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Multiple Myeloma 
Multiple myeloma (MM) is a hematologic cancer of bone marrow (BM) 

plasma cells (PC). The name “multiple myeloma” refers to the first observations in 

patients who presented multiple bone lesions in their BM1. It is the second most 

common hematologic malignancy2 and is known to be treatable but incurable due to 

high relapse rate3. It is a disease that is more common in elderly patients with the 

median age of 69 and most patients are diagnosed at a higher age than 65.2 Every year, 

approximately 100 000 people lose their lives from MM.2 Extraordinarily, the disease 

is twice more frequent in Black ethnicity4 and observed at a younger age5, compared 

to White ethnicity. It also has a higher incidence in men than in women.6  

 

 
Figure 1. Life cycle of B-cells. Figure is adapted from Lejeune et al. 7 

To comprehend MM, it is important to understand how PCs mature and 

function. PCs belong to a larger family called B-cells. B-cells are characterized by 

their cell-specific immunoglobulins (Ig), B-cell receptors (BCR). These receptors 

build up a diverse repertoire for immune reactions against pathogens. When B-cells 
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encounter a foreign antigen through BCR, they get activated and expand clonally.8 

BCRs are composed of two chains, a heavy chain and a light chain, each of which has 

constant and variable regions. The complementary determining region 3 (CDR3) in 

the variable region of the chains are highly diverse, which allows for the generation of 

a large immune repertoire. This diversity is achieved through the recombination of 

different variable (V), diversity (D), and joining (J) segments, resulting in unique 

immune receptors. 

 

The life of B-cells starts in the bone marrow, as hematopoietic stem cells 

initially differentiate into pre-B-cells (Figure 1). Along their maturation, these cells 

gain the ability to produce BCR, differentiate into naive B-cells and migrate to blood 

stream. When naive B-cells encounters a pathogen antigen, they get activated and 

migrate to lymph nodes. In lymph nodes, they differentiate into mature B-cells, 

initiating rapid proliferation. Some B-cells further maturate into memory B-cells, long-

lived circulating B-cells that can generate an acute response in the future, when 

encountered with the same pathogen. The remaining, on the other hand, migrate to 

bone marrow and differentiate into short-lived antibody-secreting plasma cells.  

 

The cause of MM is unknown. Yet, uncontrolled proliferation of defective 

plasma cells in the bone marrow results in excessive production of aberrant antibodies. 

As the disease progresses, the accumulation of tumor burden, the activation of bone-

resorbing osteoclasts and production of excessive amounts of antibodies causes 

multiple tissue damages including bone lesions, kidney failure, and anaemia.6,9 
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Characteristics of MM 

Progression Stages 

 

Figure 2. MM progression steps. The figure is adapted from Neumeister et al.10 

MM is an advanced plasma cell disorder, resulting in tissue damages. Between 

the initial event and MM stage, alterations take place in genome and proteome, 

accumulating in abnormal cells. These events cause them to branch into new 

clonotypes, some of which become more aggressive over time. There are two precursor 

stages of MM, where aberrant plasma cells are observed but not causing symptoms 

(Figure 2). Monoclonal gammopathy of unknown significance (MGUS) patients are 

characterized by low levels (<10%) of aberrant plasma cells, which are identified by 

the abnormal levels of M (monoclonal) protein in the blood.11 At this stage, there are 

no symptoms observed that harms the body. Nevertheless, every year, 1-2% of these 

patients progress to MM.11 Smoldering multiple myeloma (SMM) is an advanced stage 

of MGUS. There are higher levels of circulating M proteins observed in these patients 

as well as >10% plasma cells in the bone marrow.3 About 10% of SMM patients 

progress to MM each year.3  When the patients develop symptoms that meet CRAB 
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criteria (hypercalcemia, renal impairment, anemia, bone lesions), they are diagnosed 

as MM. A detailed comparison of the precursor stages and MM is shown in Table 1.  

 

Moreover, around 2-4% of plasma cell dyscrasias are observed in the form 

of plasma cell leukemia (PCL), where the plasma cells are also observed to be 

circulating in the peripheral blood.12 PCL could emerge with or without progressing 

from MM. Those appear without previous evidence of MM are called primary PCL 

and constitute about 65% of the patients. On the other hand, 35% of PCL cases develop 

from MM and called secondary PCL.12 

 

Light chain amyloidosis (AL) is another disorder caused by abnormal plasma 

cells. Similar to MM, abnormal antibodies, monoclonal light chain fragments 

accumulate in distant organs and cause various problems, such as heart and kidney 

damages. It is important to note that diagnosis of MM requires accumulation of tumor 

cells in the bone marrow, while AL can develop independent of tumor formation. 

Nevertheless, around 10-15% MM patients also develop AL.11 
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Symptoms and Diagnosis  

Table 1. National Comprehensive Cancer Network and International Myeloma Working Group 

Diagnostic Criteria for MGUS, SMM and MM.13 The table is adapted from Cowan et al.11  

 

The most common symptoms of MM include fatigue, bone pain and anemia.14 

The diagnosis of multiple myeloma requires the presence of one or more myeloma-

defining CRAB events as well as evidence of 10% or greater abnormal plasma cells in 

the bone marrow. After an initial examination, patients are subjected to various 

diagnostic evaluations, including laboratory studies, urine studies, bone marrow 

biopsy, and radiology.3 Serum and urine assays are used to assess the levels of serum 

calcium as well as creatinine, hemoglobin and M proteins.11 The evaluation of bone 

disease can be conducted by magnetic resonance imaging (MRI) or positron emission 

tomography-computed tomography (PET/CT) imaging.11 Further assessments of 

disease biology can be conducted with genetic and molecular studies. FISH assay and 

karyotyping can be used for cytogenic abnormality evaluation.11 
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Staging 

The staging in MM is traditionally assessed by the Durie-Salmon Staging 

(DSS)15 or International Staging System (ISS)16. While both staging systems take into 

account tumor burden, they lack the element of disease biology, which has a high 

impact on overall survival.17,18 In 2014, the revised international staging system 

(RISS)19 is announced. Unlike ISS, RISS also considers disease biology, involving 

cytogenetic risk stratification (Table 2).  As a result of this combination, the 5-year 

survival rate of the Stage I, II, III patients were estimated as 82%, 62%, and 40%, 

respectively.19    

 
Table 2. Revised International Staging System for Myeloma. The table is adapted from 

Rajkumar et al.18 
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Prognostic factors 
MM is a complex and multi-factorial disease, and its exact cause is not fully 

understood. Yet, there are common mechanisms observed among the patients that take 

place along disease progression (Figure 3). The events that are commonly observed at 

early disease stages are called primary events and they have a significant impact on 

disease biology, affecting the course of the disease, response to therapy and prognosis 

(Table 3).18 Thus, they are frequently used for the categorization of patients. As the 

disease progresses, additional abnormalities are observed in abnormal plasma cells. 

These are called secondary events.  
 

 
Figure 3. Intra-tumoral abnormalities that takes place along MM disease progression. Figure 

adapted from Cardona et al.20 
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Primary Genetic Events 

Plasma cells are specialized cells producing very high amount of Igs and the 

most common abnormalities observed in MM are translocations related to Ig heavy 

chain (IGH), located on chromosome 14. However, translocations are not the only 

cytogenetic abnormalities observed in MM. Partial and/or complete chromosomal 

gains and deletions are also frequently detected, resulting in significant losses or gains 

of functionality as well as increased genomic instability. Thus, these events are also 

considered primary drivers in development of MM.20,21 

 
Table 3. MM cytogenetic risk assessment. Table adapted from Wallington et al.22 

 

IGH translocations 

These translocations involve up-regulation of key oncogenes under influence 

of IGH enhancer.20 Translocations t(11;14) and t(6;14) elevate the expression of the 

cyclin genes CCND1 and CCND3 respectively, inactivating retinoblastoma 1 (RB1) 

and causing dysregulation in cell cycle control.20,23 Similarly, t(4;14) causes 

overexpression of fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma 

SET domain protein (MMSET), which results in overexpression of CCND2.24 

Moreover, increased MMSET expression is reported to be associated with 

dysregulation in DNA repair mechanism and demethylation of histone H3K36, leading 

to increased chromosomal instability.25,26 Translocations t(14;16) and t(14;20) 
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deregulate MAF and MAFB genes respectively. Up-regulation in MAF gene family 

also induces CCND2 expression, leading to accelerated proliferation.24 An overview 

of cytogenic abnormalities and their prognostic effects are listed in Table 3. 

Chromosomal abnormalities 

Hyperdiploidy is observed in approximately half of MM cases. It is 

characterized by extra copies of the odd chromosomes, 3, 5, 6, 7, 9, 11, 15, 19, 21.20 

The underlying mechanism of these chromosomal gains and how they contribute to 

MM progression remain unclear.24 The most frequently occurring hyperdiploidy case 

is trisomy 11, which is known to increase the expression of CCND1 that is located on 

chromosome 11.24 In addition to chromosomal gains, loss of the q arm or monosomy 

of chromosome 13, where the tumor suppressor gene RB1 is located, is considered a 

high-risk factor in MM.22 

Secondary Genetic Events 

MM development is a multistep process. Along transition from MGUS to MM, 

additional genomic abnormalities accumulate in abnormal plasma cells, providing 

additional advantages, such as increased survival and proliferation, leading towards a 

more aggressive disease. These events include key mutations and additional 

chromosomal changes.  

 

The mutational diversity is very high in MM, with around 250 mutated genes 

described, 60 of which are considered to be driver genes.27,28 Yet, only a few of them 

are mutated in more than 5% of patients, including KRAS (20–25%), NRAS (20–

25%), TP53 (8–15%), DIS3 (11%), FAM46C (11%) and BRAF (6–15%).20 Most of 

the mutations observed are related to key pathways, such as MAPK, MYC, DNA repair 

mechanism, NF-kB, JAK-STAT  and cell cycle control.  
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Among the most commonly observed mutations in MM, proto-oncogenes 

KRAS, NRAS, BRAF, and DIS3 are associated with the activation of the ERK/MEK 

pathway. Disruption in the ERK/MEK pathway trigger a cascade of kinase activity. As 

a consequence, several transcription factors (including MYC) become activated, 

ultimately leading to uncontrolled cell proliferation and growth.29–31. Another key 

mutation frequently observed in MM is the TP53 tumor suppressor gene. It can occur 

as monoallelic mutations, where a single allele is affected, or biallelic mutations, where 

both alleles are affected. Monoallelic mutations pose a significant risk for patients, 

while biallelic mutations result in the inactivation of TP53 function, disrupting the cell-

cycle control mechanism. This disruption facilitates tumor formation by promoting 

uncontrolled cell proliferation, dysregulating DNA repair mechanism, and disabling 

apoptosis.32,33 

 

Copy number variations (CNV) are another group of abnormalities frequently 

observed in MM. Amplification on the q arm of chromosome 1 (1q) is observed in 

40% of the patients and considered a poor prognosis risk factor.22 There are many 

genes on the 1q region that are potentially contributing to myelomagenesis through 

cell growth and survival, and drug resistance.20 Similarly, deletion of the p arm of 

chromosome 17, where a key tumor suppressor gene TP53 is located, together with 

TP53 mutation in the other allele, they cause its biallelic inactivation leading to 

impairment in DNA damage and cell cycle control.20 

Molecular Classification 

In 2006, Zhan et al.34 conducted a comprehensive transcriptomics analysis, 

using microarrays, involving a large group of newly diagnosed MM patients. A total 

of 414 patients were categorized into training (n=256) and test (n=158) sets. They 

applied unsupervised clustering on the training set and tested the performance of their 

analysis using a prediction model on the test set by using 50 up- and 50 down-regulated 

genes in each cluster. As a result, they have identified 7 distinct molecular classes that 
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can be used to categorize MM patients (Figure 4). This analysis also allowed the 

detection of characteristic transcriptomic differences between these classes. Some 

categories are strongly linked to specific genetic alterations described above. For 

example, the group with high expression of MAF and MAFB is connected to t(14;16) 

and called MF. CD-1 and CD-2 groups are related to t(11;14) and t(6;14), respectively. 

The "MS" group is associated with the up-regulation of FGFR3 and MMSET, which 

are related to t(4;14). The HY group is comprised of over 90% of patients with 

hyperdiploidy, and the up-regulated genes in this cluster are FRZB, DKK1, TRAIL 

(TNFSF10), and CCR5. PR group showed high expression of cell-cycle related genes, 

as well as a gene expression profile indicating a higher proliferative index. LB group 

is characterized by the expression of EDN1, which is associated with an osteoblastic 

phenotype. Furthermore, the patients in this group have significantly fewer bone 

lesions. Survival analysis revealed low- and high-risk subgroups, where CD-1, CD-2, 

LB, and HY groups categorized as low-risk while MF, MS, and PR cases, high-risk. 

 

The findings of Zhan et al. are further extended by the study conducted by 

Broyl et al.35 In a similar setting, they identified 10 clusters, 6 of them are matching 

with previously described molecular subtypes, except for the LB subgroup. It was later 

detected as a subcategory within the MF group. Moreover, four additional subgroups 

were defined. One subgroup characterized by elevated expression of both erythroid 

and myeloid markers, demonstrated a high myeloid signature. Another cluster was 

defined by overexpression of PRL3. Additionally, a cluster with increased cancer testis 

antigens was identified, which exhibited a similar expression profile to a previously 

defined PR cluster. Finally, a separate cluster, was distinguished by differential 

expression of genes involved in the NFKB pathway, including regulatory genes CD40 

and TRAF3.  
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Figure 4. Marker gene expression profiles in molecular classes. Figure adapted from Zhan et 

al.34 PR; Proliferation, LB; Low Bone, MS; MMSET, HY; Hyperdiploid, CD-1; CCND1, CD-

2; CCND3, MF; MAF,  

Tumor Micro-environment 
The fate of a cell is highly influenced by the external signals and interactions 

from its surrounding micro-environment. MM cells are no exception to this paradigm. 

At the initial stage of the disease, high survival pressure is inflicted on MM cells, 

induced by immune surveillance. Clones that can reduce this pressure gain a significant 

survival advantage. In later stages, changes in the microenvironment provide MM 

clones additional benefits from their surrounding cell populations including immune 

protection and survival (Figure 5).  

 

Bone marrow is a complex organ, hosting diverse cell types that perform a 

variety of crucial functions. These include the production of blood cells, immune 

responses, and maintenance of the skeletal system. Therefore, there is a complex 

network of inter-cellular interactions that is altered during MM progression (Figure 6).  
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Figure 5. By nature, the immune system has the capacity to detect and eliminate abnormal 

plasma cells (Elimination Phase). In case these cells develop mechanisms to balance 

immunosurveillance by rapid proliferation or emergence of immune-resistant clones, a suitable 

environment for further progression emerges (Equilibrium Phase). Along their progression to 

MM, abnormal plasma cells gain additional mechanisms receiving pro-survival signals, 

additional energy sources, immunosuppression, and increased mobility (Escape Phase). Figure 

adapted from Lopes et al. 36 

Immune Compartment 

Bone marrow contains hematopoietic stem cells that give rise to hematopoietic 

immune populations, as well as red blood cells and platelets. Immune populations are 

responsible for the detection and elimination of pathogens as well as abnormal cells, 
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including tumors. To do so, they need to go through a complex process that involves 

detection of tumoral antigen, antigen presentation, effector cell activation, and 

elimination of the tumor cell. Dysregulation in these mechanisms leads to immune 

evasion as well as promotion of tumor growth and survival. 

 

CD8+ T-cells and natural killer (NK) cells are essential components of the 

immune system that can recognize and eliminate tumor cells through cytotoxic 

mechanisms. However, both cells express immune checkpoint inhibitors, such as PD1, 

CTLA4, TIGIT, TIM3, and LAG3, which induce impairment in cytokine secretion and 

proliferative capacity.10,36 Moreover, NK cell activity is also suppressed by increased 

STAT3 activity in the tumor micro-environment which leads to shedding of major 

histocompatibility complex (MHC) Class I Polypeptide-Related Sequence A (MICA), 

causing down-regulation and blockage of activating receptor of NKG2D on NK cell 

surface.37 Macrophages are another group of cells having killer activity, specialized 

for phagocytosis. There are two major macrophage subtypes. M1 macrophages are 

characterized by their anti-tumor activity, expressing high levels of MHC Class II and 

pro-inflammatory cytokines. On the other hand, M2 phenotype is specialized in 

immunosuppression and tissue repair, which may assist tumor development via 

secretion of immunosuppressive molecules, such as IL10 and angiogenic elements 

such as VEGF.38 It was observed that the balance between the M1/M2 populations 

shifts towards the M2 subtype, favoring MM progression.38 

 

Within the immune system, there are specialized cells called regulatory B 

(Breg) and T (Treg) cells, which can modulate the immune response by secreting 

molecules that are mainly known to suppress the activity of other immune cells. In 

general, an increase in the number of these cells is associated with a reduced immune 

response. In case of MM, increased proportions of both Bregs and Tregs were 

observed.39,40 They produce high levels of immunosuppressive IL10 and TGFB 

cytokines that can inhibit the function of T-cells, dendritic cells (DCs), and 

macrophages.10,36 Another fundamental regulator cell type is myeloid-derived 
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suppressor cells (MDSCs). It was shown that they benefit MM cells by creating a 

protective environment by suppressing NK and T-cell activity through production 

of nitric oxide synthase (NOS), reactive oxygen species (ROS), and 

immunosuppressive cytokines, including IL6 and IL10. Moreover, activation of 

STAT3 and STAT1 pathways further aid MM cells by induction of VEGF secretion 

and increased expression of anti-apoptotic proteins.10,36 

 
Figure 6. Alternations in the BM micro-environment along MM progression. Figure adapted 

from Encinas et al.38 Teff; effector T-cell, MDSC; myeloid derived suppressor cell, mDC; 

myeloid dendritic cell, BMSC; bone marrow stromal cell.  

As professional antigen-presenting cells, DCs have the crucial role of 

recognizing and presenting tumor-specific antigens for identification of tumor cells. 

However, it is believed that DCs are dysfunctional in MM, lacking antigen 

presentation capabilities.41,42 Moreover, it was shown that pro-tumorigenic interactions 

take place between MM cells and DCs through the CD80/CD86 and CD28 axis, 

RANK-RANK interaction and APRIL-BCMA interaction. These communications 
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lead to tumor growth, survival, and drug resistance by increased expression of soluble 

factors, such as IL3, IL6, IL10, IL8, IL15, VEGF, MCP1, and CXCL12.36,38 

Non- Immune Compartment 

In addition to the dysregulation in the immune compartment, various 

interactions with neighboring cells support MM development. 

 

Mesenchymal stromal cells (MSC) are multipotent cells that can differentiate 

into a variety of cell types including endothelial cells, adipocytes, chondrocytes, 

osteoblasts, and fibroblasts.43 In healthy bone marrow, MSCs aid hematopoietic 

differentiation, maintain bone homeostasis, and support formation of the spatial 

structure of cellular niches.44 However, within the MM micro-environment, they 

support MM development via multiple mechanisms. MSCs interact with MM cells 

through adhesion molecules, such as VCAM1, ICAM1, and CD40, which induce 

angiogenic and proliferative activity by up-regulation of growth factors, such as HGF 

and VEGF. They also contribute to an immunosuppressive micro-environment by 

secretion of various cytokines, such as IL6, IL10, and TGFB. CXCL12 expressed by 

MSCs, interacting with CXCR4 on plasma cells, modulates homing to bone marrow 

in healthy individuals. However, in MM, elevated levels of CXCL12 lead to increase 

in survival, proliferation, angiogenesis, and drug resistance.44,45 Elevated levels of pro-

inflammatory and pro-angiogenic factors in the tumor micro-environment induce 

activation of endothelial cells, leading to increased vessel density and IL6 production.   

 

Osteoclasts and osteoblasts are key populations for maintenance of skeletal 

integrity of bone. Osteoclasts are myeloid-derived cells that are responsible for 

breakdown of bone matrix. Increased levels of RANKL and MIP-1 within the tumor 

micro-environment increase osteoclast activity in MM.46 They play an 

immunosuppressive role by the production of APRIL, a ligand of BCMA, which 

induces up-regulation of TGFB, and IL10. In addition, they support MM cell survival 
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and proliferation.47 Moreover, the interaction of tumor cells and the micro-

environment with osteoclasts leads to their activation, which results in bone 

destruction.48 Conversely, osteoblasts are responsible from maintenance of the bone 

structure, while adipocytes are fat cells that form the adipose tissue. Increased DKK1 

secretion by MM cells acts as a suppressor for osteoblast differentiation while favoring 

adipocyte differentiation.44 These events cause impairment in maintenance of the bone 

structure and lead to formation of bone lesions. In addition, increase in adipocytes aids 

tumor growth, survival, and migration through secretion of adipokines.49  
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Treatment strategies 
The treatment of MM has evolved significantly over the past few decades, 

with the development of novel therapies that have improved survival rates and quality 

of life for patients. These strategies aim to reduce disease-related complications by 

decreasing the amount of plasma cells in the bone marrow. Although treatment 

protocols may vary among countries, the standard approach for multiple myeloma 

typically involves induction therapy including a combination of chemotherapeutic 

agents (Alkylators), proteasome inhibitors, immunomodulatory agents, and 

corticosteroids (Figure 7). More recently, monoclonal antibodies have also been 

approved for use in this setting. For eligible patients, autologous stem cell 

transplantation is recommended following induction therapy to further enhance 

treatment efficacy. Additionally, maintenance therapy with low-toxicity medications 

is often administered to prevent disease relapse after initial treatment. 

 

 
Figure 7. Decision making steps for MM therapy. Figure adapted from Bird et al.9 
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Induction Therapy 

Proteasome inhibitors 

MM cells generate significant quantities of antibodies. In addition, cancer cells 

produce a high volume of abnormal or misfolded proteins, which can lead to cell stress. 

MM cells rely on proteases and proteasomes to break down these proteins, which 

makes them ideal targets. Moreover, the proteasome plays a vital role in cell-cycle by 

catalyzing key proteins in cell cycle control.50 Proteasome inhibitors, such as 

bortezomib, carfilzomib, and ixazomib, block proteasome activity, leading to 

increased cell stress and ultimately the induction of apoptosis.51 

Immunomodulatory drugs and corticosteroids 

 In previous chapters, it has been demonstrated that the MM tumor micro-

environment is highly altered and involves multiple mechanisms to support MM 

development. In this regard, application of immunomodulatory agents has shown 

significant benefits for the treatment of MM. Currently, three immunomodulatory 

drugs, thalidomide, lenalidomide and pomalidomide, are approved for the treatment of 

MM.52 Their mechanism of action includes enhancement of killer cell activity, 

induction of apoptosis, inhibition of angiogenesis and anti-inflammatory regulation.52 

Similarly, corticosteroids, particularly glucocorticoids dexamethasone or 

prednisolone, are used for MM treatment to block pro-inflammatory cytokine 

release.9,53 

Autologous Stem Cell Transplantation (ASCT) 

ASCT is currently a part of the standard therapy for MM treatment for eligible 

patients. The application involves the following steps: stimulation of migration of 

peripheral blood stem cells to the blood stream, collection and storage of stem cells, 

induction of high-dose chemotherapy, and reinjection of the stem cells. The added 



 

 
 
20 

value of ASCT is that it enables effective killing of tumor cells via high-dose 

chemotherapy and results in long-term disease control. Moreover, patient autologous 

stem cells can effectively restore healthy blood cell production.11   

 

ASCT is highly beneficial for patients. Yet, due to the high median age of 

disease onset, not all patients are eligible to receive such a heavy treatment. Although 

there is no specific age limit, for patients above age 65-70, the application of ASCT is 

generally conditional. For ASCT application, two major requirements are cardiac 

functionality and absence of any severe comorbidities.54 

Immunotherapeutic Approaches in Clinical Trials 

Immunotherapy is a promising approach to treat multiple myeloma that aims 

to use the patient's own immune cells to target cancer cells. The main idea behind 

immunotherapy is to guide immune cells specifically to target cancer cells, excluding 

healthy cells and reducing the risk of side effects. Therefore, immunotherapy has the 

potential for a more personalized and potentially more effective treatment option for 

patients with MM. There are novel and innovative approaches being developed to 

make this possible. Three of these methods will be covered in the following 

paragraphs: monoclonal antibodies, chimeric antigen receptor (CAR) T-cells and 

bispecific antibodies.  

