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Vector inversion generators, or spiral generators, are compact, high voltage pulse generators consisting of a pair of
conducting foils wound in a spiral and a switch. We developed an improved analytical model predicting the time
evolution of the output voltage of such spiral generators. Our model (i) takes into account that the current in the switch
results from the current on the active and passive waveguides and (ii) takes into account the losses of the conductor in
the equations describing the propagation of the voltage and current pulses in both waveguides. The model is compared
to experimental results involving different input switches and at different temperatures to investigate the influence of
resistive losses on the output voltage. The model is further developed to obtain the time evolution of the current in
the switch. Our model is then used to predict the amplitude of the first two peaks of the oscillatory response of spiral
generators as a function of a set of dimensionless parameters.

I. INTRODUCTION

The generation of short high voltage pulses (tens to hun-
dreds of kilovolts with a rise time ranging from nanoseconds
to microseconds) is of considerable interest for a range of
engineering applications including rock fracturing1, food
sterilization without alteration of the nutrition2 or as trigger
generator for other devices, for example as input voltage
of X-ray tubes3 or to improve the switching performance
of thyristors4. Several technologies are available to gen-
erate high voltage pulses, such as Marx generators5–7 or
Blumlein generators8–11. For applications in which compact,
lightweight voltage generators are required, spiral generators
are strong candidates12–15. Spiral generators, also called Vec-
tor Inversion Generators (VIGs), are small devices allowing
to convert a DC input voltage u0 into a short voltage pulse of
amplitude much larger than u0. These generators consist of
a pair of conducting foils wound in a N-turn spiral of mean
diameter D and a switch. The pair of conducting foils forms
a capacitor that is charged initially at the DC input voltage
u0. The output pulse lasts a few tens of nanoseconds and is
triggered by short-circuiting the capacitor by means of the
switch causing a transient phenomenon to occur.

Fig. 1 illustrates the working principle of a spiral generator.
Once the capacitor formed by the active and the passive
conductors is fully charged at a voltage u0, the electric fields
of adjacent turns (schematically shown by the arrows in
Fig. 1) cancel out, resulting in a zero net output voltage
between the two ends of the active conductor. The outer
extremity of the active waveguide is then short-circuited by
the switch, causing an electromagnetic wave to propagate in
the active waveguide, consisting of both conductors separated
by the active dielectric. This wave reaches the extremity of
the waveguide located at the inner part of the spiral (open
circuit), which causes a reflection of the wave. When the
reflected wave comes back at the outer extremity of the active
waveguide, after a time T , all electric field directions are the
same and the voltage is, in theory, multiplied by 2N. After
reflection of the wave on the impedance of the switch, the

FIG. 1. Schematic diagram of the vector inversion phenomenon of a
spiral generator.

wave is reflected again and the output voltage goes back to 0
at t = 2T .

Fig. 2 provides schematic time evolutions of the input and
output voltages. The theoretical time evolution of the output
voltage is a triangular waveform oscillating between 0 and
2Nu0 with a period 2T . In practice however, the peak of
the output voltage uout(t) is always below 2Nu0 because of
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Deepening the theoretical understanding of vector inversion generators 2

imperfections in the vector inversion process. More precisely,
the non zero inductance of the switch Ls causes the input
voltage u0 to reach zero in a time that is a non negligible
fraction of T and the discharge of the passive waveguide
(the one formed by both conductors separated by the passive
dielectric) makes the process more complex than a simple
vector addition with half of the vectors (the ones in the passive
waveguide) remaining unchanged. The actual output voltage
waveforms exhibits an oscillatory behavior and the second
peak can sometimes exhibit higher voltages than the first
peak in absolute value16. For this reason, two multiplication
efficiencies are introduced: β+ which is defined such that the
amplitude of the first peak of uout(t) is equal to 2N(β+)u0
and β− which is defined such that the amplitude of the second
peak of uout(t) is equal to −2N(β−)u0.

FIG. 2. Comparison of the input and output voltage waveforms of a
vector inversion generator : theoretical waveforms of an ideal gener-
ator and typical experimental waveforms.

Spiral generators were first introduced by Fitch and
Howell12,13 in 1964. The authors explain the working princi-
ple of such generators but only provide a few approximated
equations allowing one to predict the time evolution of the
output voltage. In 1980, Rühl and Herziger17 were the first to
propose a transfer function linking uout to u0 in the Laplace
domain. This model was later corrected by Bichenkov et al.18

in 2007 and further developed by Pal’chikov et al.19 in 2012.
None of these transfer functions include resistive losses. The
latter were mentioned by Fitch and Howell, who multiply
the output voltage by a corrective factor and also recently
by Yan et al.16 in 2021 who introduce a global resistance of
the spiral. In the present work, we use the works of Rühl,
Herziger and Bichenkov as a starting point for an improved
model that allows more precise predictions of the output
voltage.

Our model considers new boundary conditions at the
location of the switch and includes the local resistive losses
in the form of a resistance per unit length of the waveguides.

