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Abstract

We define multifractional Hermite processes which generalize and extend both multifractional
rownian motion and Hermite processes. It is done by substituting the Hurst parameter in the definition
f Hermite processes as a multiple Wiener–Itô integral by a Hurst function. Then, we study the pointwise
egularity of these processes, their local asymptotic self-similarity and some fractal dimensions of their
raph. Our results show that the fundamental properties of multifractional Hermite processes are, as
esired, governed by the Hurst function. Complements are given in the second order Wiener chaos,
sing facts from Malliavin calculus.
2023 Elsevier B.V. All rights reserved.

SC: 60G20; 60G17; 60H05; 60H07; 26A15; 28A78

eywords: Hermite processes; Multifractional processes; Modulus of continuity; Local asymptotic self-similarity;
ractal dimensions; Malliavin calculus

1. Introduction

Fractional Brownian motion with Hurst parameter h ∈ (0, 1) is known to be the unique
Gaussian process with Bh(0) = 0, mean zero and covariance function

E[Bh(t)Bh(s)] =
ch

2

(
|t |2h

+ |s|2h
− |t − s|2h) ,

where ch is a positive constant only depending on h. It was introduced by Kolmogorov, in
1940, to generate Gaussian “spirals” in Hilbert spaces [38]. It is itself a generalization of the
famous Brownian motion, when h = 1/2, defined by the botanist Robert Brown to describe
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the movements of pollen grains of the plant Clarkia Pulchella suspended in the water [21]. The
first systematic study of fractional Brownian motion goes back to the famous paper [49] by
Mandelbrot and Van Ness, in 1968. Since then, fractional Brownian motion has appeared in
many real-life applications in various domains, such as telecommunications, biology, finance,
image processing and much more [29].

Among its most fundamental properties, fractional Brownian motion has stationary in-
rements and is h-self-similar, meaning that, for all a > 0, the processes {a−h Bh(at)}t∈R
nd {Bh(t)}t∈R have the same finite-dimensional distributions. The Hurst parameter also
ules the regularity of the process since the uniform and pointwise Hölder exponents (see
ection 2 for a definition) of Bh are almost surely h. Actually, it appears that, for some
pplications, these properties are undesirable. For instance, fractional Brownian motion was
sed in image synthesis to model artificial mountains [16] but then, the obtained relief has
he same (ir)regularity everywhere, which is not realistic. To overcome this drawback, the
wo papers [17,55] introduced independently and from two different perspectives the so-
alled multifractional Brownian motion. It is defined by substituting the Hurst parameter h
y a Hurst function H (·) with values in a compact interval of (0, 1). Under some regularity
ssumptions for the Hurst function, see Conditions 2.8(a), (b) and (c), one can show that, almost
urely, the function H governed the Hölder regularity of the multifractional Brownian motion.
lso, the self-similarity property is turned into a local asymptotic self-similarity property, see
efinition 2.12.
Since the introduction of the multifractional Brownian motion, many authors studied this

rocess, from various perspectives. One can cite for instance the papers [19,20] concerning
he local time of this process, [24,43] for statistical estimation of the Hurst function, [23,62]
here fractal dimensions are computed, [31,45] for studies of the precise pointwise regularity,

nd [41,42,44] where a stochastic calculus with respect to multifractional Brownian motion is
efined. Also, different generalizations has been given such as in [3,13,14], where a larger class
f Hurst functions are considered, in order that the Hölder exponent of the process is, almost
urely, of the most general form given in [1,26], or in [4,12,15] where the Hurst function is also
andom. Finally, various extensions have been given, using larger classes of processes closely
elated to the fractional Brownian motion like, for instance, the linear multifractional stable
otion [10,11] or the Surgailis multifractional process [7,57]. We also refer to the book [5] for
very clear view on the known facts about multifractional Brownian motion and related fields.
he aim of the current paper is to define an extension of multifractional Brownian motion in
n arbitrary Wiener chaos, using the affiliation of fractional Brownian motion in the class of
ermite processes.
All along this paper, given1 d ∈ N∗ and a symmetric function f ∈ L2(Rd ), Id ( f ) stands for

he d-multiple Wiener–Itô integral of f with respect to the Brownian motion {B(t)}t∈R defined
n a probability space (Ω ,F ,P). If f is of the form

f =

n∑
j1,..., jd=1

a j1,..., jd1[s j1 ,t j1 ) ⊗ · · · ⊗ 1[s jd ,t jd ), (1)

here, ⊗ stands for the tensor product, a j1,..., jd are such that, for all permutation σ , aσ ( j1),...,σ ( jd )

a j1,..., jd and a j1,..., jd = 0 as soon as two indices j1, . . . , jd are equal and, for all 1 ≤ ℓ ̸=

1 We use the notation N∗ for the set of strictly positive integer numbers.
466



L. Loosveldt Stochastic Processes and their Applications 165 (2023) 465–500

I

s
v
m

I

W
s
fi
C
p
s
h
i
w
H

R

ℓ′
≤ d, [s jℓ , t jℓ ) ∩ [s jℓ′ , t jℓ′ ) = ∅, then

Id ( f ) :=

n∑
j1,..., jd=1

a j1,..., jd (B(t j1 ) − B(s j1 )) × · · · (B(t jd ) − B(s jd )). (2)

t is straightforward that this last random variable belongs to L2(Ω ). For a general symmetric
f ∈ L2(Rd ), Id ( f ) is then defined using the density of functions of the form (1) within the
et of symmetric square integrable function and by checking that the corresponding random
ariables (2) converge in L2(Ω ). Among many properties that enjoys this integral, we will
ainly use the so-called isometry property: for all f, g symmetric function in L2(Rd ) and

L2(Rd ′

) respectively,

E [Id ( f )Id ′ (g)] =

{
d!⟨ f, g⟩ if d = d ′

0 otherwise,
(3)

where ⟨·, ·⟩ stands for the canonical scalar product in L2(Rd ). The dth Wiener chaos is defined
as the closed linear subspace of L2(Ω ) generated by the random variables of the form Id ( f ),
with f symmetric function in L2(Rd ).

Now, given h ∈ ( 1
2 , 1), we define, for all s ≥ 0, the function

fh(s, •) : Rd
→ R+ : x ↦→

d∏
ℓ=1

(s − xℓ)
h−1

d −
1
2

+ . (4)

t is easy to show that, for all t ≥ 0, the function∫ t

0
fh(s, •) ds

is symmetric and belongs to L2(Rd ). Then, the Hermite process of order d and Hurst parameter
h is defined as{

Id

(∫ t

0
fh(s, •) ds

)}
t∈R+

. (5)

hen d = 1, this process reduces to the fractional Brownian motion of Hurst parameter h. As
oon as d > 1, the Hermite process of order d is known to be non-Gaussian. Hermite processes
rst appeared as limit of partial sums of correlated random variables, in the so-called Non-
entral Limit Theorem, see [28,58,59]. Apart from Gaussianity, Hermite processes share many
roperties with fractional Brownian motion such as the stationarity of increments, the h-self
imilarity, the Hölder regularity. These facts are particularly interesting in application where we
ave to model a phenomena for which the Gaussianity is not a reasonable assumption. See for
nstance [61] where the asymptotic distributions in a model for the unit root testing problem,
ith errors being non-linear transforms of linear processes, are shown to be functionals of
ermite processes.

emark 1.1. For all h ∈ ( 1
2 , 1) and d ∈ N∗, we define the constant cd (h) by

cd (h)2
=

d!β
( 1

2 −
1−h

d , 2−2h
d

)
,

h(2h − 1)
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with β(·, ·) the usual Euler Beta function. Using the isometry property (3) for Wiener–Itô
ntegrals, one can show that, for all t ≥ 0,

E

[(
Id

(∫ t

0
fh(s, •) ds

))2
]

= cd (h)2t2h,

ee for instance the recent book [60]. For this reason, some authors used the normalized
efinition {Id ( 1

cd (h)

∫ t
0 fh(s, •) ds)}t∈R+

for the Hermite process of order d and Hurst parameter
h. In our context, let us remark that, for all d ∈ N∗, the function h ↦→ cd (h) is continuous on

1
2 , 1).

In this paper we define multifractional Hermite processes by substituting the constant Hurst
arameter in (5) by a Hurst function with values in a compact interval of (1/2, 1). In order
o do so, we first introduce the following fields, called “generators of Multifractional Hermite
rocesses”.

efinition 1.2. Given d ∈ N∗, the generator of the multifractional Hermite process of order
is the real-valued centred field {Xd (t, h)}(t,h)∈R+×( 1

2 ,1) defined, for all (t, h) ∈ R+ × ( 1
2 , 1),

y the multiple Wiener–Itô integral

Xd (t, h) := Id

(∫ t

0
fh(s, •) ds

)
. (6)

Let us remark that, if h ∈ (1/2, 1) is fixed, {Xd (t, h)}t∈R+
is the standard Hermite

rocess of order d and Hurst parameter h. In Proposition 2.4, we show that, for all d ,
here exist a modification of {Xd (t, h)}t∈R+,h∈(1/2,1) and Ω∗, an event of probability 1, such

that, on Ω∗, the trajectories of this modification are (Hölder) continuous. Then, we identify
{Xd (t, h)}t∈R+,h∈(1/2,1) with this modification and define multifractional Hermite processes as
follows.

Definition 1.3. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a function H : R+ →

K , the multifractional Hermite process of order d and Hurst function H is the process
{X H (·)

d (t)}t∈R+
defined, for all t ∈ R+, by

X H (·)
d (t) = Xd (t, H (t)). (7)

Remark 1.4. Of course, the trajectories of multifractional Hermite processes and their
associated generators depend on the additional parameter ω ∈ Ω . In order to ease the notations,
all along this paper, when the context is clear, we allow ourself not to explicitly mention
this dependence and to write X H (·)

d (t) and Xd (t, h) instead of X H (·)
d (ω, t) and Xd (ω, t, h)

espectively.

When d = 2, the multifractional Hermite process corresponds to the multifractional
osenblatt process previously introduced in the paper [56]. Nevertheless, Wiener–Itô integrals
f order 2 enjoy specific properties (see the end of Sections 2 and 8 in the present paper).
hus, the study undertook here is more general. Moreover, some facts proved in this paper
re not considered in [56]. Among other things, in Section 4 we compute the exact Hölder
xponents of the multifractional Rosenblatt process (only upper bounds are given in [56]) and
n Section 5 we establish a law of iterated logarithm. Also, in Section 8, we prove the existence
f a continuous and bounded density for increments of the multifractional Rosenblatt process,
ith the help of Malliavin calculus. It helps us to refine some facts explored in this paper.
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Other multifractional processes in arbitrary Wiener chaoses have already been defined in the
iterature. In the paper [8], the authors consider a multifractional generalization of processes
ntroduced in [2]. They are defined with an alternative kernel which facilitates the computation
f a wavelet-type expansion. Also, in the papers [50,51], the author obtains some multifractional
rocesses in arbitrary Wiener chaoses as limits of weighted sums of multifractional Gaussian
elds. These processes are a priori not directly related to the ones defined in this paper, as it

s already the case in the first order chaos, see [25].
With this paper, we hope to open the door to further investigations concerning multifractional

ermite processes. We believe that many interesting research questions could be addressed,
imilarly to what have been done with the multifractional Brownian motion. Also, we think
hat multifractional Hermite processes could be used in applications to model phenomena where
oth Gaussianity and constant regularity cannot be assumed. To motivate the introduction of
ultifractional Hermite processes, we focus on some first important properties concerning

he behaviour of stochastic processes: Hölder regularity, the law of iterated logarithm, local
symptotic self-similarity and fractal dimensions for the graph. These notions are defined in
ection 2 as well as the main strategies used to state and prove our main theorems. Section 3

s mainly concerned in giving an uniform modulus of continuity for multifractional Hermite
rocesses. In Section 4, we provide a lower bound for the oscillations of multifractional
ermite processes. Section 5 is devoted to prove a law of iterated logarithm. In Section 6,

he local asymptotic self-similarity is discussed. Section 7 deals with estimates for the
ausdorff and box-counting dimensions of the graph of multifractional Hermite processes.
inally, in Section 8, some complements concerning the fractal dimensions of the graph of the
ultifractional Rosenblatt process are given, using specific arguments from the Wiener chaos

f order 2 and Malliavin calculus.
Our results show that, as desired, fundamental properties of multifractional Hermite pro-

esses are governed by their associated Hurst function.