Monoclonal antibodies 

Monoclonal antibodies are engineered molecules that bind to a specific cell 

surface antigen. Such specificity is particularly valuable for cancer treatment for 

minimizing the off-target effects and maximizing the efficacy of the treatment. For 

optimal effectiveness, the target antigen should be highly expressed by cancer cells 

and absent from other cell types in the body. Monoclonal antibodies work through 

various mechanisms of action, including attracting immune cells to kill cancer cells or 

directly inducing apoptosis (Figure 8).55 In the context of MM treatment, multiple 
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monoclonal antibodies have been developed to target different antigens. Two 

promising products are daratumumab and elotuzumab. Elotuzumab, targeting 

SLAMF7, became the first approved monoclonal antibody for treating 

relapsed/refractory MM patients, and daratumumab, targeting CD38, was the first to 

receive FDA approval for treatment of transplant-ineligible patients.55  

 

 
Figure 8. Mechanisms of action of monoclonal antibodies. Figure adapted from Radocha et al.56 

ADCC; antibody dependent cellular cytotoxicity, ADCP; antibody dependent cellular 

phagocytosis, CDC; complement dependent cytotoxicity, MAC; membrane attacking complex.  

Chimeric antigen receptor T-cells 

CART strategy relies on engineering the patient’s own T-cells to target tumor-

specific antigens, resulting in the activation of T-cells and subsequent destruction of 

tumor cells. For this purpose, T-cells are collected from patients, engineered using a 

viral CAR vector, cultured for expansion, and then infused back into the patient’s 

blood stream. CARs are composed of four subunits. The extracellular targeting 
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domain, specifically designed for biding to the cancer-specific antigen, is bound to a 

transmembrane domain, located on the cell membrane (Figure 9). Binding to the target 

antigen induces T-cell activation by the internal signaling domain (in CD3 subunits) 

and by a second costimulatory domain from CD28, 4-11B or OX40.57,58 While most 

CAR studies focus on T-cells, a similar strategy can also be adapted to NK cells.59 

Many CART studies focus on BCMA as target antigen. Yet, other targets such as 

CD138, CD19, GPRC5D and SLAMF7 have also been investigated.57,60 The potential 

of CART therapy to provide personalized treatment and long-term immunity makes it 

a highly active area of research. 

 

 

Figure 9. Structure of a chimeric antigen receptor. Figure adapted from Rodriguez et al.58 

Bispecific antibodies 

Bispecific antibodies are engineered molecules, designed to target two 

antigens at once (Figure 10).  One side of the antibody targets a tumor-specific antigen. 

There are various candidate antigens in clinical trials for MM targeting, such as 
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BCMA, CD138, CD38, SLAMF7 and GPRC5D.61 The other side induces activation 

of an immune cell population, a T-cell, or a NK cell, through binding to CD3, CD16 

or NKG2D.36,62 Bispecific antibodies trigger a strong immune response with high 

specificity. Compared to CART, they have a particular advantage in terms of the 

manufacturing process, as they are directly available, low-cost and can be administered 

more quickly.62 

 
Figure 10. Bispecific antibody mechanism of action. Figure adapted from Zhou et al.61 

One of the challenges in immunotherapy is the dysfunctional phenotype 

observed in cytotoxic immune cells within the tumor micro-environment. To increase 

the efficiency of treatment, application of the therapy can be accompanied by immune 

checkpoint blocking agents, such as anti-PD1/PDL1. Alternatively, for CART 

applications, T-cells can also be specifically engineered to be resistant to an 

immunosuppressive environment.63 
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Target antigens for MM immunotherapy 

The success of immunotherapy is heavily reliant on finding the right target 

antigen. The optimal target should be highly and consistently expressed on tumor cells, 

reside on the cell surface, and be absent in other cell types. The expression profiles and 

functions of existing immunotherapeutic MM targets can be found in Figure 11.  

 

B-cell maturation antigen (BCMA) is a highly promising target for multiple 

myeloma therapy, as it is specifically and globally expressed on plasma cells. 

Targeting BCMA with immunotherapeutic products is a highly active area of research, 

with several products, including Teclistamab64, and Belantamab56, already approved 

for the treatment of relapsed/refractory MM patients. Nevertheless, it should be noted 

that, in rare cases, parkinsonism has been observed due to BCMA expression in patient 

basal ganglia.65 

 

 

CD38, CD138, and SLAMF7 were initially targeted for the treatment of 

multiple myeloma, and clinical trials have shown success for CD38 (Daratumumab) 

and SLAMF7 (Elotuzumab). While all three antigens are actively being studied for 

alternative targeting strategies, their expression in various other cell types, including 

immune cells, remains a limitation. Despite their initial success, the off-target 

expression of these antigens is an important concern. 

 

GPRC5D and FCRL5 (also known as FCRH5) are two relatively new and 

promising antigens for targeted therapies. Compared to other targets, both antigens 

have low off-target expression profiles, making them attractive alternatives. Although 

there are currently no approved products targeting these antigens, there are two 

promising therapies under investigation: Talquetamab, which targets GPRC5D, and 

Cevostamab, which targets FCRL5.66 
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Figure 11. Immunotherapeutic targets for multiple myeloma treatment. Figure adapted from 

Shah et al.67  

CD56 and CD19 are both cell surface antigens that have shown promise in the 

treatment of multiple myeloma (MM). While CD56 is absent on normal plasma cells, 

it can be detected on approximately 70% of MM patients, and similarly, CD19 is also 

absent on normal plasma cells but can be found on a small fraction of MM patients. 67 

While these targets are currently being investigated for MM treatment, their low 

abundance on tumor cells and off-target expression are potential challenges that may 

make them less favorable than other candidates.
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scRNA-seq 
In the late 2000s, RNA sequencing (RNA-seq) was widely integrated as a 

novel cost-effective tool for the investigation of transcriptomic data68. It succeeded 

microarrays in many ways. Unlike microarrays, it did not require a prior sequencing 

knowledge, allowed direct measurement of the RNA levels, allowed detection of 

sequence variants and enabled investigation of multiple samples at once.69 

Nevertheless, in RNA-seq, all the transcriptome coming from the mixture of cells, 

collected from a sample, is quantified at once. Such property limits the information 

gain since the cellular heterogeneity cannot be captured. Due to this characteristic, it 

is also often referred as bulk RNA-seq. In 2009, Tang et al. overcame this limitation 

by isolating single cells and conducting RNA-seq per cell.70 This strategy is 

commonly known as single cell RNA sequencing (scRNA-seq). Early applications 

were limited by the low number of cells per experiment and high experimental cost. 

In the last decade, with improvements in cell capture and sequencing efficiency, the 

number of cells investigated increased up to millions and the sequencing cost 

decreased significantly, enabling wide usage of the technique (Figure 12).71 A 

standard scRNA-seq pipeline is composed of cell isolation, library preparation, 

sequencing, data processing and data analysis (Figure 13). In this chapter, the 

procedural steps of scRNA-seq experiments and one of the most commonly used 

scRNA-seq protocols, 10X Chromium72, will be addressed.  
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Figure 12. Timeline of the evolution of scRNA-seq methods. The figure is adapted from 

Svensson et al.71 
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Figure 13. A detailed summary of the steps in a standard scRNA-seq procedure.  
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Experimental Procedure 

Cell Isolation 

The novelty of scRNA-seq experiments, compared to traditional bulk RNA-

seq, is the isolation of single cells. This way, several cell populations can be collected 

and analyzed individually within the same experimental setup. The following steps 

rely on this initial selection. Therefore, the cell isolation method should be chosen 

carefully, based on the experimental setup. Currently, existing cell isolation methods 

are micro-pipetting, fluorescence-activated cell sorting (FACS) into microwell 

plates, microwell encapsulation and droplet encapsulation (Figure 14).  

 

In micro-pipetting, the cells are collected using micro-pipettes which can be 

applied manually or in an automated fashion. Although the method yields high 

quality cell isolation, it is time consuming and is limited to small number of cells. 

Hence, it is a method preferred for segregation of rare or very fragile cell types.73,74 

 

FACS into microwell plates relies on selection of cells using florescence 

labelling and isolation of them using laser-based detection.75 FACS can be used for 

selection of populations based on phenotypical markers.76 For the other scRNA-seq 

methodologies, FACS phenotypical selection can be applied before the cell sorting, 

while for FACS into microwell plates-based methodologies, it can be applied during 

cell isolation. Although, it provides good quality whole transcriptome of captured 

cells, it is expensive compared to other alternatives and limited by low number of 

cells per experiment.76  
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Figure 14. The summary of cell sorting methods. The figure is adapted from Nguyen 

et al.74 

  In the microwell encapsulation method, the cells are run through a fluidic 

circuit, ending up sorted into single chambers.76  The size and the structure of the 

circuit is a limiting factor on the identified number of cells, capture efficiency and 

the doublets.73,76 Two widely used applications of microwell encapsulations are DB 

Rhapsody77 and CEL-Seq278. 

 

In cases where high a number of cells needs to be analyzed, droplet-based 

methods have different advantages. In this method, the cells are run through micro-

tubes and captured by oil droplets including the library preparation material.79 Such 

a strategy uses minimal material with maximum efficiency.80 Moreover, the 

methodology can induce stress on fragile cells, it captures only a fraction of the 

transcriptome and is prone to empty droplets and doublets. Nevertheless, it can be 

applied to samples with hundreds of thousands of cells, making it ideal for high 

throughput sequencing.74  
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Recently, combinatorial barcoding methods such as SCI-seq81 and SPLIT-

seq82, emerged as low-cost alternatives which enable the scRNA-seq to be conducted 

with basic lab equipment, without the need of a sorter machine. These methods aim 

to use the cells as the containers, like the droplets, and combine rounds of barcoding 

to index each cell. This eliminates the need for cell sorting. However, the increased 

complexity of the experiments, barcoding errors, and lack of bioinformatics tools for 

combinatorial demultiplexing are limiting factors for their use. 

Library Preparation 

The quantity of genetic material, obtained from the individual cells, is very 

low. To effectively quantify the RNA levels, an amplification step is applied during 

sequence library preparation (Figure 15).83 The captured material is transformed into 

a more stable double stranded structure using reverse transcription via binding of poly 

T primers and the obtained complementary DNA (cDNA) is further amplified. 

Notably, the starting amount of each gene creates a bias in this procedure. Those 

genes that are highly expressed are also more likely to be captured. Hence, it should 

be noted that the capture of lowly expressed genes remains a challenge.79 

 

The library generation strategies vary based on the cDNA amplification 

strategy and the length of the sequencing (weather it is full-length, 5’ end or 3’ end). 

cDNA amplification can be done by polymerase chain reaction (PCR) or in vitro 

transcription (IVT).76,79 An essential difference between the two methods is that the 

amplification takes place in a linear trend with IVT while exponential with PCR. In 

addition, IVT requires an extra reverse transcription step.79 
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Figure 15. Overview of library preparation steps of various scRNA-seq technologies. The 

figure is adapted from Ziegenhain et al.84  

Mapping of transcript reads to specific genes does not require complete gene 

sequence. Hence, it is often preferred to sequence a small section of 3’ or 5’ end of 

the transcript to reduce sequencing cost. Nevertheless, the full-length transcriptome 

sequencing is required in certain cases, including investigation of splice variants, and 

can be obtained by Nextera technology.76,79 

 

Unique molecular identifiers (UMI) can be used for the identification of 

individual mRNA reads.73,84 These are unique, short sequences of 4-10 bp that can be 

inserted on the 3’ or 5’ end of the transcript during reverse transcription. The number 

of identified UMIs is valuable for the assessment of captured genetic material and 

initial library size.76 Likewise, barcode sequences, also consisting of unique short 

sequences and are used for molecular identification of cells and samples (for samples 

it is also referred as sample index). While UMI sequences are random, barcode 
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sequences are specific for each cell and each sample. They are used for identification 

of individual cells and samples.85 Such characterization enables parallel sequencing 

of multiple cells and samples, reducing experimental costs.71 

Batch Effects and Biases in scRNA-seq 

Even though scRNA-seq experiments provide a comprehensive insight of 

cellular transcriptome, it is prone to technical noise. The biases and noises can be 

observed within- and between-samples. To prevent incorrect biological inferences, it 

is essential to correct these technical variations in the downstream analysis.86,87 

 

The variations from the experimental procedure can be due to biological 

diversity, such as cell size, cell cycle state and cellular stress, or can originate from 

technical variables like personnel and lab conditions.88–90 Additionally, differences in 

RNA capture efficiency, sequencing depth (number of reads) and cDNA 

amplification can also cause unwanted variation in data.86,91 Throughout data 

processing and exploration, we will talk about these biases and how to correct them.  

10x Chromium scRNA-seq 

10x Chromium uses a droplet-based strategy for the isolation of individual 

cells. In this technique, the cells are captured within droplets, together with gel beads 

that contain the barcode sequence, while running through the microfluid chip, and 

form gel beads in emulsion (GEMs) (Figure 16). GEMs include all the necessary 

material to perform the sequencing: barcode sequences, UMIs, poly-T primer and 

adapter sequences for PCR. GEMs provide nano level material usage, enabling 

minimum cost with maximum throughput.92 

 

Once the cells are captured in GEMs, cell lysis begins. Barcode sequences 

attach the mRNA from the poly-T primer and reverse transcription takes place 

(Figure 16b and c). From the obtained cDNA, the sequencing library is generated and 
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the sequencing takes place using Illumina short read sequencing. Obtained reads can 

be further pre-processed by CellRanger software for mapping to a reference genome, 

quantification, and quality control (QC).92  
 

 
Figure 16. 10x Chromium library generation procedure. The figure is adapted from Zheng et 

al.92 
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Data Pre-processing and Normalization 
Illumina short read sequencing produces fastq files where each file contain 

reads of the amplified cDNAs. To match the short sequencing reads to their 

corresponding gene, they need to be mapped to a reference genome. Ultimately, 

quantification of mapped reads enables assessment of gene expression levels.76,90 

Alignment and QC 

Genes and their sequences vary among the species. Therefore, it is essential 

that the reads are aligned to a reference genome from the species where the sequenced 

cells originate from.90,93  Since quality of reads can affect consistency of mapping, 

the reads shorter than 100 bp and low quality reads should be excluded.74,94 In 

addition, prior to alignment, synthetic sequences such as barcode sequences, UMIs 

and adapter sequences should be trimmed off from the sequence reads.74,95 Finally, 

following alignment, reads with multiple gene overlaps should also be filtered out. 

These steps can be performed by CellRanger.  

 

Considering batch effects, assessment of the quality of the sequenced 

material is important per sample. Sample quality can be evaluated by sequencing 

depth, library complexity and mitochondrial percentage. Samples with a low number 

of reads or genes should be treated carefully. Low genetic material capture and low 

number of genes, as well as high number of read and low UMI number can be signs 

of poor sample quality. Similarly, samples with a high number of cells with high 

mitochondrial percentage can indicate high cellular stress. Such stress could be due 

to sampling and should be carefully evaluated.96 In case there are high variations 

among samples, after a careful evaluation, repeating the experiment or excluding 

these samples could be possible solutions.  
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Gene Expression Quantification 

The output of the alignment step is Sequence Alignment/Map (SAM) or 

Binary Alignment/Map (BAM) files. These files include mapping results of 

individual reads. In order to obtain gene expression levels, they need to be 

transformed into an expression matrix by quantifying read-gene pairs. Usage of UMIs 

makes an important difference for quantification step by regressing out PCR bias can 

be observed between cells and genes. For those experiments, where full length 

transcript is sequenced, the variation among the transcript lengths can create a bias. 

Therefore, it is essential to regress out these variations using one of the normalization 

methods of transcript per million, fragments per kilobase million or reads per kilobase 

million.76,86,91  Tools such as scran97, and SCnorm98 are specifically designed for the 

normalization of scRNA-seq experiments. In case UMIs are used, methods such as 

UMI-tools99, zUMIs100, or dropEst101 are applicable for the data pre-processing.102 

CellRanger generates the gene count matrix by counting UMIs aligned to each gene. 

In case a UMI is aligned to multiple genes, those UMIs are discarded. Sequencing 

depth bias can be overcome by counts per million (CPM) normalization.97 Moreover, 

it is a common practice to transform the normalized values into a logarithmic scale. 

Log-transformed expression values represent log fold changes, the widely used 

measure for expression changes, while reducing data skewness to approximate the 

assumption of normal distribution in downstream analysis tools.96,103 To avoid infinite 

values due to log(0), the log transformation is applied by adding one (+1 log 

transformation).  
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Data Exploration 
Generation of the count matrix is a milestone in a scRNA-seq pipeline. Up 

until this point, the objective of the steps taken was to capture the biological 

information and transform it into a quantitative data format. With the count matrix, 

the underlying biology can be explored by using scRNA-seq tools Seurat104 and 

Scater105 in R, and Scanpy106 in Python.  

Cell Filtering 

Due to the nature of the experimental procedure, scRNA-seq experiments are 

prone to errors. It is essential to assess the quality of the cells before starting 

investigation of the biological variation. Empty droplets, doublets, dying cells, cells 

with high proportion of unmapped reads, cells with low number of expressed genes 

should be filtered out.90,107 It is important to assess these categories carefully. The 

filtering parameters should be chosen carefully, considering the experimental 

conditions.93 For example, the percentage of the mitochondrial genes are often used 

to identify dying cells. Yet, in tumor cells, it is expected to observe a higher 

mitochondrial gene expression due to rapid proliferation. Hence, a higher threshold 

for tumor-specific experiments can prevent exclusion of tumor cells.  

 

The segregation of real cells from empty droplets can be done manually by 

clustering. Clusters with very low RNA quantities are expected to group together in 

PCA or in UMAP. Moreover, certain thresholds can be used for quality control 

measures. Number of UMI counts, number of genes and mitochondrial percentage 

are commonly used features.108108 Alternatively, the original EmptyDrops109 tool or 

its adaptation in CellRanger can be used. The floating RNAs captured by empty 

droplets are called ambient RNA. EmptyDrops generates an ambient gene expression 

profile using the droplets with small amount of UMI and categorizes those with a 

significantly different profile than the ambient profile as real cells.   
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Like empty droplets, doublets also often stand out in clustering and quality 

control measures. Alternatively, doublet detection methods Scrublet110 and 

DoubletFinder111 can be used. Scrublet simulates possible doublets by combining 

random observations and generates a final score, which represents the likelihood of 

a cell to be a doublet, based on the relative density of generated doublets around each 

cell. Likewise, DoubletFinder also simulates doublets and identifies those cells 

having high numbers of artificial doublet neighbors as doublets.  

Highly Variable Gene Detection 

The transcriptomic landscape of cells often includes large numbers of genes 

(~20.000) and analyzing such a high dimensional data is a challenging task. 

Summarizing of the data without losing the essential information is required. During 

summarization, the aim is to conserve the biological variation within the data and to 

reduce the number of features. Therefore, highly variable genes (HVG) within the 

dataset are identified112. HVGs can be identified either based on the relation between 

mean and variance104,112 or mean and dropout rate, as in M3Drop112. 

Dimensionality Reduction & Data Visualization 

Even though feature selection reduces the number of dimensions 

significantly, selected highly variable genes are expected to be still too numerous, 

due to the high complexity of biological mechanisms. Therefore, there is further need 

for the summarization of the data. A linear dimensionality reduction technique, 

principal component analysis (PCA) transforms the data into components (Figure 

17). Each gene contributes to each component in different weights. So, components 

are new features, generated on the basis of the weighted sum of the original features 

(genes). The first component explains the highest variance and the explained variance 

decreases in the following components.93 Such property enables the representation of 

a large portion of the variance in the data using few components. Since they represent 
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the highest variance in the data, visualization of the first two components can provide 

insights into different groups within the dataset. Therefore, it is commonly used for 

high level data representation and low-quality cell identification.90 Nevertheless, it is 

important to note that the underlying assumptions of PCA, the normality and linearity 

of the data, are limiting factors, since the underlying biology does not necessarily 

have to fit the expected trends113. For scRNA-seq datasets, commonly preferred 

methods are T-distributed stochastic neighbor embedding (tSNE)114 and Uniform 

Manifold Approximation and Projection (UMAP)115,116.	

 

Figure 17. Illustration of a PCA transformation. In this example, the dataset consists of two 

variables, each explain ~50% of the variation.  There is no single variable that can capture the 

most variance in the dataset. Using PCA transformation, the variables are transformed into 

principal components (PC). Using only PC1, 85% of the variation in the dataset can be 

explained. Therefore, it can be used to summarize the dataset as a single variable.  

Stochastic neighbor embedding (SNE) algorithm is designed as a 

dimensionality reduction method aiming to conserve the proximity information 

among the neighbors in the lower dimensional representation. In SNE, a Gaussian 

distribution, representing the similarities between each point, is generated by the 

conversion of Euclidian distances into conditional probabilities. Within each 

distribution, generated for each instance, those instances that are located closely in 
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the high dimensional data will have closer proximity to the mean of the distribution. 

Hence, it is more probable that these instances are the closest neighbors. During the 

mapping of the high dimensional data to a low dimensional representation, the 

algorithm randomly generates a low dimensional representation and aims to minimize 

the difference between the conditional probabilities (cost function) of the high and 

low dimensional representations. An optimization step, using gradient descent, 

minimizes the outcome of the cost function and the low dimensional data points are 

obtained. A downside of this approach is that the optimization step is complex and 

challenging. In tSNE, instead of Gaussian distribution, Student-t distribution is 

applied, simplifying the optimization step.114 It is a non-linear dimensionality 

reduction method, capable of conserving complex relations together with the local 

clusters.113,117 Therefore, there is extensive usage of tSNE in scRNA-seq 

applications.113 One limitation of tSNE is that there is information loss for the long-

distance relationships.  

 

Uniform manifold approximation and projection (UMAP)115 is a machine 

learning method, used for dimensionality reduction, where the features are 

transformed into manifolds. The topology of each data point is captured based on the 

proximity of its k nearest neighbors, capturing the neighboring information between 

all points. An initial low dimensional representation is generated using spectral 

embedding and the entropy between the low and high dimensional spaces is 

minimized using an optimization algorithm. The resulting low dimensional 

representation is highly dependent on the selected k value. A smaller k results in 

focusing closer relations while a large k focuses on a larger perspective, preserving a 

more global structure.115  

 

UMAP and tSNE are two techniques that are widely used in scRNA-seq 

studies.117 Although the algorithms share similarities in terms of methodology, 

UMAP performs faster in large datasets and keeps the long-distance relations 

between the data points (Figure 18).116 Yet, it should be noted that the algorithm is 
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designed to represent the local relations. Interpretations for the long-distance 

relations may not reflect the reality in the original space and subject to further 

validation.116 

 
Figure 18. A case example for the comparison of tSNE and UMAP. In this example, we 

observe dimensionality reduction applied to a 3D dataset (middle) to project onto 2D space 

using tSNE (left) and UMAP (right) algorithms. It can be observed that in tSNE, although the 

local structures (body parts with same colors) are conserved, the global structure (the shape 

of a bull) is not conserved. On the other hand, although UMAP prioritizes the local structure 

conservation, it still keeps a similar global structure as well. This can be observed through 

proximity of the horns and head as well as the arms and legs. The figure is adapted from 

https://pair-code.github.io/understanding-umap/. 