Contrary to the models proposed by Yan et al. and Pal’chikov
et al., we wish to obtain directly the analytical expression
of the transfer function in the Laplace domain rather than a
set of ordinary differential equations that are solved with a
numerical scheme.

We then use our new transfer function to predict the val-
ues of the multiplication efficiencies from the knowledge of
a set of dimensionless parameters involving the electrical and
geometric characteristics of the spiral generator. The model
described in this paper is also used to determine under which
conditions a VIG provides a second voltage peak with a better
multiplication efficiency than the first one, i.e. under which
conditions β− > β+.

II. THEORY

In this section we first provide a brief summary of the
published mathematical models which constitute the basis
of our work. Then we describe our model for the prediction
of the dimensionless multiplication coefficient β (t) = uout (t)

2Nu0
.

For clarity purpose, the following explanations will only
contain the main steps to obtain the dimensionless Laplace
transform of the multiplication coefficient. Using numerical
methods to approximate inverse Laplace transforms, one can
then easily retrieve β (t). In our case, we used the Stehfest
numerical method20, available in the mpmath Python library.
The full mathematical developments can be found in the
appendices of this work.

A number of quantities need to be defined before consider-
ing the equations. First, a set of electric elements will repeat-
edly appear throughout the development, they are listed and
defined here below:

• C′, L′ and R′ respectively denote the capacitance, in-
ductance and resistance per unit length of the active and
passive waveguides, both waveguides are assumed to be
characterized by the same parameters. Note that adapt-
ing these quantities to account for different properties
of the two lines would only require a few extra steps in
the developments,

• Z0 =
√

L′
C′ is the lossless characteristic impedance of the

active and passive waveguides,

• C = C′πD
2N is the equivalent capacitance of the VIG dur-

ing discharge, i.e. the capacitance between the output
terminals,

• L=N2Lturn is the inductance of the spiral formed by the
active conductor. Lturn is the inductance of a single turn
of the spiral. This assumes that all successive turns of
the spiral have a similar equivalent diameter. Typically,
L is in the order of tens to hundreds of microhenrys and
Lturn in the order of tens of nanohenrys.
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Deepening the theoretical understanding of vector inversion generators 3

Second, different currents will appear in the equations lead-
ing to the transfer functions, they are listed below and are il-
lustrated schematically in Fig. 3:

• ia(x) and ip(x) are the waveguide currents flowing re-
spectively in the active and in the passive waveguides. x
refers to the curvilinear abscissa along the waveguides,
with x = 0 corresponding to the location of the switch
at the outer side of the spiral and x = xmax = NπD the
location of the load, at the inner extremity of the spiral.

• ja(x) and jp(x) are a set of so called "circulating" cur-
rent per unit length, able to flow across layers. ja(x)dx
is a circulating current reaching the location x of the
active conductor and jp(x)dx the circulating current
reaching location x of the passive conductor.

FIG. 3. Schematic representation of the currents appearing in a spiral
generator. The currents are shown on a portion dx located at the
curvilinear abscissa x of the spiral.

Finally, we define important dimensionless quantities
which already appeared in some the published models17,18:

• ω0 =
T√
LC

: ratio of the back and forth travel time of the
electromagnetic wave between both extremities of the
active waveguide and the period of the oscillations of
the equivalent LC circuit formed by the double spiral,

• τa = Ls
Z0T : ratio of the "RL"-like time constant of the

switch connected to the active waveguide and the back
and forth travel time of the wave between both extrem-
ities of the active waveguide. "R" is here the character-
istic impedance of the active waveguide and "L" is here
the inductance of the switch Ls,

• τp = Ls+Louter
Z0T : ratio of the "RL"-like time constant of

the switch in series with the outer turn of the active con-
ductor connected to the passive waveguide and the back
and forth travel time of the wave between both extremi-
ties of the active waveguide. "R" is here the characteris-
tic impedance of the passive waveguide and "L" is here
the inductance of the switch in series with the induc-
tance of the outer turn of the active conductor Louter. It
is shown in Appendix B that τp is related to the previous
two parameters by the relation: τp = τa +

4
ω2

0
,

• τ = T
ZC : dimensionless parameter allowing to consider a

load of Laplace impedance Z connected at the output of
the generator. When no load is connected at the output
terminals of the VIG, τ = 0.

A. Understanding the model proposed by Rühl and Herziger

While Fitch and Howell12 are the founders of spiral
generators, Rühl and Herziger17 were the first to propose a
mathematical model allowing to predict the time evolution
of the multiplication efficiency β (t). Despite containing
some typos and lacking explanations about how to obtain
the equations presented in their mathematical development,
the physical framework proposed in the article is eminently
sensible. For this reason, the Rühl and Herziger model was
chosen to be the starting point of the model we propose in our
work. We review below the physics proposed in their paper.
Appendix A contains the entire mathematical development.

