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• Computational homogenization (FE2)

– Microstructured materials

– Two problems are solved concurrently: 

• Macro-scale: seen as a continuum

• Micro-scale: Representative Volume Element (RVE)

• Advantage

– Account directly for the micro–structural parameters 

(microstructure, constitutive behavior) with high accuracy.

• Drawback

– Computational time & memory:

• Solution

– Surrogate model of the microscopic BVP
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• Surrogate model of the microscopic BVP

– Define a surrogate model

– Off-line:

• Construct  off-line data-base (using RVE simulations)

• Train surrogate model

– On-line:

• Use the trained surrogate model during analyses

Introduction
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• Based on thermodynamic consistency

• Possesses extrapolation capabilities in

– Strain (history): 𝐅M  

– Material parameters: 𝜸m

• Emerging methodology

– Seminal work

• Liu, Wu, Koishi, (2019). A deep material network for multiscale topology learning and accelerated nonlinear 

modeling of heterogeneous materials. CMAME

– Reformulation and use as surrogate for arbitrary material law

• Gajek, Schneider, Böhlke, (2021). An FE–DMN method for the multiscale analysis of short fiber reinforced 

plastic components. CMAME

• Nguyen V.-D., Noels, L. (2022). Interaction-based material network: A general framework for (porous) 

microstructured materials. CMAME

Deep material networks
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• Bi-material laminate architecture as mechanistic building blocks

– Example for a 2-phase material

– Material node i =0,...,N-1,  of weight Wi

Deep material networks
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Material node i =0..7,  of weight 𝑊𝑖

Constitutive behaviours:

                             if node 𝑖 ∈ phase 𝑝 for material p=0 or p=1

𝐏𝑝 𝑡 =𝐏𝑝 𝐅𝑖(𝑡), 𝒁(𝜏 ≤ 𝑡)

Homogenised behaviour

𝐏𝐌 𝑡 =𝐏 𝐅M(𝑡), 𝒁(𝜏 ≤ 𝑡)

𝐏𝐌 𝑡 =σ𝑖=0
7 𝑊𝑖 𝐏𝑖 𝑡

𝐅M 𝑡 =σ𝑖=0
7 𝑊𝑖 𝐅𝑖 𝑡

Z. Liu, C. Wu, M. Koishi, A deep material network for multiscale topology learning and 

accelerated nonlinear modeling of heterogeneous materials
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• Our contributions

– The solution is provided under a closed form, which is equivalent to the weak form in the finite 

element method

– Material networks are revisited with interactions

– Interaction-based material network:

• A network of interaction mechanisms

• General framework for (porous) microstructured materials

Deep material networks
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• Nguyen, V. D., & Noels, L. (2022). Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient 

implementation for multi-phase composites. European Journal of Mechanics - A/Solids. 

• Nguyen V.-D., Noels, L. (2022). Interaction-based material network: A general framework for (porous) microstructured materials. CMAME
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Material nodes are linked through interactions



• Link homogenised deformation gradient to nodes

– Interaction 𝑘 = 0. . 𝑀 − 1 

Interaction-based material networks – interactions & closed form solution
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A material network 

• 10 material nodes 

• 8 interactions

𝐅M + σ𝑘=0
𝑀−1 𝛼𝑖,𝑘 𝒂𝑘 ⊗ 𝑮𝑘 = 𝐅𝑖  , 𝑖 = 0. . 9

Contribution of node 𝑖 
in interaction 𝑘 

(parameter?)
Degrees of freedom of interaction 𝑘 

defining the strain fluctuation 

Direction of interaction 𝑘 

(parameter)
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𝑖

𝑊𝑖𝛼𝑖,𝑘 = 0 

• Link homogenised deformation gradient to nodes

– Interaction 𝑘 = 0. . 𝑀 − 1 

• Constraints from strain averaging

• Weak form from Hill-Mandel

• Homogenized stress from stress averaging 

Interaction-based material networks – interactions & closed form solution
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𝐅M + σ𝑘=0
𝑀−1 𝛼𝑖,𝑘 𝒂𝑘 ⊗ 𝑮𝑘 = 𝐅𝑖  , 𝑖 = 0. . 9

