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Abstract: North Tunisia’s Joumine reservoir provides water for drinking and agriculture irrigation
purposes. Therefore, its water quality is crucial, especially with the recurrence of dry years in a global
climate change context. This study aims to evaluate its environmental parameters, phytoplankton
community structure, and trophic status. The data were newly analyzed using multivariate statistical
methods and redundancy analysis (RDA) with the Trophic State Index (TSI) and Trophic State
Index deviation (TSID). Monthly sampling occurred from May 2021 to June 2022 at eight stations.
Water samples were collected to assess physical-chemical parameters and Chlorophyll-a, as well
as to identify phytoplankton species. Three seasonal clusters of summer, autumn, and spring
were identified. Water nutrient variations primarily resulted from point and non-point source
contamination, along with natural processes. Carlson’s Trophic State Index (CTSI) indicates a
eutrophic status for the Joumine reservoir. TSID indicated there was no algal turbidity in the reservoir.
The study identified 25 phytoplankton taxa, with Chlorophyceae exhibiting high densities and
diversities. RDA revealed that NO3

−, NH4
+, DO, pH, water flow, and water temperature were the

most important environmental factors controlling phytoplankton structure in the Joumine reservoir.
The outcomes of this study may provide helpful information to improve the management of the
Joumine reservoir.

Keywords: Joumine; Tunisia; water quality; multivariate statistics; phytoplankton taxa; redundancy
analysis

1. Introduction

Deterioration of water quality and eutrophication are becoming increasingly preoc-
cupying issues worldwide [1,2]. Population growth exerts pressure on the agriculture
sector, as well as industrial and urban activities, which leads to an increased water demand
despite the limited resources [3–9]. Among the main sources of water pollution are the
large number of contaminants emanating from industries, urban zones (domestic/sewage)
transported by rivers, streams, and their tributaries, and runoff from polluted agricultural
fields [10].

On the other hand, climate change can also have a major impact on water qual-
ity [11–13] through water flow alteration, land use changes, and overexploitation of the
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land [13,14]. These changes can alter the balance of biogeochemical processes and material
flows [15], leading to changes in water chemistry and potential impacts on ecosystems and
human uses of water [5,12]. These consequences span across economic, social, health, and
food security aspects [16].

The enrichment of water can cause its eutrophication by the appearance of blooms.
In fact, the development of the phytoplankton community depends on many factors [17].
These include physical parameters (light, temperature, water movements, weather con-
ditions), chemical parameters (nitrogen, phosphorus, calcium, magnesium, potassium,
chloride) and biological factors (predation, competition) [17,18]. In addition, the World
Health Organization (WHO) has established guideline values for drinking-water supplies
and recreational waters which may contain toxic cyanobacterial populations [19]. Therefore,
having reliable information on water quality in terms of physical-chemical and biological
data is a key step for effective identification, pollution control, and a better characterization
of the water quality and ecological status of studied ecosystems [5,9,20–22].

To assess the state of the environment and water quality, multivariate statistical
techniques have been used, including cluster analysis (CA), factor analysis (FA), principal
component analysis (PCA), and redundancy analysis (RDA) [9,10,22–25]. Carlson’s Trophic
State Index (CTSI), Trophic State Index Deviation (TSID), and [26] were widely used to
assess water quality [27–29].

The aforementioned statistical tools play an important role in the assessment and inter-
pretation of data with a large number of physical, chemical, and biological parameters [7].
Many studies have been performed to evaluate water quality. Bouguerne et al. [30] and
Mamun et al. [31] used CA and PCA, respectively, to assess the water quality of the Ain
Zada reservoir (Boussellem watershed, Algeria) and Paldang reservoir (Republic of Korea)
using hydro-physicochemical dataset. Other studies, such as Singh et al., Dutta et al., Koklu
et al., Li et al., and Varol et al. [32–36] used multivariate statistical techniques to study
seasonal variation, cluster sampling sites, and identify pollution factors. In addition, Becker
et al. [37] used RDA to assess the impact of the mixing regime on the seasonal dynamics
of the phytoplankton community located at the Faxinal reservoir in subtropical southern
Brazil. The RDA method was applied by Tian et al. [27] to evaluate the interaction between
phytoplankton variation and environmental variables in Dongping Lake, located in Taian
City (China). These previous studies revealed that multivariate statistical methods are
important to underline the relationships between water quality parameters and cluster
sampling sites as well as to identify factors of pollution.

Tunisia is facing a significant decrease in water resource availability due to the recur-
rence of drought years over the past 30 years (1985–1986 to 2014–2023) [18]. This causes
hydric stress, which impacts the availability of water for the population. According to the
published statistics of the Tunisian agriculture ministry, the amount of available water will
decrease from 357.9 (m3/capita) in 2020 to 286.3 (m3/capita) in 2050 [18]. Meanwhile, the
proliferation of Cyanobacteria is increasingly important at the level of some Tunisian water
bodies [19], which negatively affects the use of water resources either for drinking water or
irrigation. In the North of Tunisia, the Joumine basin was reported as one of the exposed
basins to this problem [24].