The model proposed by Rühl and Herziger consists of a
magnetic approach of the spiral generator. Their model is
obtained by considering the active conductor as an inductor
of N turns embracing the magnetic flux generated by all the
currents flowing in loops inside the double spiral. Using
Faraday’s law of induction, the authors could link this
magnetic flux to the output voltage of the generator. There are
three contributions to this magnetic flux: ja(x) the leakage
current per unit length flowing from one turn of the active
conductor to an adjacent turn of the same conductor, jp(x)
which corresponds to ja(x) for the passive conductor and iz,
the current flowing through the load Z connected between the
ends of the active conductor.

Using the superposition theorem and the telegrapher’s
equations for the electromagnetic wave propagation in the
waveguides, they were able to obtain a dimensionless transfer
function B1(p) (Eq. A11) which we will refer to as Model 1
throughout the paper.

B. Limitation of the model proposed by Rühl and Herziger

A non-negligible approximation in the development
of Rühl and Herziger lies in the boundary conditions.
It is assumed in their model that there is no cur-
rent flowing at any end of the passive waveguide, i.e.
Ip(x = 0,s) = Ip(x = xmax,s) = 0. Within this assumption,
there are no waveguide currents at any location of the passive
waveguide, i.e. Ip(x,s) = 0 and the current flowing through
the switch results from the waveguide currents flowing in the
active waveguide only: Is = Ia(x = 0).

In reality, the terminology ’passive waveguide’ is mislead-
ing since there are non-zero waveguide currents in this waveg-
uide. The reason is the following: when the active line
is short-circuited by the switch, the passive line gets short-
circuited as well via the switch in series with the outer turn
of the active conductor, as shown schematically in Fig. 4.
This point was already noticed by Bichenkov et al.18 in their
mathematical developments. Using an electrostatic approach
rather than a magnetic approach, Bichenkov et al. found a
transfer function consistent with that of Rühl and Herziger but
improved it with a set of boundary conditions that considers
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Deepening the theoretical understanding of vector inversion generators 4

a wave propagating in the passive waveguide. This transfer
function B2(p) (Eq. B15) will later be referred to as Model 2.
In the limit τp → +∞, i.e. when the passive waveguide as
an infinite rise time, B2(p) becomes similar to B1(p) and one
recovers Model 1.

FIG. 4. Schematic representation of the currents appearing in the
switch, according to Kirchhoff’s current law.

C. Extension of the model

In the present work, we propose an improved version of the
models mentioned above. The improvement lies in two points
regarding (i) the current in the switch and (ii) the losses of the
conductor.

1. Boundary conditions at the location of the switch

We first consider the current in the switch. Even if
Bichenkov et al. considered a wave propagating in the pas-
sive line, the interactions between Ia and Ip in the switch were
neglected. This approximation is valid when ζ = τa

τp
<< 1,

i.e. when the passive line is much slower than the active line,
but introduces an error when the switch exhibits imperfec-
tions. We determine here below the transfer function B3(p)
taking into account the interaction between both waveguide
currents. We follow an approach similar to that followed by
Rühl and Herziger but we consider a wave propagating in the
passive line and with the complete expression of the switch
current Is(s) obtained with Kirchhoff’s current law at the
location of the switch, as illustrated in Fig. 4.

As for the previous models, the entire mathematical devel-
opment are given in Appendix B. The updated Laplace equa-
tion of the output voltage Uout is:

Uout(s) =
−s [Ia(x = 0,s)+ Ip(x = 0,s)]

2NC(s2 + 1
ZC s+ 1

LC )
, (1)

where the currents appearing in the numerator are obtained
using the following boundary conditions:


Ua(x = 0,s) = u0

s − sLsIs(s),
Up(x = 0,s) = −u0

s − sLsIs(s)− sLouterIp(x = 0,s),
Is(s) = Ia(x = 0,s)− Ip(x = 0,s).

(2)
The main differences with respect to the Bichenkov can be

seen in the above equations: at the start of the waveguides
(x = 0) the voltage Ua across the active waveguide also de-
pends on the current in the passive waveguide (Ip, through the
current in the switch Is), and the voltage Up across the passive
waveguide also depends on the current in the active waveg-
uide (Ia, through the current in the switch Is). This interaction
between the electric parameters of the two waveguides was
neglected in the approaches used up to now. Remarkably, it
yields the following dimensionless transfer function that can
be calculated analytically, at the expense of heavier develop-
ments that are described in Appendix B:

B3(p) =
−pF(p)

p2 +(1−G(p))
(
τ p+ω2

0

) , (3)

with:

F(p) =
A(p)−P(p)

1− p4τ2
a A(p)P(p)

, (4)

G(p) =
A(p)+P(p)+2p2τaA(p)P(p)

1− p4τ2
a A(p)P(p)

, (5)

A(p) =
[

pcoth
( p

2

)
+ p2

τa

]−1
, (6)

P(p) =
[

pcoth
( p

2

)
+ p2

τp

]−1
. (7)

Considering the above equations with the limit τa → 0
(when the switch exhibits and ideal behavior), one obtains
F(p) = A(p)−P(p) and G(p) = A(p)+P(p), which corre-
sponds to the transfer function of Model 2.