Clustering 

Identification of cell groups, sharing similar transcriptomic properties, is an 

essential step in scRNA-seq analysis. To detect cell clusters, community detection 

algorithms Louvain and Leiden are widely used.118,119  

 

Louvain clustering is an approximation algorithm where the aim is to 

maximize the modularity.120 The algorithm consists of two steps: modularity 

optimization and community aggregation. Initially, an optimization algorithm is 

applied to generate optimal local communities. In the second step, these communities 

are aggregated into larger communities. The algorithm continues applying the same 



 

 
 
46 

steps iteratively until all data points are merged into a single cluster. The number of 

clusters obtained by Louvain method is controlled by the resolution parameter that 

varies between 0 and 1. The smaller the parameter is set, the larger the clusters form, 

resulting in lower number of clusters.120  

 

Leiden clustering121 is an improved version of the Louvain clustering122. It 

has an additional step in between the first and second step of the Louvain algorithm; 

refinement of the partition. During refinement, the identified communities in the first 

step are further partitioned into smaller communities to increase stability in further 

steps. Such application increases the accuracy and the runtime speed.121,122  

Batch Correction 

In the previous chapter, possible reasons for batch effects and the necessity 

for the elimination of these variations were discussed. The data visualization and the 

community detection are sensitive to these variations. Both methods focus on the 

similarity between the cells and the batch effects can easily derive this similarity. 

Instead of biological similarity, cells can group based on their experimental 

conditions. Therefore, it is essential that the batch effects are corrected before data 

visualization and clustering.113,118 There are various batch correction methods. 

Although the methodologies highly differ among each other, the generic strategy 

includes generation of a low-dimensional representation of the data (using 

dimensionality reduction), identification of commonalities/neighbors between the 

batches and generation of the corrected data/representation prioritizing these 

similarities. Among batch correction algorithms, widely used ones can be listed as 

BBKNN123, Harmony124, Liger125 and Seurat 3126. A comprehensive overview of 

these methods and their comparison can be found in Tran et al. study127.  
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Cell Typing 

 

Figure 19. An illustration, depicting the two observed cell type categories. The figure 

is adapted from Becht et al.116 

The characteristic of a cell is determined by many factors, including its 

location, interactions with neighboring cells and external signals.128 These factors 

initiate the mechanisms, causing the cell to undergo a series of changes, and end up 

in different cellular states called cell types.128 Definition and identification of the cell 

types in a micro-environment is a challenging task. There are many different 

characteristics that can define a cell state. Cells can be categorized based on their cell 

cycle state, their maturation levels or based on expression of different marker genes 

or proteins.129 Therefore, the definition of cell types differs based on the experimental 

conditions and the data available.129 Moreover, the transition from one cell type to 

another is not always definitive. In some cases, the transformation is decisive and 

discrete cell types are observed (Figure 19). In other cases, the transition involves 

smaller changes spread over time, where continuous phenotypes are observed.128–130  
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Depending on the experimental setup, cell typing can be done either 

manually or automated classification methods can be used. In cases where a rare 

subpopulation is being investigated or identification of a new population is aimed for, 

manual annotations can be preferred74. In this strategy, the cells are clustered based 

on their transcriptional profile and annotated depending on the expression levels of 

differentially expressed genes.130,131 There are many automated annotation methods 

developed for scRNA-seq. These methods can be classified into four categories: 

correlation-based, such as SingleR1321 and CHETAH133, projection-based, such as 

Scmap134 and WNN135, marker gene-based, such as Garnett136 and machine learning 

methods. A thorough comparison of widely used automated annotation methods can 

be found in Abdelaal et al. 2019 137.  
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Data Analysis 
With the knowledge obtained by the data exploration, one can start building 

hypotheses and conduct statistical analyses to test these hypotheses. Alternatively, 

the data can be used for predictive modelling, which can provide an estimation that 

can be used to build hypotheses to be explored in follow-up studies. In this section, 

we will focus on the data analysis used in this dissertation. A detailed explanation of 

data analysis approaches, including trajectory inference, cytogenic inferences and 

regulatory networks, has been covered by Chen et al.138. 

Differential Gene Expression (DGE) Analysis 

To identify differences in transcriptional landscape of diverse cell types or 

subject groups, differential gene expression analysis can be applied. The methods to 

be applied depends on whether the comparison is at cellular level or at subject level. 

To compare different cell populations or clusters, commonly used methods include 

Wilcoxon rank sum test, student’s t-test, Likelihood test and logistic regression.104 

For inter-subject comparisons, pseudobulk approaches are used. In pseudobulk 

strategy, the cellular data are initially aggregated to obtain pseudobulk data, 

representing subject level information. This transformation approximates bulk RNA-

seq strategy and enables the use of traditional differential expression tools, such as 

EdgeR139 and DEseq2140. Alternatively, MUSCAT141, an adaptation of DEseq2 to 

scRNA-seq data, can be used.  

Gene Set Enrichment Analysis 

Differential gene expression analysis reveals the difference between the 

contrasts at gene level. However, the biological systems are complex and often large 

gene groups are required to function together for biological processes. Gene set 

enrichment analysis (GSEA) enables investigation of alterations in biological 

processes by evaluating collective changes in gene groups. Initially, the genes are 
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ranked by their expression difference between the two contrasts. Genes in the lower 

and upper end of the ranked list are associated with either one of the two contrasts. 

Therefore, the accumulation of genes of a biological process in one of the two edges 

indicates high correlation with the observed phenotype. To evaluate such 

polarization, an enrichment score is calculated by running down the ranked list and 

generating a running-sum score when a gene in the gene set of interest is observed. 

When another gene is observed, the score decreases. Finally, to determine the 

statistical significance of the enrichment score, a permutation test is applied.142 The 

analysis can be conducted by GSEA software142, FGSEA143 library in R or gseapy 

(https://gseapy.readthedocs.io/en/latest/) in Python.   

Cell-cell Interaction Inference 

Cells in a micro-environment have a highly dynamic and complex 

communication network. The interaction between cellular groups has a major impact 

on their cellular state and function. Therefore, identification of such network 

structures has a vital role in disease biology. Although scRNA-seq experiments 

provide a deep understanding of intracellular changes, it has limitations on 

intercellular information. It only provides transcriptomic information, while 

intercellular interactions mostly take place in the form of protein-protein interactions. 

Also, it does not provide information regarding proximity between cells, which is 

another important effector for intercellular interactions. Nevertheless, using the 

central dogma, the potential interaction between different cell populations can be 

inferred using transcriptomics data. There are numerous databases, such as 

OmniPath144, UniProt145 and IntAct146, that have cell-cell interaction information, 

enabling predictive analyses.  
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Figure 20. Visual representation of the concept of cell-cell interaction inference. 

Cell-cell interaction inference algorithms initially focuses on known ligands 

and receptors and their expression on cell types of interests. Based on changes and/or 

abundance of ligands and receptors, potential interactions were predicted (Figure 20). 

In a recently published study, Dimitrov et al.147 provided a comprehensive overview 

of ligand-receptor interaction models and databases. They also showed that the choice 

of database and the model have significant impact on the results. Therefore, they have 

implemented the Liana framework where the analysis can be conducted by model 

and database of preference. It also enables multiple selection of databases and 

models, providing a consensus decision. In addition to ligands and receptors, 

intercellular interactions are expected to alter downstream mechanisms in the cells of 

interest. Investigating these expected alterations, further evidence can be gathered. 

NicheNet148 and CytoTalk149 are two methods that also take into account downstream 

changes in the gene expression patterns. 
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CITE-seq 

 
Figure 21. REAP-seq protocol. The figure is adapted from Peterson et al.150 

In the cell typing chapter, the challenges of characterization of different cell 

types were discussed. In some cell types, such as T-cells, the transcriptomic 

information may not be sufficient to characterize all the subpopulations. In these 

cases, additional cell surface proteome information can facilitate accurate and deeper 

annotation of distinct cell groups. 

 

Cellular indexing of transcriptomes and epitopes by sequencing (CITE-

seq)151 and RNA expression and protein sequencing assay (REAP-seq) are two 

adaptations of scRNA-seq with the addition of the possibility to investigate the cell 

surface proteome. The two approaches greatly overlap in terms of methodology. In 

both techniques, before encapsulation, antibodies, tagged with a DNA conjugate-

including primer, antibody barcode and poly A sequences, bind to their respective 

antigens to capture the cell surface protein abundance (Figure 21).150,151 Data obtained 

from the surface proteome is called antibody-derived tag (ADT). Such a strategy 

enables simultaneous quantification of both transcriptomic and cell surface proteomic 
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information. Once the scRNA-seq procedure is complete, both data types can be 

separated by the barcode sequences and analyzed. The main difference between the 

two strategies is the generation of the antigen-DNA conjugate. CITE-seq uses a 

sequence which binds to biotinylated DNA, while REAP-seq depends on the covalent 

bond between the antibody and aminated DNA barcode.152 Recently, an expanded 

version of CITE-seq, ECCITE-seq153, which offers additional information gain by 

enabling investigation of CRISPR perturbations and immune receptor clonotypes, 

has been announced.  

 

Since the protocol of scRNA-seq and CITE-seq overlap greatly, the data 

preprocessing and data exploration strategies can be used for both, except for the data 

normalization. The strength of scRNA-seq data comes from the large number of 

identified genes, which can provide a global overview of the cellular state. However, 

in CITE-seq proteomics data, limited numbers of antibodies are used due to lack of 

antibodies to target all antigens of interest.154 This also provides additional challenges 

on correcting the technical noise and data normalization. RNA data include high 

numbers of 0 values, making it a sparse dataset with a peak at 0 and a positive 

distribution. On the other hand, in ADT data, for each antigen, it is often observed 

that there is a non-zero negative peak, due to unbound antibodies, and a positive 

peak155. To segregate the actual distribution from the noise, different strategies, 

including centered log ratio transformation156, denoised and scaled background 

normalization 157, ADTnorm155 and arcsinh transformation, have been developed. A 

comparison of CITE-seq denoising strategies can be found in Zhen et al.155   
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scVDJ-seq  

 
Figure 22. scBCR-seq protocol. The figure is adapted from Goldstein et al.158 

In the first chapter, BCR, a unique antibody that can recognize the pathogen 

antigens was introduced. Similar to B-cells, T-cells also have unique antibodies that 

can recognize peptide fragments of MHC molecules, the T-cell receptor (TCR). 

Importantly, both receptor types gain their diversity through VDJ rearrangements. 

The characterization of these regions as well as their expansion status are of great 

importance for various fields in research.  

 

Like the surface proteome, the characterization of individual cell BCRs or 

TCRs have been integrated with transcriptomic analysis via single cell technologies. 

Single cell VDJ sequencing (scVDJ-seq) protocol follows the 10x scRNA-seq 

sequencing with an additional feature of detection and amplification of BCR (or 

TCR) mRNA using specific primers targeting constant and VDJ regions (Figure 

22).158 After sequencing, each cell can be characterized by CDR3 regions of the heavy 

and light chains, and clonality can be assessed. Data analysis for scVDJ-seq data can 

be conducted through computational tools, such as Scirpy159,    scRepertoire160 and 

Immunarch161.  
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scRNA-seq applications on MM 
In the previous chapters highly heterogeneous characteristics of MM 

were shown. There are changes involved within plasma cells as well as changes 

in the surrounding micro-environment that can impact the disease characteristics. 

Therefore, scRNA-seq experiments have wide range of applications in the field 

of MM. This dissertation primarily focuses on disease progression and active 

disease. Thus, a collection of studies that have made a significant impact in these 

areas are compiled here. These studies can be categorized based on whether they 

focused on the tumor micro-environment or plasma cells. In this section, we 

provide a detailed summary of the key findings from each of these studies. 

Focus on Tumor Micro-environment 

Zavidij et al. Study 

In this study162, the authors focused on bone marrow cells, obtained from 

32 individuals, including healthy donors (n=9), MGUS (n=5), SMM-low risk 

(n=3), SMM-high risk (n=8) and MM (n=7) categories. They aimed to reveal 

changes in the tumor micro-environment along MM progression. They conducted 

scRNA-seq experiment with cells isolated as CD45+CD138- and identified 21 

subpopulations, as a result of the clustering analysis.  

 

Despite high heterogeneity among samples, proportional analysis 

showed a general trend of enrichment in NK cells, T-cells and CD16+ monocytes 

as well as a decrease in pDCs, neutrophils, CD14+ monocytes and progenitors. 

These findings were further supported by CyTOF experiments. Within NK cells, 

they have found that as the NK cell proportion increase, with a population shift 

from the CXCR1+ subpopulation towards the CXCR4+ subpopulation. They 

explained this shift by an increased recruitment of immature NK cells. Using non-
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negative matrix factorization, a machine learning dimensionality reduction 

technique, they have identified components that explain large variations in the 

dataset. Investigating these components, they obtained different gene signatures 

within T-cells and monocytes. Investigation within T-cells revealed a population 

shift from a GZMK+ state to a more effector phenotype with a GZMB+ signature. 

Moreover, they observed an IFNα signature enriched along disease progression 

in various cell types. Interestingly, although they observed increased HLA-DR 

gene expression in transcriptomics analysis in CD14+ monocytes, CyTOF 

analysis showed decreased MHC class II presentation on the cell surface. They 

further conducted cell culture experiments and concluded that up-regulation of 

MARCH1/MARCHF1 expression resulted in internal localization of MHC class 

II in CD14+ monocytes in later disease stages.  

De Jong et al. Study 

De Jong et al.163 investigated the bone marrow micro-environment of 

healthy individuals and MM patients. Using scRNA-seq analysis, they generated 

a paired dataset of non-hematopoietic, CD38+, CD38-, and CD138+CD38+ 

populations, revealing a MM-specific subpopulation within mesenchymal 

stromal cells (iMSC) with a high inflammatory signature. This discovery was 

further validated through flow cytometry and in-situ hybridization, where the 

iMSC cells were located in close proximity to malignant plasma cells and T-cells, 

indicating possible interactions with this population. The authors applied 

functional protein network analysis through STRING database and identified 

TNF and IL1B as potential drivers of this signature, which was validated using 

in-vitro assays. Additionally, they discovered that the inflammatory signature in 

iMSCs can be induced by T and NK cell subsets; 

NCR1+GZMB+CX3CR1+CD56dim NK cells, GZMB+ CD8B+ effector T-cells 

and TNF+FAS+GZMK+ Tscm, via TNF expression. Further investigation for 

cell-cell interactions, using CellPhoneDB, revealed that iMSCs-MM plasma cell 
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interactions through CCL2-CCR/CCR10 and IL6-IL6R could potentially induce 

proliferation in MM plasma cells, and iMSCs can modulate myeloid cell 

functionality. Finally, their investigation of the inflammatory signature after 

treatment revealed that the inflammatory response continues after therapy, even 

in patients with negative MRD. 

Pilcher et al. Study 

In a recently published study, Pilcher et al.164 utilized the MMRF 

CoMMpass scRNA-seq dataset to investigate the CD138- BM tumor micro-

environment. Using the progression-free survival (PFS) information, 18 newly 

diagnosed MM subjects were categorized into rapid-progressors (RP<18 months) 

and non-progressors (NP>4 years). The study compared the immune subtypes 

between the two conditions and identified higher levels of CD8+ Exhausted T-

cells and M2 macrophages, and lower levels of CD8+ Effector T-cells and 

immature B-cells in the RP group. The authors also found an enrichment of IFN 

response (both) in the RP group and TNF response in the NP group. Cell-cell 

interaction analysis using CellChat165 was applied, and three signaling pathways, 

BAFF, CCL, and IL16, were found to be significantly associated with patient 

survival. The study identified CCL5 and CCL3 interactions with CCR1 from 

CD8+ T-cells to monocytic cells as negative effectors of patient survival in the 

RP group. They observed an increase in the abundance of BAFF in the tumor 

micro-environment of the RP group, which can potentially enhance the survival 

of MM cells and negatively affect patient survival. Conversely, IL16 expression 

in the tumor micro-environment was found to have a positive impact on patient 

survival. 
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Focus on Plasma Cells 

Ledergor et al. Study 

Ledergor et al.166 conducted one of the first single-cell RNA sequencing 

(scRNA-seq) studies on multiple myeloma (MM), investigating isolated 

CD38+CD138+ plasma cells from the bone marrow of 7 MGUS, 6 SMM, 12 

MM, 4 AL, and 11 age-matched healthy controls. The authors observed minimal 

heterogeneity among control samples but high heterogeneity among malignant 

cells across individual subjects. They identified common transcriptional 

mechanisms among patient clusters, including overexpression of driver genes, 

such as CCND1, CCND2, FGFR3, FRZB, and the WNT pathway, previously 

associated with genomic abnormalities observed in MM. In addition, the authors 

identified three novel candidate genes, LAMP5, CDR1, and WFDC2. 

Interestingly, the study also investigated rare malignant cells in subjects post-

therapy, which shared most of their transcriptional state with the original cells at 

diagnosis. Moreover, the researchers further profiled circulating tumor cells and 

showed that these cells in the blood reflected the molecular disease observed in 

the bone marrow, indicating that circulating tumor cells may serve as potential 

biomarkers for MM. Overall, this study provides a comprehensive understanding 

of the molecular mechanisms underlying MM and identifies potential biomarkers 

for diagnosis and monitoring of the disease. 

Boiarsky et al. Study 

Boiarsky et al.167 conducted a comprehensive study using single cell 

RNA-sequencing of CD138+ plasma cells from 26 patients at varying disease 

stages (MGUS = 6, SMM = 12, newly diagnosed MM = 8) and 9 healthy donors. 

They observed a common transcriptomic profile among the normal plasma cells 

across all subjects. On the other hand, abnormal clones showed a diverse profile. 

The within-patient abnormal vs. normal cell comparisons highlighted inter-
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patient heterogeneity and patient-specific disease characteristics. The patients 

could be categorized based on cytogenic abnormalities using translocation target 

genes, and the performance of the experiment was benchmarked using interphase 

fluorescence in situ hybridization to identify large-scale structural genomic 

variants. Moreover, Boiarsky et al. identified 15 gene signatures using non-

negative matrix factorization, representing common profiles among patients 

including t(11;14), t(14;20) and normal plasma cells. They observed high 

heterogeneity of activation of these signatures among plasma cell subpopulations. 

Interestingly, the study found that the normal plasma cell signature was uniformly 

down-regulated in abnormal plasma cells, while t(11;14) and interferon-inducible 

signatures were correlated with disease progression.  

Liu et al. Study 

Liu et al.168 conducted a longitudinal study of 14 patients at different 

stages of MM using scRNA-seq and 10x Genomics linked-read whole genome 

sequencing (10xWGS). They identified patient-specific plasma cell profiles and 

immune cell expression changes, analyzing potential driver events. The 

composition of the immune cell populations varied among the different patients, 

highlighting the diverse nature of the disease. In addition, they examined the copy 

number variations in plasma cells, finding chromosome 13 deletion in 17 out of 

21 samples. They found that distinct plasma cell subpopulations remained stable 

during the transition from SMM to primary MM, while emerging subpopulations 

with increased genomic instability were observed from primary MM to relapse. 

Differential expression analysis revealed high expression of JUN, FOS, FOSB, 

and JUND in certain plasma cell populations, which assemble the AP-1 

transcription factor. They validated AP-1 complex differential expression (JUN 

and FOS) in plasma cell subpopulations using CyTOF. Integrated analysis of 

scRNA-seq and CyTOF data revealed AP-1 downstream targets (IL6 and IL1B) 

that potentially regulate inflammation.  
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Purpose of This Study 
Development of novel immunotherapeutic applications, combined with 

the recent advancements in next generation sequencing, has opened new 

opportunities for gaining a more comprehensive insight of disease biology, as 

well as to increase the effectiveness of treatment. In this context, the current 

dissertation focuses on employing multi-modal analyses to explore the 

unexplored areas of MM disease biology and the potential of immunotargeting. 

By integrating different techniques, this research aims to provide a 

comprehensive landscape of MM and explore innovative strategies for targeted 

immunotherapy. 

 

Multiple myeloma is a cancer where much of the focus is concentrated 

on elimination of the tumor cells. However, it is crucial to recognize that the 

disease can often be detected at premalignant stages. Therefore, understanding 

the disease progression and identifying possible ways to prevent it holds great 

importance. Despite the extensive literature on MM disease biology, there is still 

much to discover, particularly regarding the changes in the bone marrow micro-

environment during disease progression. The primary objective of the first 

chapter is to gain an in depth understanding of the changes occurring in both the 

tumor cells and the tumor micro-environment as well as to identify potential 

molecules and/or interactions that have a driver effect in disease progression. 

 

In the field of multiple myeloma treatment, various candidate antigens 

have been proposed. However, the issue of off-target toxicity remains a 

significant concern when it comes to immunotherapeutic applications. In 

addition, solely relying on the expression of a single target is vulnerable to antigen 

escape mechanisms. Combinatorial antigen targeting can potentially address 

these issues. Antigen combinations can reduce toxicity by increasing tumor-
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specificity, which leads to applicability of multiple antigen combinations to be 

used at once to overcome antigen escape.  The second chapter of this dissertation 

is centered around target antigens in MM treatment. The objective of this study 

is to conduct a multi-omics approach to identify novel antigens and antigen pairs 

that can be utilized in a combinatorial method, followed by evaluation of these 

targets using external datasets and in vitro assays. 
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Chapter I: Understanding MM 
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Abbreviations 
§ Multiple myeloma (MM) 

§ Bone marrow (BM) 

§ Healthy volunteer (HV) 

§ Monoclonal gammopathy of undetermined significance (MGUS) 

§ Smoldering multiple myeloma (SMM) 

§ Single cell RNA sequencing (scRNA-seq) 

§ Cellular indexing of transcriptomes and epitopes by sequencing 

(CITE-seq) 

§ B-cell receptor sequencing (BCR-seq)  

§ International Myeloma Working Group (IMWG) 

§ BM mononuclear cell (BM-MNC)  

§ Phosphate-buffered saline (PBS) 

§ Fetal bovine serum (FBS) 

§ Bovine serum albumin (BSA) 

§ Dimethyl sulfoxide (DMSO) 

§ Antibody derived tag (ADT)  

§ Cell per million (CPM) 

§ Immunoglobulin genes (IG) 

§ Centered log-ratio (CLR) 

§ Principal component analysis (PCA) 

§ Differential expression (DE)  

§ Biological process (BP) 

§ Gene set enrichment analysis (GSEA)  

§ Gene Expression Omnibus (GEO) 

§ Multiple Myeloma Research Foundation (MMRF) 

§ Dendritic cell (DC)  

§ Interferon alpha (IFNα)  
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§ Interferon gamma (IFNγ)  

§ Tumor necrosis factor alpha (TNFα)  

§ CD8+ activated T-cells (CD8+ ATC)  

§ Classical DCs (cDC) 

§ Progression free survival (PFS) 

§ Overall survival (OS) 

§ Myeloid-derived suppressor cells (MDSCs) 

§ Normalized enrichment score (NES) 
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Abstract 
Background: The investigation of the cellular and molecular mechanisms of 

progression from precursor plasma cell disorders to active disease increases our 

understanding of multiple myeloma (MM) pathogenesis and helps further identify 

novel preventive and therapeutic strategies. Single cell transcriptomics is an 

opportune tool to facilitate the study of tumor cells, tumor micro-environment, 

and their molecular interactions.  

Methods: Using single cell RNA sequencing, surface proteome profiling, and B 

lymphocyte antigen receptor profiling of unsorted, whole bone marrow samples, 

we generated a cell atlas of the BM micro-environment from 123 individuals. 

These subjects included healthy volunteers (HV), and patients with monoclonal 

gammopathy of unknown significance (MGUS), smoldering MM (SMM) and 

MM.  

Results: Despite high transcriptional heterogeneity in malignant plasma cell 

composition among patients, our analyses revealed commonality in molecular 

pathways, including MYC signaling, E2F targets and interferon alpha response, 

altered during disease progression. We found evidence of early dysregulation of 

the immune system in MGUS and SMM, which increases and impacts many cell 

types as the disease progresses. In parallel with disease progression, we observed 

population shifts in CD8+ T-cells, macrophages and classical dendritic cells, and 

found that the resulting differentiation in CD8+ T-cells and macrophages were 

associated with poor overall survival outcomes. Modelling cell-cell interactions 

between tumor plasma cells and the immune micro-environment, we identified 

potential ligand receptor interactions that may play role during the transition from 

precursor stages to MM and identified potential biomarkers of disease 

progression, some of which may represent novel therapeutic targets. MIF, IL15, 

CD320, HGF, and FAM3C were detected as potential regulators of the tumor 

microenvironment by plasma cells, while SERPINA1 and BAFF (TNFSF13B) 
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were found to have the highest potential to contribute to the downstream changes 

observed between precursor stage and MM cells.  