. Preliminaries, strategy and main results

As stated in the Introduction, the definition of a multifractional Hermite process relies on a
odification of its generator which is almost surely Hölder continuous. Let us start by recalling

he definition of this notion.

efinition 2.1. If f is a (deterministic) continuous function defined on a compact interval I
f R, the oscillation of f on I is defined by

Osc( f, I ) := sup
t,s∈I

| f (t) − f (s)|. (8)

e say that f belongs to the pointwise Hölder space at t0 ∈ I and of order α ∈ (0, 1) if there
exist R > 0 and C > 0 such that, for all 0 < r < R,

Osc( f, [t0 − r, t0 + r ] ∩ I ) ≤ Crα. (9)

In this case, we note f ∈ Cα(t0). It is easy to check that, if α < β, then Cβ(t0) ⊆ Cα(t0).
herefore, the pointwise Hölder exponent of f at t0 is defined as

h f (t0) := sup{α ∈ (0, 1) : f ∈ Cα(t0)}.

If, for all t0 ∈ I , f ∈ Cα(t0), with an uniform constant C > 0 in (9), we say that f is uniformly
older on I of order α and we note f ∈ Cα(I ). The uniform Hölder exponent of f on I is
¨
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then naturally defined as

H f (I ) := sup{α ∈ (0, 1) : f ∈ Cα(I )}.

f course, for all t0 ∈ I , we have h f (t0) ≥ H f (I ).

One of the easiest and most standard way to provide information concerning the Hölder
egularity of a stochastic process is to use Kolmogorov continuity theorem. On this purpose,
ne has to obtain bounds for the norms in L p(Ω ) of the increments of the process. It is precisely
he aim of the next proposition. In fact, this result will be crucial in numerous occasions all
long this paper.

roposition 2.2. Let d ∈ N∗, K be a compact interval of ( 1
2 , 1) and I be a compact interval

of R+. There exist two positive deterministic constant c1, c2, only depending on d an K , and
a positive deterministic constant c3, only depending on d, K and I , such that, for all t, u ∈ I
and h1, h2 ∈ K ,

∥Xd (t, h1) − Xd (u, h2)∥L2(Ω)

is bounded from above by c1|t − u|
min{h1,h2}

+c3|h1 − h2| and from below by c2|t − u|
min{h1,h2}

−

c3|h1 − h2|.

Proof. Let us write K = [a, b] with 1
2 < a < b < 1 and let us assume, without loss of

enerality, h1 < h2. For all t, u ∈ I and h1, h2 ∈ K , of course, we have

∥Xd (t, h1) − Xd (u, h1)∥L2(Ω) − ∥Xd (u, h1) − Xd (u, h2)∥L2(Ω) ≤Xd (t, h1) − Xd (u, h2)


L2(Ω)

≤ ∥Xd (t, h1) − Xd (u, h1)∥L2(Ω) + ∥Xd (u, h1) − Xd (u, h2)∥L2(Ω). (10)

Using the self-similarity and stationarity of increments of Hermite processes, we know that
here exists a deterministic constant cd (h1) > 0, such that

∥Xd (t, h1) − Xd (u, h1)∥L2(Ω) = cd (h1)|t − u|
h1 .

n view of Remark 1.1, we take

c1 = sup
h∈K

cd (h) and c2 = inf
h∈K

cd (h).

Thus, it only remains to bound ∥Xd (u, h1)− Xd (u, h2)∥L2(Ω). In the sequel, we write dx for
x1 . . . dxd . Let us also recall the notation (4). Using the isometry property (3) for Wiener–Itô

ntegrals and Definition 1.2 we have

∥Xd (u, h1) − Xd (u, h2)∥L2(Ω)

= d!

(∫
Rd

(∫ u

0
fh1 (s, x) − fh2 (s, x) ds

)2

dx

) 1
2

. (11)

For all (s, x) with
∏d

ℓ=1(s − xℓ)+ > 0 fixed, by mean value theorem, there is h′
∈ [h1, h2] such

hat

| fh1 (s, x) − fh2 (s, x)| =
1
d

|h1 − h2| fh′ (s, x)

⏐⏐⏐⏐⏐ln
(

d∏
(s − xℓ)+

)⏐⏐⏐⏐⏐ .

ℓ=1
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Now, using the fact that, for all ε > 0,

lim
x→0+

xε log(x−1) = 0+ and lim
x→+∞

log(x)
xε

= 0+,

ne can choose ε > 0 such that 1
2 < a − ε < b + ε < 1 and find a deterministic constant

ε > 0 for which, for all x ∈ Rd ,⏐⏐⏐⏐∫ u

0
fh1 (s, x) − fh2 (s, x) ds

⏐⏐⏐⏐ ≤ cε|h1 − h2|

∫ u

0
fa−ε(s, x) + fb+ε(s, x) ds. (12)

lugging this into (11) and using again the isometry property (3) for Wiener–Itô integrals, we
et

∥Xd (u, h1) − Xd (u, h2)∥L2(Ω)

≤ cε|h1 − h2|
(
∥Xd (u, a − ε)∥L2(Ω) + ∥Xd (u, b + ε)∥L2(Ω)

)
≤ cdcε|h1 − h2|(|u|

a−ε
+ |u|

b+ε)
≤ c3|h1 − h2|,

or a positive deterministic constant c3 > 0 only depending on d , K and I . □

The next corollary is then a direct consequence of the hypercontractivity property on Wiener
haoses, see [52, Theorem 2.7.2].

orollary 2.3. Given d ∈ N∗ and K a compact interval of ( 1
2 , 1), let I be a compact interval

of R+. For any p ≥ 1 there exists a positive deterministic constant cp, only depending on d,
p, K and I , such that, for all t, u ∈ I and h1, h2 ∈ K ,

∥Xd (t, h1) − Xd (u, h2)∥L p(Ω) ≤ cp
(
|t − u|

min{h1,h2}
+ |h1 − h2|

)
. (13)

Inequality (13) combined with Kolmogorov continuity theorem are enough to consider the
Hölder regularity of generators of multifractional Hermite processes.

Proposition 2.4. Given d ∈ N∗, there exist a modification of the field {Xd (t, h)}(t,h)∈R+×(1/2,1),
lso denoted by {Xd (t, h)}(t,h)∈R+×(1/2,1), and Ω∗, an event of probability 1, such that, on Ω∗,
iven I , a compact interval of R+, and K , a compact interval of ( 1

2 , 1), for all 0 < a < inf K ,
there exists a finite positive random variable C such that, for all t, u ∈ I and h1, h2 ∈ K ,

|Xd (t, h1) − Xd (u, h2)| ≤ C(|t − u| + |h1 − h2|)a . (14)

roof. Using (13), we see that, for all p > 0 there exists a deterministic constant c > 0, only
epending ond , p, I and K , such that, for all t, u ∈ I and h1, h2 ∈ K ,

∥Xd (t, h1) − Xd (u, h2)∥L p(Ω) ≤ c(|t − u| + |h1 − h2|)inf K

nd the conclusion follows by applying a strong version of Kolmogorov continuity theorem,
ee for instance [37, Theorem 2.5.1 pages 165 and 166]. □

Starting from now, we identify the generators of the multifractional Hermite processes
ith their continuous modification. Once this identification done, the multifractional Hermite
rocess, of order d and Hurst function H , {X H (·)

d (t)}t∈R+
is defined by the equality (7). Let us

ow present our main results which focus on fundamental properties of these processes. Hölder
egularity provide nice information about the pointwise and global behaviour of the functions
e consider. Nevertheless, often we are interested by more precise bound for the oscillations.

t can be done by the mean of moduli of continuity.
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Definition 2.5. If f is a (deterministic) function defined on a compact interval I of R, we
say that a continuous increasing function ρ defined on R+ and such that limr→0+ ρ(r ) = 0 is
a modulus of continuity for f at t0 ∈ I if

lim sup
r→0+

Osc( f, [t0 − r, t0 + r ] ∩ I )
ρ(r )

< +∞. (15)

oreover, if

lim sup
r→0+

supt0∈I Osc( f, [t0 − r, t0 + r ])

ρ(r )
< +∞

we say that ρ is an uniform modulus of continuity for f on I .

emark 2.6. Of course, if f is α-Hölder, the function r ↦→ rα is a modulus of continuity
or f . Hölder regularity only compares the oscillations with power functions while, with
oduli of continuity, one can deduce more precise and relevant information concerning the

nalysed function. It is particularly true when we consider stochastic processes, see for in-
tance [27,30,31]. Note that one can define generalized Hölder spaces associated with modulus
f continuity [39,40,46] and that these spaces lead to specific multifractal formalisms [47,48].

While considering the multifractional Hermite process X H (·)
d , we say that h (resp. ρ) is a

pointwise or uniform) Hölder exponent (resp. modulus of continuity) for X H (·)
d if it is a Hölder

xponent (resp. modulus of continuity) for all the sample paths t ↦→ X H (·)
d (t) on an event of

robability 1.

otation 2.7. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a continuous function

H : R+ → K , if I is a compact interval of R+, we note

H (I ) := min{H (I )} and H (I ) := max{H (I )}.

While studying multifractional processes, authors generally require a regularity assumption
or the function H in order to consider the regularity of the process itself, see for instance [5,
7,55]. Here, we will also work with such conditions.

ondition 2.8. Given d ∈ N∗ and a compact interval K of ( 1
2 , 1), we say that the Hurst

function H : R+ → K satisfies

(a) the uniform min-Hölder regularity condition if, for all compact interval I of R+, there
exists γ ∈ (H (I ), 1) such that H ∈ Cγ (I );

(b) the pointwise Hölder condition if, for all t ∈ R+, there exists γ ∈ (H (t), 1) such that
H ∈ Cγ (t);

(c) the local Hölder condition if, for all t ∈ R+, there exist a compact interval It ⊂ R+

and γ ∈ (H (t), 1) such that t ∈ It and H ∈ Cγ (It );

All along this paper, to be as general as possible, we use alternatively Condition 2.8(a), (b)
r (c) to state and prove our results. Note that if the Hurst function H : R+ → K is such
hat, for all compact interval I of R+, there exists γ ∈ (H (I ), 1) for which H ∈ Cγ (I ), then
onditions 2.8(a), (b) and (c) are obviously satisfied.

Our first main result consists in providing, under Condition 2.8(a), an uniform modulus of
ontinuity for each multifractional Hermite processes. In Section 3, we prove the following
heorem.
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Theorem 2.9. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst function

H : R+ → K satisfying Condition 2.8(a), there exists Ω∗

1 , an event of probability 1, such
hat, on Ω∗

1 , for all compact interval I of R+

lim sup
r→0+

supt0∈I Osc(X H (·)
d , [t0 − r, t0 + r ] ∩ I )

r H (I )(log r−1)
d
2

< +∞.

Under Condition 2.8(b), one can compute the pointwise Hölder regularity of the process.
s desired, it is governed by the Hurst function, as stated in our second main Theorem, proved

n Section 4.

heorem 2.10. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst function

H : R+ → K satisfying Condition 2.8(b), there exists Ω∗

2 , an event of probability 1, such
that on Ω∗

2 , for all t0 ∈ R+, we have

hX H (·)
d

(t0) = H (t0).

In fact, Theorem 2.10 is a consequence of the stronger Theorem 4.1 which gives a lower
bound for the oscillations of multifractional Hermite processes.

When we study the pointwise regularity of a stochastic process, we are often interested in
providing a so-called law of iterated logarithm. It shows that, almost surely, the oscillations
at most of the points (in the sense of Lebesgue measure) can be bounded from below and
above by a modulus of continuity featuring an iterated logarithm. In Section 5, we show that
multifractional Hermite processes enjoy this property.

Theorem 2.11. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst function

H : R+ → K satisfying Condition 2.8(c), there exists Ω , an event of probability 1, such
hat on Ω , for (Lebesgue) almost every t0 ∈ R+, we have

0 < lim sup
r→0+

Osc(X H (·)
d , [t0 − r, t0 + r ] ∩ R+)

r H (t)(log(log r−1))
d
2

< ∞. (16)

As shown by Theorem 2.10, if the function H is non constant, almost surely, the pointwise
ölder exponent of the multifractional Hermite process X H (·)

d changes from one point to
nother. In particular, there is no hope that it is a self-similar process, see [5, Proposition
.60]. For this reason, one prefers to check a weaker assumption, the so-called local asymptotic
elf-similarity.

efinition 2.12. A real-valued stochastic process {X (t)}t∈R+
is weakly locally asymptotically

elf-similar of order h > 0 at the point t0 with non-degenerate tangent process {Y (t)}t≥0 if the
equence of process {ε−h(X (t0 + εt)− X (t0))}t∈R+

converges to the process {Y (t)}t∈R+
in finite

imensional distributions, as ε → 0+. When {X (t)}t∈R+
and {Y (t)}t∈R+

have, almost surely,
ontinuous path and if the previous convergence also holds in the sense of continuous function
ver an arbitrary compact set of R+, we say that {X (t)}t∈R+

is strongly locally asymptotically
elf-similar of order h > 0 at the point t0, with tangent process {Y (t)}t∈R+

.