The watershed of Oued Joumine, located in the northwest of Tunisia, drains an area of
418 km2. The Joumine reservoir was built in 1984 to protect the plain of Mateur against
floods. The stored water, about 76 million m3 in 2021, is mainly used for irrigation and
drinking water supply. It is part of the mixed-use reservoirs. It is mainly used for irrigation
and drinking purposes for the plain of Mateur and the greater Tunis, the supply of agri-
cultural water to the region of Cap Bon, and the provision of fresh water to the ecosystem
of Ichkeul if necessary. According to the classification of trophic levels of OCDE [26],
the Joumine dam revealed a eutrophic status or hyper-eutrophic or super-eutrophic ten-
dency [19]. Additionally, Fathalli [21] showed the existence of toxic Cyanobacteria Microcystis
aeruginosa at the dam of Joumine. In this basin, a correlation between the expansion of
cereal crop cultivation and the increased use of fertilizer was observed, resulting in nitrate
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pollution of nearby stream water, as reported in the study of Aouissi et al. [25] and Boukari
et al. [15]. Due to these factors, it is necessary to improve the water quality assessments of
the reservoir.

In the present paper, we assess spatial and temporal variation of water quality param-
eters. Using the TSI, TSID, and OCDE [26] methods, we also determine the trophic status
of the reservoir and its variations throughout this study. The datasets obtained during
the monitoring program are then processed through numerous multivariate statistical
techniques to assess the spatial and temporal change in water quality and identify the
major influencing factors.

2. Materials and Methods
2.1. Study Area, Sampling, and Sample Analysis

The Joumine reservoir is located in the northwestern part of Tunisia (36◦59′49′′ N
and 9◦36′49′′ E). This region is characterized by a sub-humid to semi-arid climate with
large seasonal and annual precipitation variability [38]. The average annual precipitation is
estimated at around 700 mm/year from 1988 to 2012 [39]. The Joumine Dam was built in
1983 for irrigation, for supplying drinking water to the downstream Plaine Mateur, and
for flood control [40]. This dam is characterized by a capacity of 118 Mm3. According to
National Observatory of Agriculture (Onagri) data in 2022, the actual available water in
the dam is around 26 Mm3.

To cover the water quality parameters’ spatiotemporal variability in the reservoir,
Joumine reservoir water was sampled at eight points, as indicated in Figure 1a,b.
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Figure 1. Location of (a) Joumine reservoir in the north of Tunisia and (b) displays the water quality
monitoring sites.

In terms of sampling locations, sampling points were chosen to cover almost the entire
dam. Added to that, the sampling points were focused on the central basin upstream of
the dam, representing the deepest part of the zone. Sites were selected on the basis of their
accessibility and degree of exposure to wind and domestic effluent, as well as the surface
area covered by the water.

In terms of seasonal division and based on the life cycle of phytoplankton, particularly
blue-green algae as highlighted in the Limam [40] study, we have chosen to conduct
sampling during three specific seasons of spring, summer, and autumn in 2021. This
selection aims to ensure more efficient sampling.

The number of samples taken in each season may not be consistent due to variations
in water depth at different sampling sites. In some locations, the water depth may differ,
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especially during summer when there is a reduction in water levels due to the absence of
rain. These factors can impact the coherence of the sample distribution across seasons.

Additionally, we repeated the sampling in 2022, specifically in March and June. Sam-
pling during 2022 is considered as a separate year of sampling, and we only utilized the
data available at that time. A total of 190 water samples of 1 L were collected at monthly
intervals from sampling sites (ST1 to ST8) between March 2021 and June 2022. Samples
were stored at 4 ◦C.

In order to assess the evolution of the water quality of the Joumine reservoir, water
samples were collected from the surface to the deepest part of the Joumine reservoir at 0,
5, 10, 15, and 20 m on eight sampling sites of the reservoir during six months (May, June,
August, and October 2021 plus March and June 2022).

Two sets of samples were collected for chemical analysis and phytoplankton species
studies. The water temperature (WT), pH, salinity, and dissolved oxygen (DO) were
measured directly using a multiparameter probe (WTW multi 340i). The water transparency
(SD) was measured using a Secchi disk. The euphotic depth (Zeu) was derived from
(SD). The concentration of the suspended solid (CSS) was determined by measuring the
dry weight of the residue after filtration through a Whatman GF/C membrane. The
nutrient analysis for nitrate (NO3

−), nitrite (NO2
−), chloride (Cl−), ammonium (NH4

+),
total phosphorus (TP) when detected, calcium (Ca2+), magnesium (Mg2+), sulphate (SO4

2−),
sodium (Na+), and potassium (K+) was determined using ionic chromatography [41].