Conclusions: Our findings show that myeloma tumorigenesis is associated with 

dysregulation of molecular pathways driven by gradually occurring 

immunophenotypic changes in the tumor and tumor micro-environment.  
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Background 
Multiple myeloma is a hematological malignancy of bone marrow 

plasma cells 1. It is the second most common blood cancer and is primarily a 

disease of the elderly. Over the past 15 years, the prognosis of patients with MM 

has improved due to the emergence of new therapies and therapeutic platforms 

providing deep and durable responses 2,3.  However, patients still relapse and for 

most patients, MM remains incurable, underscoring the urgent need for new 

treatment options and a better understanding of the disease.  

 

MM has two precursor stages: starting with MGUS, an indolent condition 

relatively common among elderly individuals with a rate of progression to MM 

of 1% per year; and SMM with a rate of progression to MM of 10% per year 4. 

During MGUS and SMM, patients present clonal bone marrow plasma cells and 

elevated levels of monoclonal protein in the blood, but are typically 

asymptomatic, lacking MM-defining symptoms of hypercalcemia, renal 

impairment, anemia, and bone lesions (CRAB criteria) that are commonly 

observed in MM 5,6.  

 

MM is a complex disease that exhibits high inter- and intra-patient 

variability. The identification of tumor intrinsic driver events, and a better 

understanding of the interaction between the tumor and the micro-environment, 

is important for the discovery of new MM treatments. MM has also been shown 

to be not a single disease but one in which multiple molecular subtypes exist that 

share a similar clinical presentation 7,8.  Previous studies have shown that genomic 

alterations of plasma cells characteristic of MM are already detectable at MGUS 

and SMM stages, highlighting the contribution of tumor extrinsic factors in 

progression to MM 7–11. Notably, changes in the bone marrow micro-environment 

at different stages of MM have also been described 6,12,13. Exploring the BM 
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resident plasma and immune micro-environment cells, Zavidij et al. found 

evidence of increased NK cell proportions, altered chemokine receptor expression 

upon disease progression 12 and provided evidence of myeloma-associated events, 

such as loss of GZMK+ memory cytotoxic T-cells and MHC class II 

dysregulation in CD14+ monocytes, in the precursor stages. A study performing 

single cell transcriptomic analysis of plasma cells demonstrated high variability 

between individuals and even within subjects and could further associate this 

variability with the expression of known genomic drivers of MM and potential 

new drivers 13. Spatial colocalization of transcription of genes involved in tumor 

survival and immune modulation in tumor cells and immune cells predicted a role 

for mesenchymal stromal cells in the disease 14. Although many studies highlight 

the value of single cell profiling in understanding inter- and intra-patient tumor 

heterogeneity as well as the contribution of the tumor micro-environment across 

different stages of the disease, most have focused solely on plasma cells 13,15 or 

on the surrounding immune cells 12, lacked inclusion of precursor stages 14, or had 

been conducted on a limited number of subjects 12,13,16,17.  

 

In this study, we collected BM samples from HV, as well as MGUS, 

SMM and newly diagnosed MM patients from a large set of 123 subjects, 

balanced across the 4 cohorts (Table 1). Samples were profiled using multi-modal 

single cell omics techniques including single cell RNA sequencing (scRNA-seq), 

cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), and 

B-cell receptor sequencing (BCR-seq) to investigate the status of the bone 

marrow micro-environment, dysregulation of the immune system, and interaction 

between BM immune cell populations and tumoral plasma cells to better 

understand progression to MM. 

 

Through this study, we confirm the observed high plasma cell 

heterogeneity among subjects, but also reveal shared features in the 

immunophenotypic changes of the BM micro-environment that take place during 
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progression to MM. Along the clinical stages of the disease, we identified 

increased inflammatory response in the tumor micro-environment and population 

shifts in specific immune cell types, some of which were also found to be 

associated with overall survival. Our cell-cell interaction modelling identified 

ligands and receptors that induce tumor growth and promote survival, which we 

hypothesize play a role during disease progression to MM. Our findings highlight 

the dynamic relationship between plasma cells and the micro-environment and 

show that the alterations in the tumor micro-environment are already initiated in 

the precursor stages which likely contributes to progression to MM.    
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Methods 

Sample collection 
BM aspirates were collected at 6 Belgian centers from subjects of 4 

cohorts: 31 HV, 28 MGUS, 32 SMM and 32 newly diagnosed MM patients 

(Figure 1a). Updated Criteria for the Diagnosis of Multiple Myeloma were used 

as defined by the International Myeloma Working Group (IMWG)18. To isolate 

the BM mononuclear cell (BM-MNC) fractions, BM aspirates were diluted at a 

ratio of 7:1 with phosphate-buffered saline (PBS) and filtered through 100µm 

filter to remove bone fragments and/or cell clumps. BM-MNC layers were 

isolated after Ficoll-plaqueTMPLUS (density 1.077+/-0.001g/ml) gradient 

separation and washed three times with PBS. Samples were frozen at 5-8x106 

cells/ml in freezing medium (90% fetal bovine serum (FBS) + 10% DMSO) and 

stored in liquid nitrogen. 

Single Cell Sequencing 
Samples were thawed at 37ºC and diluted in pre-warmed RPMI-1640 

medium before centrifugation. Cell pellets were resuspended in cold PBS + 1% 

BSA and kept on ice for the remainder of the procedure.  For each sample, 0.2x106 

cells were stained using the CITE-seq antibody pool following the manufacturer 

procedure (BioLegend). After staining, cells were resuspended in PBS +0,04% 

bovine serum albumin (BSA) at a concentration of 1000 cells/µl. Cells were 

filtered using a FACS tube with a cell strainer cap and processed immediately 

according to the 10x Genomics Chromium single cell V(D)J with Feature 

Barcoding protocol. Viability was assessed by Moxi Flow™ Flow Cytometer 

using propidium iodide, where median 89.2%, min 60.4% and max 99.4% was 

observed. Twenty thousand cells were loaded onto 10x chips. For each chip, one 

sample from each cohort was processed and loaded in a randomized order. Single 
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cell multi-omics profiling, including RNA, BCR and antibody derived tagged 

(ADT) 10x sequencing, was conducted according to the 10x Genomics 

manufacturer instructions (10x Genomics, CG000186 Rev C). Library pools were 

sequenced using an Illumina NovaSeq6000 following 10x Genomics’ 

instructions to reach a median sample sequencing saturation of 90.7% for the 

whole dataset (lowest sample saturation observed was 63.5%). 

Single Cell Multi-Omics Data Analysis 
Sample demultiplexing, barcode processing, alignment to the human 

transcriptome (GRCh38), single-cell 5′ gene, V(D)J and feature barcode counting 

were performed using Cell Ranger Single-Cell Software Suite (cellranger-4.0.0, 

10x Genomics). Each data type (RNA, ADT, BCR) was then pre-processed per 

sample independently and subsequently concatenated into a single dataset for 

further downstream analysis. Unless stated otherwise, for each data analysis step, 

related functions from the scanpy 19 (v1.6.1) Python package were used with 

default parameters. 

RNA data pre-processing 
Empty droplets and dying cells were filtered out based on UMI counts < 

650, minimum number of genes < 300 and mitochondrial gene expression > 

20%. Doublet detection was conducted by Scrublet 20 (v0.2.1). Droplets with a 

Scrublet doublet score > 0.3 and genes expressed in <3 cells were excluded. 

Following the initial filtering, a count per million (CPM) normalization was 

applied with a scale factor of 104 and the data were log transformed. Highly 

variable genes were detected with Seurat flavor 21. For the downstream analyses, 

immunoglobulin genes (IG) were removed from the dataset. Cell cycle scores 

were calculated using score_genes_cell_cycle function from scanpy using the 

gene sets identified by Kowalczyk et al. 22. 
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ADT data pre-processing 
Droplets with UMI counts < 500 were excluded. The data were 

normalized using centered log-ratio (CLR) transformation 23. 

BCR data pre-processing 
Cell Ranger filtered BCR-seq output contig files from individual samples 

were concatenated into a single file. Using the scirpy 24 (v0.6.1) library, with 

parameters receptor_arms=all and dual_ir=primary only, observed clonotypes 

were defined based on CDR3 nucleic acid sequences. To assess clonal expansion, 

per-sample-clonotype definitions were generated using both CDR3 nucleic acid 

sequences and sample IDs. Per-sample-clonotypes observed in ≥ 10 cells were 

considered expanded malignant clonotypes. 

Dataset integration and visualization 
ADT and RNA data were integrated independently for all samples. For 

both ADT and RNA integrated datasets, principal component analysis (PCA) and 

Harmony 25 (v1.0) batch correction, using theta=0, was performed. Nearest 

neighborhood networks were constructed using a cosine distance. Each integrated 

dataset was projected onto 2D space applying the UMAP 26 algorithm based on 

the standard settings of scanpy. The data were grouped by Leiden clustering 27 

within scanpy via multiple resolutions. 

Cell typing 
To generate a reference dataset for automated cell typing, the data 

analysis pipeline was initially run using 12 samples comprised of 3 patients from 

each cohort. We defined the cell types in three annotation steps (Figure S1a). At 

level 1, to avoid inconsistency between scRNA-seq and ADT data, we first 

annotated the whole dataset for major cell types using both data types 
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independently. The cells whose annotation does not overlap between the two data 

types were marked as “inconsistent” and represented 3.35% of the dataset. Since 

scRNA-seq data provides more insight for the cellular state due to high feature 

coverage, for cell typing we prioritized the transcriptional data to define the 

subtypes and identified the transcriptionally distinct subtypes. At level 2, each 

major cell type was isolated, reprocessed (HVG gene selection, PCA generation, 

batch correction, umap generation), Leiden clustered, and annotated based on 

highly ranked genes. At level 3, for those subtypes that could be further subtyped 

based on ADT data, we conducted the same methodology using only ADT data. 

Using this method, we managed to classify T-cells based on both transcriptional 

markers and cell surface protein markers. 

 

To save time and computational resources, we adapted SingleR (v1.4.1) 
28 to our cell typing strategy (Figure S1b). SingleR was initially run on scRNA-

seq data to detect the cell types identified on the second level of our reference 

generation, where the subtypes were identified using only scRNA-seq data. Next, 

for each subtype that can be further sub-categorized using ADT data, SingleR was 

run using ADT data for each cell type. Finally, the annotations were concatenated 

as a single annotation output. Consequently, we have applied further Leiden 

clustering for the identified cell groups in the whole dataset. The clusters that 

showed distinct characteristics were considered as independent cell types and 

misclassifications were corrected. In cases where certain clusters were 

characterized by high mitochondrial percentage and/or low number of genes 

within a cell population, they were labeled as low quality and removed from 

downstream analyses. Using both the RNA and cell surface protein data, we have 

identified 10 major and 30 minor cell types (Figures 1b and 1c). Inconsistent cells 

represented 0.0007% of the dataset.  
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Proportional comparison analysis 
Proportional changes among cohorts were assessed using Mann-Whitney 

U test, comparing data from MGUS, SMM, and MM with HV. Changes were 

considered significant at a threshold of p<0.05. 

Differential expression analysis 
Two types of differential expression (DE) methodologies were applied. 

For contrasts involving comparisons at subject level, we applied a pseudobulk 

approach using the muscat 29 (v1.4.0) R package. To compare cell clusters, 

Wilcoxon rank sum tests were applied. Significantly down- and up-regulated 

genes were identified based on adjusted p-val (padj <0.05). 

 

Briefly, muscat applies the quasi-likelihood method from the standard 

edgeR 30 pipeline on sum-aggregated counts across subjects and cell types. Before 

aggregation, a gene filtering step was performed at the single-cell level, excluding 

the IG genes and retaining only genes with at least 1 count in 10 cells across all 

samples. We further used the standard muscat sample filtering, where for each 

cell type tested, only subjects with at least 10 cells were used for that contrast. 

Cell types represented by less than 3 subjects after this step were not considered 

for DE testing. Finally, to avoid any genes expressed in just a few cells, we 

applied a post-hoc gene filtering step; removing any genes from the DE list 

expressed in less than 10% of the cells for a given cell type-cohort combination, 

followed by re-calculation of the FDR-corrected p-values.  

Gene set scoring and enrichment analyses 
Hallmark and biological process (BP) gene sets were obtained from 

MsigDB 31 web site and gene set scores were calculated using scanpy score_genes 

function with normalized counts. Gene set enrichment analysis (GSEA) was 

conducted by R package FGSEA 32 (v1.12.0) with nperm=10000, using the test 
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score, obtained from the Wilcoxon rank sum test, for the ranking variable. Due to 

high variation in the number of genes among the gene sets, we required a 

minimum of 30 genes and a maximum of 200 genes for the analysis of BP gene 

sets. 

Ligand-receptor interaction modelling 
MultiNichenet 33 (v1.0.0), an improved version of the original NicheNet 

34 algorithm, was used following the detailed_analysis_steps_MISC.md vignette, 

provided by developers, with the differential expression results from the muscat 

differential gene expression analysis for the contrast MM vs precursor stages 

((MGUS+SMM)/2). We selected the top 12 cell types with the highest numbers 

of significantly differentially expressed genes and conducted the ligand-receptor 

modelling analysis.  

Survival regression analysis 
Survival data were evaluated using the Kaplan-Meier method. A Cox 

proportional hazards modeling was used to assess the association of cell type 

abundance with progression-free (PFS) and overall survival (OS). The analyses 

were conducted using Python’s lifelines (v0.27.4) library.  

Validation studies using external datasets 
 Three external datasets were used to validate our findings. Data from all 

3 studies were run through the same pipeline used to analyze our data and the cell 

types of interest were identified using Leiden clustering. To accommodate the 

lack of cell surface protein information in the external datasets, we applied 

manual gating ((CD3E+ or CD3D+) and CD4- and (CD8A+ or CD8B+)) for the 

identification of CD8+ T-cells.   

Zavidij et al. Data 
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Cell Ranger output (mtx) files were obtained from Gene Expression 

Omnibus (GEO, GSE124310). This dataset included 25142 cells from 32 subjects 

including 9 HV, 5 MGUS, 11 SMM and 7 MM patients.  

CoMMpass Data 

Raw immune cell scRNA-seq data (IA-001) of patients from the 

CoMMpass study (NCT01454297) was obtained from the Multiple Myeloma 

Research Foundation (MMRF). Survival analysis was conducted using the ttcos, 

ttcpfs, censos and censpfs fields using data from the IA20 release. Only newly 

diagnosed MM samples were used: 516394 cells from 92 subjects.  

de Jong et al. Data 

The fastq files were obtained from ArrayExpress (E-MTAB-9139). We 

detected 346673 cells from 25 individuals composed of 12 HV and 13 MM 

patients.  
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Results 

Decrease in antigen-presenting cell populations and 
increase in T-cell subtypes observed during MM 
progression 
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Fig. 1 Single cell atlas of BMNCs shows proportional changes in key immune 

cell populations. (a) Study design. BMNCs were collected from 123 subjects in 

four cohorts (Healthy Volunteers (HV), Monoclonal gammopathy of 

undetermined significance (MGUS), smoldering multiple myeloma (SMM) and 

active multiple myeloma (MM)) and further analyzed using scRNA-seq, CITE-

seq, and scBCR-seq. (b) UMAP representation of the scRNA-seq dataset, colored 

by identified cell types. (c) Expression profile of marker genes/proteins fort each 

cell type. The “TotalSeqC” extension designates the proteins. (d) Proportions of 

major cell types in each patient cohort. (e) Proportions of minor cell types in each 

patient cohort. Only cell populations where significant proportional changes were 

observed, are displayed. For both sections d and e, each dot represents an 

individual subject. The proportional differences between each disease state vs HV 

are compared and the significance was calculated using the Mann–Whitney U 

test: *P < 0.05; **P ≤ 0.005; ***P ≤ 0.005. 

Our single cell atlas of multiple myeloma of 355857 single cells was 

generated using BM aspirates from 123 subjects of 4 cohorts: HV, MGUS, SMM 

and active MM (Figure 1a, Table 1).  Using Ficoll gradient separation, bone 

marrow mononuclear cells (BMNCs) were isolated and profiled using scRNA-, 

CITE- and BCR-sequencing. These multi-modal single cell omics technologies 

allowed us to identify the major BM cell subsets based on their gene and protein 

expression patterns (Figures 1b and 1c). 

 

Through analysis of proportional changes of immune populations among 

cohorts, we found evidence of a gradual decrease in the B-cell and dendritic cell 

(DC) populations and a gradual increase in total T-cells when comparing MGUS, 

SMM and MM with HV (Figure 1d).  At the subtype level, proportional decreases 

were observed in pre-pro B-cells, naive B-cells, all DC subtypes and CD14+ 

monocytes while the proportional increases were detected for CD8+ naive and 

CD4+ cytotoxic T-cells (Figure 1e). Interestingly, these changes were observed 
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to be highly variable among subjects of each category. Our observations 

regarding gradual increase in T-cells as well as the gradual decrease in CD14+ 

Monocytes, DCs and pre-pro B-cells highly correlate with the findings of Zavidij 

et al. Additionally, we observed a decrease in the naive B-cell population in SMM 

(p<0.005) and MM (p<0.05) subjects compared to HV.  

Table 1. Subject characteristics 

Characteristics HV MGUS SMM MM 

Number of 

subjects 
31 28 32 32 

Age     

Median 70 61.5 63 70 

Range 59-89 38-85 50-86 45-86 

Gender     

Male 16 17 20 20 

Female 15 11 12 12 

ISS* Stage     

NA    4 

I    9 

II    10 

III    9 

*ISS: international scoring system; NA: Not 

available 

 

 



 

 
 
84 

Inter-patient transcriptional diversity and 
commonalities in molecular alterations in plasma 
cells across disease stages 

Our dataset included the transcriptomes of 20,759 single plasma cells 

from 121 subjects (Figure 2). From 1 HV and 1 SMM sample, no plasma cells 

were isolated. As expected, we found no expansion of plasma cells in the HV 

subjects except for 2 individuals. In one of them the number of clonal cells was 

low (n=15) whereas in the other subject we observed a considerably higher 

number of clonal cells (n=130) which may be the result of an acute infection or 

other immune reaction. In a few patients, no clonal expansion was observed (In 

Figure 2a, patients lacking colored bars, except for light blue and light grey). A 

low number or lack of plasma cells can be due to the rarity of plasma cells or 

sampling at a location outside the tumor area. 

 

Unsupervised dimensionality reduction revealed interesting patterns of 

both transcriptional heterogeneity and similarity patterns (Figure 2b). For 

example, non-clonal plasma cells (light blue, right panel) localize in the center, 

independently from patient subgroups (Figure 2b, left and right panels). Clonal 

cells (light brown, right panel) of MGUS subjects (in green) localize close to 

those of HV (in orange), while clusters of MM patients (in magenta) 

predominantly locate on the periphery (Figure 2b, left panel). Notably, cells of 

individual patients clustered together and away from those of other patients 

(Figure 2b, center panel), illustrating the gradual divergence of MGUS, SMM, 

and MM plasma cell transcriptomes. Further, most plasma cells of individual 

patients clustered together, however for a few patients we observed subclusters, 

which points out inter- as well as intra-patient diversity of transcriptomes. 
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Pathway enrichment analysis at the subject (Figure 2c) and cohort (Figure 

2d) levels revealed the presence of both within-cohort heterogeneity and 

similarity. Using GSEA, we found MYC signaling (MGUS, p<0.05) 35, cell cycle 

related E2F targets (SMM, p<0.05) and interferon alpha (IFNα) response (SMM, 

p<0.05) pathways to be enriched early in the disease and increased along MM 

progression (Figure 2e). Oxidative phosphorylation (p<0.005) 36 and G2M 

Checkpoint (p<0.05) pathways were only observed to be significantly enriched in 

MM patients, while a decrease is observed in IL6/JAK/STAT3 (p<0.05) 

signaling, KRAS signaling (p<0.05) and complement (p<0.05) pathways. Using 

per sample gene set scoring, despite heterogeneity among subjects, the alterations 

in these pathways could also be observed at patient level. Notably, even though 

WNT signaling 37 and NOTCH signaling 38 did not meet the significance 

threshold, they were observed to be enriched in individual subjects and showed 

positive enrichment scores in MGUS, SMM and MM stages.  

 

Comparing the malignant plasma cells from diseased subjects (expanded 

clones) with the normal plasma cells from all patients (non-expanded), we 

identified 439 significantly differentially expressed genes (p<0.05, |logFC|>1, 

logCPM>1) including up-regulation of the known MM markers 6,8,39 FRZB, 

DKK1, MYC, CCND1, CCND3 as well as proto-oncogene KIT 40 and down-

regulation of the B-cell antigens CD27, CD19, CD79A as well as tumor 

suppressor genes CD81 41 and CD99 42 (Figure 2f).  
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Fig. 2 Transcriptional similarities and differences are observed in plasma 

cells across disease stages. (a) Cell number proportions of plasma cell clonality 

within subjects, obtained by BCR-seq. The heatmap on the top of the stacked bar 

plot shows the number of cells per sample. Expanded clones: per subject clones 

with 10 cells; Other clones: identified clones with no expansion; NA: cells with 

no clonal information captured by BCR-seq (b) UMAP representation of plasma 
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cell transcriptome, colored by cohort (left), subject (center) and expanded 

clonality (right) information. True: per subject clones with at least 10 cells; False: 

identified clones with no expansion; NA: cells with no clonal information 

captured by BCR-seq. (c) Within and between cohort diversity is represented by 

hallmark gene set scores, where x-axis is categorized by cohort and sorted based 

on mean NES score, whereas y-axis is sorted by mean normalized enrichment 

score (NES) in MM subjects. (d) GSEA results where each disease state is 

contrasted with HV. Gene sets highlighted in both panels c and d 

show gradual divergence at both patient and cohort level. (e) UMAP 

representation of transcriptome of plasma cells colored by gene set scores of 

hallmark gene sets enriched in precursor stages. The figure colors range from 

minimum value (blue) to the 99th percentile of the value distribution (red). (f) 

Differential expression results of the contrast diseased (MGUS, SMM, MM) vs 

non-diseased (HV) plasma cells. Points colored in red represent significantly 

down- (negative logFC) and up-regulated (positive logFC) genes. 

Significantly down- and up-regulated genes were identified based on adjusted p-

val<0.05, absolute value of logFC >1 & logCPM>1. 

Dysregulation of inflammatory response is initiated 
early and gradually detected across the tumor 
micro-environment  

Contrasting each disease stage to HV, using muscat and FGSEA, 

highlighted the activation of numerous inflammatory pathways, such as interferon 

gamma (IFNγ) signaling, IFNα signaling, tumor necrosis factor alpha (TNFα) 

signaling, KRAS signaling, inflammatory response and apoptosis (Figure 3). 

Intriguingly, the dysregulation of the inflammatory response can already be 

observed in the micro-environment of MGUS patients with high (TNFα) 

signaling activity throughout the majority of cell types. With disease progression, 

further dysregulation of the inflammatory pathways was detected across the many 
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cell types of the BM. IFNα signaling, IFNγ signaling, KRAS signaling and 

apoptosis pathways were rarely observed in MGUS stage while their activation 

in multiple immune cell types was observed in the SMM and MM stages. 

Interestingly, IFN pathways were observed to be highly enriched in all cell types 

in the tumor micro-environment in MM stage, particularly IFNα in plasma cells.   

 
Fig. 3 Proportional and transcriptional changes in the immune micro-

environment shows early dysregulation of inflammatory response. GSEA 

results of hallmark gene sets where the expression profile of each disease state is 

contrasted by HV per immune cell type. On x-axis, the cell types are grouped by 

their corresponding major cell type category. The y-axis is sorted based on 

average NES score in MM. Gene sets, enriched along disease progression, are 

highlighted at the top.  
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Pre-dysfunctional characteristics in highly immune-
responsive CD8+ activated T-cells along disease 
progression 

We contrasted cell proportions across the precursor stages to MM 

spectrum, comparing MGUS, SMM and MM with HVs, and found significant 

population shifts in CD8+ T-cells, CD1C+ DCs and macrophages. 