Of course, the strong local asymptotic self-similarity implies the weak local asymptotic
elf-similarity. Conversely, let us assume {X (t)}t∈R+

is weakly locally asymptotically self-
imilar of order h > 0 at the point t0 with tangent process {Y (t)}t∈R+

. Let a > 0 be an
a
rbitrary fixed real-number and, for ε > 0, let Pε be the probability measure induced by
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m

T

{ε−h(X (t0 + εt) − X (t0))}t∈R+
on the Borel σ -algebra of2 C([0, a],R). In order, to show that

the convergence holds in the strong sense, it suffices to show, since a > 0 is arbitrary, that the
family (Pa

ε )ε>0 is relatively compact. Using Prohorov’s criterion (see [18, Section 5 in Chapter
1] for a comprehensive view), it reduces to show that, for all δ > 0

lim
η→0+

lim sup
ε→0+

P

(
sup

s,t∈[0,a],|t−s|≤η

⏐⏐⏐⏐ X (t0 + εt) − X (t0 + εs)
εh

⏐⏐⏐⏐ ≥ δ

)
= 0. (17)

In Section 6, we use this technique to prove the local asymptotic self-similarity of the
ultifractional Hermite process.

heorem 2.13. Let d ∈ N∗, K be a compact interval of ( 1
2 , 1) and H : R+ → K be a

Hurst function. If H satisfies Condition 2.8(b) then, for all t0 ≥ 0, the multifractional Hermite
process {X H (·)

d (t) : t ≥ 0} is weakly locally asymptotically self-similar of order H (t0) at t0 with
tangent process {Xd (t, H (t0)) : t ≥ 0}, the Hermite process of order d and Hurst parameter
H (t0). Moreover, if H satisfies Condition 2.8(c), then this property also holds in the strong
sense.

The last notions that we consider in this paper to study the behaviour of a given multifrac-
tional Hermite process are the Hausdorff and box-counting dimensions of its graph. We refer
to the fundamental book [32] for details and proofs concerning these quantities.

Definition 2.14. Given d ∈ N∗, a set A ⊆ Rd and ε, h > 0, the quantity

Hh
ε (A) := inf{

∑
j

diamh(A j ) : A ⊆

⋃
j

A j and, ∀ j, diam(A j ) < ε}

where, as usual, diam stands for the diameter, is called the (h, ε)-Hausdorff outer measure of
A. Moreover, for all h > 0, the application ε ↦→ Hh

ε (A) is decreasing and it follows that the
h-dimensional Hausdorff outer measure

Hh(A) := lim
ε→0+

Hh
ε (A)

is well-defined.

The crucial property of Hausdorff outer measures is that, for any non-empty set A, there
exists a critical value h0 such that

Hh(A) = ∞ ∀ h < h0 and Hh(A) = 0 ∀ h > h0.

Definition 2.15. Given d ∈ N∗ and a non-empty set A ⊆ Rd , the Hausdorff dimension of A is

dimH(A) = sup{h > 0 : Hh(A) = ∞} = inf{h > 0 : Hh(A) = 0},

while, by convention, dimH(∅) = −∞.

An alternative notion of dimensions for fractal sets are given by the box-counting dimen-
sions.

2 As usual, C([0, a],R) stands for the set of real continuous function on [0, a].
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Definition 2.16. Given d ∈ N∗, a non-empty bounded set A ⊆ Rd and ε > 0, let Nε(A) be
the smallest number of sets of diameter at most ε which can cover A. The quantities

dimB(A) := lim inf
ε→0+

log(Nε(A))
− log(ε)

and dimB(A) := lim sup
ε→0+

log(Nε(A))
− log(ε)

re, respectively, the lower and upper box-counting dimensions of A. If they are equal, the
ommon value is refereed as the box-counting dimension of A and we denote it dimB(A).

We also refer to [32] for all the properties of these dimensions and a clear presentation
f their respective utilities and interpretations. Here, we will mainly use the fact that, for any
on-empty bounded set A ⊆ Rd ,

dimH(A) ≤ dimB(A) ≤ dimB(A). (18)

lso, we use the fact that, for all A, B subset of Rd ,

(A ⊆ B) ⇒ dimH(A) ≤ dimH(B) (19)

In this paper, given d ∈ N∗, a compact interval K of ( 1
2 , 1), a Hurst function H : R+ → K

nd a compact interval I ⊂ R+, we are interested in the dimensions of the graph

Gd (I ) := {(t, X H (·)
d (t)) : t ∈ I }

n view of inequalities (18), our strategy consists in bounding from above the (upper) box-
ounting dimension and from below the Hausdorff dimension. The main Theorem of Section 7
an then be stated as follows.

heorem 2.17. Given d ∈ N∗, a compact interval K of ( 1
2 , 1), a Hurst function H : R+ → K

satisfying Condition 2.8(a) and a compact interval I ⊂ R+, there exists Ω̃ , an event of
probability 1, such that on Ω̃ , we have

1 +
1 − H (I )

d
≤ dimH (Gd (I )) ≤ dimB (Gd (I )) ≤ 2 − H (I ).

When d = 1, inequalities in Theorem 2.17 are equalities and we recover the well-known
esult of [55]. Unfortunately, for d > 1, we have a disparity between the lower and upper
ounds for the fractal dimensions. It comes from the estimates that can be made on the
robabilities

P(|X H (·)
d (t) − X H (·)

d (u)| ≤ x), (20)

or t, u, x ≥ 0, see Proposition 7.6 below. It is unknown whether a general (multifractional)
Hermite process admits a continuous and bounded density and thus we have to estimate (20)
with the so-called Carbery–Wright inequality, Lemma 7.5 in this paper, which induces this
factor 1

d . Nevertheless, for d = 2, one can use specific arguments from the second order Wiener
chaos, [52, Section 2.4]. Indeed, if f is a symmetric function in L2(R2), let us consider the

ilbert–Schmidt operator defined as

A f : L2(R) → L2(R) : g ↦→

∫
R

f (·, y)g(y) dy.

hen, let {λ f, j } j∈N and {e f, j } j∈N indicate, respectively, the eigenvalues of A f and the corre-
ponding eigenvectors. The system {e f, j } j∈N is orthonormal in L2(R), the sequence {λ f, j } j∈N
elongs to ℓp, for all p ≥ 2, and f has the expansion

f =

∑
λ f, j e f, j ⊗ e f, j ,
j∈N
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with convergence in L2(R2). In particular, from this last equality, one can write

I2( f ) =

∑
j∈N

λ f, j
(
I1(e f, j )2

− 1
)
, (21)

ith convergence in L2(Ω ). Let us also note that the orthonormality of {e f, j } j∈N entails

∥ f ∥
2
L2(R2) =

∑
j∈N

λ2
f, j . (22)

In Section 8, we take advantage of this expansion, together with arguments from Malliavin
alculus and the paper [35], to prove the following improvement of Theorem 2.17 in the second
rder Wiener chaos. We recall that, in this case, the multifractional Hermite process corresponds
o the multifractional Rosenblatt process.

heorem 2.18. Given a compact interval K of ( 1
2 , 1), a Hurst function H : R+ → K

satisfying Condition 2.8(a) and a compact interval I ⊂ R+, there exists Ω̃2, an event of
robability 1, such that on Ω̃2, we have

dimH (G2(I )) = dimB (G2(I )) = 2 − H (I ).

Note that this disparity of results also appeared in the standard case, where the Hurst function
s constant, see [2]. We conjecture that, in fact, the equality holds for any (multifractional)
ermite processes. A strategy to prove this fact would be to show that (multifractional) Hermite
rocesses admit continuous and bounded densities. It is still an open question which goes far
eyond the scope of this paper.

. Uniform modulus of continuity

Let us now focus on the continuity and regularity of multifractional Hermite processes. Let
s first remark that, on the event Ω∗ induced by Proposition 2.4, X H (·)

d is always continuous at
. Indeed, if ω ∈ Ω∗ is fixed and (t j ) j is a sequence which converges to 0, then let us consider
subsequence (tk( j)) j of (t j ) j . As H has its image in the compact set K , there is a subsequence

tl(k( j))) j such that H (tl(k( j))) → H̃0, for some H̃0 ∈ K . Then, inequality (14) entails

X H (·)
d (ω, tl(k( j))) = Xd (ω, tl(k( j)), H (tl(k( j)))) → Xd (ω, 0, H̃0) = 0 = X H (·)

d (ω, 0).

hus, any subsequence of (X H (·)
d (ω, t j )) j has a subsequence which converges to 0, which means

hat (X H (·)
d (ω, t j )) j also converges to 0.

Of course, if H is a continuous function, (7) and (14) imply that, on Ω∗, X H (·)
d is continuous

n R+. At the opposite, if H is discontinuous at a point t0 ̸= 0, using again the fact that
he image of H is in included in K , we know that there exists (t j ) j such that t j → t0 and
j → H0 ̸= H (t0). Then, from the isometry property (3) for Wiener–Itô integrals, we get

∥Xd (t0, H0) − Xd (t0, H (t0))∥L2(Ω)

= d!

(∫
Rd

(∫ t0

0
fH0 (s, x) − fH (t0)(s, x) ds

)2

dx

) 1
2

.

= d!

⎛⎝∫
Rd

(∫ t0

0

d∏
ℓ=1

(s − xℓ)
H (t0)−1

d −
1
2

+

(
d∏

ℓ=1

(s − xℓ)
H0−H (t0)

d
+ − 1

)
ds

)2

dx

⎞⎠ 1
2

> 0.
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It means that one can find an event Ωt0 of probability 1 such that, for all ω ∈ Ωt0 , X H (·)
d is

iscontinuous at t0.
From this discussion, we see that in order to insure the almost sure continuity of multifrac-

ional Hermite processes, we have to assume that the Hurst function is continuous. Therefore,
tarting from now and until the end of this paper, the Hurst function is always assumed to be a
ontinuous function. In fact, we will even make stronger assumptions on this function, namely
ondition 2.8(a), (b) or (c).

Under Condition 2.8(a), by Proposition 2.4, one easily see that, almost surely, for all compact
nterval I of R+, X H (·)

d is Hölder continuous on I , with Hölder exponent at least H (I ).
Here, we aim at giving a more precise result by providing an almost sure uniform modulus

of continuity for X H (·)
d . On this purpose, let us recall the following important fact, see for

instance [36, Theorem 6.7].

Lemma 3.1. For all d ∈ N∗, there exists an universal deterministic constant cd > 0 such
that, for any random variable X in the Wiener chaos of order d, and y ≥ 2,

P(|X | ≥ y∥X∥L2(Ω)) ≤ exp(−cd y
2
d ).

Let us introduce some notations. For all j ∈ N and t ∈ R+, k−

j (t) is the unique non negative
nteger such that t ∈ [k−

j (t)2− j , (k−

j (t) + 1)2− j ) and we set k+

j (t) := k−

j (t) + 1. Let us remark
hat, for all t ∈ R+, k−

j (t)2− j , k+

j (t)2− j
→ t as j → +∞. Also, note that, for all j ∈ N,

{k−

j+1(t), k+

j+1(t)} ⊂ {2k−

j (t), 2k−

j (t) + 1, 2k−

j (t) + 2}

= {2k+

j (t), 2k+

j (t) − 1, 2k+

j (t) − 2}.

roof of Theorem 2.9. For all ( j, k) ∈ N2, we write X j,k := X H (·)
d (k2− j ). Let us fix n ∈ N

nd, if cd is the constant given by Lemma 3.1, let c >
(

ln(2)
cd

) d
2 . For all j ∈ N, let us consider

he event A j defined by(
∃0 ≤ k ≤ n2 j , k ′

∈ {2k, 2k ± 1, 2k ± 2} :
|X j+1,k′ − X j,k |

∥X j+1,k′ − X j,k∥L2(Ω)
≥ cj

d
2

)
.

If j is sufficiently large, by Lemma 3.1, we have P
(

A j
)

≤ 5n2 j exp(−cdc
2
d j). Thus, as

>
(

ln(2)
cd

) d
2 , we have

∑
+∞

j=0 P
(

A j
)

< ∞. Borel–Cantelli Lemma entails the existence of
n,1, an event of probability 1, such that, on Ωn,1, there exists J1 ∈ N for which, for all j ≥ J1

nd for all 0 ≤ k ≤ n2 j , k ′
∈ {2k, 2k ± 1, 2k ± 2},

|X j+1,k′ − X j,k | ≤ cj
d
2 ∥X j+1,k′ − X j,k∥L2(Ω). (23)

Now, let us fix a compact interval I ⊆ [0, n]. There exists J2 ∈ N such that, for all j ≥ J2,
2− j

≤ diam(I ). In particular, it means that, for all t ∈ I and for all j ≥ J2, k−

j (t)2− j
∈ I or

j (t)+2− j
∈ I . In the sequel, for all such t and j , we choose k j (t) ∈ {k−

j (t), k+

j (t)} such that
j (t)2− j

∈ I . On the event Ω∗ given by Proposition 2.4, we can write, for all j0 ≥ J2

X H (·)
d (t) = X j0,k j0 (t) +

∑
j≥ j0

(X j+1,k j+1(t) − X j,k j (t)).

