

Efficient surrogate models for microstructured materials based on interaction-based material networks

Van-Dung Nguyen & Ludovic Noels

Computational & Multiscale Mechanics of Materials <u>http://www.ltas-cm3.ulg.ac.be</u> University of Liège, Belgium

> vandung.nguyen@uliege.be I.noels@uliege.be

Introduction

- Computational homogenization (**FE**²)
 - Microstructured materials
 - Two problems are solved concurrently:
 - Macro-scale: seen as a continuum
 - Micro-scale: Representative Volume Element (RVE)
- Advantage
 - Account directly for the micro-structural parameters (microstructure, constitutive behavior) with high accuracy.
- Drawback
 - Computational time & memory:
- Solution
 - Surrogate model of the microscopic BVP

Micro-scale

Introduction

- Surrogate model of the microscopic BVP
 - Define a surrogate model
 - Off-line:
 - Construct off-line data-base (using RVE simulations)
 - Train surrogate model
 - On-line:
 - Use the trained surrogate model during analyses

Deep material networks

1.8

- Based on thermodynamic consistency
- Possesses extrapolation capabilities in
 - Strain (history): $\mathbf{F}_{\mathbf{M}}$
 - Material parameters: $\gamma_{\rm m}$

- Seminal work
 - Liu, Wu, Koishi, (2019). A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. CMAME
- Reformulation and use as surrogate for arbitrary material law
 - Gajek, Schneider, Böhlke, (2021). An FE–DMN method for the multiscale analysis of short fiber reinforced • plastic components. CMAME
 - Nguyen V.-D., Noels, L. (2022). Interaction-based material network: A general framework for (porous) microstructured materials. CMAME

0.15

Deep material networks

9/13/2023

Deep material networks

Our contributions

- The solution is provided under a closed form, which is equivalent to the weak form in the finite element method
- Material networks are revisited with interactions

- Interaction-based material network:
 - A network of interaction mechanisms
 - General framework for (porous) microstructured materials

Material nodes are linked through interactions

- Nguyen, V. D., & Noels, L. (2022). Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient implementation for multi-phase composites. European Journal of Mechanics A/Solids.
- Nguyen V.-D., Noels, L. (2022). Interaction-based material network: A general framework for (porous) microstructured materials. CMAME

Interaction-based material networks – interactions & closed form solution

- Link homogenised deformation gradient to nodes
 - Interaction k = 0..M 1

$$\mathbf{F}_{\mathrm{M}} + \sum_{k=0}^{M-1} \alpha^{i,k} \mathbf{a}^{k} \otimes \mathbf{G}^{k} = \mathbf{F}^{i}, \quad i = 0..9$$
Contribution of node i
in interaction k
(parameter?)
Degrees of freedom of interaction k
defining the strain fluctuation

A material network

- 10 material nodes
- 8 interactions

Interaction-based material networks - interactions & closed form solution

Homogenized stress from stress averaging

$$\boldsymbol{P}_{\mathrm{M}} = \sum_{i} W^{i} \boldsymbol{P}^{i}$$

- How to define an interaction?
 - For an interaction k

 $\sum_{i} W^{i} \alpha^{i,k} = 0$

- Each interaction includes several nodes
 - $\alpha^{i,k} = 0$ if node *i* does not participate the interaction *k*
- Network architecture
 - A set of material nodes
 - A set of network interactions

A material network

- 10 material nodes
- 8 interactions

Interaction-based material networks - interactions

- Fluctuation field: $\mathbf{w} = \mathbf{x} \mathbf{F}_{M} \cdot \mathbf{X}$
 - Integration by parts on a polyhedron of volume V^i associated to node i

$$\mathbf{F}_{M} + \frac{1}{V^{i}} \int_{V^{i}} \mathbf{w} \otimes \nabla_{0} \, dV = \mathbf{F}^{i} \quad \Longrightarrow \quad \mathbf{F}_{M} + \sum_{j:i \in \mathcal{V}^{j}} \frac{S^{i,j}}{V^{i}} \mathbf{w} \otimes (\pm \mathbf{N}^{j}) = \mathbf{F}^{i}$$

• To be compared with the interactions

$$\mathbf{F}_{\mathrm{M}} + \sum_{k=0}^{M-1} \alpha^{i,k} \, \boldsymbol{a}^{k} \otimes \boldsymbol{G}^{k} = \mathbf{F}^{i} \qquad -$$

- $\alpha^{i,k}$ is the weighted surface of a polyhedron face (parameter to be identified)
- G^{k} is the inward or outward normal of the polyhedron face (parameter to be identified)
- \boldsymbol{a}^k is the fluctuation field (degree of freedom for online simulations)

- Mechanistic building blocks: we can recover laminate building blocks
 - Between two groups of nodes

• Nguyen, V. D., & Noels, L. (2022). Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient implementation for multi-phase composites. European Journal of Mechanics - A/Solids.