For Chlorophyll-a (Chl-a) determination, the row water was filtered through a glass
microfiber filter (GF/C Whatman), and Chlorophyll was then extracted by immersion
of the filters in 10 mL of acetone 90%. The concentration of Chlorophyll-a was detected
spectrophotometrically with a 665 nm excitation filter and 750 nm emission filter according
to the method described by [42]. Phytoplankton samples collected in 1-litre plastic bottles
were fixed with 10 mL of formaldehyde (35%) for phytoplankton identification and their
quantification until analysis. The identification and quantification of the different taxa
were carried out using sedimentation chambers and an inverted microscope, as described
by [43].

2.2. Data Treatment

The water quality dataset was subjected to multivariate analyses consequently to
explore the relationships between physicochemical and biological variables and their
influence on the hydrological system over time and space. Pearson’s correlation, CA, PCA,
and RDA were used for the analyses, with IBM SPSS 20, Microsoft Excel 2016 software, and
RStudio version 3.3.0+ employed for the statistical calculations.

The CA analysis was utilized to investigate the similarity and dissimilarity between
different classes based on their characteristics [32]. Hierarchical agglomerative clustering
(HCA) is the most commonly used method to group objects into clusters based on their
similarity [44]. In this study, the (HCA/CA) was conducted using Euclidean square
distances as a measure of similarity.

PCA was employed to analyze the link between various water quality variables,
with the aim of identifying the most meaningful parameters while keeping the existing
variability in the dataset as much as possible [45]. PCA was performed on normalized data
to categorize the absolute factor loading values of each component in this study [46].

In order to characterize the association between environmental variables and species
abundance and to determine which variables are best able to reflect the distribution of
groups [37], RDA was applied to the normalized data. It is regarded as a “raw-data
approach” that identifies environmental factors or gradients that could considerably explain
variations in phytoplankton communities in complex systems [27,47].

To assess eutrophication in a waterbody, the standards used take into account the
examination of nutrient levels, the quantities of Chlorophyll-a (Chl-a) and total phosphorus
(TP), and the degree of transparency (SD) [48]. The trophic state of the reservoir was
calculated by applying different methods: OCDE [26] and the Trophic State Index (TSI) [49],
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which are based on the parameters of Chlorophyll-a, Total phosphorus, and Secchi disk
transparency. The CTSI scale ranges from 0 to 100, with a CTSI score of 0–30 indicating
oligotrophic conditions, a score of 30–50 indicating mesotrophic conditions, a score of 50–70
indicating eutrophic conditions, and a score of 70–100 indicating hypertrophic conditions.
To calculate the CTSI score, mathematical equations outlined in Equations (1)–(4) are
utilized [49].

TSI(Chl− a) = 9.81ln(Chl− a) + 30.6 (1)

TSI(TP) = 14.42ln(TP) + 4.15 (2)

TSI(SD) = 60− 4.41 ln(SD) (3)

TSI CARLSON =
TSI(Chl− a) + TSI(TP) + TSI(SD)

3
(4)

The relationship TSI (Chl-a) − TSI (SD) and TSI (Chl-a) − TSI (TP) were used to define
the TSID in two dimensions. The CTSI and TSID were used to quantify the degree of water
eutrophication.

3. Results
3.1. Trophic Status and Physicochemical Factors of the Joumine Reservoir

Except for Chlorophyll-a, Nitrite, and Ammonium, the variability of statistical data
for sixteen measured variables at eight sampling stations in the Joumine reservoir was
observed at different depths and dates. Table 1 did not demonstrate significant spatial
variations among the stations (p < 0.05). However, the observed spatial differences for
Chlorophyll-a, Nitrite, and Ammonium indicate the impact of human activities on the
reservoir’s water quality. Specifically, Chlorophyll-a concentration was notably higher
at ST7 compared to other stations. ST7 is located at the downstream narrow part of the
reservoir with a depth of only 5 m, receiving inputs from nearby agricultural areas and
where the growth of vegetation can be observed. During the study period in the Joumine
reservoir, the pH value ranged from 7.7 to 10.8, indicating the alkalinity of the water.
However, there were significant fluctuations in pH values at different depths, particularly
during August, with variations of up to 0.9 pH units. This can be attributed to higher algal
activity in the epilimnion as reported in previous studies [21,40]. The decrease in pH at the
bottom of the reservoir could be explained by the decomposition of algae and the oxidation
reaction of organic matter [50]. Nevertheless, no significant spatial variations of pH were
observed between stations. The stability of the alkalinity in the Joumine reservoir was
caused by the water’s hardness due to the carbonate elements found in the river bed/water
shed bed rocks [6,12,40]. The Joumine reservoir is considered well-oxygenated, as the
oxygenation levels in the reservoir range from 5.80 mg/L to 10.53 mg/L. These results
are consistent with previous studies such as Bel Haj Zekri et al. [51] in Fathalli et al. [21].
They are similar to the oxygenation levels found in other Tunisian reservoirs like Lebna
(5.71 mg/L; 11.56 mg/L) [52] and Kasseb (7.5 mg/L; 11.30 mg/L) [53] in [19]. However,
it should be noted that the rate of dissolved oxygen decreases towards the bottom of the
reservoir, which has been reported in many studies [21,52] to be potentially harmful to
aquatic life [54]. These averages fit the criteria established by the WHO [29] in Figure 2.
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Table 1. Mean, minimum, and maximum values of water quality parameters at different sampling stations (for all depths and dates) in the Joumine reservoir.