Therefore, on the event Ω = Ω ∩ Ω∗ of probability 1, if s, t ∈ I are such that
n n,1
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2−( j0+1)
≤ |s − t | ≤ 2− j0 for some j0 ≥ max{J1, J2}, we write

|X H (·)
d (t) − X H (·)

d (s)| ≤ |X j0,k j0 (t) − X j0,k j0 (s)|

+

∑
j≥ j0

|X j+1,k j+1(t) − X j,k j (t)|

+

∑
j≥ j0

|X j+1,k j+1(s) − X j,k j (s)|. (24)

rom Proposition 2.2 and inequality (23), as H satisfies Condition 2.8(a), there is a constant
1, only depending on d, I , K and c such that, for all j ≥ j0,

max{|X j+1,k j+1(t) − X j,k j (t)|, |X j+1,k j+1(s) − X j,k j (s)|} ≤ c1 j
d
2 2−H (I )( j+1).

lso, as |k j (t)2− j
− k j (s)2− j

| ≤ 22− j0 + 2− j0 ≤ 2− j0+2, we have, still from Proposition 2.2
nd inequality (23),

|X j,k j (t) − X j,k j (s)| ≤ c1 j
d
2

0 2−H (I )( j0+2).

n total, we get the existence of a constant c2, only depending on d , I , K and c, such that, for
all s, t ∈ I with 2−( j0+1)

≤ |s − t | ≤ 2− j0

|X H (·)
d (t) − X H (·)

d (s)| ≤ c2 j
d
2

0 2−H (I ) j0 ≤ c2| log |s − t ||
d
2 |s − t |H (I ).

he conclusion follows by taking Ω∗

1 =
⋂

n Ωn . □

. Pointwise Hölder exponent

Now, we want to show that the pointwise regularity of the process is governed by the Hurst
unction. Under Condition 2.8(b), it is easy to show, with the help of Proposition 2.4, that,
lmost surely, for any t0 ∈ R+,

hX H (·)
d

(t0) ≥ H (t0).

To show the reverse inequality, we will prove the following Theorem.

Theorem 4.1. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst function

H : R+ → K satisfying Condition 2.8(b), there exists Ω , an event of probability 1, such
hat, on Ω , for all t0 ∈ R+,

lim sup
r→0+

Osc(X H (·)
d , [t0 − r, t0 + r ] ∩ R+)

r H (t0)(log r−1)
−d2 H (t0)

2(1−H (t0))

> 0. (25)

On this purpose, we use a generalization of a combination of previous ideas from the
apers [6,9,27]. First, remark that, similarly to the proof of Theorem 2.9, it suffices to show
hat, for all n ∈ N, there is Ωn , an event of probability 1, such that, on Ωn , for all t0 ∈ [n, n+1],
25) holds. The conclusion comes by taking Ω =

⋂
n∈N Ωn . For the sake simpleness in notation,

e prove this result for n = 0.
Let us fix some notations. For all ( j, k) ∈ N2, λ j,k stands for the dyadic interval of scale

j explicitly given by [k2− j , (k + 1)2− j ), Λ j is the set of all dyadic intervals of scale j and
:=
⋃

j Λ j . If λ = λ j,k ∈ Λ j , 3λ is the set {λ j,k−1, λ j,k, λ j,k+1}. Finally, for all j ∈ N and
t ∈ R , λ (t ) is the unique interval in Λ such that t ∈ λ (t ). If x ∈ [0, 1] and λ ∈ Λ, we
0 + j 0 j 0 j 0
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allow ourself to write x ∈ 3λ to state that there exists λ′
∈ 3λ for which x ∈ λ′. Similarly,

λ′′
⊆ 3λ means that there exists λ′

∈ 3λ for which λ′′
⊆ λ′.

For all ( j, k) ∈ N × {0, . . . , 2 j
− 1}, let us set

∆ j,k := X H (·)
d

(
k + 1

2 j

)
− X H (·)

d

(
k
2 j

)
= Xd

(
k + 1

2 j
, H

(
k + 1

2 j

))
− Xd

(
k
2 j

, H
(

k
2 j

))
.

f λ = λ j,k , we also write ∆λ for ∆ j,k . It is clear that, for all j ∈ N,

sup
λ⊆3λ j (t)

|∆λ| ≤ Osc(X H (·)
d , [t − 22− j , t + 22− j ]). (26)

Recalling (6) and the notation (4), we write

X H (·)
d

(
k + 1

2 j
, H

(
k + 1

2 j

))
− Xd

(
k
2 j

, H
(

k + 1
2 j

))
= Id

(∫ k+1
2 j

k
2 j

f
H
(

k+1
2 j

)(s, •) ds

)

= Id

(
1(−∞, k+1

2 j ]d

(∫ k+1
2 j

k
2 j

f
H
(

k+1
2 j

)(s, •) ds

))

ince, as long as s ∈ [ k
2 j ,

k+1
2 j ], f

H
(

y+k
2 j

)(s, x) vanishes whenever x /∈ (−∞, k+1
2 j ]d . The brilliant

dea from [6] is then to split this last integral in two parts, where one is “negligible” compared
o the other one which enjoys some independence property.

efinition 4.2. Given a real number M ≥ 0, for all ( j, k) ∈ N×{0, . . . , 2 j
− 1}, we consider

he enlarged dyadic cube

λM
j,k :=

(
k − M

2 j
,

k + 1
2 j

]
d

and the random variables

∆̃ j,k
M

:= Id

(
1λM

j,k

(∫ k+1
2 j

k
2 j

f
H
(

k+1
2 j

)(s, •) ds

))
(27)

nd

}∆ j,k
M

:= Id

(
1(−∞, k+1

2 j ]d\λM
j,k

(∫ k+1
2 j

k
2 j

f
H
(

k+1
2 j

)(s, •) ds

))
.

For all ( j, k) ∈ N × {0, . . . , 2 j
− 1}, if we also set

∆̂ j,k := Xd

(
k
2 j

, H
(

k + 1
2 j

))
− Xd

(
k
2 j

, H
(

k
2 j

))
,

given M ≥ 0, of course, we have

∆ = ∆̃
M

+ }∆
M

+ ∆̂ .
j,k j,k j,k j,k
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Moreover, from the definition of Wiener–Itô integrals, we know that ∆̃ j,k
M

is measurable with
espect to the σ -algebra

σ ({B(t2) − B(t1) : t1, t2 ∈ λM
j,k}),

ee [6, Lemma 2.1]. Thus, if M1, . . . , Mn are fixed positive real numbers, the random variables

j̃1,k1

M1
, . . . , ∆̃ jn ,kn

Mn
are independent as soon as the condition

λ
Mℓ
jℓ,kℓ

∩ λ
Mℓ′

jℓ′ ,kℓ′
= ∅ for all 1 ≤ ℓ, ℓ′

≤ n (28)

s satisfied.
Let us now give some lower and upper bounds for the norm in L2(Ω ) of these random

ariables. The following proposition is inspired by [6, Lemmata 2.2 and 2.3] where the main
odifications come from the fact that we are working here with a Hurst function instead of a

onstant Hurst parameter.

roposition 4.3. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst function

H : R+ → K , there exists a positive deterministic constant c, only depending on d and
K , such that, for all ( j, k) ∈ N × {0, . . . , 2 j

− 1} and M > 0, one has

1. c−12−H
(

k+1
2 j

)
j
≤ ∥∆̃ j,k

M
∥L2(Ω) ≤ c2−H

(
k+1
2 j

)
j ;

2. ∥}∆ j,k
M

∥L2(Ω) ≤ cM
H
(

k+1
2 j

)
−1

d 2−H
(

k+1
2 j

)
j ;

3. ∥∆̂ j,k∥L2(Ω) ≤ c Osc(H, λ j,k).

roof. Let us start by showing the first point. Using the isometry property for Wiener–Itô
ntegrals, we get, for all N× Z and M > 0, with the changes of variable s ↦→ 2− j (u + k) and

= 2 j x − k1,

∥∆̃ j,k
M

∥
2
L2(Ω) = d!

∫
λM

j,k

(∫ k+1
2 j

k
2 j

f
H
(

k+1
2 j

)(s, x) ds

)2

dx

= d!2−2H
(

k+1
2 j

)
j
∫

(−M,1]d

(∫ 1

0
f

H
(

k+1
2 j

)(u, w) du
)2

dw.

et us remark that if (u, w) ∈ [0, 1] × [0, 1]d ,
∏d

ℓ=1(u − wℓ)+ ∈ [0, 1] and thus

f
H
(

k+1
2 j

)(u, w) ≥ fsup K (u, w).

herefore, we conclude

∥∆̃ j,k
M

∥L2(Ω) ≥
√

d!2−H
(

k+1
2 j

)
j
∫ 1

0
fsup K (u, •) du

 L2([0,1]d ).

or the reverse inequality, it suffices to remark that∫
(−∞,1]d

(∫ 1

0
f

H
(

k+1
2 j

)(u, w) du
)2

dw

≤

∫
(−∞,1]d

(∫ 1

0
finf K (u, w) + fsup K (u, w) du

)2

dw.
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For the second point, let us write, for all ( j, k) ∈ N × {0, . . . , 2 j
− 1}, H j,k :=

H
(

k+1
2 j

)
−1

d −
1
2 .

Again from the isometry property (3) for Wiener–Itô integrals, we get

∥}∆ j,k
M

∥
2
L2(Ω)

≤ d!

∫ k−M
2 j

−∞

(
k
2 j

− x1)2H j,k dx1 ×

∫
Rd−1

(∫ k+1
2 j

k
2 j

d∏
ℓ=2

(s − xℓ)
H j,k
+ ds

)2

dx2 . . . dxd .

First, we have∫ k−M
2 j

−∞

(
k
2 j

− x1)2H j,k dx1 = (M2− j )2
(H
(

k+1
2 j

)
−1)

d

n the other hand, from the isometry property (3) for Wiener–Itô integrals and Proposition 2.2,
here exists a deterministic constant c1 > 0, only depending on d, K and [0, 1], for which

(d − 1)!
∫
Rd−1

(∫ k+1
2 j

k
2 j

d∏
ℓ=2

(s − xℓ)
H j,k
+ ds

)2

dx2 . . . dxd

=

Xd−1(
k + 1

2 j
,

(d − 1)H
(

k+1
2 j

)
+ 1

d
) − Xd−1(

k
2 j

,
(d − 1)H

(
k+1
2 j

)
+ 1

d
)

 2
L2(Ω)

≤ c12−2 j
(d−1)H

(
k+1
2 j

)
+1

d .

In total, we have found a positive deterministic constant c2, only depending on d and K and
0, 1], such that

∥}∆ j,k
M

∥L2(Ω) ≤ c2 M
sup K−1

d 2−H
(

k+1
2 j

)
j
.

The third and last point is a straightforward consequence of Proposition 2.2. □

In view of the last proposition, we say that the random variables of the form ∆̃M
λ are

ominant.
Finally, let us recall the following important fact about random variables in a given Wiener

haos, see [36, Theorem 6.9 and Remark 6.10] for a proof.

emma 4.4. Given d ∈ N∗, there exists an universal deterministic constant γd ∈ [0, 1) such
that, for any random variable X in the Wiener chaos of order d, one has

P
(

|X | ≤
1
2
∥X∥L2(Ω)

)
≤ γd .

We now have enough material to give a lower bound for the oscillations of the multifrac-
tional Hermite process.

Proof of Theorem 4.1. As already explained, we can reduce our attention to the interval [0, 1).

If cd > 0 is the constant in Lemma 3.1, we fix c′ >
(

ln(2)
cd

) d
2 . Let also c be the constant

iven by Proposition 4.3. For all λ j,k ∈ Λ, we define

M := (8c2c′ j
d
2 )

d

1−H
(

k+1
2 j

)
. (29)
λ
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First, we consider the dominant random variables. We need to fix some notations. If λ = λ j,k

s a dyadic interval and m ∈ N, Sλ,m = S j,k,m stands for the finite set of cardinality 2m

hose elements are the dyadic intervals of scale j + m included in λ j,k , formally speaking
S j,k,m := {λ ∈ Λ j+m : λ ⊂ λ j,k}.