Interaction-based material network – interactions

Mechanistic building blocks: Laminate 120 12 6 5 8 ******* \mathcal{V}^7 Trainable parameters: *Weights:* W^{i} , i = 0...9• Direction for an interaction $G^k \longrightarrow N^j$, j = 0..7٠

9/13/2023

•

Interaction-based material network - interactions

- Mechanistic building blocks: Full interaction
 - Interaction \mathcal{V}^{j} as a full interaction
 - Mechanism j is a full interaction if satisfying

$$\sum_{i} W^{i} \alpha^{i,k} = 0$$

• $\alpha^{i,k} \forall i, k$ are considered as fitting parameters

- More trainable parameters than laminate-based interactions

Trainable parameters $\mathcal{L} = [W_i, \alpha_{ij}, \mathbf{G}_j \text{ with } i = 0, \dots, N-1, j = 0, \dots, M-1]$ Represent RVE geometry satisfying $\sum_{i=0}^{N-1} W_i \alpha_{ij} = 0 \ \forall j$

- Linear elastic training
 - The tangent at zero strain is considered:

- Offline data

- RVE & microscopic boundary condition
- Elastic tangent tensors of *P* underlying phases randomly generated
- Homogenized tangent obtained by computational micromechanics
- A loss function is defined
- Gradient-descent optimizer to minimize this loss function

- Nonlinear training
 - Consider history path dependent

 $\mathbf{P}_{\mathrm{M}}(t) = \mathbf{P}_{\mathrm{M}} (\mathbf{F}_{\mathrm{M}}(\tau), \tau \leq t; \mathbf{L})$

- Offline data
 - RVE & microscopic boundary condition
 - Inputs : strain paths $\mathbf{F}_{M}(\tau), \tau \leq t$
 - Output: stress path $P_M(\tau), \tau \le t$ obtained by computational micromechanics
- A loss function is defined
- Gradient-descent optimizer to minimize this loss function

- Online stage on a particle-reinforced composite
 - Properties
 - Elastic inclusions & elasto-plastic matrix
 - Laminate-based interactions
 - Linear elastic training

- Multiscale simulation
 - Elasto-plastic composite RVE
 - Comparison FE² vs. Material network-surrogate
 - Laminate-based interactions
 - Linear elastic training

9/13/2023

- Online stage on a porous material
 - Properties
 - Elasto-plastic matrix
 - Small strain
 - Full interactions
 - Non-linear training

- Online stage on a porous material
 - Properties
 - Elasto-plastic matrix
 - Small strain
 - Full interactions as mechanistic building blocks
 - Non-linear training with Material 1, on-line material 2
 - Random loading

9/13/2023

- Online stage on a porous material
 - Properties
 - Elasto-plastic matrix
 - Small strain
 - Full interactions as mechanistic building blocks
 - Non-linear training
 - Thermodynamically consistent

- Multiscale simulation
 - Comparison FE² vs. Material network-surrogate
 - Full interactions as mechanistic building blocks

- Multiscale simulation
 - Stress-strain distribution at point A
 - For 2⁵ material nodes
 - Full interactions as mechanistic building blocks
 - Non-linear training

- Multiscale simulation
 - Stress-strain distribution at point B
 - For 2⁵ material nodes
 - Full interactions as mechanistic building blocks
 - Non-linear training

- Interaction-based material network
 - a general framework to build surrogate models for micro-structured materials
 - Satisfy all requirements of a truly microscopic boundary value problem including the stress and strain averaging principles and the Hill–Mandel energetically consistent condition
 - Efficient training procedures
 - Trained material networks with the ones of the direct numerical simulations in both contexts of virtual testing and multiscale simulations.

Thank you for your attention

- Nguyen, V. D., & Noels, L. (2022). Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient implementation for multi-phase composites. European Journal of Mechanics A/Solids.
- Nguyen V.-D., Noels, L. (2022). Interaction-based material network: A general framework for (porous) microstructured materials. CMAME
- Data of "V. D. Nguyen and L. Noels. "Interaction-based material network: a general framework for (porous) microstructured materials." Computer Methods in Applied Mechanics and Engineering", https://doi.org/10.5281/zenodo.5568832
- Data of "V. D. Nguyen and L. Noels. "Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient implementation for multi-phase composites." European Journal of Mechanics. A, Solids 91 (January 2022): 104384. ", https://doi.org/10.5281/zenodo.4743654