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Introduction

Computational homogenization (FE?)
— Microstructured materials

— Two problems are solved concurrently:
« Macro-scale: seen as a continuum

« Micro-scale: Representative Volume Element (RVE)

Advantage

— Account directly for the micro—structural parameters
(microstructure, constitutive behavior) with high accuracy.

Drawback

— Computational time & memory:

Solution

— Surrogate model of the microscopic BVP
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Introduction

« Surrogate model of the microscopic BVP Off-line
— Define a surrogate model Fu
— Off-line: .
« Construct off-line data-base (using RVE simulations) ’ ®
» Train surrogate model | c\?
— On-line: ST\i --------

» Use the trained surrogate model during analyses
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Deep material networks

« Based on thermodynamic consistency M g S
« Possesses extrapolation capabilities in W00
— Strain (history): Fy
— Material parameters: y,

Porosity
evolution
¢ DNS

Nieveis =3
=== Nieveis =4
""" Nieveis =5

0.00 0.05 0.10 0.15

 Emerging methodology 205, L0

— Seminal work
* Liu, Wu, Koishi, (2019). A deep material network for multiscale topology learning and accelerated nonlinear

modeling of heterogeneous materials. CMAME
— Reformulation and use as surrogate for arbitrary material law

» Gajek, Schneider, Bohlke, (2021). An FE-DMN method for the multiscale analysis of short fiber reinforced

plastic components. CMAME

* Nguyen V.-D., Noels, L. (2022). Interaction-based material network: A general framework for (porous)

microstructured materials. CMAME
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Deep material networks

Bi-material laminate architecture as mechanistic building blocks

[ Homogenised behaviour
— Example for a 2-phase material | Pu@® =P Fu(®),Z(x<1))
— Material node i =0,...,N-1, of weight W' Pu (1) =Ziz W' P1(D)
| Fu(D) =X W' F'(D)
z wt=1

N© ‘|:
Bi-material laminate

Material node i =0..7, of weight W*

Constitutive behaviours:
Z. Liu, C. Wu, M. Koishi, A deep material network for multiscale topology learning and
accelerated nonlinear modeling of heterogeneous materials

PP(t) =PP(Fi(t),Z(z < t))
if node i € phase p for material p=0 or p=1
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Deep material networks

— The solution is provided under a closed form, which is equivalent to the weak form in the finite
- -— - N [ . ~ \
~

Our contributions
/""'“ Vs o

~
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element method
Material networks are revisited with interactions

\ *

Interaction-based material network:

A network of interaction mechanisms
» General framework for (porous) microstructured materials

L
“

Material nodes are linked through interactions

Nguyen, V. D., & Noels, L. (2022). Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient
6

implementation for multi-phase composites. European Journal of Mechanics - A/Solids.
Nguyen V.-D., Noels, L. (2022). Interaction-based material network: A general framework for (porous) microstructured materials. CMAME
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Interaction-based material networks — interactions & closed form solution

« Link homogenised deformation gradient to nodes
— Interactionk =0..M — 1
Fv + Yhog etk a¥ @ G¥ =F!, i=0..9 //'
Direction of interaction k (
Contribution of node i (parameter) \ ‘
in interaction k Degrees of freedom of interaction k \
(parameter?) defining the strain fluctuation N3 A
{’".----““ v7
~
~ — -_— o — -
A material network
* 10 material nodes
» 8interactions
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Interaction-based material networks — interactions & closed form solution

Link homogenised deformation gradient to nodes
— Interactionk =0..M — 1

Fy + YM-1 ik gk Gk=Fi, i=0..9 _
M Zk—o ® Constraint to be

satisfied in
Constraints from strain averaging '”terac):'on &
. < ]
Fy=X; W'F! —) Z Z Wiatk |ak ® G¥ =0 — Z Whabtk =0
k i [
Weak form from Hill-Mandel z (z WiPiai,k> Gk =0
| oi. Spi ipigik |.ck|. sak = o i

Py:6Fy=Y; W! PL:6F. [ z<zw P'a ) G éa” =10 —) |
k i Material node i =0..9, of weight W*

Constitutive behaviours: PP (¢) :PP(Fi(t)’Z(T < t))

: : if node i € phase p for material p=0 or p=1
Homogenlzed stress from stress averaging

Py=Y, WP
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Interaction-based material network — interactions

« How to define an interaction?
— For an interaction k

z Wiatk =0
:

— Each interaction includes several nodes
e a'* =0 if node i does not participate the interaction k

« Network architecture
— A set of material nodes
— A set of network interactions

A material network
* 10 material nodes
* 8 interactions

9/13/2023 9



Interaction-based material networks — interactions

Mechanistic building blocks: Polyhedra
— InteractionV’/ ,j =0..M — 1

————~

- ~

— Fluctuation field: w=x — Fy-X
« Integration by parts on a polyhedron of volume V' associated to node i
1 - St . .
Fum +$ ViW®V0dV=F1 C> FM_l_z FVv@(iN]):Fl
j:ievi

* To be compared with the interactions
a“¥ is the weighted surface of a polyhedron face (parameter to be identified)

M-1 .