If γd ∈ [0, 1) is the constant given in Lemma 4.4, one can find ℓd ∈ N such that

γ ℓd < 2−1. (30)

If the dyadic interval λ j,k and m ∈ N are fixed and S ∈ S j,k,m we define the sequences of
yadic intervals (In)0≤n≤m and (Tn)1≤n≤m in the following way:

• I0 = λ j,k :
• Im = S;
• for all 1 ≤ n ≤ m, In−1 = In ∪ Tn .

ow, for any 1 ≤ n ≤ m, there are ℓd dyadic intervals (T ℓ
n = λ j (ℓ)

n ,k(ℓ)
n

)1≤ℓ≤ℓd in
STn ,⌊log2(ℓd MTn )⌋+1 such that, for all 1 ≤ ℓ ≤ ℓd(

k(ℓ)
n − MTn

2 j (ℓ)
n

,
k(ℓ)

n + 1

2 j (ℓ)
n

)
⊆ Tn

and, if ℓ ̸= ℓ′,(
k(ℓ)

n − MTn

2 j (ℓ)
n

,
k(ℓ)

n + 1

2 j (ℓ)
n

)
∩

(
k(ℓ′)

n − MTn

2 j (ℓ′)
n

,
k(ℓ′)

n + 1

2 j (ℓ′)
n

)
= ∅.

herefore, the dyadic intervals (T ℓ
n )1≤ℓ≤ℓd

1≤n≤m satisfy condition (28) (with Mn = MTn ) which
nsures the independence of the random variables (∆̃T ℓ

n

MTn )1≤ℓ≤ℓd
1≤n≤m .

From this, for all S ∈ S j,k,m we define the Bernoulli random variable

B j,k,m(S) =

∏
1≤n≤m,1≤ℓ≤ℓd

1
{|∆̃

T ℓ
n

MTn |<2−1∥∆̃
T ℓ

n

MTn ∥L2(Ω)}
.

Using Lemma 4.4 and the independence of the random variables (∆̃T ℓ
n

MTn )1≤ℓ≤ℓd
1≤n≤m , we conclude

E[B j,k,m(S)] ≤ γ mℓd .

Therefore, if we define the random variable

G j,k,m =

∑
S∈S j,k,m

B j,k,m(S)

then E[G j,k,m] ≤ (2γ ℓd )m . It follows from inequality (30) and Fatou Lemma that

E
[

lim inf
m→+∞

G j,k,m

]
= 0.

As a consequence, Ω1 =
⋂

j∈N,0≤k<2 j {ω : lim infm→+∞ G j,k,m(ω) = 0} is an event of
probability 1.

Now if ω ∈ Ω1 and t0 ∈ [0, 1), we take j ∈ N and k = k j (t0) and since, for all m, G j,k j (t0),m

has values in {0, . . . , 2m
} we conclude that there are infinitely many m for which, for every

S ∈ S j,k j (t0),m , B j,k,m(S) = 0. Considering such a m and S = λ j+m(t0) then we first remark
that, for all 1 ≤ n ≤ m, I = λ (t ) and thus T ∈ 3λ (t ). Now, as B (λ (t )) = 0,
n j+n 0 n j+n 0 j,k,m j+m 0

482



L. Loosveldt Stochastic Processes and their Applications 165 (2023) 465–500

T

W
1
λ

t

λ

F

L

one can find 1 ≤ n ≤ m and 1 ≤ ℓ ≤ ℓd such that

|∆̃T ℓ
n

MTn (ω)| ≥
1
2
∥∆̃T ℓ

n

MTn
∥L2(Ω).

In short, we have shown that for all ω ∈ Ω1 and t0 ∈ [0, 1), there exist infinitely many
j ∈ N such that there is λ ∈ 3λ j (t0) and λ′

∈ Sλ,⌊log2(ℓd Mλ)⌋+1 for which

|∆̃
Mλ

λ′ (ω)| ≥
1
2
∥∆̃

Mλ

λ′ ∥L2(Ω). (31)

On the other hand, from Lemma 3.1, we know that, for all j large enough,

P
(
∃λ ∈ Λ j , λ

′
∈ Sλ,⌊log2(ℓd Mλ)⌋+1 :

⏐⏐⏐}∆λ′

Mλ
⏐⏐⏐ ≥ c′ j

d
2

}∆λ′

Mλ
 L2(Ω)

)
≤ 2ℓd sup

λ∈Λ j

Mλ2 j exp(−cd (c′)
2
d j).

hus, as c′ >
(

ln(2)
cd

) d
2 , recalling the explicit expression (29), we have

+∞∑
j=0

P
(
∃λ ∈ Λ j , λ

′
∈ Sλ,⌊log2(ℓd Mλ)⌋+1 :

⏐⏐⏐}∆λ′

Mλ
⏐⏐⏐ ≥ c′ j

d
2

}∆λ′

Mλ
 L2(Ω)

)
< ∞

e can then deduce from Borel–Cantelli Lemma the existence of Ω2, an event of probability
, such that, for all ω ∈ Ω2, there exists J2 ∈ N for which, for all j ≥ J2, λ ∈ Λ j and
′
∈ Sλ,⌊log2(ℓd Mλ)⌋+1,⏐⏐⏐}∆λ′

Mλ (ω)
⏐⏐⏐ ≤ c′ j

d
2

}∆λ′

Mλ
 L2(Ω). (32)

Similarly, we prove the existence of Ω3, an event of probability 1 such that, for all ω ∈ Ω3,
here exists J3 ∈ N such that, for all j ≥ J3, λ ∈ Λ j and λ′

∈ Sλ,⌊log2(ℓd Mλ)⌋+1,⏐⏐∆̂λ′ (ω)
⏐⏐ ≤ c′ j

d
2
∆̂λ′


L2(Ω). (33)

Now, if ω is such that inequalities (31), (32) and (33) hold, with λ ∈ 3λ j (t0) and λ′
=

j ′,k′ ∈ Sλ,⌊log2(ℓd Mλ)⌋+1 then, from Proposition 4.3, we deduce

|∆λ′ (ω)| ≥ |∆̃
Mλ

λ′ (ω)| −

(⏐⏐⏐}∆λ′

Mλ (ω)
⏐⏐⏐+ ⏐⏐∆̂λ′ (ω)

⏐⏐)

≥
c−1

2
2

− j ′ H
(

k′
+1
j ′

)
− cc′

⎛⎜⎜⎜⎝(8c2c′ j
d
2 )

H
(

k′
+1

2 j ′

)
−1

1−H
(

k+1
2 j

)
j

d
2 2

− j ′ H
(

k′
+1
j ′

)
+ Osc(H, λ′)

⎞⎟⎟⎟⎠ .

irst, by Condition 2.8(b), we know that there is c′′ > 0 and γ > H (t0) such that

Osc(H, λ′) ≤ c′′2−γ j . (34)

et us remark that

lim
j→+∞

j

d
2

⎛⎜⎝1+

H
(

k′
+1

2 j ′

)
−1

1−H
(

k+1
2 j

)
⎞⎟⎠

= lim
j→+∞

exp

⎛⎝ln( j)
d
2

⎛⎝H
(

k′
+1

2 j ′

)
− H

(
k+1
2 j

)
1 − H

(
k+1
)

⎞⎠⎞⎠

2 j
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and, as⏐⏐⏐⏐⏐⏐
H
(

k′
+1

2 j ′

)
− H

(
k+1
2 j

)
1 − H

(
k+1
2 j

)
⏐⏐⏐⏐⏐⏐ ≤ c′′

2−γ j

1 − sup K
,

e get

lim
j→+∞

j

d
2

⎛⎜⎝1+

H
(

k′
+1

2 j ′

)
−1

1−H
(

k+1
2 j

)
⎞⎟⎠

= 1.

imilarly, we also have

lim
j→+∞

(8c2c′)

H
(

k′
+1

2 j ′

)
−1

1−H
(

k+1
2 j

)
= (8c2c′)−1.

n particular, if j is large enough, H
(

k′
+1
j ′

)
is also strictly less that γ and one can write

cc′ Osc(H, λ′) ≤
c−1

8
(8c2c′ j

d
2 )

−

d H
(

k′
+1
j ′

)
1−H

(
k+1
2 j

)
2

− j H
(

k′
+1
j ′

)
.

Putting all of these together, we conclude that, for all j sufficiently large,

|∆λ′ (ω)| ≥
c−1

4
2

− j ′ H
(

k′
+1
j ′

)
−

c−1

8
(8c2c′ j

d
2 )

−

d H
(

k′
+1
j ′

)
1−H

(
k+1
2 j

)
2

− j H
(

k′
+1
j ′

)

≥
c−1

8
(8c2c′ j

d
2 )

−

d H
(

k′
+1
j ′

)
1−H

(
k+1
2 j

)
2

− j H
(

k′
+1
j ′

)
. (35)

In total, on Ω1 ∩ Ω2 ∩ Ω3, which is an event of probability 1, for all t0 ∈ [0, 1), we have,
rom Eqs. (26), (35) and Condition 2.8(b) for H ,

lim sup
j→+∞

Osc(X H (·)
d , [t0 − 22− j , t0 + 22− j ] ∩ R+)

2− j H (t0) j−
d2 H (t0)

2(1−H (t0))

> 0. □

Theorem 2.10 is then a direct consequence of Proposition 2.4 and Theorem 4.1.

roof of Theorem 2.10. Let us consider the events Ω∗ and Ω given by Proposition 2.4 and
heorem 4.1 respectively. Then, Ω∗

∩ Ω is an event of probability 1 on which:

• for all t ≥ 0, hX H (·)
d

(t0) ≥ H (t0), by Proposition 2.4 and Condition 2.8(b);

• for all t ≥ 0, hX H (·)
d

(t0) ≤ H (t0), by Theorem 4.1. □

Remark 4.5. Let us recall that, for all continuous function f , all interval I and all t0 ∈ I ,
H f (I ) ≤ h f (t0). Thus, an immediate consequence of Theorems 2.9 and 2.10 is that, if the
Hurst function H satisfies Conditions 2.8(a) and (b), on the event Ω∗

1 ∩ Ω∗

2 of probability 1,
or all interval I ⊆ R+

H H (·) (I ) = H (I ). (36)
Xd
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Let us note that only Condition (a) is required to deduce this fact. Indeed, if t0 ∈ I is such
hat H (t0) = H (I ), then it is still possible to reach the bounds (34) at t0 and then (35). Then,
n Ω , (25) holds at t0. It follows that, on Ω

HX H (·)
d

(I ) ≤ hX H (·)
d

(t0) ≤ H (t0) = H (I )

nd the equality (36) holds on Ω ∩ Ω∗.

5. Law of iterated logarithm

Let us now prove that multifractional Hermite processes enjoy a law of iterated logarithm.
We use similar arguments as in Sections 3 and 4 but somehow “localize” them. This localization
helps us to deduce, at each point, a sharper modulus of continuity which bounds, both from
above and below, the oscillations of the process around this point. Let us start by showing the
finiteness of the limit in (16).

Proposition 5.1. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst function

H : R+ → K satisfying Condition 2.8(c), there exists Ω1, an event of probability 1, such
hat on Ω1, for (Lebesgue) almost every t0 ∈ R+, we have

lim sup
r→0+

Osc(X H (·)
d , [t0 − r, t0 + r ] ∩ R+)

r H (t0)(log(log r−1))
d
2

< ∞. (37)

roof. We use the notation introduced before the proof of Theorem 2.9. Let us fix t0 ∈ [0, 1)

and c > c
−2
d

d , with cd > 0 the constant in Lemma 3.1. For all j0 ∈ N, let A j0 (t) be the event
efined by(

∃ j ≥ j0, λk, j , λk′, j ⊆ 3λ j0 (t0) :
|X j,k′ − X j,k |

∥X j,k′ − X j,k∥L2(Ω)
≥ c log( j0)

d
2 ( j − j0 + 1)

d
2

)
.

If j0 is sufficiently large, we have, by Lemma 3.1,

P(A j0 (t)) ≤

∑
j≥ j0

32 j− j0 exp(−cdc
2
d log( j0)( j − j0 + 1))

≤ c′ exp(−cdc
2
d log( j0)),

or a deterministic constant c′ > 0 independent of any relevant quantities. Thus, as c > c
−2
d

d ,
e have

∑
+∞

j0=0 P(A j0 (t)) < ∞ and Borel–Cantelli Lemma entails the existence of Ωt0 , an
vent of probability 1, such that, on Ωt0 , there exists J ∈ N, for which, for all j ≥ j0 ≥ J ,
k, j , λk′, j ⊆ 3λ j0 (t0),

|X j,k′ − X j,k | ≤ c log( j0)
d
2 ( j − j0 + 1)

d
2 ∥X j,k′ − X j,k∥L2(Ω). (38)

Let us then consider j0 ≥ J and s, t ∈ [t0 − r, t0 + r ] with 2−( j0+1)
≤ r ≤ 2− j0 . For any

j ≥ j0 and x ∈ {s, t}, λ j (x) ⊆ 3λ j0 (t0). Thus, increasing j0 if necessary, from Proposition 2.2
nd the Condition 2.8(c) for H , one can write,

∥X j,k j (t) − X j,k j (s)∥L2(Ω) ≤ c1

(
2− j min{H (k j (t)2− j ),H (k j (s)2− j )}

+ 2− j H (t0)
)

≤ c1

(
2− j min{H (t),H (s)}2− j2− j H (t0)

+ 2− j H (t0)
)

− j min{H (t0),H (t),H (s)}

≤ 2c12 (39)
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for a deterministic constant c1 > 0, only depending on d , K and [0, 1].
On the event Ω∗ given by Proposition 2.4, one can write

X H (·)
d (t) − X H (·)

d (s) = X j0,k j0 (t) − X j,k j0 (s)

+

∑
j≥ j0

(
X j+1,k j+1(t) − X j+1,k j+1(s) − X j,k j (t) + X j,k j (s)

)
.