𝐅M=σ𝑖 𝑊𝑖𝐅𝑖 ෍
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𝑊𝑖𝛼𝑖,𝑘 𝒂𝒌 ⊗ 𝑮𝑘 = 0 

𝐏M:𝛿𝐅M=σ𝑖 𝑊𝑖 𝐏𝑖: 𝛿𝐅𝑖 ෍
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𝑊𝑖𝐏𝑖𝛼𝑖,𝑘 ⋅ 𝑮𝑘 ⋅  𝛿𝒂𝑘 = 0 
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𝑊𝑖𝐏𝑖𝛼𝑖,𝑘 ⋅ 𝑮𝑘 = 𝟎 

𝑷M=σ𝑖 𝑊𝑖𝑷𝑖

Material node i =0..9,  of weight 𝑊𝑖

Constitutive behaviours:

                    if node 𝑖 ∈ phase 𝑝 for material p=0 or p=1

𝐏𝑝 𝑡 =𝐏𝑝 𝐅𝑖(𝑡), 𝒁(𝜏 ≤ 𝑡)
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• How to define an interaction?

– For an interaction 𝑘

– Each interaction includes several nodes

• 𝛼𝑖,𝑘 = 0 if node 𝑖 does not participate the interaction 𝑘

• Network architecture

– A set of material nodes

– A set of network interactions

Interaction-based material network – interactions
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A material network 

• 10 material nodes 

• 8 interactions



• Mechanistic building blocks: Polyhedra

– Interaction 𝒱𝑗 , 𝑗 = 0. . 𝑀 − 1 

– Fluctuation field:  𝐰= 𝐱 − 𝐅M ⋅ 𝑿

• Integration by parts on a polyhedron of volume 𝑉𝑖 associated to node 𝑖

• To be compared with the interactions

 

Interaction-based material networks – interactions
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𝐅M + ෍

𝑘=0

𝑀−1

𝛼𝑖,𝑘 𝒂𝑘 ⊗ 𝑮𝑘 = 𝐅𝑖  
•  𝛼𝑖,𝑘 is the weighted surface of a polyhedron face (parameter to be identified)

• 𝑮𝑘 is the inward or outward normal of the polyhedron face (parameter to be identified)

• 𝒂𝑘 is the fluctuation field (degree of freedom for online simulations)



• Mechanistic building blocks: we can recover laminate building blocks 

– Between two groups of nodes

Interaction-based material network – interactions
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• Nguyen, V. D., & Noels, L. (2022). Micromechanics-based material networks revisited from the interaction viewpoint; 

robust and efficient implementation for multi-phase composites. European Journal of Mechanics - A/Solids. 
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• Mechanistic building blocks: Laminate

Interaction-based material network – interactions
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Trainable parameters:

• Weights:

• Direction for an interaction

𝑊𝑖, 𝑖 = 0. . 9

𝑮𝑘 𝑵𝑗, 𝑗 = 0. . 7



• Mechanistic building blocks: Full interaction

– Interaction 𝒱𝑗 as a full interaction

• Mechanism j is a full interaction if satisfying

• 𝛼𝑖,𝑘 ∀𝑖, 𝑘 are considered as fitting parameters 

– More trainable parameters than laminate-based interactions

Interaction-based material network – interactions
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• Linear elastic training

– The tangent at zero strain is considered:

– Offline data

• RVE & microscopic boundary condition

• Elastic tangent tensors of  𝑃 underlying phases 

randomly generated

• Homogenized tangent obtained by computational 

micromechanics

– A loss function is defined

– Gradient-descent optimizer to minimize this 

loss function

Interaction-based material network – offline training
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• Nonlinear training