2020/2021–2021/2022

WT 1 pH DO 1 NO3− 1 NO2− 1 NH4
+ 1 Chl-a 1 CSS 1 Na+ 1 K+ 1 Ca2+ 1 Mg2+ 1 Cl− 1 SO42− 1 SD 1 Zeu 1

ST1

Mean 21.82 8.87 8.28 6.12 0.22 1.61 4.33 11.37 46.14 3.31 40.64 13.43 88.09 67.00 1.50 3.84
Min 14.40 8.03 6.97 0.07 0.01 0.30 0.53 1.00 17.42 0.28 0.97 4.66 21.84 30.56 0.70 1.79
Max 29.60 10.73 10.40 18.47 0.65 7.40 13.35 39.00 202.04 14.82 123.34 40.37 133.00 120.40 2.50 6.40

+/−SD 1 4.66 0.93 0.98 6.74 0.20 1.93 3.30 12.08 54.78 4.09 30.65 9.94 31.73 24.76 0.62 1.58

ST2

Mean 21.31 8.95 8.14 6.80 0.23 1.48 2.63 10.00 37.46 4.02 39.92 13.22 105.34 69.87 1.51 3.87
Min 14.60 8.19 5.84 0.09 0.02 0.18 0.53 1.00 21.81 1.22 23.81 0.13 20.45 31.54 0.80 2.05
Max 29.40 10.45 10.28 17.97 0.65 6.25 7.48 92.00 144.79 25.70 91.11 29.80 319.40 105.70 2.50 6.40

+/−SD 4.67 0.71 1.18 6.92 0.23 1.59 1.69 18.72 29.97 5.56 23.18 7.08 55.97 21.74 0.63 1.60

ST3

Mean 21.78 8.80 8.13 5.94 0.23 1.50 2.63 12.22 30.58 2.62 41.47 12.38 87.02 63.90 1.54 3.94
Min 14.60 7.69 5.80 0.03 0.00 0.36 0.53 1.00 18.30 0.81 17.96 8.76 18.13 28.70 0.90 2.31
Max 29.70 10.39 10.39 16.62 0.69 7.10 9.61 83.00 58.09 6.94 91.14 22.20 124.40 93.90 2.50 6.40

+/−SD 4.97 0.85 1.29 6.41 0.25 1.72 2.07 18.48 13.89 1.99 24.26 4.97 35.80 22.24 0.62 1.60

ST4

Mean 22.30 8.91 8.17 6.19 0.23 1.47 2.80 5.83 30.93 2.52 39.90 11.41 84.04 64.04 1.63 4.17
Min 14.70 8.14 6.55 0.04 0.02 0.18 0.53 1.00 22.83 0.95 21.11 2.36 16.22 25.38 0.80 2.05
Max 29.50 10.80 10.37 16.51 0.71 5.14 6.94 16.00 57.46 6.72 92.68 22.11 120.13 93.96 3.00 7.68

+/−SD 4.75 0.77 0.99 6.43 0.23 1.50 2.04 5.65 12.00 1.87 21.82 4.62 36.38 22.86 0.80 2.04

ST5

Mean 22.56 8.77 8.15 5.92 0.25 1.76 2.59 7.07 30.75 2.50 41.48 12.49 88.07 62.48 1.50 3.84
Min 14.80 8.08 6.62 0.10 0.01 0.44 0.53 1.00 21.26 1.11 24.38 8.02 14.43 23.27 0.80 2.05
Max 30.40 10.20 10.34 16.76 1.46 8.24 11.21 22.00 60.48 7.02 94.40 22.63 140.80 91.97 2.50 6.40

+/−SD 4.88 0.70 0.99 6.17 0.34 2.12 2.41 6.03 12.77 1.68 23.59 4.78 36.95 22.02 0.57 1.47

ST6

Mean 22.69 8.86 7.97 3.31 0.20 1.42 3.48 6.54 30.41 2.18 41.63 12.27 94.39 61.99 1.06 2.71
Min 15.50 8.30 6.36 0.08 0.01 0.35 0.53 1.00 23.66 0.94 25.16 9.24 19.53 31.99 0.70 1.79
Max 29.80 10.01 10.28 10.15 0.49 5.70 8.54 15.00 55.21 5.80 88.50 20.74 161.80 92.32 2.00 5.12