It then follows from inequalities (38) and (39) that, on Ω∗
∩Ωt0 , there exists a constant c2 > 0,

only depending on d, K and [0, 1] such that

|X H (·)
d (t) − X H (·)

d (s)| ≤ c22− j0 min{H (t0),H (t),H (s)} log( j0)
d
2 .

Increasing j0 if necessary, the Condition 2.8(c) for H and the inequalities 2−( j0+1)
≤ r ≤ 2− j0

finally give

|X H (·)
d (t) − X H (·)

d (s)| ≤ 2c2r H (t0)(log(log(r−1)))
d
2 .

In total, we have proved that for any t0 ∈ [0, 1] there exists Ωt0 , an event of probability 1, on
hich (37) holds. The conclusion follows by countable intersection and Fubini theorem. □

Let us now focus on the positiveness of the limit in (16). We use again the random variables
ntroduced in Definition 4.2. First, we need to bound from below the probabilities

P
(

|∆̃M
j,k | ≥ y2− j H

(
k+1
2 j

))
(40)

or ( j, k) ∈ N × {0, . . . , 2 j
− 1} and M > 0. We know that for any variable X in the Wiener

haos of order d , there exist two deterministic constants y0 ≥ 0 and c > 0 such that, for all
y ≥ y0,

P(|X | ≥ y) ≥ exp(−cy
2
d ),

ee [36, Theorem 6.12]. But, unfortunately, these constants depend on the law of X and are
ot universal, which is undesirable in our context. Nevertheless, using some convergences in

L2(Ω ), we still manage to “uniformly” bound the probabilities (40) from below.

Lemma 5.2. Let d ∈ N∗, K be a compact interval of ( 1
2 , 1) and H : R+ → K be a

continuous Hurst function. For all t0 ∈ R+, there exist four deterministic constants ct0 > 0,
yt0 > 0, j0 ∈ N and M0 > 0 such that, for all λ j,k ⊆ 3λ j0 (t0), M ≥ M0 and y > yt0 , we have

P(|∆̃M
j,k | ≥ y2− j H

(
k+1
2 j

)
) ≥ exp(−ct0 y

2
d ). (41)

roof. For all j ∈ N, k ∈ {0, . . . , 2 j
− 1} and M ∈ N, by auto-similarity and stationarity of

ncrements for standard Hermite processes, we know that the random variables

∆̃M
j,k + q∆M

j,k and 2− j H
(

k+1
2 j

)
Xd

(
1, H

(
k + 1

2 j

))
are equals in law. We also know that there exist two deterministic constants c1

t0
> 0 and y1

t0
> 0

uch that, for all y > y1
t0

P |X (1, t )| ≥ y ≥ exp(−c1 y
2
d ).
( d 0 ) t0
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For all y > 0, we write

P
(

|∆̃M
j,k | ≥ y2− j H

(
k+1
2 j

))
≥ P

(⏐⏐⏐⏐Xd

(
1, H

(
k + 1

2 j

))⏐⏐⏐⏐ ≥ 2y
)

− P(|q∆M
j,k | > y2− j H

(
k+1
2 j

)
).

y Lemma 3.1 and Proposition 4.3, we know that, for all j, k, and all M and y sufficiently
arge,

P
(

|q∆M
j,k | > y2− j H

(
k+1
2 j

))
≤ exp

⎛⎜⎝−cd

⎛⎝yc−1 M
1−H

(
k+1
2 j

)
d

⎞⎠
2
d
⎞⎟⎠

≤ exp

(
−cd

(
yc−1 M

1−sup K
d

) 2
d

)
As 1 − sup K > 0, if M is large enough, one can then reach

P
(

|q∆M
j,k | > y2− j H

(
k+1
2 j

))
≤

1
4

exp(−3c1
t0

y
2
d ).

n the other hand, we have

P
(⏐⏐⏐⏐Xd

(
1, H

(
k + 1

2 j

))⏐⏐⏐⏐ ≥ 2y
)

≥ P (|Xd (1, t0)| ≥ 3y) − P
(⏐⏐⏐⏐Xd (1, H (t0)) − Xd

(
1, H

(
k + 1

2 j

))⏐⏐⏐⏐ > y
)

.

Using again Lemma 3.1, from Proposition 2.2, we know that there exists a deterministic
constant c2 > 0, only depending on d , K and [0, 1], such that, for all j0 large enough,

P
(⏐⏐⏐⏐Xd (1, H (t0)) − Xd

(
1, H

(
k + 1

2 j

))⏐⏐⏐⏐ > y
)

≤ exp
(

−cd

Xd (1, H (t0)) − Xd

(
1, H

(
k + 1

2 j

)) −2
d

L2(Ω)
y

2
d

)
≤ exp

(
−cdc

−2
d

2

⏐⏐⏐⏐H (t0) − H
(

k + 1
2 j

)⏐⏐⏐⏐−2
d

y
2
d

)
.

The continuity of H insures that, if j is large enough,

P
(⏐⏐⏐⏐Xd (1, H (t0)) − Xd

(
1, H

(
k + 1

2 j

))⏐⏐⏐⏐ > y
)

≤
1
4

exp(−3c1
t0

y
2
d ).

utting everything together, we conclude the existence of ct0 > 0 and yt0 > 0 with the desired
roperty. □

Let us use this last Lemma to prove the positiveness of the limit in (16).

roposition 5.3. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst function

H : R → K satisfying Condition 2.8(b), there exists Ω , an event of probability 1, such
+ 2

487



L. Loosveldt Stochastic Processes and their Applications 165 (2023) 465–500

P
t
m
w
l

l

a

I
i

that on Ω2, for (Lebesgue) almost every t0 ∈ R+, we have

0 < lim sup
r→0+

Osc(X H (·)
d , [t0 − r, t0 + r ] ∩ R+)

r H (t0)(log(log r−1))
d
2

.

roof. We use the same notation as in the proof of Theorem 4.1. Let us fix t0 ∈ [0, 1). We
ake M and j are sufficiently large such that (41) holds for all large enough y. Then, for any

∈ N and λ ∈ Sλ j (t0),m , let (In)0≤n≤m and (Tn)1≤n≤m be the sequences of dyadic intervals
ith I0 = λ j (t0); Im = λ and, for all 1 ≤ n ≤ m, In−1 = In ∪ Tn . For all 1 ≤ n ≤ m,

et also T ⋆
n = λkn , jn ∈ STn ,⌊log2(M)⌋+1 such that (T ⋆

n )M
⊆ Tn . In particular, for all n ̸= n′,

(T ⋆
n )M

∩ (T ⋆
n′ )M

= ∅ and the random variables (∆̃M
T ⋆

n
)1≤n≤m are independent.

If ct0 > 0 is the constant given in Lemma 5.2 and c1 is a deterministic constant such that

0 < ct0c
2
d
1 < 1, let us consider the event

E j,m(t0) =

{
ω ∈ Ω : max

1≤n≤m

⏐⏐⏐⏐⏐ ∆̃M
T ⋆

n

2− jn H
(

kn+1
2 jn

)
⏐⏐⏐⏐⏐ ≥ c1 log(2 m)

d
2

}
.

Using the independence of the random variables (∆̃M
T ⋆

n
)1≤n≤m , Lemma 5.2 and the inequality

og(1 − x) ≤ −x for all x ∈ (0, 1), we get, if m is large enough,

P(E j,m(t0)) = 1 −

m∏
n=1

P

(⏐⏐⏐⏐⏐ ∆̃M
T ⋆

n

2− jn H
(

kn+1
2 jn

)
⏐⏐⏐⏐⏐ < c1 log(2 m)

d
2

)

≥ 1 − (1 − exp(−ct0c
2
d
1 log(2 m))m)

≥ 1 − exp

⎛⎝ m

(2 m)ct0 c
2
d
1

⎞⎠
= 1 − exp

⎛⎜⎝m1−ct c
2
d
1

2ct0 c
2
d
1

⎞⎟⎠ .

Thus, as 0 < ct0c
2
d
1 < 1, we get∑

p∈N

P(E2p,2p (t0)) = ∞

nd Borel–Cantelli Lemma, combined with the independence of the events (E2p,2p (t0))p entails

P
(

lim sup
p→+∞

E2p,2p (t0)
)

= 1.

n other words, there exists Ω1
t0

, an event of probability 1, such that, for all ω ∈ Ω1
t0

, there are
nfinitely many j ∈ N such that, there exist λ ∈ 3λ j (t0) and λ′

j ′,k′ ∈ Sλ,⌊log2(M)⌋+1 for which

|∆̃M d
2 2

− j ′ H
(

k′
+1

2 j ′

)
. (42)
λ′ (ω)| ≥ c1 log( j)
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On the other hand, if c2 is a deterministic constant such that c2 > c
−2
d

d , we have, by
emma 3.1 and Proposition 4.3, for all j ∈ N

P
(
∃λ ∈ 3λ j (t0), λ′

∈ Sλ,⌊log2(M)⌋+1 :

⏐⏐⏐q∆M
λ′

⏐⏐⏐ ≥ c2 log( j)
d
2

q∆M
λ′

 L2(Ω)

)
≤ 3M exp(−cdc

d
2
2 log( j)).

The fact that c2 > c
−2
d

d and Borel–Cantelli Lemma entails the existence of Ω2
t0

, an event of
robability 1, such that, for all ω ∈ Ω2

t0
, there exists J ∈ N for which, for all j ≥ J , λ ∈ 3λ j (t0)

nd λ′

j ′,k′ ∈ Sλ,⌊log2(M)⌋+1,

|q∆M
λ′ (ω)| ≤ c2

q∆M
λ′

 L2(Ω) ≤ c2cM
H
(

k′
+1

2 j ′

)
−1

d log( j)
d
2 2

− j ′ H
(

k′
+1

2 j ′

)
, (43)

here c > 0 is the deterministic constant given by Proposition 4.3. Similarly, there exists Ω3
t0

,
n event of probability 1, such that, for all ω ∈ Ω3

t0
, there exists J ∈ N for which, for all

j ≥ J , λ ∈ 3λ j (t0) and λ′
∈ Sλ,⌊log2(M)⌋+1,

|∆̂λ′ (ω)| ≤ c2c log( j)
d
2 Osc(H, λ′). (44)

s sup K < 1, by increasing M if necessary, we can reach, c2cM
sup K−1

d <
c1
4 . Also, from the

ondition 2.8(b) on H , there exits c3 > 0 and γ > H (t0) such that, for all λ′
∈ Sλ,⌊log2(M)⌋+1,

Osc(H, λ′) ≤ c32− jγ
≤ c3 Mγ 2− j ′γ .

ncreasing j if necessary, we can reach

c2c Osc(H, λ′) ≤
c1

4
2

− j ′ H
(

k′
+1

2 j ′

)
.

If inequalities (42), (43) and (44) hold, we thus have, for all M and j big enough

|∆λ′ (ω)| ≥
c1

2
log( j)

d
2 2

− j ′ H
(

k′
+1

2 j ′

)

≥
c1

2
log( j)

d
2 M

−H
(

k′
+1

2 j ′

)
2

− j H
(

k′
+1

2 j ′

)
.

n total, from the Condition 2.8(b) for H and inequality (26), we deduce that, for all t0 ∈ [0, 1),
n the event Ω1

t0
∩ Ω2

t0
∩ Ω3

t0
of probability 1, we have

lim sup
j→+∞

Osc(X H (·)
d , [t0 − 22− j , t0 + 22− j ])

2− j H (t0) log( j)
d
2

> 0.

he conclusion follows again by countable intersection and Fubini theorem. □

Theorem 2.11 is then an immediate consequence of Propositions 5.1 and 5.3.

roof of Theorem 2.11. If Ω1 and Ω2 are the events of probability 1 given by Propositions 5.1
nd 5.3 respectively, on Ω1 ∩ Ω2, we have, for (Lebesgue) almost every t0 ∈ R+,

0 < lim sup
Osc(X H (·)

d , [t0 − r, t0 + r ] ∩ R+)
H (t ) −1 d < ∞. □
r→0+ r 0 (log(log r )) 2
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6. Local asymptotic self-similarity

Let us start this section by showing that the multifractional Hermite process {X H (·)
d (t)}t∈R+

is
eakly locally asymptotically self-similar. Our main ingredient is the following lemma, which

s sometimes refereed as Slutsky’s theorem (see for instance [34, Page 318]).

emma 6.1. Let (X j ) j and (Y j ) j be two sequences of random variables such that (X j ) j

onverge in distribution to a random variable X and (Y j ) j converges in probability to a
eterministic constant c, then the sequence (X j + Y j ) j converges in distribution to X + c.

roposition 6.2. Let d ∈ N∗, K be a compact interval of ( 1
2 , 1) and H : R+ → K be a

Hurst function satisfying Condition 2.8(b). For all t0 ≥ 0, the multifractional Hermite process
{X H (·)

d (t)}t∈R+
is weakly locally asymptotically self-similar of order H (t0) at t0 with tangent

process {Xd (t, H (t0))}t≥0, the Hermite process of Hurst parameter H (t0).