2. Resistive losses

Next we consider the losses. Another common assumption
in the published models is to neglect resistive losses in the
conductors as well as in the switch. Our model is suited to
take easily both resistive losses (conductor of the spiral and
switch) into account in the equations describing the physics
of the generator. In view of maximizing the amplitude of
the peaks of the output voltage uout(t), it is important to
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Deepening the theoretical understanding of vector inversion generators 5

optimize β+ and β− but also to increase the number of turns
as uout(t) ∝ 2Nβ (t). Yet, as the number of turns increases,
the waveguides are longer and the damping of the waves
while travelling the waveguides also increases, causing β (t)
to decrease in absolute value. Therefore, the impact of the
losses on the output voltage becomes particularly relevant
when the number of turns increases.

When considering the losses, a question arises related to the
value of R’, the resistance per unit length of the conductors
in the active and passive waveguides. To consider the skin
depth δ over which the current flows inside the conductors,
one must define an equivalent working frequency of the spiral
generators. The oscillations of the transient time evolution of
the output voltage being close to 4T (cf. schematic waveforms
shown in Fig. 2), one can define an approximated equivalent
frequency feq = 1

4T . This frequency makes it possible to

estimate δ = (σπ feqµ)−
1
2 , with µ the magnetic permeability

of the waveguides and σ the conductivity of the conductors.
One can derive the losses per unit length in the conductors:
R′ = 2(σδw)−1 if the skin depth is smaller than the thickness
of the conductor tcond or R′ = 2(σtcondw)−1 otherwise, where
w is the height of the conductors. The factor 2 comes from
the fact that the waveguides consists of 2 conductors.

One can then update the telegrapher’s equations to account
for R′ and update the boundary conditions at x = 0 by re-
placing sLs by Zs = sLs +Rs and sLouter by Zouter = sLouter +
1
2 R′πDouter, with Douter the outer diameter of the active con-
ductor and the 1

2 factor coming from the fact that the outer turn
consists of only one conductor. It is then possible to obtain an
updated dimensionless transfer function B(p) of the multipli-
cation coefficient. The entire development is provided in Ap-
pendix B. At certain stages of the mathematical development,
the following dimensionless parameters appear:

• ρ0 = R′T
L′ : the dimensionless quality factor of the con-

ductors,

• ρa =
Rs√

L′
C′

: the ratio of the resistance of the switch and

the lossless characteristic impedance of the waveguides,

• ρp =
Rs+Router√

L′
C′

: the ratio of the resistance of the switch

in series with the outer turn of the active conductor and
the lossless characteristic impedance of the waveguides.

Note that ρa and ρp are small quantities that can usually be
neglected, which is not true for ρ0 as will be shown later in
the article.

Taking the losses into account yields the following updated
transfer function B(p):

B̃3(p) =
−pF̃(p)

p2 +
(
1− G̃(p)

)(
τ p+ω2

0

) , (8)

with the tilde values being updates of the previous quantities

with additional terms accounting for resistive losses:

F̃(p) =
Ã(p)− P̃(p)

1− (p4τ2
a +2p3τaρa + p2ρa) Ã(p)P̃(p)

, (9)

G̃(p) =
Ã(p)+ P̃(p)+2

(
p2τa + pρa

)
Ã(p)P̃(p)

1− (p4τ2
a +2p3τaρa + p2ρa) Ã(p)P̃(p)

, (10)

Ã(p) =
[

p
√

1+
ρ0

p
coth

(
p
2

√
1+

ρ0

p

)
+ p2

τa + pρa

]−1

,

(11)

P̃(p) =
[

p
√

1+
ρ0

p
coth

(
p
2

√
1+

ρ0

p

)
+ p2

τp + pρp

]−1

.

(12)

This final model will be called Model 3 throughout the rest
of the article. In can be readily seen that in the limit τa → 0,
ρa → 0, ρp → 0 and ρ0 → 0, one recovers the transfer func-
tion of Model 2. Although these final relations appear very
complicated, it will be shown in the results that these addi-
tional terms reflect some real practical phenomena and allow
to obtain a better agreement with experimental measurements.

D. Switch current

As Ia(x = 0,s) and Ip(x = 0,s) are quantities that appear
naturally in the mathematical developments leading to the
transfer functions of the output voltage and as Is = Ia(x =
0,s)− Ip(x = 0,s), it is possible to obtain directly the ana-
lytical expression of the switch current in the Laplace domain
with a few extra lines of algebra. Appendix C contains the
mathematical developments as well as the final expressions of
the switch current and of the contribution of each waveguide
current to the current in the switch.

III. EXPERIMENT

In order to validate the proposed model and compare it to
other published models, we measured the time evolution of
the output voltage of the spiral generator shown in Fig. 5.
Between the copper foils used as conductors, a single sheet
of Kapton

TM
is used as dielectric layer. The characteristics of

this generator are provided in Table I.

TABLE I. Characteristics of the vector inversion generator used dur-
ing the experimental measurements.