– Consider history path dependent

– Offline data

• RVE & microscopic boundary condition

• Inputs : strain paths 𝐅M 𝜏 , 𝜏 ≤ 𝑡

• Output: stress path 𝐏M τ , τ ≤ t obtained by 

computational micromechanics

– A loss function is defined

– Gradient-descent optimizer to minimize this 

loss function

Trainable 

parameters

Elastic tangent tensors of  

𝑃 underlying phases

𝐏M 𝑡 =𝐏M 𝐅M 𝜏 , 𝜏 ≤ 𝑡; 𝓛𝐋M= 
𝜕𝐏M

𝜕𝐅M
at 𝐅M=I

𝐋M = 𝐋M(𝐋0, … , 𝐋𝑃−1; 𝓛)



• Online stage on a particle-reinforced composite

– Properties

• Elastic inclusions & elasto-plastic matrix

– Laminate-based interactions

– Linear elastic training

                                                   

Interaction-based material network as surrogate model 
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Interaction-based material network as surrogate model 
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generation

- 10 min.-cpu

Training - 2 min.-cpu

On-line FE2 FE-DMN

Simulation 18000 h-cpu ½ to 34 h-cpu

• Multiscale simulation

– Elasto-plastic composite RVE

– Comparison FE2 vs. Material network-surrogate

– Laminate-based interactions

– Linear elastic training



• Online stage on a porous material

– Properties

• Elasto-plastic matrix

• Small strain

– Full interactions

– Non-linear training 

                                                   

Interaction-based material network as surrogate model 
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• Online stage on a porous material

– Properties

• Elasto-plastic matrix

• Small strain

– Full interactions as mechanistic building blocks

– Non-linear training with Material 1, on-line material 2

– Random loading

                                                   

Interaction-based material network as surrogate model 

189/13/2023

Stress Porosity



• Online stage on a porous material

– Properties

• Elasto-plastic matrix

• Small strain

– Full interactions as mechanistic building blocks

– Non-linear training 

– Thermodynamically consistent

                                                   

Interaction-based material network as surrogate model 
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• Multiscale simulation

– Comparison FE2 vs. Material network-surrogate

– Full interactions as mechanistic building blocks

Interaction-based material network as surrogate model 

209/13/2023

Off-line FE2 FE-DMN

Data 

generation

- 0.04 (linear) – 3.5 (non-

linear) hour.-cpu

Training - 0.16-20 hours.-cpu

On-line FE2 FE-DMN

Simulation 7200 h-

cpu

0.1 to 1 h-cpu

2 
m

m

1 mm

ത𝐹𝑦 , ത𝑢𝑦

0.01 mm

𝑥
𝑦

𝐅M

ℂM

𝐏M

Non-linear training

Linear training



• Multiscale simulation

– Stress-strain distribution at point A

– For 25 material nodes

– Full interactions as mechanistic building blocks

– Non-linear training

Interaction-based material network as surrogate model 
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• Multiscale simulation

– Stress-strain distribution at point B

– For 25 material nodes

– Full interactions as mechanistic building blocks

– Non-linear training

Interaction-based material network as surrogate model 
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• Interaction-based material network 

– a general framework to build surrogate models for micro-structured materials

– Satisfy all requirements of a truly microscopic boundary value problem including the stress and strain 

averaging principles and the Hill–Mandel energetically consistent condition

– Efficient training procedures

– Trained material networks with the ones of the direct numerical simulations in both contexts of virtual 

testing and multiscale simulations.

Conclusions and perspectives
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Thank you for your attention

• Nguyen, V. D., & Noels, L. (2022). Micromechanics-based material networks revisited from the interaction viewpoint; robust 

and efficient implementation for multi-phase composites. European Journal of Mechanics - A/Solids. 

• Nguyen V.-D., Noels, L. (2022). Interaction-based material network: A general framework for (porous) microstructured 

materials. CMAME

• Data of " V. D. Nguyen and L. Noels. "Interaction-based material network: a general framework for (porous) microstructured 

materials." Computer Methods in Applied Mechanics and Engineering", https://doi.org/10.5281/zenodo.5568832

• Data of " V. D. Nguyen and L. Noels. "Micromechanics-based material networks revisited from the interaction viewpoint; 

robust and efficient implementation for multi-phase composites." European Journal of Mechanics. A, Solids 91 (January 

2022): 104384. ", https://doi.org/10.5281/zenodo.4743654
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