Proof. Let us fix t0 ≥ 0. For all t ≥ 0 and ε > 0, we write

ε−H (t0)
(

X H (·)
d (t0 + εt) − X H (·)

d (t0)
)

= ε−H (t0) (Xd (t0 + εt, H (t0 + εt)) − Xd (t0 + εt, H (t0)))

+ ε−H (t0) (Xd (t0 + εt, H (t0)) − Xd (t0, H (t0))) .

irst, from the well-known self-similarity and stationary of increments for the standard Hermite
rocess, we know that the process

{ε−H (t0) (Xd (t0 + εt, H (t0)) − Xd (t0, H (t0)))}t≥0

s equal in finite-dimensional distribution to

{Xd (t, H (t0))}t≥0.

n the other hand, from Proposition 2.2, we know that, for all t ≥ 0 and ε > 0,ε−H (t0) (Xd (t0 + εt, H (t0 + εt)) − Xd (t0 + εt, H (t0)))


L2(Ω)

≤ c2ε
−H (t0)

|H (t0 + εt) − H (t0)| .

f t ≥ 0 is fixed, Condition 2.8(b) insures that one can give find γ > H (t0) and c > 0 such
hat, for all ε > 0 sufficiently small

|H (t0 + εt) − H (t0)| ≤ cε−γ .

n particular, for all fixed t ≥ 0, the sequence of random variables(
ε−H (t0) (Xd (t0 + εt, H (t0 + εt)) − Xd (t0 + εt, H (t0)))

)
ε>0

onverges to 0 in L2(Ω ), and thus in probability, when ε → 0+.
The conclusion follows from Lemma 6.1. □

Now, we want to show that the local asymptotic self-similarity also holds in the strong sense.
s already explained in Section 2, it suffices to show that (17) holds, with X = X H (·)

d . On this
urpose, we recall the Garsia–Rodemich–Rumsey inequality in the following lemma, a proof

an be read in [33].
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Lemma 6.3. Let Ψ be a non-negative even function on R and ρ be a non-negative even
unction on [−1, 1]. Assume also that both Ψ and ρ are non decreasing on R+. If f is a
ontinuous function for which∫∫

[0,1]2
Ψ

(
f (x) − f (y)
ρ(x − y)

)
dxdy ≤ B < ∞,

hen, for all s, t ∈ [0, 1],

| f (s) − f (t)| ≤ 8
∫

|s−t |

0
Ψ−1

(
4B
u2

)
dρ(u).

Applying this last Lemma to the functions Ψ : u ↦→ |u|
p and ρ : ↦→ |u|

α+
1
p , for p ≥ 1

and α ≥
1
p then, with an obvious change of variable, we conclude that, for all a > 0, there

exists a deterministic constant ca,p,α such that, for any f ∈ C([0, a],R) and t ∈ [0, a]

| f (t) − f (0)|p
≤ ca,p,αtαp−1

∫∫
[0,a]2

| f (r ) − f (v)|p
|r − v|

−αp−1 drdv. (45)

We use this fact to prove Theorem 2.13.

Proof of Theorem 2.13. It remains us to prove the strong local asymptotic self-similarity in
the case where the Hurst function H satisfies Condition 2.8(c). Let us fix a > 0 and t0 ≥ 0.
For all ε, η, δ > 0, we set

P(ε, η, δ) := P

(
sup

s,t∈[0,a],|t−s|≤η

⏐⏐⏐⏐ X H (·)(t0 + εt) − X H (·)(t0 + εs)
εH (t0)

⏐⏐⏐⏐ ≥ δ

)
.

We have to show that, for all δ > 0, limη→0+ lim supε→0+ P(ε, η, δ) = 0.
Of course, the Markov inequality entails, for any p ≥ 1,

P(ε, η, δ) ≤ δ−pε−pH (t0)E

[
sup

s,t∈[0,a],|t−s|≤η

⏐⏐X H (·)(t0 + εt) − X H (·)(t0 + εs)
⏐⏐p

]
.

hen, we use inequality (45) to write, for α ≥
1
p ,

E

[
sup

s,t∈[0,a],|t−s|≤η

⏐⏐X H (·)(t0 + εt) − X H (·)(t0 + εs)
⏐⏐p

]
≤ ca,p,αηαp−1

∫∫
[0,a]2

E
[⏐⏐X H (·)(t0 + εt) − X H (·)(t0 + εs)

⏐⏐p
]
|t − s|−αp−1 dsdt.

Moreover, we know from Corollary 2.3 that, for all s, t ∈ [0, a],

E
[⏐⏐X H (·)(t0 + εt) − X H (·)(t0 + εs)

⏐⏐p
]

≤
(
(ε|t − s|)min{H (t0+εt),H (t0+εs)}

+ |H (t0 + εt) − H (t0 + εs)|
)p

.

By Condition 2.8(c), there exits a deterministic constant c > 0 such that, for all ε > 0
sufficiently small and s, t ∈ [0, a], s ̸= t ,

|H (t0 + εt) − H (t0 + εs)| ≤ c(ε|t − s|)H (t0)
≤ cεH (t0)

|t − s|inf K

and

(ε|t − s|)min{H (t0+εt),H (t0+εs)}
≤ εH (t0)

|t − s|inf K ε−(aε)H (t0)
≤ 2εH (t0)

|t − s|inf K .
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In total, we have obtained that, for all ε > 0 sufficiently small,

P(ε, η, δ) ≤ 2ca,p,αδ−pηαp−1
∫∫

[0,a]2
|t − s|p(inf K−α)−1 dsdt.

One can then choose, for instance, α =
inf K

2 and p =
2
α

in order that the last integral is finite,
ecause p(inf K − α) − 1 = 1, and, as α > 1

p ,

lim
η→0+

lim sup
ε→0+

P(ε, η, δ) = 0. □

7. Fractal dimensions of the graph

Given a compact interval I ⊂ R+, let us start by providing an upper bound for the box-
counting dimensions of the set Gd (I ). From the results proved in Sections 2 and 3, it is in fact
an easy task, thanks to the following lemma, see [32, Corollary 11.2] for a proof.

Lemma 7.1. Let I ⊂ R+ be a compact interval and f : I → R be a continuous function
or which there exist c ≥ 0 and 1 ≤ α ≤ 2 such that, for all s, t ∈ I ,

| f (s) − f (t)| ≤ c|t − s|2−α,

then

dimB

(
{(t, X H (·)

d (t)) : t ∈ I }
)

≤ α.

One can then directly state the following proposition.

Proposition 7.2. Given d ∈ N∗, a compact interval K of ( 1
2 , 1), a Hurst function H : R+ →

K satisfying Condition 2.8(a) and a compact interval I ⊂ R+, there exists Ω̃1, an event of
probability 1, such that, on Ω̃1, we have

dimB (Gd (I )) ≤ 2 − H (I ).

roof. It is an immediate consequence of Theorem 2.9 and Lemma 7.1. □

To obtain a lower bound on the Hausdorff dimension, we use the notion of potential.

efinition 7.3. Let d ∈ N∗ and s ≥ 0. The s-potential at a point x ∈ Rd to the measure µ on
d is the quantity

φs(x) =

∫
dµ(y)

|x − y|
s .

The s-energy of µ is then defined as

Is(µ) =

∫
φs(x) dµ(x) =

∫∫
dµ(x)dµ(y)

|x − y|
s .

Often, potentials and energies are used to get a lower bound for the Hausdorff dimension,
as stated in the following Lemma, see [32, Theorem 4.13] for a proof.

Lemma 7.4. Let d ∈ N∗ and A be a subset of Rd . If there is a non vanishing finite measure
µ with non-empty support included in A with I (µ) < ∞, then Hs(A) = ∞ and dim (A) ≥ s.
s H
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In order to apply Lemma 7.4 in our context, we have to find upper bounds for negative
oments of the multifractional Hermite process. On this purpose, we use the following result,

nown as Carbery–Wright inequality, see [22, Theorem 8].

emma 7.5. There is an absolute deterministic constant c > 0 such that, for any n, d ≥ 1,
< p < ∞ any polynomial Q : Rd

→ R of degree at most n, any Gaussian random vector
(X1, . . . , Xd ) and any x > 0,

E[|Q(X1, . . . , Xd )|
p
n ]

1
p P(|Q(X1, . . . , Xd )| ≤ x) ≤ cpx

1
n .

In the sequel, if a compact interval I ⊂ R+, t0 ∈ I and ε > 0 are fixed, we set

H (t0, ε) := H ([t0 − ε, t0 + ε] ∩ I ).

The proof of the following Lemma uses ideas from [2, Lemma 14] and [53, Lemma 4.3],
with modifications again mainly due to the fact that we are working with a non-constant Hurst
function. As this Lemma is the main reason for the disparity between the lower and upper
bounds for the fractal dimensions in Theorem 2.17, we believe that it is useful to write it in
full details so that the readers can directly understand where it comes from.

Proposition 7.6. Given d ∈ N∗, a compact interval K of ( 1
2 , 1), a Hurst function H :

R+ → K satisfying Condition 2.8(a) and a compact interval I ⊂ R+. If t0 ∈ I is such that
H (t0) = H (I ), there exist two deterministic constants c > 0, ξ > 0, both only depending on
, H and I , such that, for all 0 < ε < ξ , x ≥ 0 and t, u ∈ I ∩ [t0 − ε, t0 + ε],

P(|X H (·)
d (t) − X H (·)

d (u)| ≤ x) ≤ cx
1
d |t − u|

−
H (t0,ε)

d .

roof. Let us fix t, u ∈ I . The symmetric function

f H (·)
t,u : Rd

→ R : w ↦→

∫ t

0
fH (t)(s, w) ds −

∫ u

0
fH (u)(s, w) ds

elongs to L2(Rd ). By definition,

Id

(
f H (·)
t,u

)
=

(
X H (·)

d (t) − X H (·)
d (u)

)
.

Given {e j } j∈N an orthonormal basis of L2(R), the sequence of functions⎛⎝ f H (·),J
t,u :=

J∑
j1,..., jd=1

⟨ f H (·)
t,u , e j1 ⊙ · · · ⊙ e jd ⟩e j1 ⊙ · · · ⊙ e jd

⎞⎠
J

,

here ⊙ stands for the symmetric tensor product, converges to f H (·)
t,u in L2(Rd ), see [52,

ppendix B.3.].
For all ( j1, . . . , jd ) ∈ Nd , we know that

Id
(
e j1 ⊙ · · · ⊙ e jd

)
=

p∏
ℓ=1

Hnℓ

(∫
R

e j̃ℓ (x) d B(x)
)

,

here nℓ is the number of occurrence of j̃ℓ in ( j1, . . . , jd ) and Hnℓ
is the Hermite polynomial

f degree nℓ, see [54, Page 14]. In particular, since, for all f ∈ L2(R) with ∥ f ∥L2(R) = 1,
I1( f ) ∼ N (0, 1), Lemma 7.5 with p = 2d and n = d entails, for all J ,

P(|Id

(
f H (·),J

)
| ≤ x) ≤ c2dx

1
d ∥Id

(
f J )

∥
−

1
d .
t,u t,u L2(Ω)
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Now, from the isometry property for Wiener–Itô integrals, we know that

Id

(
f H (·),J
t,u

)
−→
J→∞

(
X H (·)

d (t) − X H (·)
d (u)

)
n L2(Ω ). In particular, there exists a subsequence ( f H (·),Jk

t,u )k for which the convergence holds
lmost surely. Then, by Fatou’s Lemma,

P
(
|X H (·)

d (t) − X H (·)
d (u)| ≤ x

)
≤ lim inf

k→+∞

P
(
|Id

(
f H (·),Jk
t,u

)
| ≤ x

)
≤ c2dx

1
d lim inf

k→+∞

Id

(
f Jk
t,u

) −
1
d

L2(Ω)

= c2dx
1
d

X H (·)
d (t) − X H (·)

d (u)
 −

1
d

L2(Ω)
.

We use Proposition 2.2 to affirm that there exist two deterministic constants c1, c2 > 0, only
epending on d , K and I , such thatX H (·)

d (t) − X H (·)
d (u)

 L2(Ω) ≥ c1|t − u|
min{H (t),H (u)}

− c2|H (t) − H (u)|.

ince H satisfies Condition 2.8(a), there exists γ > H (I ) = H (t0) such that H ∈ Cγ (I ). Then,
f ξ > 0 is sufficiently small, for all 0 < ε < ξ , we also have H (t0, ε) < γ . By reducing again
> 0 if necessary, we have, for all 0 < ε < ξ and t, u ∈ I ∩ [t0 − ε, t0 + ε]

c2|H (t) − H (u)| ≤
c1

2
|t − u|

H (t0,ε).