Characteristic Symbol Value
Number of turns N 40
Mean diameter D 70 mm
Height w 25.4 mm
Conductor thickness tcond 40 µm
Dielectric thickness tdiel 50 µm
Relative permittivity εr 3.4
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Deepening the theoretical understanding of vector inversion generators 6

FIG. 5. Picture of the vector inversion generator used during the
experimental measurements.

A way to assess the influence of the losses of the conduc-
tors on the output voltage while keeping other parameters
almost unchanged, is to carry a similar set of experiments
at a different temperature. It was therefore decided to
perform the experiments at room temperature (300 K) and
in a liquid nitrogen reservoir (77 K). As the coefficient of
thermal expansion of copper is about 16.4 µm/(m K) and
the coefficient of thermal expansion of the Kapton

TM
sheet

we used is 20 µm/(m K), it corresponds to a change in
thickness of 0.15 µm for the copper film and 0.23 µm for
the Kapton

TM
film. This validates the hypothesis that the

geometric parameters are almost unchanged when cooling
down to cryogenic temperatures21,22. For safety reasons in the
cryogenic set-up, all experiments were performed with a low
input voltage of -10 V. As the output voltage never exceeded
350 V, the waveforms were measured with a 10:1 voltage
probe of capacitance Cprobe = 16 pF. This capacitance was
considered in the models by assigning τ = T

ZC = pCprobe
C . In

order to not place the voltage probe inside the liquid nitrogen
reservoir, the voltage measurement was shifted about 70 mm
away away from the extremities of the spiral generator. It
was verified experimentally that these extra wires connected
at the extremity of the spiral generator have no significant
effect on the measured data (i.e. <2% relative difference
for the amplitude of the first peak of uout(t) and <3.5%
relative difference for the amplitude of the second peak).
We also used our analytical model to assess the influence
of the wire length on uout(t) (by changing the expression of
the dimensionless parameter τ to consider a LC-series load)
and it showed no difference at all in the predicted output
voltage curves caused by the inductance of 70-mm-long wires.

In order to investigate the effect of τa on β (t) predicted by
each model, three bespoke, low voltage mechanical switches
with different inductances Ls were created. The first switch
(hereafter called ’SW-A’) consists of a 1.5 mm diameter
Cu-wire (3 mm with the sheath). One extremity of this wire
was soldered to the active conductor of the spiral generator
while the other side of this wire was brought mechanically in
contact of the passive conductor by means of a small PTFE
rod. The resulting switch inductance is approximated to

TABLE II. Summary of the dimensionless parameters corresponding
to the VIG configurations that were tested experimentally.

Parameter Switch SW-A Switch SW-B Switch SW-C
τa 0.55 1.21 3.62
ω0 1.41 1.41 1.41
τp 2.55 3.21 5.63

ζ = τa
τp

0.22 0.38 0.64
ρ0 (300 K - 77 K) 1.51 - 0.47 1.51 - 0.47 1.51 - 0.47

ρa,ρp ' 0 ' 0 ' 0

that of a single circular loop23 with a diameter of 15 mm,
resulting to an estimated switch inductance Ls of 25 nH. In
order to artificially increase the value of the inductance of
the switch, two other switches were created by placing an
additional coil of diameter 15 mm in series with the wire.
The second switch (hereafter called ’SW-B’) was created by
placing a single-turn coil in series with the wire and the third
switch (hereafter called ’SW-C’) with a three-turn coil. Using
Rayleigh and Niven’s formula24, SW-B has an estimated
inductance of 55 nH and SW-C an estimated inductance of
165 nH. The resulting experimental setup is shown in Fig. 6.

The behavior of the spiral generator was measured at room
temperature or when immersed in liquid nitrogen, with the
three switches mentioned before. The change in conductivity
σCu of the copper conductors before and after being immersed
in the liquid nitrogen was measured experimentally before-
hand by means of a Four-Wire Kelvin measurement. At room
temperature, σCu = 5.96 · 107 S/m leading to a estimated
skin depth δ = 44 µm which is larger than the thickness of
the conductive foil. At cryogenic temperature, we measured
that the conductivity was increased by a factor 8.5. The new
estimated skin depth is about 15 µm meaning that this time,
the skin effect does affect the resistance of the conductors of
the spiral generator. Therefore, one should note that the ratio
of the loss parameters before and after being cooled down to
77 K is not proportional to the ratio of the conductivities as
the skin effect limits the resistance only in one case.

With the experimental setup presented in the previous sec-
tion, it was possible to test our spiral generator with three dif-
ferent values of τa (τa = 0.55,τa = 1.21 and τa = 3.62) and
two values of ρ0 (ρ0 = 1.51 and ρ0 = 0.47). Table II provides
a summary of all the dimensionless parameters corresponding
to the configurations that we tested experimentally.