 

CD8+ T-cells were identified by the T-cell markers CD3 and CD8, 

whereas activated T-cells (ATC) can be categorized by their expression of 

activation markers GZMK, CD69 and CCL4. Their cell state forms a trajectory 

from an activated intermediate state towards a cytotoxic state which can be 

identified using the expression of GZMB and PRF1 (Figure 4a). We further 

subtyped CD8+ ATC by Leiden clustering where 3 sub-populations form a 

trajectory from a naive-like population (characterized by the expression of IL7R, 

CCR7 and TCF7), over a cytotoxic-like population (specified by GNLY, 

CX3CR1, GZMB and PRF1), towards a highly active population with high 

expression of CXCR4, RGS1, NR4A2, CCL3, low levels of some of the 

exhaustion markers 43,44 TOX, TIGIT, PD1 and low levels of the pro-

inflammatory cytokine TNF (Figures 4a-c). This highly active population shows 

high TNF response (Figure 4b). Moreover, GSEA analysis demonstrated down-

regulation of translational and metabolic mechanisms including translation 

elongation, translation initiation, oxidative phosphorylation, protein localization 

to endoplasmic reticulum and cellular respiration in this population (Figure S2). 

These changes may be associated with increased exhaustion in CD8+ T-cells 45,46. 

Recently, Yan et al. 45 demonstrated the rapid decrease in translational and 

metabolic pathways in the pre-dysfunctional state along T-cell differentiation 

towards exhaustion. We identified this cell population as “pre-dysfunctional” 

based on the expression of exhaustion associated genes RGS1 47 and NR4A2 48, 
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the expression of some but not all of the exhaustion markers, their highly active 

TNF response and the down-regulation of translational and metabolic pathways 

in these cells. We found evidence for a gradual shift from the naive-like 

phenotype towards the pre-dysfunctional phenotype that tracks with the disease 

progression stages (Figures 4d and 4e).  

 
Fig. 4 Increase in pre-dysfunctional phenotype within CD8+ ATCs observed 

during disease progression. (a) UMAP representation of transcriptome of CD8+ 

T-cells and CD8+ ATCs colored by cell groups in per cell type analyses. (b) Gene 

set scores and GSEA plots of TNFα signaling highlighting enrichment of TNFα 

signaling in pre-dysfunctional CD8+ ATCs. The figure colors range from 

minimum value (blue) to the 99th percentile of the value distribution (red). In the 

GSEA analysis, the gene expression levels of pre-dysfunctional cells are 

compared against other CD8+ ATCs. (c) Gene expression profiles of marker 
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genes define CD8+ ATC subtypes. The figure colors range from minimum value 

(yellow) to the 99th percentile of the value distribution (red). (d) Proportional 

differences among cohorts for CD8 ATC subtypes. Each dot represents an 

individual subject. The proportional differences between each disease state vs HV 

are compared and the significance was calculated using the Mann–Whitney U 

test: *P < 0.05; **P ≤ 0.005; ***P ≤ 0.005. (e) Density plots showing the 

transcriptomic landscape of CD8+ ATCs per cohort. The highlighted area 

represents the region where the pre-dysfunctional cells reside. A transcriptional 

shift with disease progression was observed. 

Macrophages polarize towards a M1 phenotype with 
increased BAFF expression along disease 
progression 

We subclustered the macrophage population with Leiden clustering into 

five distinct molecular subtypes and annotated the populations largely based on 

their gene expression profile (Figure 5a-b). The cluster with relatively low 

expression of CD14 and MS4A7 was annotated as maturating macrophages 

(Figure 5b). One cluster, annotated as M1 macrophages, exhibited high IFN 

response expression (Figure 5c, Figure S3) and expressed IFN-related genes 

including IFI6, IFI44L IFIT1, TNFSF10 and STAT1. The cluster annotated as 

M2 macrophages was characterized by the expression of the C1Q gene family 

and M2 markers CD163, CD5L, CXCL12. Although the M2-like group lacked 

most of the M2 markers, they exclusively expressed C1Q family genes. Finally, 

the M0 state was characterized by the expression of macrophage markers 

FCGR3A and MS4A7 while lacking expression of CD14 as well as M1 and M2 

markers.  

 

The proportional analysis demonstrated an inverse relation between M0 

and maturating macrophages versus M1 phenotype (Figure 5d). Compared to HV, 
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there is a highly significant (p<0.0005) decrease of M0 macrophages and an 

increase of M1 macrophages in MM patients. Moreover, a significant (p<0.05) 

decrease of maturating macrophages was observed in SMM and MM patients, 

while a significant (p<0.05) increase of M1 macrophages was observed in MGUS 

and SMM. From our analyses, it was evident that during disease progression, M0 

and maturating macrophages differentiate towards a M1 phenotype (Figure 5e). 

Notably, this was not observed for the M2 phenotype as the proportion of M2 

macrophages did not differ significantly among disease categories (Figure S4a). 

These findings suggest that, at early stages of multiple myeloma and in the active 

disease, the balance between M1 and M2 macrophages shifts towards the M1 

phenotype. Interestingly, in line with this population shift, elevated expression of 

BAFF (TNFSF13B) was observed. BAFF has been shown to interact with 

BCMA, which is known to enhance the growth and survival of plasma cells 49,50. 

To illustrate elevated BAFF expression, macrophages are divided into BAFF-low 

and BAFF-high groups based on the local minimum of 0.92 from the distribution 

of BAFF expression levels (Figure 5f). It can be observed that the BAFF-high 

region highly overlaps with M1 macrophages and the BAFF-low region highly 

overlaps with M0 macrophages (Figure 5g).   
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Fig. 5 Macrophages polarize towards a M1 phenotype during myeloma 

disease progression. (a) UMAP representation of transcriptome of the 

macrophage population, colored by subtype annotations. (b) Expression profiles 

of marker genes that define macrophage subpopulations. (c) Gene set scores of 

IFNα and IFNγ highlight IFN-responsive regions in macrophages. The figure 

colors range from minimum value (blue) to the 99th percentile of the value 

distribution (red). (d) Proportional differences among cohorts for macrophage 

subtypes. Each dot represents an individual subject. The proportional differences 

between each disease state vs HV are compared and the significance was 

calculated using the Mann–Whitney U test: *P <0.05; **P ≤ 0.005; ***P ≤ 

0.005.(e) Density plots showing the transcriptomic landscape of macrophages per 

cohort. The highlighted area represents the region where M1 macrophages reside. 
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(f) The distribution of BAFF gene expression within the macrophage population. 

The cut-off value was defined by the local minima at 0.92 to separate BAFF-low 

and BAFF-high populations. (g) Density plots of the BAFF-low and -high 

populations, showing dense regions on transcriptomic landscape for both 

categories. The highlighted area represents the region where the M1 macrophages 

reside.  

CD1C+ dendritic cells transform into an active and 
pro-inflammatory phenotype along disease 
progression 

 
Fig. 6 CD1C+ DCs activation and maturity increase in parallel with disease 

progression. (a) UMAP representation of transcriptome of the CD1C+ DC 

population colored by CD1C+ DC subtypes and gene set scores of various 

inflammation-related pathways. The figure colors range from minimum value 
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(blue) to the 99th percentile of the value distribution (red). (b) Expression profiles 

of marker genes define CD1C+ DC subpopulations. The figure colors range from 

minimum value (yellow) to the 99th percentile of the value distribution (red). (c) 

Density plots showing transcriptomic landscape of CD1C+ DCs per cohort. 

Highlighted area represents the region where the activated CD1C+ DCs reside. 

(d) Proportional differences among cohorts for CD1C+ DC subtypes. Each dot 

represents an individual subject. The proportional differences between each 

disease state vs HV are compared and the significance was calculated using the 

Mann–Whitney U test: *P <0.05; **P ≤ 0.005; ***P ≤ 0.005. 

We identified CD1C+ dendritic cells by the expression of HLA-DR at 

the protein level and CLEC10A and CD1C expression at transcriptional level. 

After clustering, we identified three subtypes of CD1C+ DCs which we 

designated as proliferating, active, and inactive (Figure 6a). The proliferating 

subtype consisted of a small number of cells (n=167) and had high expression of 

cell cycle-related genes MKI67, STMN1 and HMGN2, as well as similar gene 

expression levels for the marker genes used to define the active subtype (Figure 

S4b). The active group expressed CD83, SRGN, STX11, NR4A family genes, 

activator protein 1 (AP1) related genes FOSB, JUNB and anti-apoptotic genes 

MCL1 and CDKN1A, and showed a more mature and active phenotype (Figure 

6b). In this population we also observed activation of inflammatory pathways, 

i.e., inflammatory response, TNFα signaling, IFNα response, IFNγ response and 

IL2-STAT5 signaling, as well as T-cell activation pathways (Figure 6a and S5). 

In addition to this highly inflammatory phenotype, in active CD1C+ DCs, we also 

observed expression of other pro-inflammatory genes, such as IL1B 51, CXCL16 
52,53, VEGFA 54, HBEGF 55 (Figure 6b), that can facilitate tumor progression and 

survival. The cluster with no/low proliferation or activation marker gene 

expression was annotated as inactive CD1C+ DCs. Investigating proportional 

changes, we observed a population shift from inactive to active CD1C+ DCs 

along disease progression (Figures 6c-d). 
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Similar observations were made for CD14+ DCs (Figures S4c and S6). 

Taken together, these findings suggest that there is increased maturation and 

activation of the classical DCs (cDC) along disease progression. 

External public datasets validate population shifts in 
immune populations 

To validate our observed population shifts in immune populations, we 

used external datasets from similar studies including Zavidij et al. 12, de Jong et 

al. 14 and the MMRF CoMMpass study 7. We used data from Zavidij et al. and de 

Jong et al. to validate our findings on population shifts from HV to MM, and time 

to event data from the CoMMpass study to investigate their relationship with 

progression-free and overall survival (Table 2). 

 

The de Jong et al. dataset allowed us to evaluate the transcriptional 

differences in cDC and CD8+ ATC populations between HV and MM. 

Unfortunately, in this study macrophages were not retained due to the sample 

processing methodology. For both cDC and CD8+ ATC populations, similar 

trends to our findings were detected (Figure S7). Within cDCs, we identified two 

clusters where cluster 1 showed increased TNFα signaling, IFNα response and 

IFNγ response as well as higher levels of activated DC markers (Figure S7a). 

Although not significant (possibly due to the low number of samples), higher 

proportions of cluster 1 were observed in MM. Similarly, within CD8+ ATCs, we 

identified two clusters, where cluster 0 showed increased TNFα signaling as well 

as higher levels of activated pre-dysfunctional CD8+ T-cell markers (Figure S7b). 

Higher proportions of cluster 0 were observed in MM patients, compared to HVs. 

 

 Compared to both our and the de Jong et al. dataset, the Zavidij et al. 

dataset included a smaller number of cells. This resulted in an insufficient number 

of DCs for further subtyping. We identified the main CD8+ ATC population but 
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failed to detect similar subpopulations. For macrophages, highly similar findings 

to ours were observed (Figure S8) and we identified two clusters where cluster 1 

showed increased IFN signaling, as well as higher levels of M1 markers. This 

cluster was identified as M1 macrophages. Cluster 0 showed expression of 

macrophage markers FCGR3A (CD16) and MS4A7 and lacked the M1 and M2 

markers as well as CD14. Therefore, this cluster was annotated as M0 

macrophages. The proportional analysis showed a significant population shift 

from M0 to M1 macrophages from HV to MM. Moreover, when BAFF 

expression was categorized into BAFF-low and -high categories based on the 

median cut-off at 0.68, we observed the association between high BAFF 

expression and M1 polarization.  
Table 2. Summary of the validation study using external dataset. 

 
Zavidij et 

al. 2020 

De Jong 

et al. 

2021 

CoMMpass 

Cell Type 

CoMMpass 

Survival 

(OS) 

CoMMpass 

Survival 

(PFS) 

DCs NA ✓ ✓ X X 

Macrophages ✓ NA ✓ ✓ X 

CD8 ATC X ✓ ✓ ✓ X 

Supported or validated cell types are marked by a check mark (✓), while unsupported 

cell types are marked by an X. Data which were not feasible to analyze are marked by 

NA. 

Population shifts in CD8+ T-cells and Macrophages 
are associated with poor overall survival in 
CoMMpass dataset 

The CoMMpass immune dataset does not include HV, MGUS, or SMM 

samples but is instead composed of samples collected from active MM patients 

with accompanying metadata. Thus, we used this dataset to evaluate whether 
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differences in the proportions of identified population shifts were related to time 

to event (PFS and OS).  For CD8+ ATC, macrophages and cDCs, where 

population shifts were detected, we observed great transcriptomic similarities 

with our findings in the CoMMpass dataset. Within cDCs, we identified two 

clusters where cluster 1 showed increased TNFα signaling as well as higher levels 

of activated DC markers (Figure S9a). Similarly, within CD8+ ATCs, we 

identified three clusters, where the cluster showing increased TNFα signaling as 

well as higher levels of activated pre-dysfunctional CD8+ T-cell markers were 

annotated as pre-dysfunctional (Figure S9b). For macrophages, all the subtypes 

identified in our study were also detected in the CoMMpass dataset based on the 

marker gene expression and increased BAFF expression in the M1 phenotype 

could be observed (Figure S10). 

 

We classified CoMMpass patients according to their proportion of pre-

dysfunctional CD8+ ATC. Distribution of the proportion of pre-dysfunctional 

cells was generated and patients were grouped into pre-dysfunctional-low and -

high groups using the cut-off value as the median at 0.4 (Figure 7a). Higher 

proportions of pre-dysfunctional cells were found to be significantly (p=0.002) 

negatively associated with OS (Figure 7b). Similarly, patients are grouped into 

M1 macrophage-low and -high groups using the cut-off value as the median at 

0.55 (Figure 7c). Patients with a high proportion of M1 macrophages were found 

to have significantly (p=0.036) worse OS (Figure 7d). For both pre-dysfunctional 

CD8+ ATC and M1 populations, no association with PFS was observed (Figures 

S9b and S10a). Finally, no association was observed between high activated cDC 

proportions and survival (Figure S9a). 
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Fig. 7 Survival analyses reveal associations between proportions of pre-

dysfunctional cells and M1 macrophages with overall survival. (a) 

Distribution of the proportion of pre-dysfunctional CD8+ T-cells within the 

CD8+ ATC population in the CoMMpass dataset among NDMM samples. The 

samples were categorized into pre-dysfunctional high and low groups using the 

median cut-off (median = 0.4). (b) Kaplan-Meier survival curve demonstrate the 

association between CD8+ ATC proportion and OS (Pre-dys high median = 1160, 

Pre-dys low median = 1933). (c) Distribution of the proportion of M1 

macrophages within the macrophage population in the CoMMpass dataset among 

NDMM samples. The samples were further categorized into M1 macrophage high 

and low groups using the median cut-off (median = 0.55). (d) Kaplan-Meier 

survival curve demonstrate the association between the proportion of M1 

macrophages and OS (M1 high median = 893, M1 low median = 1945). 

c d

Pre-Dysf HighPre-Dysf Low

a b

P=0.002

M1 Macro HighM1 Macro Low

P=0.036

Figure 7
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Ligand-receptor interaction modelling demonstrates 
dynamic interplay between the tumor and micro-
environment 

To better understand the molecular mechanisms and changes in the cell-

cell interactions that take place during the transformation of precursor stages to 

MM cells, we used MultiNichenet for ligand-receptor interaction analysis. We 

analyzed the top 12 cell types that had the most significantly differentially 

expressed genes between MGUS and SMM versus MM. This method allows the 

modeling and prioritization of potential ligand-receptor interactions between cell 

types by evaluating known ligand-receptor interactions from public databases, 

along with their gene expression abundance and differential expression of the 

downstream genes in the contrast groups. We investigated the outcome of both 

directions of tumoral-immune cell and immune-tumoral cell interactions.  

 

First, we focused on the effect of the plasma cells on their surrounding 

immune cells (Figure 8a). Among the top 50 interactions we identified 11 plasma 

cell ligands interacting with 21 receptors from various immune cell types. We 

found that only ITGB1 in MAIT Cytotoxic T-cells and CD44 in CD1C+ DCs 

were differentially expressed upon disease progression in the immune micro-

environment. Most of the ligands in the plasma cells showed up-regulation in MM 

patients, including RELN, HGF, MIF, CD320, and ADM. Among these ligands, 

MIF, CD320 and HGF have potential interactions with many immune cell types 

via multiple receptors. Additional interesting ligands include FAM3C, ADM and 

IL15. These ligands, although not identified as significantly up-regulated, can be 

found in a secreted form.  

 

We also investigated how the immune cells in the micro-environment 

communicate differentially with the plasma cells upon MM progression (Figure 
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8b). Through our analysis, 18 immune cell ligands interacting with 15 plasma cell 

receptors were identified. Likewise, the greatest pre-malignancy vs MM gene 

expression difference was observed in the plasma cells. Among the identified 

receptors, F12, CD138 (SDC1) and BCMA (TNFRSF17) were observed to 

interact with multiple ligands from multiple immune cell types. We also observed 

many other ligands that were up-regulated within the plasma cells, including 

HGF, CD320, NCAM1, and ADM.  

 

We further investigated ligands and their potential downstream effects in 

plasma cells. Interestingly, BAFF (TNFSF13B), for which expression was found 

to be associated with population shifts in macrophages, was amongst the top 

predicted ligands with potential to alter the expression of genes that are 

differentially expressed between MM cells and plasma cells in the precursor 

stages. In this context, we also observed that two key myeloma markers, MYC 

and DKK1, as well as many other cancer-associated genes including ADM, 

HDGF, IL15, HGF, STMN1, CDKN1B and CD82, were potentially regulated by 

the predicted ligands (Figure 8c). Particularly, ADM, MYC and CDKN1B were 

predicted to be regulated by numerous ligands. Consequently, observed ligand-

receptor interaction cascades shed light on complete succession of events 

potentially involved in or arriving as a consequence of progression from precursor 

stages to MM. 
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Fig. 8 Ligand-receptor interaction modelling reveals potential interplay 

between tumoral plasma cells and immune populations. (a) The circos plot 

(left) shows the interactions when plasma cells are selected as senders and the 

immune cells as receivers. The dot plot (right) shows significantly differentially 

expressed ligands/receptors in sender/receiver cells (p<0.05). (b) The circos plot 

(left) shows the interactions when the immune cells are selected as senders and 
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c
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plasma cells as receivers. The dot plot (right) shows significantly differentially 

expressed ligands/receptors in sender/receiver cells (p<0.05). (c) The activity of 

the ligands from immune cells and their regulatory potential over significantly 

up-regulated and down-regulated genes in plasma cells are shown. The order of 

the ligands (top to bottom) represents their rank on the prioritization. The 

highlighted ligands either had significant differential expression in the cell types 

of interest or were observed in our population shift study. All the plots in this 

figure are obtained using the results from the differential expression analysis of 

MM vs precursor stages (MGUS&SMM) contrast.  
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Discussion 
Despite recent advancements in its treatment, MM remains an incurable 

disease. Comprehensive and deep molecular profiling of the tumor plasma cells 

and surrounding immune populations advance our understanding of disease 

progression and can inform the identification of novel therapeutic targets. In this 

study, we generated a single cell transcriptomic atlas comprising more than 120 

subjects from 4 cohorts including HV, MGUS, SMM, and MM patients. We 

applied a multi-modal single cell omics approach to investigate the molecular 

changes that take place in tumoral plasma cells and immune populations present 

in the tumor micro-environment during disease progression.  

 

Identification of immune populations from single cell multi-omics data 

in the bone marrow is a challenging task. Cells can be identified into different 

subgroups based on phenotypic and/or functional characteristics. Phenotypic cell 

surface markers and their abundance are key determinants for an accurate 

classification. On the other hand, functional markers can provide a deep 

understanding of the current functional state of the cells. In this study, we 

combined both transcriptomics and proteomics to optimize the identification of 

distinct cell types. 

 

In the plasma cells collected from HV, MGUS, SMM, and MM patients, 

we observed both transcriptional similarity and heterogeneity among patients of 

the same disease stage. Although transcriptional sub-clonality was observed for 

some subjects, within patient plasma cell transcriptomes were found to be highly 

similar. As in previous studies, differential expression analysis confirmed the 

altered expression of MM marker genes, including FRZB, DKK1, MYC, 

CCND1, and down-regulation of some tumor suppressor genes including CD81 

and CD99. Interestingly, analysis of signaling pathways revealed that, despite 



 

 

 
 

105 

inter-patient heterogeneity, some differentially expressed pathways, such as 

MYC signaling, initiate early at precursor stages, while others, such as oxidative 

phosphorylation, are only observed in active MM. Other pathways, such as WNT 

signaling and NOTCH signaling are subject-specific and can be observed at all 

stages. 

 

Differential expression analysis of cells in the tumor micro-environment 

revealed activation of inflammatory pathways increasing from HV to MM. 

Although we profiled numerous cell types, in future studies, it may be interesting 

to profile additional cell types in the tumor micro-environment, such as 

granulocytes, myeloid-derived suppressor cells (MDSCs), stromal cells, 

osteoblasts and osteoclasts, to investigate changes from HV to MM and assess 

whether they are also affected by the increased inflammation. Activation of TNFα 

was observed in many cell types at MGUS, indicating that the initial response 

from the immune cells is triggered by TNF release, followed by IFN release as 

the disease becomes symptomatic. Moreover, among the immune-related 

pathways enriched in the immune micro-environment, only IFNα was observed 

to be activated by the plasma cells in MM. In future studies, it may be of interest 

to investigate whether activation of IFN pathways is a driver, or consequence, of 

disease progression. Although IFNα was investigated as a therapeutic molecule 

in early myeloma treatment trials 56, it was shown that co-cultures with IFNα-

producing pDCs demonstrated higher plasma and multiple myeloma cell 

proliferation 57,58.  

 

Among the different inflammatory and immune subpopulations, 

significant population shifts were observed in CD8+ T-cells, DCs and 

macrophages, and we further validated each of these observations using a set of 

independent validation datasets of Zavidij et al., de Jong et al. and CoMMpass. 

In CD8+ T-cells, we observed a gradual population shift towards a highly active 

state, where these cells also exhibited gene expression that suggest emerging 
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signals of dysfunctionality. This pre-dysfunctional T-cell population was also 

recently described by Yan et al. and Leun et al., who investigated transcriptional 

changes during CD8+ T-cell differentiation 45,59. Leun et al. worked with data 

from various cancers and proposed an elegant differentiation model for intra-

tumoral CD8+ T-cells. The authors described a differentiation trajectory from a 

naive-like state towards GZMK+ pre-dysfunctional and cytotoxic states, where 

the cells in these two states can interchange. Pre-dysfunctional T-cells acquire 

additional markers of dysfunctionality and finally transform into defective T-

cells. Our study suggests that this activation trajectory also occurs in MM, 

confirming the findings of other previous reports on T-cell dysfunctionality 60–63. 

In addition, we also found that T-cell dysfunctionality is prognostic, as igh 

proportions of pre-dysfunctional T-cells were associated with worse OS in 

CoMMpass patients. In line with our findings, Pilcher et al. has recently shown 

GZMK+ CD8+ exhausted T-cells to be associated with rapid progression in MM 

patients 64. 

 

In addition to the changes in the T-cell compartment upon disease 

progression, we observed alterations in macrophages. Previously, tumor-

associated macrophages (TAMs) have been shown to play a pivotal role in MM, 

contributing to proliferation, angiogenesis, immunosuppression and drug 

resistance 65,66.  In this study, we detected a population shift towards a highly pro-

inflammatory M1 population with increased BAFF expression and found 

evidence that this shift is initiated at MGUS and SMM stages. Further, a high 

proportion of these cells was associated with poor OS in CoMMpass patients. A 

potential mechanism for such a negative effect could be explained by BAFF 

expression. BAFF is a known inducer of proliferation and survival in MM cells 
67–69 Our ligand-receptor interaction analysis prioritized BAFF as one of the top-

ranked ligands which can alter many genes that have been dysregulated along the 

transformation from precursor stages to MM. Although M1 macrophages are 

considered to be pro-inflammatory or anti-tumoral, whereas M2 macrophages are 
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anti-inflammatory or pro-tumoral in cancer research 70, BAFF-expressing M1 

macrophages were found to be associated with bortezomib resistance 71,72. 