Fv + Z atak @ G¥ = F' « G" is the inward or outward normal of the polyhedron face (parameter to be identified)
k=0 « ak is the fluctuation field (degree of freedom for online simulations)
10
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Interaction-based material network — interactions

« Mechanistic building blocks: we can recover laminate building blocks
— Between two groups of nodes

ymg pl

Z N

Homogenized Homogenized
properties over V> properties over V¢

* Nguyen, V. D., & Noels, L. (2022). Micromechanics-based material networks revisited from the interaction viewpoint;

robust and efficient implementation for multi-phase composites. European Journal of Mechanics - A/Solids.
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Interaction-based material network — interactions

Interactionk = 0
ssnmemrrrimreaa,, Interaction k = 1

Mechanistic building blocks: Laminate
“““" fv() ‘. . ..’

- @
-— —y
~

-

/“/‘t“ VS N, ~
/
/ ;]
\y

\

Interactlon‘k =2
“

Interaction k = 5 """""'"lln‘teractlon k=6

Trainable parameters:

« Weights: wt i=0..9
 Direction for an interaction g I:>Nf,j =0..7
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Interaction-based material network — interactions

« Mechanistic building blocks: Full interaction

— Interaction V’ as a full interaction

* Mechanism j is a full interaction if satisfying

z Wiab* =0
i

o a“* Vi, k are considered as fitting parameters

— More trainable parameters than laminate-based interactions

Trainable parameters
L= [W@',Oéij,Gj with:=0,....N —1,3 ZO,...,M—I]
N—1 — Represent RVE geometry
satisfying Z Wic; =0 V)
i=0

9/13/2023 13



Interaction-based material network — offline training

« Linear elastic training
— The tangent at zero strain is considered:

* Nonlinear training
— Consider history path dependent

_dPym B
Ly= g at Fy=| Py (¢) =Py (Fu(7), 7 < t; £)
) Ly = Lu(Lo, o) Lp_i; £) — Offline data
/ “ * RVE & microscopic boundary condition
Elastic tangent tensors of  Trainable * Inputs : strain paths Fy(7),7 <t
Zunderlying phases parameters « Output: stress path Py (1), T < t obtained by
computational micromechanics
— Offline data - _
* RVE & microscopic boundary condition — Aloss function is defined
e Elastic tangent tensors of P under|ying phases — Grad|ent‘qescent Optlmlzel’ to minimize th|S
randomly generated loss function

* Homogenized tangent obtained by computational
micromechanics

— A loss function is defined

— Gradient-descent optimizer to minimize this
loss function
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Interaction-based material network as surrogate model

* Online stage on a particle-reinforced composite

— Properties

 Elastic inclusions & elasto-plastic matrix
— Laminate-based interactions

— Linear elastic training
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Interaction-based material network as surrogate model

Multiscale simulation

— Elasto-plastic composite RVE

— Comparison FE? vs. Material network-surrogate

— Laminate-based interactions

— Linear elastic training
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Interaction-based material network as surrogate model

* Online stage on a porous material

— Properties

S SNANT
N 4’ A :A'Av‘“

7
. _ . . 1 VAVA"" AVAY.\V)
Elasto-plastic matrix V. "{g,g

CEAARE
PAVAY. \VAY
P 'AVA¢‘5 A

\
an

 Small strain

— Full interactions

— Non-linear training

Stress-strain Porosity
100 -
50_ 1.6'
g Nivas = 3
-.E_. 0 levels = "‘3 1.4
X === Nieve;s=4 =
® =501 k5 L Nievels = 5 DNS
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_150] == 100 e Nievels = >
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EXX £-xx+§yy+e-zz
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Interaction-based material network as surrogate model

* Online stage on a porous material

Properties “w - Als

Y

» Elasto-plastic matrix
« Small strain
Full interactions as mechanistic building blocks
Non-linear training with Material 1, on-line material 2
Random loading
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Interaction-based material network as surrogate model

Online stage on a porous material

Properties
» Elasto-plastic matrix
« Small strain

Full interactions as mechanistic building blocks

Non-linear training
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Interaction-based material network as surrogate model

| inear training

« Multiscale simulation
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Interaction-based material network as surrogate model

« Multiscale simulation

— Stress-strain distribution at point A

— For 2° material nodes

— Full interactions as mechanistic building blocks

— Non-linear training
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Interaction-based material network as surrogate model

 Multiscale simulation
— Stress-strain distribution at point B
— For 2° material nodes

— Full interactions as mechanistic building blocks

— Non-linear training
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Conclusions and perspectives

» Interaction-based material network
— a general framework to build surrogate models for micro-structured materials

— Satisfy all requirements of a truly microscopic boundary value problem including the stress and strain
averaging principles and the Hill-Mandel energetically consistent condition

— Efficient training procedures

— Trained material networks with the ones of the direct numerical simulations in both contexts of virtual
testing and multiscale simulations.

9/13/2023 23



Thank you for your attention

Nguyen, V. D., & Noels, L. (2022). Micromechanics-based material networks revisited from the interaction viewpoint; robust

and efficient implementation for multi-phase composites. European Journal of Mechanics - A/Solids.

Nguyen V.-D., Noels, L. (2022). Interaction-based material network: A general framework for (porous) microstructured

materials. CMAME

Data of " V. D. Nguyen and L. Noels. "Interaction-based material network: a general framework for (porous) microstructured

materials." Computer Methods in Applied Mechanics and Engineering", https://doi.org/10.5281/zen0do.5568832

Data of " V. D. Nguyen and L. Noels. "Micromechanics-based material networks revisited from the interaction viewpoint;
robust and efficient implementation for multi-phase composites." European Journal of Mechanics. A, Solids 91 (January

2022): 104384. ", https://doi.org/10.5281/zenodo.4743654
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