IV. RESULTS

A. Validation of the proposed model

In order to validate the model we propose in this work,
we compared the predictions of β (t) = uout (t)

2Nu0
provided by

the three models to experimental measurements. Let us
recall here that due to their value in the range 25-165 nH,
the switch inductances Ls could not be measured precisely
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Deepening the theoretical understanding of vector inversion generators 7

FIG. 6. Picture of the experimental setup used to measure the time evolution of the output voltage. The PTFE rod is used to bring the second
extremity of the coil in contact with the passive conductor, shorting the input of the generator with an inductance given by the blue coil.

but rather estimated using formulas from the literature, as
described in Sect. III. The resulting Ls values are therefore
predicted within a given uncertainty of ∼ 10%. As a result,
it is of interest to compute the predictions of the models by
changing Ls in a range of 10% around the estimated values.
The results are shown in Fig. 7, comparing the β+ and β−
values provided by each model in the range [0.9Ls;1.1Ls] to
the β+ and β− values obtained experimentally. Additionally,
Fig. 8 shows the comparison between models and experi-
mental measurements of the time evolution of β (t) for the
three values of Ls, at both room temperature and cryogenic
temperatures. One can directly observe in Figures 7 and 8
that the predictions provided by Model 1 and Model 2 (green
and blue curves) are the same for room temperature and
cryogenic temperature as the only parameters that changes is
ρ0, the parameter that asses the losses, which only appears
in Model 3. Table III contains quantitative data about the
different experimental scenarios. More precisely, it contains
the relative differences between the predictions of the models
and the experimental measurements at room temperature and
at cryogenic temperature. These differences were computed
for the amplitudes of β+ and β− but also for the time at which
these values are observed.

We first consider the experimental data obtained with
SW-A. One can notice that, for the first peak, Model 2 and
Model 3 are in close agreement with experimental data, both
for timing and amplitude. Model 1, on the contrary, predicts
values of β+ that are much larger than the experimental
measurements. Quantitatively, Model 1 overestimates β+

by more than 100%. Regarding the second peak, the first
negative one, the predictions of Model 1 are again much
larger than the experimental measurements, which validates
the negative impact of the discharge of the passive waveguide
on the output voltage generated by spiral generators. Model 2
begins to diverge from the experimental measurements,
which is not the case for Model 3. The difference between
the measurements of β− and the values of β− predicted by
Model 2 are different at room temperature and at cryogenic
temperature. This emphasizes the importance of considering

TABLE III. Relative difference of the multiplication efficiencies β+

and β− as well as the timing at which they occur between experimen-
tal measurements and predictions of the model at cryogenic temper-
ature. Values are computed as follows: model−experimental

experimental . The first
value corresponds to the amplitude of β and the value between paren-
theses corresponds to the timing.

Room temperature
Model 1 Model 2 Model 3

SW-A 115% (10%) 34% (1%) 13% (-7%)
β+ SW-B 92% (20%) -5% (7%) -5% (-2%)

SW-C 92% (30%) -42% (20%) -15% (-1%)
SW-A 66% (11%) 46% (1%) -4% (-1%)

β− SW-B 126% (14%) 53% (7%) 3% (-5%)
SW-C 150% (24%) 11% (20%) -11% (-4%)

Cryogenic temperature
Model 1 Model 2 Model 3

SW-A 59% (18%) 0% (8%) 0% (6%)
β+ SW-B 73% (20%) -14% (7%) 0% (0%)

SW-C 74% (41%) -47% (30%) -9% (4%)
SW-A 50% (15%) 32% (7%) 8% (6%)

β− SW-B 73% (17%) 17% (7%) -5% (-1%)
SW-C 87% (29%) -16% (21%) -33% (-2%)

resistive losses when modelling spiral generators, as they
cause damping over time. Quantitatively, with SW-A, the
experimental measurement of β+ goes from 0.25 to 0.31 and
the experimental measurement of β− goes from 0.44 to 0.50
when ρ0 is reduced from 1.51 (at 300K) to 0.47 (at 77K). This
result shows that resistive losses have a non-negligible impact
on the multiplication efficiencies and cannot be neglected.

As far as SW-B is concerned, similar conclusions can be
taken as with SW-A: Model 1 overestimates β+ and β−,
Model 2 provides a good estimations of β+ but overestimates
β− and Model 3 is in close agreement with the experimental
data for both peaks of β (t). The main difference between
both experiments is that the additional coil in series with the
switch causes a decreases in the absolute value of β (t).
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Deepening the theoretical understanding of vector inversion generators 8

FIG. 7. Summary of all the β+ and β− values for all the configu-
rations that were tested experimentally. As Ls was estimated with a
given uncertainty, the values provided by each model are computed
with each model in an interval Ls±0.1Ls.