Considering the further role of macrophages in bone formation 73,74, the role of 

macrophages in MM progression may be more broad than pro- or anti-tumoral 

categorization. Overall, additional studies are needed to understand the impact of 

macrophages on MM. 

 

Similar to what was reported in previous studies, we observed a 

proportional decrease in cDCs in bone marrow samples of MM patients 75,76. 

Although cDCs in the MM micro-environment are thought to be functionally 

deficient 75–79, some studies have shown that these cells have the capacity to 

activate CD8+ T-cells and to promote MM tumor progression in vitro 80–82. 

Although the proportion of cDCs decreased during disease progression, we 

observed a shift towards an active and mature phenotype with production of pro-

tumorigenic molecules including IL1B, CXCL16, VEGFA and HBEGF.  

 

Finally, we predicted cell-cell interactions to investigate their role in 

disease progression from the precursor stages to MM. We applied differential 

expression analysis, followed by cell-cell interaction analysis, and predicted 

through which ligands and receptors the plasma cells may be interacting with cells 

in the tumor micro-environment, and vice versa. Our study highlights the 

potential effect of MIF, IL15, CD320, HGF and FAM3C on the adjustments in 

immune populations during precursor stages transition to MM. Interaction of MIF 

with its receptors (CD44, CD74, CXCR4) are known drivers in late stage multiple 

myeloma and other cancers 83,84 and involved in a variety of mechanisms 

including homing to bone marrow 85, pro-tumoral M0 macrophage differentiation 
86 and resistance to therapy 87,88. Likewise, IL15 89–91 and HGF 92–94 are known 

regulators of inflammatory response in cancer. Although CD320 is known to be 

associated with B-cell survival and proliferation 95,96 and FAM3C is a known 

inducer of osteoblast differentiation 97,98, their effect on the tumor micro-
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environment and their role in MM progression is subject to further research. 

Concerning the impact of the immune compartment on MM progression, we 

identified SERPINA1 and BAFF (TNFSF13B) as ligands that may play a role in 

MM development. It is well known that BAFF has the potential to enhance 

growth and survival of plasma cells, however, the role of SERPINA1 in MM 

requires further investigation. In addition to immune populations, we also 

identified potential interactions between plasma cells that can influence MM 

progression. These interactions possibly generate a positive feedback loop where 

the expression of signaling molecules, such as HGF, CD320 and WNT5A, induce 

expression of MYC, STMN1, CD82, while an increase in adhesion molecules, 

such as MIF and NCAM1, facilitate these interactions by enabling proximity 

between the malignant cells. An increase in intercellular adhesion may also cause 

bone lesions 99,100, increase cellular mobility and contribute to resistance to 

therapy 101.   
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Conclusion 
In this study, we have generated an atlas of bone marrow micro-

environment of MM and investigated the differences between HV, MGUS, SMM 

and MM. We identified an increased inflammatory response across the immune 

populations in the bone marrow and illustrated the dynamic relationship that 

exists between plasma cells and the micro-environment (Figure S11), revealing 

the changes that occur at different stages of the disease. Our study suggests that 

early intervention to modulate the inflammatory response observed at precursor 

stages of the disease may help to limit disease complexity and progression to MM. 
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Supplementary Information  

Subject cohorts 
All participants were above age 18. Any potential participant who met any of the 

following criteria were excluded from participating in the study: 

• History of drug or alcohol abuse. 

• Female who might be pregnant or was breast-feeding at the time of 

enrollment. 

• Active/other malignancy or history of malignancy (other than 

MM) within 3 years prior to screening. Exceptions were squamous 

and basal cell carcinomas of the skin and carcinoma in situ of the 

cervix, or malignancy which in the opinion of the investigator were 

cured. 

• Active auto-immune disorder 

• Signs of active infection, at the discretion of the investigator 

• Concomitant immune-suppressive medication including 

prednisone > 5 mg daily 

Prospective SMM or symptomatic multiple myeloma participants: 

• No history of or current anti-myeloma therapy 

• No prior use of bisphosphonates or denosumab 

The following criterion were used for inclusion in the specific cohorts. 

HV 
• >50 years of age 

MGUS 
IgG or A MGUS [All criteria must be met]: 

• Serum monoclonal protein (IgG or IgA or IgM) <3 g/dL AND 
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• Clonal BM plasma cells <10% AND 

• No myeloma-defining events (see below) 

OR Light chain MGUS [All criteria must be met]: 

• Abnormal sFLC ratio (<0.26 or >1.65) AND 

• Increased level of the appropriate involved light chain (increased κ 

sFLC in patients with ratio >1.65 and increased λ sFLC patients with 

ratio <0.26) AND 

• No immunoglobulin heavy chain on immunofixation AND 

• Clonal BM plasma cells <10% AND 

• Urinary monoclonal protein <500 mg/24h AND 

• No myeloma-defining events (see below) 

SMM 
•  

• Serum monoclonal protein (IgG or IgA) ≥3 g/dL OR 

• Urinary monoclonal protein ≥500 mg/24 h AND/OR 

• Clonal BM plasma cells 10% - 60% 

• AND No myeloma-defining events or amyloidosis (no CRAB and no 

SliM as detailed below) 

Symptomatic Multiple Myeloma 
Myeloma-defining events are evidence of end-organ damage that can be 

attributed to the underlying plasma cell proliferative disorder, especially: 

• C: Calcium elevation (> 11 mg/dL or > 1 mg/dL higher than ULN) 

• R: Renal insufficiency (creatinine clearance < 40 mL/min or serum 

creatinine > 2 mg/dL) 

• A: Anemia (Hb < 10 g/dL or 2 g/dL < normal) 
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• B: Bone disease (≥ 1 lytic lesions on skeletal radiography, CT, or PET-

CT). If bone marrow had less than 10% clonal plasma cells, more than 

one bone lesion was required to distinguish from solitary 

plasmacytoma with minimal marrow involvement. 

OR, in the absence of CRAB, any one or more of the following 

biomarkers of malignancy, referred to here as the SliM criteria: S=≥Sixty percent 

(≥60%) clonal BM plasma cells; Li=serum free Light chain ratio 

involved:uninvolved ≥100; M=>1 focal lesion (≥5 mm each) detected by MRI 

studies 
BM=bone marrow; PET-CT (18F-fluorodeoxyglucose PET with CT); FLC=free 

light chain; MGUS=monoclonal gammopathy of unknown significance. Note: Clonality 

should be established by showing κ/λ-light-chain restriction on flow cytometry, 

immunohistochemistry, or immunofluorescence. BM plasma cell percentage should 

preferably be estimated from a core biopsy specimen; in case of a disparity between the 

aspirate and core biopsy, the highest value should be used. 
 

Table S1: CITE-seq ADTs 
ADT Protein Gene 

CD11b_TotalSeqC CD11b ITGAM 

CD11c_TotalSeqC CD11c ITGAX 

CD123_TotalSeqC CD123 IL3RA 

CD127_TotalSeqC CD127 IL7R 

CD137_TotalSeqC CD137 TNFRSF9 

CD138_TotalSeqC CD138 SDC1 

CD14_TotalSeqC CD14 CD14 

CD15_TotalSeqC CD15 FUT4 

CD152_TotalSeqC CD152 CTLA4 

CD16_TotalSeqC CD16 FCGR3A 

CD19_TotalSeqC CD19 CD19 

CD197_TotalSeqC CD197 CCR7 
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CD20_TotalSeqC CD20 MS4A1 

CD223_TotalSeqC CD223 LAG3 

CD24_TotalSeqC CD24 CD24 

CD244_TotalSeqC CD244 CD244 

CD25_TotalSeqC CD25 IL2RA 

CD269_TotalSeqC CD269 TNFRSF17 

CD27_TotalSeqC CD27 CD27 

CD270_TotalSeqC CD270 TNFRSF14 

CD272_TotalSeqC CD272 BTLA 

CD274_TotalSeqC CD274 CD274 

CD278_TotalSeqC CD278 ICOS 

CD279_TotalSeqC CD279 PDCD1 

CD28_TotalSeqC CD28 CD28 

CD3_TotalSeqC CD3 CD3D 

CD3_TotalSeqC CD3 CD3E 

CD33_TotalSeqC CD33 CD33 

CD357_TotalSeqC CD357 TNFRSF18 

CD366_TotalSeqC CD366 HAVCR2 

CD38_TotalSeqC CD38 CD38 

CD4_TotalSeqC CD4 CD4 

CD45_TotalSeqC CD45 PTPRC 

CD45RA_TotalSeqC CD45RA   

CD45RO_TotalSeqC CD45RO   

CD56_TotalSeqC CD56 NCAM1 

CD66b_TotalSeqC CD66b CEACAM8 

CD69_TotalSeqC CD69 CD69 

CD8_TotalSeqC CD8 CD8A 

CD8_TotalSeqC CD8 CD8B 
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CD80_TotalSeqC CD80 CD80 

GPRC5D_TotalSeqC GPRC5D GPRC5D 

HLA-DR_TotalSeqC HLA-DR HLA-DRA 

HLA-DR_TotalSeqC HLA-DR 

HLA-

DRB1 

TIGIT_TotalSeqC TIGIT TIGIT 
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Figure S1. Reference-based automated cell typing strategy. (a) Reference data 

generation steps, visualized by ADT and RNA UMAPs using the colors of cell types at 

different annotation levels. The data was generated using 12 initial samples, where each 

cohort was represented with 3 samples. (b top) Reference data generation steps are 

demonstrated. (b bottom) The integration step of automated cell typing strategy into the 

b

Figure S1

a
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data processing pipeline is demonstrated. Light red: reference RNA data; dark red: query 

RNA data; light green: reference ADT data; dark green: query ADT data; light yellow: 

integrated dataset of RNA and ADT.  

 
Figure S2. GSEA results of pre-dysfunctional CD8+ ATCs.  (a) Top 10 up- and 
down-regulated hallmark gene sets. (b) Top 10 up- and down-regulated biological 
processes (BP) gene sets. For both subsections, the GSEA analyses are conducted 
contrasting pre-dysfunctional CD8+ ATCs with other CD8+ ATCs.

GSEA Results of Hallmark Gene Sets on Pre-dysfunctional CD8+ T Cells

GSEA Results of Biological Process Gene Sets on Pre-dysfunctional CD8+ T Cells

Figure S2
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b
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Figure S3. GSEA results of M1 Macrophages. (a) Top 10 up-regulated hallmark gene 

sets. No significantly down-regulated gene sets have been identified. (b) Top 10 up- and 

down-regulated biological processes (BP) gene sets. For both subsections, the GSEA 

analyses are conducted contrasting M1 macrophages with other macrophages  

GSEA Results of Hallmark Gene Sets on M1 Macrophages

GSEA Results of Biological Process Gene Sets on M1 Macrophages

Figure S3

a

b
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Figure S4. Additional figures on Macrophage, CD1C+ DC and CD14+ DC 

populations. (a) Proportional differences among cohorts for M2 macrophages. Each dot 

represents an individual subject. The proportional differences between each disease state 

vs HV are compared and the significance was calculated using the Mann–Whitney U test: 

*P <0.05; **P ≤ 0.005; ***P ≤ 0.005. (b) Expression profiles of proliferation markers 

define the proliferating cell group. (c) Investigation of CD14+ DCs. (c top & center) 

UMAP of CD14+DCs, colored by the obtained clusters, the proportional difference and 

density plots among subject cohorts show transcriptional shifts. Highlighted area 

represents the region where the cells in cluster 1 reside. (c right) Expression profile of the 
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markers defining active CD1C+ DC subgroup. The figure colors range from minimum 

value (yellow) to the 99th percentile of the value distribution (red). (c bottom) Gene set 

scores of inflammatory pathways highlight inflammation responsive regions on the 

CD14+ DCs UMAP. The figure colors range from minimum value (blue) to the 99th 

percentile of the value distribution (red). 

 
Figure S5. GSEA results of active CD1C+ DCs. (a) Top 10 up- and down-regulated 

hallmark gene sets. (b) Top 10 up- and down-regulated biological processes (BP) gene 

GSEA Results of Hallmark Gene Sets on Activated CD1C+ DCs

GSEA Results of Biological Process Gene Sets on Activated CD1C+ DCs

Figure S5

a

b
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sets. For both subsections, the GSEA analyses are conducted contrasting active CD1C+ 

DCs with other CD1C+ DCs. 

 
Figure S6. GSEA results of cluster1 of CD14+ DCs. (a) Top 10 up-regulated hallmark 

gene sets. No significantly down-regulated gene sets have been identified. (b) Top 10 up- 

and down-regulated biological processes (BP) gene sets. For both subsections, the GSEA 

analyses are conducted contrasting cluster 1 of CD14+ DCs with other CD14+ DCs. 

  

GSEA Results of Hallmark Gene Sets on CD14+ DCs Cluster 1

GSEA Results of Biological Process Gene Sets on CD14+ DCs Cluster 1

Figure S6

a

b
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Figure S7. Validation study of de Jong et al. (a) Our findings on cDCs (CD1C + & 

CD14+DCs). (a top left) UMAP of cDCs, colored by the obtained clusters and the dense 

regions per cohort. (a top right) Expression profile of active CD1C+ DC markers within 

cDC clusters. The figure colors range from minimum value (yellow) to the 99th percentile 

of the value distribution (red). (a bottom left) Gene set scores of IFN and TNF pathways 

demonstrate inflammation-associated regions. The figure colors range from minimum 

value (blue) to the 99th percentile of the value distribution (red).  (a bottom right) 

Proportional differences among cohorts for CD14+ DC clusters. Each dot represents an 

individual subject. The proportional differences between each disease state vs HV are 

compared and the significance was calculated using the Mann–Whitney U test: *P <0.05; 
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**P ≤ 0.005; ***P ≤ 0.005. (b) Our findings on CD8 ATCs. (b top left) Two clusters are 

identified. Between HV and MM subjects, the dense regions differ. (b right) Expression 

profile of CD8+ ATC markers within CD8ATC clusters. The figure colors range from 

minimum value (yellow) to the 99th percentile of the value distribution (red).  (b left) 

Gene set score of TNFα pathway demonstrates inflammation-associated regions. The 

figure colors range from minimum value (blue) to the 99th percentile of the value 

distribution (red). (b bottom center) Proportional differences among cohorts for CD8+ 

ATC clusters. Each dot represents an individual subject. The proportional differences 

between each disease state vs HV are compared and the significance was calculated using 

the Mann–Whitney U test: *P <0.05; **P ≤ 0.005; ***P ≤ 0.005. 

 
Figure S8. Validation study of Zavidij et al. Our findings on macrophage population. 

(top) UMAP of cDCs, colored by subgroups as well as the dense regions per cohort. 
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(center) Gene set scores of inflammatory pathways highlight inflammation-responsive 

regions on the macrophage UMAP.  The figure colors range from minimum value (blue) 

to the 99th percentile of the value distribution (red). (bottom left) Distribution of BAFF 

expression. The cells are categorized by the local minimum at 0.68 into BAFF-high and 

BAFF-low categories. Density UMAP highlights the dense regions of each group on the 

translation landscape of macrophages. (right center) Proportional differences among 

cohorts for macrophage subtypes. Each dot represents an individual subject. The 

proportional differences between each disease state vs HV are compared and the 

significance was calculated using the Mann–Whitney U test: *P <0.05; **P ≤ 0.005; ***P 

≤ 0.005. (bottom right) Expression profiles of marker genes that define macrophage 

subpopulations. 
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Figure S9. Validation study of CoMMpass dataset.  (a) Our findings on cDCs (CD1C 

+ & CD14+DCs). (a top left) UMAP of cDCs, colored by identified clusters as well as 

the gene set scores of inflammatory response and TNFα signaling. The figure colors range 

from minimum value (blue) to the 99th percentile of the value distribution (red). (a top 

right) Expression profile of marker genes, used to identify active and inactive CD1C+ 

DCs, within cDC clusters. (a bottom) The subjects are categorized based on the 

distribution of proportion of cells in cluster 1 (cDC C1). The median value of 0.67 is used 

as a cut off to group subjects into cDC C1 high and low categories. Kaplan-Meier survival 

curves demonstrate the association between cDC C1 proportion and PFS (C1 high median 
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= 715, C1 low median = 758) as well as OS  (C1 high median = 1412, C1 low median = 

1273) . (b) Our findings on CD8+ ATCs. (b top) UMAP representation of the CD8+ 

ATCs colored by CD8+ ATC subgroups and TNFα signaling. The figure colors range 

from minimum value (blue) to the 99th percentile of the value distribution (red). (b 

bottom) The expression profile of marker genes that define each CD8+ ATC subgroup. 

(b right) Kaplan-Meier survival curves demonstrate the association between pre-

dysfunctional CD8+ ATC proportion and PFS (Pre-dys high median = 670, Pre-dys low 

median = 900). 

 
Figure S10. Validation study of CoMMpass dataset. Our findings on macrophages. 

(top) UMAP representation of the macrophages colored by macrophage subgroups and 

the expression profile of marker genes define each macrophage subgroup. (right) UMAP 

representation of the macrophages colored IFNα and TNFα signaling. The figure colors 

range from minimum value (blue) to the 99th percentile of the value distribution (red). 

(center) The subjects are categorized based on the distribution of proportion of cells in 
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M1 macrophages. The local minimum at 0.38 is used as a cut off to group subjects into 

M1-high and -low categories. Kaplan-Meier survival curves demonstrate the association 

between M1 macrophage proportion and PFS (M1 high median = 593, M1 low median = 

892).  (bottom left) Distribution of BAFF expression. The cells are categorized by the 

local minimum at 0.68 into BAFF-high and BAFF-low categories. 

 
Figure S11. Proposed model of MM progression involves dynamic interplay between 

malignant plasma cells and the immune populations.  Each cell type is represented 

with a different color, MM: purple; DCs: turquoise; Macrophages: yellow, T-cells: blue. 

The MM plasma cell ligands and receptors are represented in green. Ligands and receptors 

from the immune populations are represented in dark blue. The straight arrows show the 

direction of the transformation. The arrows with descending color represent the direction 
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of the effect on transformation. The orange cloud represents the inflammatory 

environment. MM: multiple myeloma; DC: dendritic cell; IFNA: interferon alpha.  
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List of abbreviations 
MM   Multiple myeloma  

RNA   Ribonucleic acid RNA 

CAR   Chimeric Antigen Receptor 

BsAbs   Bispecific antibodies (BsAbs) 

BCMA   B-Cell Maturation Antigen  

DHE   Differentially highly expressed genes 

RB49   Rendomab49 

GPRC5D G-protein coupled receptor family C group 5 

member D  

FCRL5   Fc Receptor-Like 5  

BM   Bone marrow 

DSMZ Deutsche Sammlung von Mikroorganismen und 

Zellkulturen  

PBS   Phosphate-buffered saline 

TBS   Tris-buffered saline 

BSA   Bovine serum albumin   

LC   Liquid chromatography  

MS   Mass spectrometry  

DDA   Data-dependent acquisition  

DIA   Data-independent acquisition   

IM   Ion mobility 

IMFE   Ion mobility feature extraction  

SPI   Spectrum purity index 

HPA   Human Protein Atlas (HPA)  

HPM   Human Proteome Map (HPM) 

PDB   Proteomics Database (PDB) 

SD   Standard deviation  
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Abstract 
Despite the recent introduction of next-generation immunotherapeutic 

agents, multiple myeloma (MM) remains incurable. New strategies targeting 

multiple myeloma-specific antigens may result in a more effective therapy by 

preventing antigen escape, clonal evolution and tumor resistance. In this work, 

we adapted an algorithm that integrates proteomic and transcriptomic results of 

myeloma cells to identify new antigens and possible antigen combinations. We 

performed cell surface proteomics on six myeloma cell lines and combined these 

results with gene expression studies. Our algorithm identified 209 overexpressed 

surface proteins from which 23 proteins could be selected for combinatorial 

pairing. Flow cytometry analysis of 20 primary samples confirmed the expression 

of FCRL5, BCMA and ICAM2 in all samples and IL6R, ETB and SLCO5A1 in 

more than 60% of myeloma cases. Analyzing possible combinations, we found 6 

combinatorial pairs that can target myeloma cells and avoid toxicity on other 

organs. In addition, our studies identified ETB as a tumor-associated antigen that 

is overexpressed on myeloma cells. This antigen can be targeted with a new 

monoclonal antibody RB49 that recognizes an epitope located in a region that 

becomes highly accessible after activation of ETB by its ligand. In conclusion, our 

algorithm identified several candidate antigens that can be used for either single-

antigen targeting approaches or for combinatorial targeting in new 

immunotherapeutic approaches in MM. 
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Background 
In the past decade, the survival of multiple myeloma (MM) patients has 

improved with the introduction of novel agents. The 5-year survival rates of a 

global myeloma population increased from 37% to 52% in a recent registry study, 

an increase that was mainly seen in young transplant-eligible patients.1 With the 

introduction of the monoclonal anti-CD38 antibodies daratumumab and 

isatuximab, improvement of survival rates is likely to continue. When used in 

monotherapy, daratumumab showed clinical activity in 37% of refractory MM 

patients.2 When combined with lenalidomide or bortezomib, the response rates 

increased to 92% and 85%, respectively.3,4 Daratumumab is currently approved 

as first-line treatment for both transplant-eligible and -ineligible patients.5,6. 

 
Figure 1: Recently developed combinatorial strategies. These strategies require that 

two antigens are present to activate immune effector cells. (A) They are based on 

activation of co-stimulatory pathways in CAR-T-cells, (B) the use of hemibodies with 

alignment of the CD3 binding VH and VL parts and (C) the co-administration of 

bispecific antibodies that bind to a costimulatory receptor.  

Following monoclonal antibodies, more potent immunotherapeutic 

approaches are developed. Similar to other lymphoproliferative malignancies, 

Chimeric Antigen Receptor (CAR) T-cell therapies and bispecific antibodies 

(BsAbs) have been introduced and successfully tested in early clinical trials.7,8 

For MM, these strategies targeted a limited set of antigens (B-Cell Maturation 
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Antigen (BCMA), G-protein coupled receptor family C group 5 member D 

(GPRC5D) and Fc Receptor-Like 5 (FCRL5)).9 Nonetheless, malignant cells can 

escape immune recognition by employing a number of antigen-evasion strategies, 

including antigen mutation, down-regulation of target antigens, and the selective 

survival of antigen-negative cell subpopulations.10 Such immune escape has been 

well studied for patients relapsing after anti-BCMA CAR-T therapy or bispecific 

antibodies. Homozygous deletions of chromosome 16p (where the BCMA gene 

is located) or a biallelic loss of BCMA have been reported in relapsing 

patients.11,12 Hence, increasing the number of targeted antigens may result in a 

more effective therapy by preventing antigen escape and disease progression. 

This strategy is particularly relevant in patients with refractory disease, those 

relapsing after immunotherapy and/or rapid and aggressive disease progression.  

 

On the other hand, immunotherapy should avoid activation towards 

antigens expressed on healthy tissues and cells (often termed on-target, off-

tumor), particularly in patients with minimal bone marrow (BM) infiltration (e.g., 

minimal residual disease), and thus highly selective and effective treatments are 

needed.13 Tumor-specific targeting can also be increased by simultaneously 

targeting two antigens; even if neither antigen is expressed exclusively by the 

tumor, the tumor cells — but not healthy cells — are likely to express both 

antigens.14 Figure 1 illustrates different forms of immunotherapy that are based 

on combinatorial approaches, such as CAR-T-cells15 and bispecific 

antibodies16,17.  
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Figure 2: Combinatorial target identification strategy. (A) Analysis workflow. (B) 

The consensus tissue list. (C) MA plots (mean vs ratio) illustrating the identified 

differentially highly expressed (DHE) genes in different contrasts. DHE genes are genes 

with higher log ratios of mean+2SD and having higher expression than average 

expression among all patients. (D) Venn diagram representing the overlap of identified 

DHE genes in different contrasts. MM: multiple myeloma; BM BC: bone marrow B-cell; 

PB BC: peripheral blood B-cell; PC: plasma cell. 