+/−SD 5.03 0.66 1.37 4.01 0.17 1.86 2.51 5.51 11.26 1.48 22.06 4.06 46.04 24.56 0.49 1.26

ST7

Mean 23.56 8.79 8.07 3.07 0.23 1.40 4.49 23.17 30.47 2.10 39.14 12.55 86.22 66.43 0.62 1.59
Min 15.80 8.15 6.63 0.08 0.01 0.53 0.53 5.00 24.61 1.32 24.27 9.47 21.81 36.22 0.50 1.28
Max 30.50 9.93 10.17 10.40 0.69 6.07 18.69 73.00 56.20 4.30 90.43 21.31 119.25 91.89 0.70 1.79

+/−SD 5.33 0.57 1.21 4.56 0.26 1.76 5.77 27.26 11.45 1.01 23.51 4.06 39.71 26.26 0.08 0.20

ST8

Mean 22.52 8.97 8.61 7.76 0.22 1.62 3.69 12.00 29.90 2.29 39.36 11.21 95.99 67.98 1.18 3.03
Min 15.00 8.24 7.17 0.12 0.02 0.20 0.53 1.00 17.90 1.50 22.86 7.14 17.39 28.33 0.70 1.79
Max 29.60 9.99 10.53 12.32 0.40 5.62 6.94 60.00 56.88 4.96 90.31 20.56 152.20 88.21 2.00 5.12

+/−SD 6.01 0.66 1.19 4.72 0.16 1.96 2.17 17.43 13.88 1.38 27.18 4.36 46.72 24.38 0.60 1.53

Notes: 1 WT (◦C), DO (mg/L), NO3
− (mg/L), NO2

− (mg/L), NH4
+ (mg/L), Chl-a (µg/L), CSS (mg/L), Na+ (mg/L), K+ (mg/L), Ca2+ (mg/L), Mg2+ (mg/L), Cl− (mg/L) SO4

2− (mg/L)
SD (m), Zeu (m) and +/−SD standard deviation.
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Figure 2. Vertical profiles of water temperature (a), dissolved oxygen (b), and Chlorophyll-a (c) along
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The matrix of Pearson’s correlation coefficients (r) reveals the potential linear relation-
ships between each pair of environmental variables in Figure 3. In accordance with the
correlation matrix carried out in our study, pH displayed a significant positive correlation
value of 0.79 and 0.83, corresponding to Ca2+ and Mg2+, respectively. In the correlation
matrix, DO was negatively correlated to water temperature (−0.718) since oxygen becomes
more soluble in colder water [7,45,55]. High and positive correlations can be observed
between sulphate, chloride, calcium, magnesium, potassium, sodium, and CSS (r = 0.36
to 0.89), which are responsible for water mineralization. Similar results were observed
in [7,45]. This analysis also shows a positive correlation (0.83) between NO3

− and NO2
−.

The positive relationship between these variables indicates that their sources were similar.
The reservoir’s water clarity decreased with the increase in nitrate, nitrite, Chl-a, and the
concentration of the suspended solid.
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The Joumine reservoir’s CTSI was determined using Secchi disk depth (SD),
Chlorophyll-a concentration (Chl-a), and Total phosphorus (TP). Based on the average
values obtained throughout the sampling period, the CTSI value was 59.9. Using the [56]
classification, our findings indicate that the water body in the studied reservoir is eutrophic.
On the other hand, according to OCDE, 1982 [26], and with reference to Chlorophyll-a,
the reservoir reveals a mesotrophic status. This is not the case considering total phos-
phorus that indicates a hypereutrophic status. This could explain the development of
phytoplankton [19].

Information on algal Chlorophyll growth, nutritional variability, and many other
reservoir factors can be found by analyzing TSI and TSID in Figure 4a–d. In the Joumine
reservoir, TSI and TSID were estimated based on Chl-a, TP, and SD, and their values
displayed seasonal and spatial variation. Seasonally and over the entire sampling sites, the
mean TSI (Chl-a), TSI (TP), and TSI (SD) values imply a mesotrophic, hypereutrophic, and
eutrophic state, respectively.
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According to Carlson and Havens [57], TSID has been used to calculate the degree of
eutrophication and identify nutrient limitations in reservoirs. Additionally, according to
Carlson (1983), variations of the TSI (Chl-a) from the TSI (TP) generally represent levels
of P limitation, whereas deviations of the TSI (Chl-a) from the TSI (SD) represent levels
of light penetration in relation to the quantity and size of sediment particles. Non-algal
turbidity is indicated if TSI (TP) and TSI (SD) both vary from TSI (Chl-a) but are associated
with each other.