When looking at the waveforms obtained with SW-C, one
can first see that the experimental values of β+ and β− are
lower compared to those obtained with SW-B. Quantitatively,
between SW-A and SW-C, the experimental values of β+

went from 23% to 10% and the experimental values of β−
from 45% to 9%. This result confirms the well-established
fact25 that τa should be as low as possible to increase the
multiplication efficiencies, i.e. that the inductance of the
switch should be as low as possible. As before, the curves
obtained with Model 3 provide better estimations of β (t) than
the curves obtained with Model 1 and Model 2. The error
on β+ and β− introduced by Model 2 is smaller with SW-C,
but one can observe that the blue curves are now time shifted
compared to the experimental waveforms. The predicted
peaks of uout(t) given by Model 2 take place slower than what
is observed experimentally. In fact, the relative time differ-
ence between the experimental peaks and the predictions of
the Model 2 can go up to 30%. This shows that neglecting
the interaction between ia and ip in the switch has indeed
an influence on β (t), not only on the amplitude but also on
the timings. This time delay appearing when τa increases is
consistent with the mathematical models, as it was observed
that, when neglecting losses, Model 2 and Model 3 are similar
when τa → 0, when the switch is ideal. This observation
also confirms the statement of Bichenkov et al18 stating that
the interaction of waveguide currents is negligible when
τa � τp ⇔ ζ � 1, meaning that either the switch is ideal
or the inductance of the outer turn of the spiral generator
Louter is much larger than the inductance of the switch Ls.
As a matter of fact, this time shift between experimental
data and Model 2 appears for ζ = 0.64 (SW-C) but was al-

most insignificant for ζ = 0.22 (SW-A) and ζ = 0.38 (SW-B).

Even though the model described in this work (Model 3)
fits the experimental curves closely for the two first peaks of
uout(t), it does not perfectly match the time evolution of the
experimental results over a longer period of time. This can
be observed in Fig. 9 showing the time evolution of β (t) with
SW-B at room temperature, but over a time window of about
2.5 µs (against 0.7 µs in Fig. 8). One can see that the β (t)
curve predicted by Model 3 shows a similar oscillatory be-
havior as the experimental curve, but the period of these os-
cillations is higher on the prediction of Model 3 than in the
experimental curve. One plausible explanation lies in the way
the skin depth δ is computed in our model. δ is obtained by
computing an equivalent frequency feq =

1
4T which is an ap-

proximation as the waveforms is not a perfect sine and as the
period of the oscillations is not exactly equal to 4T .

B. Deeper comparison between Model 2 and Model 3

1. Switch current

To obtain a deeper comparison between our updated model
(Model 3) and the model proposed by Bichenkov et al.
(Model 2) that does not consider losses nor current interaction
near the switch, we can first compare what happens at the
location of the switch. Model 1 is not considered anymore at
this stage of the article as the experimental results showed that
the assumptions that lead to Model 1 caused a too significant
difference between predictions and experimental measure-
ments. Fig. 10 shows curves of ia(x = 0, t), ip(x = 0, t) and
is(t) = ia(x = 0, t)− ip(x = 0, t), predicted with Model 2,
Model 3 with ρ0 = 0 (to only investigate the effect of our
new boundary conditions) and Model 3 with ρ0 6= 0 (to
also investigate the fact that we consider resistive losses).
Note that for the computation of the switch current shown
in Fig. 10, we do not consider the presence of a voltage
probe (τ = 0). The figure also contains uout(t) prediction
waveforms given by Model 3. Model 3 was chosen rather
than experimental measurements for the uout(t) curves since
the condition τ = 0 can be inserted readily in the model. This
is in contrast with experimental measurements for which the
delay caused by the finite capacitance of the probe always
affects the voltage curves.

Figures 10a to 10d show the curves for SW-A (correspond-
ing to the smallest switch inductance tested experimentally).
It can first be seen that the behavior of the switch current over
time shows similar oscillations with each model. The main
difference being that the envelopes of the curves decrease
a first time when considering current interaction near the
switch and further decrease because of damping when ρ0 is
considered non zero. This means that Model 2, in addition
to overestimating the output voltage, also overestimates the
current in the switch. One can also notice the presence of a
small difference in the period of the oscillations of the curves
obtained with Model 2 and the curves obtained with Model 3
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Deepening the theoretical understanding of vector inversion generators 9

FIG. 8. Comparison of the time evolution of the voltage multiplication efficiency β (t) measured experimentally and predicted by the models
for different values of inductances placed in series with the mechanical switch and at different temperatures.

FIG. 9. Evolution of β (t) with switch SW-B at room temperature for
a long period of time.

(with or without considering losses). On the contrary, the
period of the oscillations predicted by Model 3 without losses
and Model 3 with losses are almost the same.

Figures 10e to 10h show a similar set of curves for SW-C
(i.e. the largest switch inductance tested experimentally). One
can see in Figure10g that the switch current is(t) predicted
by Model 2 and the associated contribution of the active
waveguide ia(x = 0, t), shown in Fig. 10e, have a period of
oscillations that exceeds the time window of the graph. On
the contrary, when looking at the same curves but predicted
by Model 3, one can see more than an entire oscillation of
ia(x = 0, t) over the considered time window. This shows
that for higher values of Ls, the estimated switch currents
obtained with Model 2 and Model 3 show a major qualitative
difference in addition to the difference in amplitude.
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Deepening the theoretical understanding of vector inversion generators 10

FIG. 10. Comparison of the switch current is(t) (and its two contributions from the active and passive waveguides) obtained with Model 2
and Model 3 (with and without losses) compared to the predicted output voltage given by Model 3. The curves are obtained considering that
there is no load connected at the output of the spiral generator (τ = 0). (a) ia(t) with switch SW-A, (b) ip(t) with switch SW-A, (c) is(t) with
switch SW-A, (d) predicted uout(t) with switch SW-A, (e) ia(t) with switch SW-C, (f) ip(t) with switch SW-C, (g) is(t) with switch SW-C, (h)
predicted uout(t) with switch SW-C.