In this study, we aimed to identify optimal antigen pairs for selective MM 

cell targeting. These pairs were identified by combining proteomic and genomic 

results from myeloma and normal cell populations and their expression profiles 

were subsequently validated by flow cytometry (Figure 2.A). We could propose 

different antigen combinations for immunotherapeutic approaches. Moreover, 

our algorithm revealed Endothelin Receptor B (ETB) as a potential new target for 

MM that is overexpressed compared to normal plasma cells and B-lymphocytes 

and absent on hematopoietic stem cells.  

  



 

 
 
148 

Methods 

Cell lines 
Human MM cell lines KMS-12-BM, NCI-H929, MOLP-2 and RPMI-

8226 were obtained from the German Collection of Microorganisms and Cell 

Cultures (DSMZ; Braunschweig, Germany). U266, OPM-2 and LP-1 cell lines 

were obtained from H. Jernberg-Wiklund (Uppsala University, Uppsala, Sweden) 

and MM1.S was obtained from A. Bolomsky (Wilhelminen Cancer Research 

Institute, Vienna, Austria). LP-1 cells were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Lonza, Verviers, Belgium) supplemented with 10% 

fetal bovine serum (FBS; Sigma-Aldrich, St-Louis, MO, USA), 2 mM L-

glutamine (Lonza) and 100 U/mL penicillin-streptomycin (P/S; Lonza). RPMI-

8226 cells, KMS-12-BM cells, U266 cells, MOLP-2 cells, OPM-2 cells, NCI-

H929 cells and MM1.S cells were cultured in Roswell Park Memorial Institute 

(RPMI 1640) (Lonza) supplemented with 10% FBS, 2 mM L-glutamine and 100 

U/mL P/S. All cell lines were cultured at 37°C in 5% CO2 humidity. 

Cell surface proteomics 
Six myeloma cell lines, including OPM-2, LP-1, MOLP-2, U266, 

MM1.S and KMS-12-BM were selected for cell surface biotinylation and 

isolation. For this purpose, the Pierce™ Cell Surface Protein Isolation Kit 

(Thermo Fisher, Waltham, MA, USA) was used for biotinylation, lysis and 

isolation of labelled proteins. Three biological replicates of each above-

mentioned cell lines were cultured in 75 cm2 flasks to obtain 107 cells. For the 

biotinylation, cell lysis and recovery of biotinylated proteins, we followed the 

instructions provided by the manufacturer. Eluted bead-free proteins were 

alkylated by incubating the samples with iodoacetamide (Sigma-Aldrich) and 

were subsequently subjected digested using trypsin (Promega, Madison, WI, 
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USA) at 4 µg/µL at 37°C. The following day, the reaction was stopped using 

0.5% formic acid (Biosolve, Valkenswaard, the Netherlands) and peptides were 

subsequently evaporated at 30°C. Protein quantification was performed using the 

NanoOrange protein quantitation kit (Invitrogen, Waltham, MA, USA).  

LC-MS/MS 
A 1290 Infinity II ultra-high-performance LC system (Agilent 

Technologies, Waldbronn, Germany) coupled with 6560 Ion mobility quadrupole 

time-of-flight (IM-qTOF; Agilent Technologies, Waldbronn, Germany) were 

used for all LC-MS analyses. Separation was carried out on an Aeris™ Peptide 

XB-C18 column (150 x 2.1 mm ID; 1.7 µm) (Phenomenex, Torrance, CA, USA) 

thermostated at 40°C. Mobile phase A and B consisted of H2O + 0.1% FA and 

ACN/H2O/FA (acetonitrile/water/formic acid; 90:10:0, v/v/v), respectively. 

Peptides were dissolved with an adequate volume of ACN/H2O/FA to reach 0.5 

µg/µL per sample and 5 µg of peptides were injected on the column for each run. 

MS experiments were operated using positive electrospray ionization. For each 

sample, data were acquired using two acquisition modes, namely data-dependent 

acquisition (DDA) and data-independent acquisition (DIA), as previously 

described.18 

Data treatment and protein identification 
Before protein identification, DIA MS/MS files were first reprocessed to 

recalibrate the mass axis using the reference masses. Then, LC and IM 

dimensions were smoothed using PNNL PreProcessor software (Pacific 

Northwest National Laboratory, Richland, WA, USA). Afterward, a 4D-ion 

mobility feature extraction (IMFE) algorithm was applied on the datafile using 

“peptides” as isotope model, charge state no more than 7 and ion intensity above 

50 in order to generate a list of ion features. Finally, extraction and alignment of 
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MS/MS spectra with similar retention time (± 10 s) and drift time (± 0.5 ms) as 

the features were exported in PKL file. 

 

DDA MS/MS files and pkl format files generated from DIA MS/MS were 

imported into Spectrum Mill Software (Agilent Technologies; Santa Clara, CA, 

USA) for peptide sequencing. Carbamidomethylation of cysteines was selected 

as fixed modification and oxidation of methionines, deamidation of asparagines 

and glutamines as well as carbamidomethylthio-propanoylation of lysines were 

selected as variable modifications. Trypsin was set as digestion enzyme and a 

maximum of 2 missed cleavages was allowed. Mass tolerance for precursor and 

product ions were set at 20 and 50 ppm, respectively. Peptides were considered 

as reliable hit by having a fragmentation score > 5 and spectrum purity index 

(SPI) > 50%. These peptides were exported for further statistical analysis. 

Subcellular localization and tissue distribution 
To define the subcellular localization and the protein expression in 

different organs, different databases (resumed in table 1) were consulted. The 

Panther, COMPARTMENTS and the Human Protein Atlas were used to confirm 

the cellular localization. For the Human Protein Atlas, the results with enhanced, 

approved and supported reliabilities were retained for further analysis. To create 

a protein tissue distribution, expression values for different human tissues were 

obtained from the Human Protein Atlas, the Human Proteome Map (HPM) 

(http://www.humanproteomemap.org/download.php, access date: 29/05/2019), 

the Proteomics Database (PDB) 

(https://www.proteomicsdb.org/proteomicsdb/#api, access date: 17/06/2019) and 

a database composed of 29 healthy human tissues (PXD010154, access date: 

23/06/2019).  
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Table 1: The different databases that were consulted to define the exact cellular 

localization of proteins. 

Database name Website and Access 

Date 

Retained 

parameters 
Additional 

excluded 

parameters 

Panther Database www.pantherdb.org 
24/09/2019 

membrane, 

cell junction, 

extracellular 

membrane and 

synapse 

NA 

COMPARTMENTS 

Database 
compartments.jensenl

ab.org 
23/02/2019 

plasma 

membrane, 

extracellular 

matrix, 

periphery, 

synapse, 

integrin 

complex, cell 

adhesion, cell 

surface and 

extracellular 

region 

Exclusion of 

cytoplasmic, 

cytoplasm, 

endosome, 

mitochondria, 

nuclear, nucleus 

and exon were 

excluded 

Human Protein Atlas www.proteinatlas.org 
29/05/2019 

cell junction, 

plasma 

membrane, 

focal adhesion 

sites and 

peroxisomes 

NA 
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Expression binning and data aggregation 
To visualize the tissue expression of these proteins, we merged 

information coming from proteomic studies performed on organ biopsies and 

further studied by immunohistochemistry or mass spectrometry. The protein 

expression values were categorized into 4 categories ("Not detected", "Low", 

"Medium" and "High") based on thresholds determined by mean-SD, mean and 

mean+SD of Gaussian distribution fitted to log10 values. All identifiers were 

converted into UniProt ID's. A consensus list of the different organs is shown in 

Figure 2.B. For each dataset, tissues were binned into relative categories from the 

consensus list. Finally, all datasets were aggregated into a single dataset. All 

nomenclature conversions were applied by BioMart 

(https://www.ensembl.org/biomart/martview/). For nomenclature conversion and 

binning, in case of multiple annotations for the same entity, the higher value was 

always kept. 

Transcriptomics data retrieval and analysis 
Experiment-normalized GSE68891 and GSE83503 (IFM) microarray 

datasets were downloaded.19,20 GSE68891 dataset consists of MM cells (n=126), 

peripheral blood B-cells (n=11) and bone marrow B-cells (n=7).19 Gene 

expression levels were compared between MM samples and two B-cell 

populations, respectively. On the other hand, in the IFM GSE83503 dataset, MM 

(n=602) and plasma cell (n=9) populations were compared.20 For all comparisons, 

(MM vs normal plasma cells, MM vs peripheral B-cells and MM vs bone marrow 

B-cells), MA (log ratio vs average) plots of MM vs control condition were 

generated. After fitting a Gaussian distribution with M values, the genes with 

higher values of M from mean+2 standard deviation (SD), together with A values 

above the mean, were selected as differentially highly expressed genes (DHE). 

Pairing strategy 
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Initially, the list of 11645 candidate proteins, identified by mass 

spectrometry, was merged with the proteins identified in the Oldham 2020 

study.21 We analyzed articles, published between 1995 and 2021 and identified 

on Medline by using the keywords “antigen”, “membrane”, “surface” and 

“myeloma”. This literature search retained 552 additional surface proteins. Our 

final list was filtered based upon the subcellular localization. Furthermore, the 

proteins that were not coded by any of the DHE genes, those having a high 

expression in any non-immune tissue and those having overall high expression in 

all tissues were excluded. The remaining 52 proteins were paired with each other. 

The pairs which, in combination, had no expression in vital tissues and had at 

most low expression in non-vital tissues were selected as viable pairs (NA values 

were ignored).  

Identification of patient subgroups 
The patients were categorized into transcriptomic subgroups using gene 

set variation analysis (GSVA) with signature genes identified by Zhan et al.22 

Copy number variation (CNV) information of homologous recombination 

deficiency, t(4;14), t(11;14), t(14;16), CKS1B_Gain (1q gain), CDKN2C_Loss 

(1p loss), RB1_Loss (Monosomy 13), BI_TP53 (TP53 del), obtained from the 

supplementary information provided by COMMPASS data, is used to classify 

patients into low/high risk categories based on cytogenetic abnormalities.23 

Samples having two of the abnormalities t(4;14), 1q gain, 1p loss or 17p del, were 

categorized as double hit. Any sample having three of them is categorized as triple 

hit. 

Gene expression data scaling for visualization 
To visualize the multiple datasets comparably, all expression values in 

each dataset were min-max scaled. In order to prevent any outlier effects on the 
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high end of the distribution, the max value was replaced by the 99th percentile of 

the distribution. 

Staining by flow cytometry 
Hemolysis (NH4Cl, 15 minutes) on the bone marrow aspirates was first 

performed before carrying out membrane staining. These membrane staining 

were performed on different MM cell lines (LP-1, RPMI-8226, KMS-12-BM, 

U266, MOLP-2, OPM-2, NCI-H929, MM1.S) and bone marrow cells using the 

same protocol. Cells were incubated for 20 minutes at room temperature in the 

presence of predefined antibody concentrations. The cells were then fixed (PAF 

3%; paraformaldehyde) before being analyzed by flow cytometry. The anti-

human antibodies used are listed in Suppl Table 1. The anti-ETB mAb RB49 was 

produced after DNA-immunization of C57BL/6 mice and its affinities and 

binding epitopes determined. 24,25 For our flow cytometry studies, RB49 was 

directly conjugated to Alexa Fluor 488.  Flow cytometry analyses were performed 

on a FACSCanto II flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) 

and data were analyzed using BD FACSDiva Software V10 (BD Biosciences) or 

Kaluza V2.1 (Beckman Coulter, Brea, CA, USA). Bone marrow samples from 13 

newly diagnosed MM patients, 7 patients with relapsed/refractory disease and 18 

healthy persons were obtained and used for the validation of the antigen 

expression. Clinical data of the MM patients can be found in Suppl Table 2. The 

RB49, conjugated to Alexa Fluor 488, was used confirm ETB expression on 10 

samples of newly diagnosed myeloma patients (Suppl Table 6).  
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Results 

Immunotherapeutic candidates detected by 
integrated analysis of proteomics and 
transcriptomics 

By applying surface proteomics on 6 different cell lines and subsequent 

mass spectrometry, we identified 11645 proteins. We added 846 proteins 

identified in the Oldham 2020 study.21 Three data sources that describe the 

subcellular protein localization (Human Protein Atlas, Compartment and 

PantherDB) were able to reduce this list to 4427 proteins that are known to be 

expressed on the cell membrane. A literature search identified 522 proteins that 

were added to this list. 

 

An ideal target for immunotherapy should be (over)expressed on tumor 

cells and absent on normal tissue counterparts. We accessed the GSE83503 

dataset that included microarray data of malignant plasma cells taken from 602 

MM patients and normal plasma cells from 9 healthy volunteers. Contrasting 

expression profiles of MM cells with normal plasma cells resulted in 214 DHE 

genes in MM cells (Figure 2.C right panel). We further analyzed the GSE68891 

dataset comparing transcriptomics of MM cells from 144 MM patients with non-

malignant B-cells, isolated from the peripheral blood (n=11) and bone marrow 

(n=7), yielding 450 (Figure 2.C left panel) and 489 (Figure 2.C middle panel) 

DHE genes respectively. Combining the results from both datasets, we obtained 

756 genes (Figure 2.D) encoding 2818 proteins. Mapping these results on cell 

surface proteins identified in proteomics analysis further narrowed down this list 

to 209 surface proteins that are overexpressed in myeloma cells. 
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Table 2: List of the 23 proteins identified by the algorithm. 
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Figure 3: Tissue expression and pairing of candidate and existing 

immunotherapeutic targets. (A) Viable pairs between candidate proteins/genes and 

existing immunotherapeutic targets (left) as well as self-combinations (right). Viable pairs 

are selected based on having no expression in vital tissues and at most low expression in 

non-vital tissues as pairs. (B) Tissue expression of candidate proteins/genes (top) and 

existing immunotherapeutic targets (bottom). 

In order to assess the expression levels of identified proteins throughout 

the body, a consensus list of 42 organ entities was created that was further 

subdivided in vital, non-vital and immune tissues. Based on their tissue 

distribution, we removed proteins with a high protein expression in any tissue, 

except for immune tissues. We retained 52 proteins that could be used for further 

combinatorial pairing. Protein pairs were selected if one of the partner proteins 

showed ‘no detection’ in a vital tissue. Similar selection criteria were proposed 

for non-vital tissues with the exception that a low expression of both antigens was 

allowed in these tissues. To prevent exclusion of candidates due to missing 

information, NA values were ignored. After applying these criteria, we identified 

23 proteins (Table 2) with 55 possible combinations (Figure 3.A right panel). The 

tissue distribution of these 23 proteins can be found in Figure 3.B top panel. We 

further checked the tissue distribution of existing immunotherapeutic targets 
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(Figure 3.B bottom panel) and obtained possible pairs between our candidates 

and existing targets (Figure 3.A left panel). From this list, we removed the 

secreted protein DKK1 and 8 other proteins with a suspected intracellular 

localization, including UBE2QL1, VDR, NR1D1, ZNF385A, TRB1, 

PPARGC1A, TAPBPL and FRMD6.  

Identification of 6 novel combinatorial targets 
With flow cytometry, we checked the surface expression of the 14 

remaining proteins and of 3 proteins with favorable tissue distribution already 

used in immunotherapeutic strategies (NY-ESO-1, CD70 and FCRL5) on 8 MM 

cell lines. Nevertheless, FCRL5 was not analyzed at this stage as it is known to 

be expressed by only one MM cell line namely MOLP-2 cell line. Table 3 

summarizes the presence and expression levels of these proteins on the cell lines. 

The expression of IL5RA, SPAG4, NY-ESO-1 and EPOR could not be 

confirmed. ETB was expressed by all cell lines, PLXNC1 by 7, BCMA, MC4R 

and SLCO5A1 by 6, PRL3, IL6R and ICAM2 by 5, DEXRAS1 by 4, CD70 by 3, 

and CD27 and CEACAM8 by only one of the cell lines. Targets that were not 

detected or that were only detected in one cell line were eliminated. Thus, based 

on these expression profiles, the list of potential candidates was narrowed down 

to 10 remaining proteins for further studies on primary patient samples. 

 

Indeed, the expression of individual proteins was subsequently checked 

on bone marrow samples of 20 MM patients (Table 4). FCRL5 was included in 

the analysis at this step. All the targets could be detected but with variable 

expression frequencies. FCRL5, BCMA and ICAM2 were expressed by all 

patients, IL6R by 85%, ETB by 75%, SLCO5A1 by 65% and PRL3 by 50%, while 

MC4R, DEXRAS1, CD70 and PLXNC1 were only expressed by 14-36% of 

patients. 

 



 

 

 
 

159 

To avoid toxicity on hematopoietic stem cells or immune effector cells 

(T and NK cells), we evaluated the expression of these 11 proteins on samples of 

normal plasma cells, T and NK cells as well as CD34+ HSC from 18 healthy 

donors (Figure 4.A and Suppl Tables 3,4 and 5). 

Table 3: Frequencies of expression of 16 target antigens on 8 MM cell lines. 

 

An additional selection criterion for pairing was based on the protein 

expression on these normal BM populations. Indeed, potential pairs that showed 

a potential expression on normal BM cells were filtered out. Moreover, only the 

pairs with viable combinatorial tissue expression were retained. The remaining 

pairs were further investigated for their combined expression frequency on MM 

cells (Figure 4.B). The pairs with a combined expression frequency of >40% (2 

of which were >70%) were selected as top findings (Figure 4.C). 
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Table 4: Frequencies of expression of 11 target antigens on myeloma plasma cells from 

the bone marrow of MM patients. The last two lines of the table show the distribution of 

the expression frequencies between the positive cells and the partial positive cells among 

the total positive cells. 

 
-: negative cells; +/-: partial positive cells; +: positive cells; Freq. of exp.: frequency of 

expression; ND: not determined 

Concerning off target toxicity, we prioritized no expression in any vital 

organs and tolerated at most low expression in non-vital organs. However, a more 

stringent analysis where the target expression is not tolerated in any tissue, except 
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for immune tissues, is valuable. Increasing the stringency of the selection criteria 

removed 7 possible pairs identified at the initial step of our analysis (Suppl Figure 

1) but did not affect the final results obtained validating the antigen expression 

on primary myeloma cells by flow cytometry.  

Transcriptional profiles of target antigens in 
transcriptional and cytogenic patient subgroups 

MM remains a heterogeneous disease with biological differences in 

tumor development and associated clinical outcomes. From a molecular point of 

view, the transcriptional profiles of patients can be categorized based on the 

UAMS classification proposed by Zhan et al.22 Using the GSE83503 dataset, we 

categorized patients into UAMS categories and compared gene expression in 

plasma cells from healthy donors and myeloma patients (Figure 5.A). We 

observed a heterogeneous expression of our identified proteins ETB, MC4R, 

PRL3, as well as the current targets for immunotherapy CD44, ITGB7, NCAM1. 

This heterogeneity was confirmed in the COMMPASS dataset that we used as a 

validation cohort of our results (Suppl Figure 2). 

 

A more clinically relevant categorization can be made based on 

cytogenetic abnormalities that are only available in the COMMPASS dataset and 

have recently been annotated.23 The identified cytogenetic abnormalities can be 

categorized into low-risk, standard-risk and high-risk groups. Notably, the 

heterogeneity observed in the molecular classification was also observed in this 

patient stratification (Figure 5.B). In both datasets, immunotherapeutic targets 

BCMA, FCRL5, CD38, GPRC5D, SDC1 (CD138) and SLAMF7 stood out with 

consistent high expression levels in all patient subgroups. From our candidates, 

IL6R and PRL3 can also be added to this list.  
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Figure 4: Selection of ideal combinatorial pairs. (A) The frequencies of 

expression of candidate genes on MM plasma cells (MM PC) from the bone 

marrow of MM patients and on normal plasma cells (PC), normal CD34+ 

hematopoietic stem cells (HSC), normal T and NK cells (T-NK) from the bone 

marrow of healthy donors. (B) Tissue expression distributions of the genes in the 

top combinatorial target pairs. (C) The combined expression levels for each 

possible pair in MM cells. 
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Figure 5: Median expression (scaled) profiles of genes among transcriptional and 

cytogenetic patient categories. (A) Median expression profiles of candidate and 

immunotherapeutic target genes over UAMS categories in the IFM dataset (GSE83503). 

(B) Median expression profiles of candidate and immunotherapeutic target genes over 

cytogenetic categories in the COMMPASS dataset. In both datasets, the data is min-max 

scaled using 99th percentile as the maximum value. 

Endothelin Receptor B as a single target 
Our study revealed ETB as a potential target for MM. This protein was 

expressed by MM cell lines and primary myeloma cells (results from one of these 

patients is Illustrated in Figure 6.C). It also presented a global low expression 

profile throughout the body (Figure 3.B). Inside the bone marrow, ETB is only 

expressed by MM plasma cells. These results were confirmed by single cell RNA 

studies on CD38+ purified myeloma cells and other BM cells from 13 MM 
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subjects (Figure 6.A).26 Moreover, the expression of ETB has prognostic 

significance. In the COMMPASS data set, patients with a high ETB mRNA level 

had better overall survival compared to patients with low ETB mRNA levels 

(Figure 6.D). This survival benefit can be explained by a lower mRNA expression 

in patients with high-risk cytogenetics, such as t(4;14), double hit and triple hit 

abnormalities (Figure 6.B). When looking at the level of mRNA expression in the 

different molecular subgroups, the MS-subgroup (overexpression of FGFR3 and 

MMSET genes induced by t(4;14)) displayed lower expression compared to other 

subgroups (Suppl Figure 3). ETB is a G-protein-coupled receptor (GPCR) that 

changes its confirmation upon activation with new epitopes becoming exposed.27 

Rendomab B49 is a murine IgG1kappa monoclonal antibody that recognizes such 

an epitope near the N-terminal of the receptor.25 We obtained the RB49 antibody 

conjugated to Alexa Fluor 488 and compared its binding to primary myeloma 

cells with the binding of a control IgG1k antibody. In 8 of the 10 (80%) tested 

primary MM samples, we could confirm the binding of RB49 to primary 

malignant plasma cells (results from one of these patients is Illustrated in Figure 

6.E). Patient characteristics and obtained flow cytometry results can be found in 

Supple Table 6. 
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Figure 6: The expression profiles of ETB gene at proteomic and transcriptional level as 

well as in different patient subgroups. (A) Transcriptomic expression of ETB (EDNRB) 

at single cell level in bone marrow shown among myeloma plasma cells (left) obtained 

from 13 MM subjects, and CD38+ immune cells (right) obtained from 13 MM and 5 

healthy subjects.28 (B) Expression profile among different cytogenetic categories in 

COMMPASS dataset. (C) Flow cytometry analysis conducted on the bone marrow 

sample from MM patient 10, as a sample. The population in red represents CD38+ MM 

plasma cells. (D) Results of the survival analysis conducted by SurvivalGenie.29 Patients 

in the COMMPASS dataset are divided into low- and high-expression categories using 

the cutp option (left) and survival analysis is performed (right). (E) Histogram illustrating 

the flow cytometry results with the control IgG1k (in blue) and RB49 (in red), confirming 

the expression of ETB.  
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Discussion 
MM is a highly heterogeneous and dynamic disease in which immune 

dysfunction plays an important role in disease pathogenesis, progression, and 

drug resistance.30 Although patients may have long responses to treatment, most 

of them will eventually develop treatment-resistant disease. Recently, new 

personalized treatment approaches, such as immunotherapy, that offer the 

advantage of specifically targeting tumor cells have been developed. 

 

Herein, we present an approach that enables the discovery of new 

immunotherapeutic targets in MM. We have assembled a comprehensive MM 

surfaceome dataset, combining previously published protein repositories, 

transcriptomic data that compared RNA of myeloma cells to normal plasma cells 

and B-cells, and our own cell surface proteomics performed on six MM cell lines. 

We added data on tissue distribution to take into account the systemic expression 

of potential targets and to avoid toxicity in healthy organs. 