Based on the links between TSI (Chl-a) with TSI (TP) and TSI (SD), and according to
Carlson and Havens [57], there was no algal turbidity in the reservoir over the whole sample
period in Figure 4d. This graph allows for the simultaneous visualization of the deviations
of all three indices by plotting the deviations of the Total Suspended Solids Index TSI (SD)
onto the graph of the other deviations. By examining the spatial position of the data points
representing the reservoir, it becomes possible to infer potential relationships between the
three indices. In Figure 4d, it is explained that around 87% of the observations are classified
as having a predominance of small particulates based on the relationships between “TSI
(Chl-a) − TSI (SD)” and “TSI (Chl-a) − TSI (TP)” across all periods. Additionally, Figure 4d
provides evidence of a non-algal turbidity effect observed in most observations. Despite
the role of TP in the Joumine reservoir in controlling algal production, the productivity of
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plankton is also influenced by low-light conditions primarily caused by non-algal turbidity.
The reservoir has a few zooplankton that were found to be grazing.

Temporal CA generated a dendrogram that grouped the six months into three sta-
tistically significant clusters at (Dlink/Dmax) × 100 < 30. Cluster one included August
and October 2021 and June 2022, closely corresponding to summer and autumn. Cluster
two included May and June 2021, closely corresponding to late spring and summer. The
third cluster included March 2022, corresponding to spring. The study area receives ap-
proximately 96% of its annual precipitation from October to April. Indeed, the temporal
variation of surface water quality showed significant sensitivity to seasons (spring, summer,
and autumn) and hydrological conditions during different periods. These natural factors
play a crucial role in shaping the fluctuations and characteristics of water quality.

Figure 5 displays the scree plot depicting the relationship between component numbers
and their respective eigenvalues. Notably, there is a significant change in slope at the third
eigenvalue. As a result, three principal components, namely PC1, PC2, and PC3, were
retained for further analysis, as detailed in Table 2.
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Table 2. Loadings of experimental variables (16) on principal components for the whole datasets of
the Joumine reservoir.

Components

PC1 PC2 PC3

WT −0.79 −0.09 0.25
pH 0.83 0.44 −0.81
DO 0.79 0.30 −0.21

NO2
− −0.25 0.89 0.42

NO3
− −0.44 0.79 0.04

NH4
+ 0.89 0.19 −0.12

Chl-a −0.17 0.21 −0.72
CSS 0.37 −0.02 0.49
Na+ 0.78 0.28 0.32
K+ 0.68 0.23 0.27

Ca2+ 0.96 0.08 −0.02
Mg2+ 0.89 0.20 0.15
Cl− 0.77 0.10 0.30

SO4
2− 0.84 0.37 0.13

SD 0.87 −0.27 0.03
Zeu 0.87 −0.27 0.03
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Based on the Kaiser Normalization criterion, which involves retaining eigenvalues
greater than 1, the analysis yielded three principal components. These three components
explained approximately 77% of the total variance of the water quality variables.

The first principal component (PC1) exhibited high positive loadings pH, DO, NH4
+,

Na+, K+, Ca2+, Mg2+, and SD, explaining 55.128% of the total variance. PC1 reflects
the process of mineralization influenced by a range of hydrogeochemical mechanisms,
including the dissolution of limestone and marl soils [7,58], as well as human activities
such as intensive agriculture, farming, and the release of domestic wastewater [59]. Water
temperature contributes negatively to this factor, which can be explained by considering
the dissolution processes of dissolved minerals increasing with temperature. The second
factor, PC2 (14.314%), shows a very strong positive association with NO3

− and NO2
−.

They could be derived from agricultural areas in the region (the use of fertilizers) and
domestic wastewater. The third factor PC3, explaining the lowest total variance, 7.567%,
had a negative loading on Chl-a, which is an indicator of algae and phytoplankton levels.

Overall, the water quality parameters, represented by the principal components ob-
tained from PCA, provide clear evidence of the impact of human activities upstream from
the reservoir.

3.2. Joumine Reservoir’s Phytoplankton Community

In the Joumine reservoir, twenty-five phytoplankton taxa were recorded, belonging
to seven classes. Figure 6a shows the distribution of phytoplankton groups during the
sampling months (during 4 monthly campaigns). In Figure 6b, Chlorophyceae is the most
abundant cluster, comprising 44% of the total identified species. This class is represented
by eleven species where the dominant genera is Coelastrum sp. Much less diversified, the
Cyanobacteria represent about 24% of the total phytoplankton abundance, with the dom-
inance of Chroococus turgidus. Bacillariophyceae and Euglenophyceae represent respectively
12% and 8% of all identified taxa. The first one is dominated by the presence of Cyclotella
sp. and the second one is represented by Trachelomonas. Dinophyceae, Klebsormidiophycae,
and Cryptophycae appear very irregularly. These three classes are not important in terms
of richness, where each one represents 4% of the total phytoplankton abundance. There
were differences in the contributions of all the groups during both late spring-summer
and late summer-autumn, with Klebsormidiophycae and Chlorophyceae showing higher den-
sities during late summer-autumn and Cyanobacteria, Bacillariophyceae, Chlorophycae, and
Cryptophycae during late spring-summer.