In total, we have obtained, for all such ε and t, u,

P
(
|X H (·)

d (t) − X H (·)
d (u)| ≤ x

)
≤ c2d(2−1c1)−

1
d x

1
d |t − u|

−
H (t0,ε)

d . □

We can now prove Theorem 2.17.

Proof of Theorem 2.17. Let t0 ∈ I be such that H (t0) = H (I ). Let ξ > 0 be given by
roposition 7.6 and j ∈ N∗ with 1

j < ξ . For all t, r ≥ 0 such that t, t+r ∈ [t0− j−1, t0+ j−1]∩I
and s > 0, we have, by Proposition 7.6,

E
[(

|X H (·)
d (t + r ) − X H (·)

d (t)|
2
+ r2

)−
s
2
]

=

∫ r−s

0
P
((

|X H (·)
d (t + r ) − X H (·)

d (t)|
2
+ r2

)−
s
2

≥ x
)

dx

= s
∫

+∞

0
y(y2

+ r2)−
s
2 −1P

(
|X H (·)

d (t + r ) − X H (·)
d (t)| ≤ y

)
dy

≤ cs
∫

+∞

0
y(y2

+ r2)−
s
2 −1 y

1
d r−

H (t0, j−1)
d dy

≤ c′r−
H (t0, j−1)

d

(
r−s−2

∫ r

0
y1+

1
d dy +

∫
+∞

r
y−s−1+

1
d dy

)
≤ c′′r

1
d −s−

H (t0, j−1)
d , (46)

here c > 0 is given by Proposition 7.6 and c′, c′′ > 0 are deterministic constants only
epending on s, d and c.
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Thus, if we consider the random measure µX, j defined for all Borel sets A ⊆ R2 by

µX, j (A) := L{t ∈ [t0 − j−1, t0 + j−1] ∩ I : (t, X H (·)
d (t)) ∈ A},

ith L the Lebesgue measure in R, we get

E
(∫∫

dµX, j (x)dµX, j (y)
|x − y|

s

)
=

∫∫
([t0− j−1,t0+ j−1]∩I )2

E
[(

|X H (·)
d (t) − X H (·)

d (u)|
2
+ |t − u|

2
)−

s
2
]

dt du

≤ c′′

∫∫
([t0− j−1,t0+ j−1]∩I )2

|t − u|
1
d −s−

H (t0,ε)
d dt du.

f s < 1 +
1−H (t0, j−1)

d , then this last integral is finite. Therefore, for all q j ∈ Q with

< q j ≤ 1 +
1−H (t0, j−1)

d , there exists Ω̃ j,q j , an event of probability 1, such that on, Ω̃ j,q j ,∫∫
dµX, j (x)dµX, j (y)

|x − y|
q j

< +∞.

y Lemma 7.4 and (19), it means that, on Ω̃ j,q j

q j ≤ dimH
(
Gd ([t0 − j−1, t0 + j−1] ∩ I )

)
≤ dimH (Gd (I )) .

As H is a continuous function, it follows that on the event
⋂

j
⋂

q j
Ω̃ j,q j of probability 1, we

have

1 +
1 − H (I )

d
≤ dimH (Gd (I )) .

t suffices to intersect this event with Ω1 from Proposition 7.2 to get the conclusion. □

emark 7.7. Let us note that the proof or Proposition 7.6 only requires that, if t0 ∈ I
s such that H (t0) = H (I ), there exist ξ > 0 and γ > 0 such that γ > H (t0, ξ ) and
H ∈ Cγ ([t0 − ξ, t0 + ξ ) ∩ I ). In particular the lower bound for the Hausdorff dimension
f Gd (I ) still holds in this case.

. Complements for the multifractional Rosenblatt process

In this last section, we take advantage of the expression (21) to improve Theorem 2.17 in
he case d = 2, where the multifractional Hermite process is the multifractional Rosenblatt
rocess. Let us start by introducing the notions of Malliavin calculus that we are going to use.
etails can be read in the fundamental books [52,54].
Generally speaking, let H be a real separable Hilbert space with inner product ⟨·, ·⟩H and

ssociated norm ∥ · ∥H. We call isonormal Gaussian process over H any centred Gaussian
amily X = {X ( f ) : f ∈ H} defined on a probability space (Ω ,F ,P) and such that, for every
f, g ∈ H, E[X ( f )X (g)] = ⟨ f, g⟩H. One can assume that F is the σ -field generated by X . For
ll m ≥ 1, H⊙m is the mth symmetric tensor product of H and L2(Ω ,H⊙m ) is the class of
⊙m -valuated random elements F which are F-measurable and such that E[∥F∥

2
H⊙m ] < ∞.

et S be the set of all cylindrical random variables of the form
F = g(X ( f1), . . . , X ( fn)) (47)
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with n ≥ 1, f j ∈ H and g infinitely differentiable such that all its partial derivatives have
olynomial growth. If F ∈ S is of the form (47), the mth Malliavin derivative of F is the
lement of L2(Ω ,H⊙m ) defined by

Dm F =

n∑
j1,..., jm=1

∂m g
∂x j1 . . . ∂x jm

(X ( f1), . . . , X ( fn)) f j1 ⊗ · · · ⊗ f jm .

For all m ≥ 1 and p ≥ 1, Dm,p denote the closure of S with respect to the norm

∥ · ∥m,p : F ↦→

⎛⎝E[|F |
p] +

m∑
j=1

E[∥D j F∥
p

H⊗ j ]

⎞⎠ 1
p

. (48)

For all p ≥ 1, D∞,p
=
⋂

m≥1 Dm,p

In the sequel, we will heavily use the following fact which is contained in [35, Theorem
3.1].

Lemma 8.1. If F ∈ D2,s is such that E[|F |
2p] < ∞ and E[∥DF∥

−2r
H ] < ∞ for p, r, s > 1

satisfying 1
p +

1
r +

1
s = 1, then F has continuous and bounded density fF with

sup
x∈R

| fF (x)| ≤ cp
∥DF∥

−2
H
 Lr (Ω)∥F∥2,s,

here cp > 0 is a deterministic constant only depending on p.

In our context, we work with H = L2(R) and, for all f ∈ L2(R), X ( f ) = I1( f ) is the
iener–Itô integral of f with respect to the Brownian motion. For all p, d ≥ 1, Id ( f ) ∈ D∞,p

nd, for all q ≥ 1,

Dq Id ( f ) =

{
d!

(d−q)! Id−q ( f ) if q ≤ d

0 otherwise,

here, in Id−q ( f ), the stochastic integral is taken with respect to d − q variables, resulting
in a random variable belonging to L2(Ω , L2(Rq )). In particular, Dd Id ( f ) = d! f . In the case
d = 2, we can use the expansion (21) and write

DI2( f ) = 2
∑
j∈N

λ f, j I1(e f, j )e f, j

hich entails, given the orthogonality of the system {e f, j },

∥DI2( f )∥L2(R) = 2

⎛⎝∑
j∈N

λ2
f, j I1(e f, j )2

⎞⎠ 1
2

. (49)

n particular, as {I1(e f, j )} j are i.i.d. N (0, 1) random variables, we deduce from (22) that

E
[
∥DI2( f )∥2

L2(R)

]
= 4

⎛⎝∑
j∈N

λ2
f, j

⎞⎠ = 4∥ f ∥
2. (50)

Now, let us state [35, Lemma 7.1] which gives an estimate for the negative moments of
random variables of the form (49), which is particularly useful to apply Lemma 8.1.
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Lemma 8.2. Let G :=

(∑
j∈N λ j X2

j

) 1
2

where {λ j } j∈N satisfies |λ j | ≥ |λ j+1| for all j ≥ 1
nd {X j } j∈N are i.i.d. standard normal. For all r > 1, E[G−2r ] < ∞ if and only if there exists

N > 2r such that |λN | > 0 and, in this case,

E[G−2r ] ≤ cp N−r
|λ|

−2r , (51)

ith cr > 0 a deterministic constant only depending on r.

Let use Lemma 8.1 to improve Proposition 7.6 in the second order Wiener chaos.

roposition 8.3. Given d ∈ N∗, a compact interval K of ( 1
2 , 1) and a Hurst function

H : R+ → K satisfying Condition 2.8(a) and a compact interval I ⊂ R+. If t0 ∈ I is
uch that H (t0) = H (I ), there exist two deterministic constants c > 0, ξ > 0, both only
epending on d, H and I , such that, for all 0 < ε < ξ , x ≥ 0 and t, u ∈ I ∩ [t0 − ε, t0 + ε],

P(|X H (·)
d (t) − X H (·)

d (u)| ≤ x) ≤ cx |t − u|
−H (t0,ε).

Proof. Let us fix t, u ∈ I , we assume without loss of generality u < t . We keep the notation

f H (·)
t,u : R2

→ R : w ↦→

∫ t

0
fH (t)(s, w) ds −

∫ u

0
fH (u)(s, w) ds

ntroduced in the proof of Proposition 7.6 and also consider the function

f H (t)
t,u : R2

→ R : w ↦→

∫ t

u
fH (t)(s, w) ds.

ote that I2

(
f H (t)
t,u

)
= Xd (t, H (t)) − Xd (u, H (t)). Let {λ j } j∈N be the eigenvalues of the

ilbert–Schmidt operator A f H (t)
1,0

ordered with |λ j | ≥ |λ j+1|. On one hand, one can check, with

ome obvious changes of variables, that {|t − u|
H (t)λ j } j∈N are the eigenvalues of A f H (t)

t,u
. On the

other hand, we know from the proof of [56, Theorem 3.1] that λ3 ̸= 0. Finally, inequality (22)
allows to affirm that, if {ξ

t,u
j } j∈N are the eigenvalues of the Hilbert–Schmidt operator A f H (u)

t,u

ordered with |ξ
t,u
j | ≥ |ξ

t,u
j+1|

|ξ
t,u
3 | > |t − u|

H (t)
|λ3| − ∥ f H (·)

t,u − f H (t)
t,u ∥L2(R2).

From Proposition 2.2, we know that there exists c2, only depending on K and H , such that

∥ f H (·)
t,u − f H (t)

t,u ∥L2(R2) ≤ c2|H (t) − H (u)|.

Now, from the Condition 2.8(a) for H , one can conclude, just as in the proof of Proposition 7.6,
that there exists ξ > 0, a deterministic constant, only depending on H and I , such that, for all
0 < ε < ξ and t, u ∈ I ∩ [t0 − ε, t0 + ε],

|ξ
t,u
3 | >

|λ3|

2
|t − u|

H (t0,ε).

It follows from Lemma 8.2, that, for all such ε and t, u and, for all r ∈ (1, 3
2 ), that∥D

(
X H (·)

d (t) − X H (·)
d (u)

)
∥

−2
L2(R)

 Lr (Ω) ≤ cr
4
3
|λ3|

−2
|t − u|

−2H (t0,ε),

with cr > 0 a deterministic constant depending only on r . For all p > 1, E
[(

X H (·)
d (t)−

X H (·)(u)
)p]

< ∞. Finally, from (48), equality (50), Proposition 2.2 and Condition 2.8(a), we
d
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deduce the existence of a deterministic constant c1 > 0, only depending on H and I , such that,
or all 0 < ε < ξ and t, u ∈ I ∩ [t0 − ε, t0 + ε](X H (·)

d (t) − X H (·)
d (u)

) 2,2 ≤ c1|t − u|
H (t0,ε).

Since, as a consequence of the hypercontractivity property on the Ornstein–Uhlenbeck semi
group [52, Theorem 2.7.2], all the ∥ · ∥m,p norms are equivalent in any finite sum of Wiener
chaoses, one can conclude, by Lemma 8.1, the existence of two deterministic constants c, ξ >

0, both only depending on H and I , such that, for all 0 < ε < ξ and t, u ∈ I ∩ [t0 − ε, t0 + ε],
X H (·)

d (t) − X H (·)
d (u)

)
has a continuous density bounded by c|t − u|

−H (t0,ε). The conclusion
follows immediately. □

The proof of Theorem 2.18 is then a direct adoption of the one of Theorem 2.17, using the
improved estimate given by Proposition 8.3.

Proof of Theorem 2.18. It suffices to repeat the proof of Theorem 2.17 using Proposition 8.3
instead of Proposition 7.6. Therefore, we remove the factor 1

d in the computations (46) and get

E
[(

|X H (·)
d (t + r ) − X H (·)

d (t)|
2
+ r2

)−
s
2
]

≤ c′′r1−s−H (t0, j−1). □

emark 8.4. As previously, we can note that the proof for the lower bound for the Hausdorff
imension requires a weaker assumption for the Hurst function H , see Remark 7.7 here over.
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