 

The expression of 11 candidate targets was verified by flow cytometry 

on bone marrow samples from 20 MM patients and 18 healthy donors. Seven of 

them (ETB, ICAM2, FCRL5, SLCO5A1, IL6R, BCMA) were detected in more 

than 50% of MM patients’ BM. Among these targets, ICAM2, SLCO5A1 and 

IL6R were found on normal T-NK cells and/or on CD34+ HSC and could 

potentially lead to fratricide of effector cells or in the elimination of 

hematopoietic stem cells. The remaining three targets, BCMA, FCRL5 and ETB, 

have favorable expression profiles. BCMA and FCRL5 have already been tested 

in the context of MM in immunotherapeutic strategies, such as CAR-T-cells, 

antibody-drug conjugates, BsAbs, etc. In contrast, ETB, a G-protein coupled 

receptor, has been scarcely studied in the context of MM. 
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The endothelin axis is involved in the development of an increasing 

number of tumors, by affecting cell proliferation, migration, invasion, epithelial-

mesenchymal transition, osteogenesis and angiogenesis.31 Vaiou et al. showed 

that Endothelin-1 (ET-1), supports MM cell viability through both autocrine and 

paracrine activation, since both myeloma cells and endothelial cells produce ET-

1. ET-1 binds to 2 receptors: Endothelin Receptor A (ETA) and ETB and its 

downstream effects are mediated by the MAP kinase pathway and ubiquitin 

proteasome system.32 Addition of selective agonists of ETRA or ETB or with the 

dual receptor antagonists bosentan or macitentan resulted in a significantly 

decreased viability of MM cell lines. 33,34 More recently, the same group treated 

MM xenograft models with macitentan which resulted in reduced tumor load and 

myeloma-induced angiogenesis; both explained by an inhibitory effect on HIF-1 

alpha and secretion of angiogenic cytokines.35 Although ET-1 supports MM cell 

survival and antagonists of ETA and ETB  are able to reduce MM cell growth, 

CRISPR screens could not confirm a dependency of MM cell lines to ETB  for 

their survival (Suppl figure 3).   

 

As shown in Figure 6, ETB is well expressed by MM cells, has a favorable 

tissue distribution and shows high expression among the majority of patient 

subgroups. Upon activation and binding of endothelin, this receptor changes its 

conformation.27 Hosen et al. demonstrated that the active conformer of a protein 

can serve as a specific therapeutic target, as it is the case with integrin β7. Indeed, 

these authors identified a mAb specifically targeting the N-terminal region of the 

β7 chain, which is inaccessible when the integrin is quiescent but exposed in the 

active conformation.36 Herbert et al. demonstrated that this is also the case with 

ETB. They produced different mAbs targeting this receptor, including RB49, 

which binds to an epitope located in the N-terminal domain of ETB.25 In this work, 

we show that RB49 binds to MM cells and we believe that its sequences can be 

integrated into different immunotherapy strategies, such as CAR-T-cells, BsAbs, 

etc., for the treatment of MM. 
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However, our study has some limitations. Indeed, the selection of 

potential targets is partially based on flow cytometry results, which can be 

impacted by several parameters. A major limitation is the need for specific 

antibodies, preferentially coupled to a fluorochrome. By limiting ourselves to the 

antibodies available on the market, we had to use monoclonal antibodies for 

certain targets and polyclonal antibodies for others. In addition, each 

fluorochrome can potentially influence other fluorochromes and the required 

compensation may result in a loss of sensitivity and resolution. Thus, weakly 

expressed antigens may not be detected by flow cytometry analysis. Finally, the 

brightness of the fluorochromes used also has an impact on the quality of the 

results. 

 

The restrictive criteria that we proposed to further narrow down our 

selection is a second limitation of our study. Certain proteins already known and 

studied at present, which did not meet the selection criteria, were eliminated. For 

example, CD38 and GPRC5D did not have a favorable tissue expression profile 

were removed from the list while their use has already been shown to be 

beneficial for the treatment of MM. 

 

Finally, for practical reasons, we used MM cell lines in order to make a 

pre-selection of proteins before moving on to primary cell samples. However, cell 

lines, lacking certain adhesion molecules, growth factor or chemokine receptors, 

are not completely representative of tumor cells of the patients. Indeed, since 

FCRL5 is only expressed by a single MM cell line, we did not include it in the 

validation studies on cell lines, although it is expressed by all patients. Thus, other 

targets with a limited expression on the different cell lines, are potentially missed 

at the first stages. 
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However, our algorithm can become a powerful tool for antigen 

identification, but researchers should be aware that the selection criteria for 

retaining potential antigens may eliminate potentially interesting proteins. These 

criteria were stringent to retain the most suitable targets (based on membrane 

localization and tissue distribution) and to avoid retention of false-positive 

proteins. The advantage of such an algorithm is that it can be modified according 

to tumor type and application: targets of antibody-drug conjugates should 

internalize after ligation of antibodies and immunotherapeutic targets should have 

an absent off-tumor expression. Due to the low homogeneity of target expression 

and the possibility of immune recognition escape and relapse, combinatorial 

targeting approaches are now being investigated. Our algorithm has highlighted 

6 possible pairs that would be interesting to analyze more in depth in strategies, 

such as CAR-T/NK or BsAb. 

 

MM is an extremely heterogenous disease, with major differences in 

disease presentation and complications, response to treatment and overall 

survival. Both molecular and cytogenetic differences drive this heterogeneity. 

Our results indicate that antigen expression also vary between patients and patient 

groups: this was particularly true for ETB, NCAM1, IL6R, ITB7 and CD44. On the 

other hand, integration of mRNA expression results from different cytogenetic 

subgroups allows identification of more specific antigens or antigen pairs. By 

integrating the COMMPASS dataset and annotating the different molecular or 

cytogenetic subgroups, we were able to identify combinatorial pairs that could 

potentially be used for patients in those subgroups. This COMMPASS dataset 

contains whole genome, whole exome, and RNA sequencing results. Although 

there is a good correlation between mRNA and protein levels in general in 

cancer,37 we find it worth to look at protein levels in future studies on 

immunotherapeutic targets in specific MM patient subgroups. 

The identification of new potential targets is a growing field in MM. 

Oldham et al.21 and Ferguson et al.38 focused on membrane glycoproteins, while 
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Di Meo et al.39, Anderson et al.40 and ourselves analyzed the entire set of surface 

proteins. The obtained datasets were either used alone or combined with 

transcriptomic datasets. The initial sample manipulation and sensitivity of mass 

spectrometry analysis may also differ from assay to assay. Thus, each study will 

not provide the same list of candidates, and candidates must be confirmed by 

other analyses. For example, Di Meo et al. demonstrated three proteins (CCR1, 

LRRC8D, SEMA4A) whose inactivation individually reduces the in vitro growth 

of MM cells by approximately 60%, 50% and 50%, respectively.41 Anderson et 

al. confirmed the unique expression of SEMA4A and found that down-regulating 

its expression using shRNA decreased myeloma cell proliferation, increased 

apoptosis and delayed tumor growth. Moreover, an antibody-drug conjugate 

binding to SEMA4A showed enhanced cytotoxic effects in vitro and in vivo.40 In 

our study, the SEMA4A protein was part of the initial list, but was eliminated at 

the differential expression stage. Our thresholds are probably more stringent than 

those used in the two previous studies. 
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Conclusion 
By integrating proteomics, transcriptomics and datasets on tissue 

distribution, we identified several candidate antigens that can be used for either 

single-antigen targeting approaches or for combinatorial targeting. Endothelin 

receptor B seems a promising antigen because of its restricted expression on 

malignant myeloma cells and conformational change in protein structure upon 

activation. In addition, combinations of either existing or previously unknown 

antigens could be proposed. These combinations can be integrated into more 

selective therapies by avoiding on-target, off-tumor toxicity. 
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Supplementary Information 
Suppl Table 1: List of antibodies used for staining by flow cytometry. 

Target Fluorochrome Clone Provider 

Candidate targets 

BCMA PE-Cy7 19F2 Biolegend 

IL6R PerCP-Cy5.5 UV4 Biolegend 

FCRL5 PE 509F6 BD Biosciences 

ETRBETB AF647 671917 R&D Systems 

MC4R FITC - Biorbyt 

PLXNC1 AF647 544232 BD Biosciences 

SLCO5A1 PE - Biorbyt 

PRL3 CF647 - Biorbyt 

CD70 PerCP-Cy5.5 113-16 Biolegend 

IL5RA APC 26815 ThermoFisher 

EPOR PE 38409 R&D Systems 

DEXRAS1 FITC - Biorbyt 

ICAM2 FITC CBR-IC2/2 Biolegend 

CD27 PE-Cy7 O323 Sony 

CEACAM8 FITC G10F5 Biolegend 

SPAG4 AF647 H-6 Santa Cruz 

NY-ESO-1 AF488 HLy9.1.25 BD Biosciences 

Rb49 AF488 - CEA (Paris, 
France) 

Gating strategies 

CD19 APC J3-119 IOTest 
(Beckman) 
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CD38 APC-H7 HB7 BD Biosciences 

CD56 BV421 HCD56 Sony 

CD16 FITC 3G8 BD Biosciences 

CD45 V500 HI30 BD Biosciences 

CD3 V450 UCHT1 BD Biosciences 

CD34 PE 8G12 BD Biosciences 

CD34 PerCP-Cy5.5 8G12 BD Biosciences 

Fixable viability 
dye 

APC-Cy7 - Invitrogen 

CD14 PE REA599 Miltenyi 

CD16 APC B73.1 BD Biosciences 

CD45 BV510 H130 BD Biosciences 

CD38 Pe-Cy7 HIT2 BD Biosciences 

CD56 V450 B159 BD Biosciences 

Control isotypes 

Mouse IgG1 FITC - BD Biosciences 

Mouse IgG1 PE - BD Biosciences 

Mouse IgG1 PerCP-Cy5.5 - BD Biosciences 

Mouse IgG1 PE-Cy7 - BD Biosciences 

Mouse IgG1 APC - BD Biosciences 
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Suppl Table 2: Clinical data of the 20 MM patients. First 13 represents newly diagnosed 

MM patients. Later 7 represents relapse/refrectory MM patients. 

 Gender 
 

Age Isotype Genetics ISS  

1 Female 71 y Lambda light 
chain 

Not known 1 

2 Male 59 y IgG kappa Trisomy chrom 9 2 
3 Female 66 y IgG Kappa t(11 ;14) 3 
4 Male 47 y IgG kappa. Hyperdiploidy 1 
5 Male 65 y IgG lambda No abnormalities 2 
6 Male 74 y IgG lambda +1q 3 
7 Male 78 y Kappa light chain +1q 3 
8 Male 70 y IgG kappa Chromotrypsis 1p 3 
9 Male 73 y IgG kappa. Del 17p 3 
10 Male 63 y IgG kappa T(11;14) 1 
11 Female 71 y Lambda light 

chain 
Del 1p, +1q 1 

12 Male 61 y IgG kappa t(11 ;14) 1 
13 Male 76 y IgG kappa Hyperdiploidy 1 

 

 Gender 
 

Age Isotype Genetics ISS  Prior lines 

1 Female 71 
y 

Lambda 
light chain 

Hyperdiploidy 1 6 (including 
ASCT) 

2 Female 67 
y 

Kappa 
light 
chaine 

Del17p, +1q 2 4 (including 
ASCT) 

3 Male 58 
y 

Lambda 
light chain 

Chromotrypsis 
chrom 17 

1 3 
(including 
ASCT) 

4 Female 72 
y 

IgA kappa +1q, Del 17p, 
t(4;14) 

3 3 prior lines 

5 Female 71 
y 

IgGkappa. Not known 1 6 (including 
ASCT) 

6 Female 76 
y 

IgG 
lambda 

T(4 ;14), +1Q 1 2 prior lines 

7 Male 68 
y 

IgG 
Lambda 

+ 1q 2 2 including 
ASCT 
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Suppl Table 3: Frequencies of expression of 11 target antigens on normal plasma cells 

from the bone marrow of healthy donors. The last two lines of the table show the 

distribution of the expression frequencies between the positive cells and the partial 

positive cells among the total positive cells. 

 

-: negative cells; +/-: partial positive cells; +: positive cells; Freq. of exp.: frequency of 

expression; ND: not determined 
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Suppl Table 4: Frequencies of expression of 11 target antigens on normal CD34+ HSC 

from the bone marrow of healthy donors. The last two lines of the table show the 

distribution of the expression frequencies between the positive cells and the partial 

positive cells among the total positive cells. 

 
-: negative cells; +/-: partial positive cells; +: positive cells; Freq. of exp.: frequency of 

expression; ND: not determined 
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Suppl Table 5: Frequencies of expression of 11 target antigens on normal T and/or NK 

cells from the bone marrow of healthy donors. The last two lines of the table show the 

distribution of the expression frequencies between the positive cells and the partial 

positive cells among the total positive cells. 

 
-: negative cells; +/-: partial positive cells; +: positive cells; Freq. of exp.: frequency of 

expression; ND: not determined 
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Suppl Figure 1: Identified pairs for combinatorial pairing with or without low expression 

in non-vital tissues. Red squares, the pairs that have low expression in at least one non-

vital tissue; Green squares, the pairs that shown no expression in non-vital tissues. 
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Suppl Figure 2: (A) Median expression (scaled) profiles of genes among transcriptional 

patient categories in the COMMPASS dataset. The transcriptional categories were 

obtained from the metadata of the original study. The subgroups defined in the study were 

binned to their relevant UAMS category. The 1q gain category was not indicated by 

UAMS; therefore, we have kept this category as an additional group. (B) ETRB mRNA 

expression in the different molecular subgroups. The MS-subgroup (overexpression of 

FGFR3 and MMSET genes induced by t(4;14)) displayed lower expression compared to 

other subgroups. 
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Suppl Figure 3: Gene-dependency of myeloma cell line for their survival. Publically 

available datasets (Depmap.org) were accessed to identify the dependency (studies by 

CRISPR/CAS studies) of 8 different myeloma cell lines (AMO1, INA6, JJN3, KMS-11, 

LP-1, MM1.S, OPM-2 and RPMI-8226) to either BCL2, MCL1, MTOR and ETRB. The 

more negative the values are, the higher the dependency of this cell line for survival. 
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Conclusions and Perspectives 
Novel immunotherapeutic applications have made a significant impact 

on the treatment of multiple myeloma. Usage of monoclonal antibodies have been 

well integrated in different treatment schedules for MM treatment. Meanwhile, 

the promising outcomes observed in relapse/refractory patients have already led 

to the approval of bispecific antibodies and CART applications, paving the way 

for other innovative treatment options. However, despite the recent developments 

in the diagnostics and therapeutics, the field of multiple myeloma is subject to 

further improvements. This incurable malignancy is characterized by high relapse 

rates, demanding continuous research and innovation. The complexity of the 

disease biology, involving numerous genetic abnormalities and impaired immune 

response, makes it difficult to comprehensively understand and effectively 

counter.  

 

In this dissertation, the tumor and tumor micro-environment were 

investigated to gain more insights for the events that take place during disease 

development. While the impact of the tumor micro-environment has been studied 

extensively, the use of next-generation sequencing provides an opportunity to 

gain a more comprehensive insight. Our study has revealed that dysregulation in 

the tumor micro-environment initiates early on during the progression of multiple 

myeloma and develops further as the disease progress. These findings involve 

increase of pro-inflammatory pathways in the tumor micro-environment, as well 

as certain population shifts in some of the key immune populations. 

Simultaneously, tumor cells exhibit up-regulation of pro-tumorigenic pathways. 

Exploring inter-cellular interactions, a dynamic interplay was observed between 

tumor cells and their micro-environment, which can induce changes in the 

expression of genes that are observed to be altered during transition from 

precursor stages to MM stage. While our findings provide a detailed 
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understanding of the bone marrow tumor micro-environment, there is still more 

to learn about other cell types like granulocytes, MDSCs, stromal cells, 

osteoblasts, and osteoclasts that were not included in our study. 

 

Our study identified several ligands and receptors that align with existing 

literature, such as BAFF-BCMA169,170, IL2-IL15171 and HGF-MET/CD44172,173, 

confirming their involvement in the disease. Additionally, we discovered novel 

interactions involving CD320, FAM3C and SERPINA1 which provide insights 

in disease progression and communicate potential targets for future treatment 

strategies. Focusing on these interactions and their downstream alterations, first 

in vitro and later in mouse models, may lead to a better understanding of the 

disease and novel therapeutics. Another interesting finding in our research was 

related to MIF gene. There are studies that focused on the MIF expression in 

cancer, including MM.174–176 However, many of these studies focus on myeloma 

cells and therapeutic resistance. Yet, a recent study by Lewinsky et al.177 showed 

that increased expression of CD84 in the tumor micro-environment, as a result of 

MIF induction, results in an immunosuppressive tumor micro-environment. 

Another study, conducted by Gutiérrez-González et al.178 showed that inhibiting 

MIF and inducing granulocyte-macrophage colony-stimulating factor resulted in 

the generation of an anti-tumoral macrophage population in vitro. Together with 

our findings regarding the impairment in M1 macrophages and its high interaction 

potential with other cell types of the tumor micro-environment, further 

investigation of MIF up-regulation in MM should be conducted. 

 

Our investigation has revealed significant alterations in hallmark 

pathways as abnormal plasma cells progress to multiple myeloma. One prominent 

pathway is MYC, which is known to be a prognostic factor in MM and has been 

extensively studied. Therapeutic approaches targeting MYC inhibition have been 

developed and show promise.179,180 Similarly, oxidative phosphorylation has been 

investigated under metabolic alterations in MM pathogenesis and treatment 
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strategies have been developed to inhibit metabolic activity.181,182 Among the 

identified pathways, E2F targets and G2M checkpoint are both mechanisms 

related to cell cycle.  Dysregulation in cell cycle is a characteristic of cancer. 

Various factors affecting cell cycle activation and potential inhibition 

mechanisms can be found in the literature.183,184 Furthermore, WNT185–187 and 

NOTCH188–190 signaling pathways have been observed in individual MM patients 

and associated with enhancer roles in many cancers, including MM. They have 

previously observed to be active in a considerable fraction of MM patients. We 

have confirmed this observation and demonstrated that their activation can be 

observed at any stage of the disease. Both mechanisms and their inhibition are 

studied well in the context of other cancers, as well as in MM. Therefore, their 

inhibition mechanisms are valuable for future personalized therapy applications. 

Lastly, TNF and IFN, two pro-inflammatory cytokine families, exhibit complex 

effects in cancer, with both anti- and pro-tumoral properties.191–194 In our dataset, 

we observed early TNF activity in the tumor micro-environment even at the 

MGUS stage, while IFNα activity was absent in MGUS but significantly 

increased throughout disease progression in both the tumor micro-environment 

and abnormal plasma cells. IFNα has been previously associated with B-cell 

activation and survival.195 Yet, despite high off-target toxicity, it has also showed 

potential as a therapeutic agent in MM.196 It is important to understand the 

underlying mechanisms of IFNα in MM progression. With the emerging targeted 

therapeutic applications, its potential in early clinical trials could be explored.  

 

The relation between old age and disease progression is an interesting 

association. A recent study by Urban et al.197 focused on the commonalities 

between accumulation of epigenetic alterations and DNA damage. Additionally, 

genetic variants of the pro-inflammatory cytokines IL6 and TNFα in MM were 

found to be associated with age at diagnosis.198 Moreover, it was previously 

shown that aging bone marrow favors memory T-cell and plasma cell survival as 

well as plasma cell recirculation.199,200 Taken together, focusing the changes on 
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aging bone marrow could potentially shed light on the events that lead to MM 

progression. 

 

In this dissertation, we also aimed of identifying novel antigens and 

antigen pairs for targeted immunotherapeutic applications in MM. Our study 

successfully identified ETRB as a potential novel target and discovered six 

antigen pairs that could be utilized for combinatorial targeting in MM. The initial 

success of our approach is encouraging for overcoming the study's limitations and 

exploring its further applications. Our findings should be expanded by adaptation 

of our methodology to different patient groups, such as high-risk, MRD positive 

and relapse/refractory patients. Additionally, exploring the expression of target 

antigens in various cytogenic and molecular patient subgroups provides valuable 

insights into the applicability of these targets. Validation of these findings in 

transcriptomics with proteomics, using primary cells, should be conducted. 

Furthermore, applying untargeted mass spectrometry analysis to primary patient 

samples instead of cell lines may uncover additional potential targets that were 

not detected due to differences between cell lines and primary samples. Finally, 

the selection criteria used in this study can be better adapted for a less strict 

setting, to prevent exclusion of other potential antigens.  

 

ETRB is only targetable when it is in the active form. Although our 

investigation on targeting ETRB using flow cytometry yielded success in 80% of 

the patients, the overall abundance of the protein, in both active and inactive form, 

as well as its quantity, remains unexplored. To address this gap, further 

exploration can be conducted through targeted mass spectrometry.201 Moreover, 

as a therapeutic target, an initial investigation should be conducted in vitro, to test 

its capability to induce cytotoxicity in MM cell lines. 

 

In addition to ETRB as single target, we have identified six antigen pairs, 

suitable for combinatorial targeting.  These antigens include BCMA, FCRL5, 
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PRL3, IL6R and SLCO51A. There are existing targeting strategies for BCMA, 

FCRL5 and PRL3. For the identified combinations between these antigens, 

combinatorial targeting strategies, can be developed and evaluated for specificity 

and efficacy in vitro. Particularly, BCMA and FCRL5 showed high expression 

frequency in both flow cytometry results of primary MM samples and 

transcriptomic analysis of patient subpopulations. For IL6R and SLCO51A, it is 

important to first understand their role in MM biology and identify a single 

targeting strategy, such as monoclonal antibody, which can further be adapted for 

combinatorial targeting.  

 

Current treatment strategies focus on elimination of tumor cells as well 

as the suppression of pro-tumorigenic signals. However, these efforts are limited 

for the duration of the treatment. It is a major concern that if the pro-tumorigenic 

micro-environment is not fully eradicated, it can host a suitable environment for 

a rapid development of disease relapse. Therefore, development of novel 

applications to reshape the tumor micro-environment could potentially achieve 

disease eradication. 

 

Advances in single cell approaches have been widely and quickly 

embraced and the increased resolution of single-cell analysis has revolutionized 

research in many fields. Initially, high-throughput single cell studies were limited 

by transcriptomics applications. Although transcriptome analysis provides 

valuable insights into a cell's functional state, it fails to capture crucial 

information related to mutations, copy number variations, chromatin 

accessibility, post-transcriptional modifications, spatial localization, and protein 

localization. These aspects, unfortunately, cannot be assessed by transcriptomics 

alone, and can have significant impact the functional and structural status of the 

cell. Recent adaptations in CITE-seq, ATAC-seq, VDJ sequencing, exome 

sequencing and spatial applications have allowed for the investigation of single 

cells in a multi-modal fashion. CITE-seq enables the investigation of the cell 
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surface proteome, which is a crucial information for protein-based cell typing as 

well as identification and quantification of target cell surface antigens. However, 

the potential of CITE-seq is limited by the number of antibodies that can be used, 

and data normalization remains challenging due to the low number of dimensions, 

leading to difficulties in the assessment of reliable relative abundance. In my 

perspective, I am optimistic about significant improvements in the application of 

the CITE-seq approach, which will make it an essential tool for proteomics 

research in MM. 

 

The field of multiple myeloma treatment is a dynamic and rapidly 

evolving area of research, with a variety of strategies being developed and 

evaluated in clinical trials. These include promising approaches, bispecific 

antibodies and CART strategies. In addition to these, the recent COVID-19 

pandemic has drawn attention to the use of mRNA vaccines. Their use in cancer 

research is a rapidly developing area. Their potential applications include in vivo 

CART-cell generation, improved antigen presentation by antigen-presenting cells 

(APCs), and direct targeting of tumor cells.202 Consequently, mRNA vaccines 

hold great promise as a potential future treatment for MM. 

 

In conclusion, our work has demonstrated novel findings regarding 

multiple myeloma progression and treatment. These findings not only contribute 

to our understanding of the disease but also introduce further research 

opportunities for us to discover. With hope for new beginnings to shed light over 

multiple myeloma… 
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