In the Joumine reservoir, the total of phytoplankton abundance varied from
1.2 × 103 cells/L in August 2021 at a depth of 0m to 2200 × 103 cells/L in June 2021
at a depth of 5 m in Figure 6b.

The composition and the density of phytoplankton were influenced by the reservoir
volume. During late summer and autumn (August 2021, October 2021, and March 2022),
the largest contribution of Chlorophyceae, Dinophyceae, and Cyanobacteria is related to the
increase in water volume, which explains the mesotrophic state of the reservoir during this
period, according to TSI (Chl-a). The occurrence of these groups can be explained either by
the transportation of microorganisms from rivers to the reservoir or by the augmentation of
nutrient concentration in this period since the area is agricultural land. During late spring
and summer (May 2021, June 2021, and June 2022), there is a lower discharge volume
in the reservoir. Phytoplankton reflect this variation with a decrease in the density of
Cyanobacteria, Dinoflagellate, and Chlorophyceae [60,61], which explains the mesotrophic state
of the reservoir during this period according to TSI (Chl-a) (Figure 4). RDA was applied to
evaluate the interactions between phytoplankton variation and environmental variables.
The RDA ordination figure, including 16 environmental parameters and 11 phytoplankton
groups, is presented in Figure 7.
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total phytoplankton in the Joumine reservoir.

The community composition and distribution are significantly impacted by the tem-
perature of the water, which is the most influential factor. The RDA ordination clearly
shows that the phytoplankton community experienced changes. These changes are re-
lated to many variables, including WT, DO, pH, Nitrate, Nitrite, Ammonium, Na+, Cl−,
SO4

2−, Chl-a, Mg2+, Ca2+, CSS, K+, Na+, SD, and water flow. The analyzed results found
that Ceratium sp., Aphanocapsa sp., and Oocystis sp. were positively correlated with WT.
Staurastrum sp1, Navicula sp., and Pseudoanabaena sp. were negatively correlated to WT.
Coelastrum sp. is negatively and significantly correlated with pH and NO3

−. Stauras-
trum sp1 and Navicula sp. show a preference for high DO. These preferences were reported
by Reynolds [62]. Cyanobacteria are associated with water flow.
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4. Discussion

In this survey, environmental parameters and the composition of the phytoplankton
community in the Joumine reservoir in Tunisia were studied. The results showed that the
Joumine reservoir has a eutrophic status according to the Carlson and Sampson Index. This
is probably due to the enrichment caused by domestic and intensive agriculture [11]. The
study area is mostly an agricultural area with numerous cultures using chemical fertilizers.
One of the key factors controlling the abiotic and biotic variability in reservoirs is freshwater
flow. According to Domingues et al. [63], the fluctuation of flow may have an impact on
the phytoplankton dynamic due to changes in nutrient and light availability [64,65] and
water residence time [66]. Therefore, the measures that could be taken for managing
eutrophication would involve the following approaches: (i) enhancing the control of water
flow and domestic sewage, (ii) reducing nitrogen and/or phosphorus inputs into aquatic
systems, and (iii) biomanipulation measures [67–69].

The concentrations of major ions in the Joumine reservoir are acceptable compared to
the quality standards required by the WHO [29] for drinking and irrigation water. Compar-
ing the obtained value to other Tunisian reservoirs, the Joumine reservoir is characterized
by low water transparency, which confirms its turbidity, as mentioned in Limam [40]. This
could be explained by allochthone particles inputs from the watershed by tributaries [40].
The Joumine reservoir was found to have an oligotrophic status based on Chlorophyll-a
levels, as confirmed by Limam [40] using the OCDE [26] method. However, this is not the
case considering the width of Secchi depth which indicates a eutrophic status [40].

The density of phytoplankton varied significantly across different seasons, with higher
levels observed during spring and summer, and lower levels in autumn. This fluctuation
exhibited a strong correlation with water quality that could be attributed to the important
nutrient concentrations in spring/summer compared to autumn. This study also revealed
that the phytoplankton community and distribution were mainly influenced by Nitrate.

