	Complements for the multifractional Rosenblatt process
	Declaration of competing interest
	Acknowledgements
	References