Furthermore, water temperature (WT) emerged as a key driving factor impacting
the succession of phytoplankton. Earlier research in Nansi Lake demonstrated that WT
played a significant role in shaping changes in phytoplankton community composition [27].
The density of phytoplankton tended to increase with rising water temperatures [27]. The
results of the RDA analysis indicated a positive correlation between WT and Cyanophyceae
and Chlorophyceae, leading to increased phytoplankton abundance during summer, as
these species thrived in higher temperatures. Consequently, the number of phytoplankton
species was higher in spring and summer, but lower in autumn, which can be attributed
to the temperature variations. The Joumine reservoir is a warm lake, characteristic of the
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Mediterranean climate [70]. Therefore, air temperature is high, and daylight duration
is longer between spring and mid-autumn [19]. As a result, ephemeral stratification is
observed in the Joumine reservoir [19]. The aforementioned result corroborates the results
of Limam [40] in the same reservoir. The stratification is influenced by wind and frequent
water withdrawal during summer [19].

The pH of the Joumine reservoir was above 8, indicating that it was alkaline water
conducive to the growth and reproduction of Cyanophyceae and Diatoms. The RDA results
further confirmed that a significant majority of Cyanophyceae, particularly Aphanocapsa sp.,
exhibited a positive correlation with pH, underlining their preference for alkaline condi-
tions [62,71].

Within the RDA analysis, cyanobacteria were significantly and negatively correlated
with water flow. This indicates that water flow is an important regulator of phytoplankton
community dynamics [63].

Based on microscope analyses, 25 phytoplankton species were identified, classified
according to seven classes, including the Chlorophyceae, Cyanobacteria, and Diatomophyceae.
The Chlorophyceae group is the most diversified group since it represents 44% of the species
richness. The results revealed that Chlorophyceae dominated the phytoplankton community,
a finding which aligns with the results described in other Tunisian reservoirs under temper-
ate climates [52,53]. In the Joumine reservoir, the authors of Limam [40] recorded 63 taxa
of phytoplankton represented by Chlorophyceae, Bacillariophyceae, Dinophyceae, Cryptophyte,
Charophyceae, Euglenophycin, and Cyanobacteria. Furthermore, compared to the 63 taxa
identified by the Limam [40] survey, our examined reservoir has a eutrophic status and
fewer phytoplankton species (25 taxa) than it had in the Limam [40] study. As a result,
the investigated reservoir appears to be less nutrient-rich than it was in 2003. According
to the water quality criteria of Rao et al. [72], the seasonal appearance of Coelsatrum sp.
and Staurastrum sp1 with low abundance during May, June, and October is an indicator
of good water quality in the Joumine reservoir. However, the presence of these genera is
also characteristic of eutrophic reservoirs, as noted by Parakkandi et al. [73]. The seasonal
variation in phytoplankton cell density is characterized by the highest abundance value
during late spring-summer and the lowest abundance value during late summer-autumn.
The lower values of phytoplankton communities during late summer-autumn are in tune
with the results of El Herry [52] in the Lebna reservoir, which could be due to the limitation
of Nitrate [64]. Thus, the increase in the density of the cyanobacteria could be explained
by the internal storage capacity of nutrients of these species [52]. The negative correlation
between nutrients and phytoplankton density in the Joumine reservoir suggests that low
phytoplankton density results in low consumption of nutrients [74], leading to high nutrient
concentration and a negative correlation. This could be attributed to the limitation of the
rate of inorganic carbon and the low water turbulence, as suggested by Klemer et al. and
Steinberg et al. [75,76], respectively. Added to that, it could be due to the high frequency of
dry years [18] and low reservoir water levels (below 50% capacity) [77]. Indeed, cell advec-
tion is reduced during periods of low river flow, whether naturally occurring or caused
intentionally by the operation of dams [61]. Added to that, even the high concentration of
Chlorophyll-a at sampling sites 1, 3, 5, and 7 in water may not always correspond to the
density of algal cells present. According to some reports, the measurement of Chlorophyll-a
may not accurately represent the total biomass of algae due to various factors such as the
type of species, physiological state of the algae, and time of sampling, that can all affect the
pigment content. Therefore, it cannot be assumed that the ratio of Chlorophyll-a to carbon
content remains constant [40]. Despite being in eutrophication conditions, the phytoplank-
ton density is relatively low. This could be explained by grazing because zooplankton
consumption of phytoplankton affects its density and composition [78].

5. Conclusions

During the study period, the Joumine reservoir’s seasonal changes in the phytoplank-
ton community and environmental parameters were examined. The results of the chemical
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analysis of the reservoir water reveal that it is in a eutrophic state, most likely as a result of
the discharge of industrial, domestic, and particularly agricultural effluents. The Joumine
reservoir exhibits temporal phytoplankton succession. The water flow is a crucial regula-
tor of abiotic and biotic variables, especially for cyanobacteria. Cyanophyceae were the
most prevalent algae during the spring, summer, and fall seasons. Chlorophyceae were in
great abundance in early autumn. Physical variables, particularly water flow and those
immediately related to water fluxes (water temperature, dissolved oxygen, pH), were the
most important forcing factors in the Joumine reservoir. They had a significant impact on
phytoplankton species.
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