Fig. 10 allows to provide some explanations to the out-
put voltages plotted in Fig. 8. We first saw that the main
difference in the β (t) predictions between Model 2 and
Model 3 when ζ increases (when the inductance Louter
decreases for a fixed value of Ls) is a time shift in the uout(t)
curves. This might come from the fact that when neglecting
the interactions between the currents inside the switch, the
dynamics of ia(t) become slower. Everything happens thus as
if the switch had a higher inductance. This virtual increase in
Ls could be the reason why the blue β (t) curves (Model 2) in
Fig. 8e and 8g show some delay compared to the experimental
measurements and no longer predict higher β+ and β− values
than the red curves (Model 3). Fig. 10 makes it also possible
to validate the fact that the differences in the predictions of

the values of β+ and β− come from the damping caused by
resistive losses which is not considered in Model 2.

2. Maps of β+ and β− as a function of the dimensionless
parameters

To further deepen the comparison between Model 2 and
Model 3, we also computed the value of β+ and β− for
values of τa and ω0 ranging from 0.1 to 3. Values lower
than 0.1 were not computed to avoid divisions by zero. This
is not a problem as it is unlikely to reach such low values
with experimental configurations anyway. Similarly, values
above 3 were not computed as the corresponding multipli-
cation efficiencies are not high enough for an acceptable
multiplication efficiency (as observed with the experimental
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Deepening the theoretical understanding of vector inversion generators 11

data obtained with SW-C). Such (ω0−τa) maps of β+ and β−
were computed for Model 2 and for Model 3 with different
loss parameters ρ0 = 0, ρ0 = 0.5, ρ0 = 1, ρ0 = 1.5 and ρ0 = 2
(parameters affecting this loss parameters mainly are the
length of the spiral, dictated by the number of turns N and the
mean diameter D as well as the conductivity of the conductor
material). The results are shown in Figures 11 for β+ and
in Fig. 12 for β−. These two figures also contain several
dots which are the estimated values of β+ and β− predicted
by the models for configurations of VIGs presented in the
literature18,19,26,27. The maps also contain stars representing
the estimated values of β+ and β− predicted by the models
for the configurations tested in our lab to validate our model.
In addition, the figure contains isocurves of ζ = τa

τp
= Ls

Louter+Ls

giving some information about the value of τp.

A general observation one can make in these two figures is
that, both for β+ and β−, the maps gets closer to cold colors as
ρ0 increases, meaning that both multiplication efficiencies de-
crease as ρ0 increases. This validates the importance of con-
sidering the losses in a mathematical model and the negative
influence of the damping of the wave on the multiplication
process.

(ω0− τa) maps of β+

First, we discuss the (ω0−τa) map of β+ shown in Fig. 11.
To only compare the influence of the different boundary
conditions that were used to obtain the models, one should
compare the map obtained using Model 2 and Model 3 with
ρ0 = 0. There is almost no difference between the predictions
provided by the models; the only noticeable difference is that
Model 3 provides estimated values of β+ that are slightly
smaller than those given by Model 2 in the right part of the
maps, i.e. for large values of τa. Again, this makes sense
as both models are the same when τa → 0. One can also
see that all the maps related to β+ show that for a given
value of τa, ζ should be as low as possible to increase β+.
This observation validates the fact that the discharge of the
passive waveguide decreases the multiplication efficiency and
therefore that τp should be maximised to delay the discharge
of the passive waveguide by having an inductance Louter
such that Louter + Ls >> Louter. The later can practically be
obtained by increasing the mean diameter of the spiral or by
adding a magnetic material.

When there are no losses, the maps obtained with both
models predict that β+ is maximised in the lower left corner of
the map. This means that τa should be minimised as well, so
that the input voltage reaches 0 volts much faster than the back
and forth travel time of the wave. When ρ0 6= 0, Model 3 pre-
dicts a different behavior: ω0 should still be as low as possible
for a given τa, but τa must not necessary be minimised to max-
imise β+. More precisely, below ω0 ' 1, some regions appear
where increasing τa can lead to larger values of β+ for a given
value of ω0. This can probably be explained by the presence
of a trade-off between the damping of the waves during their

travel time and the decrease of β+ caused by the time required
to have the input voltage reaching 0 volts. Even though these
observations are of interest to understand the physics of spiral
generators, one can also observe that all the dots and stars rep-
resenting actual VIG configurations investigated experimen-
tally are characterised by ω0 values above = 1, meaning that
for these configurations, τa should in fact be minimised.

(ω0− τa) maps of β−

Second, we can compare the (ω0− τa) maps of Fig. 12 of
the predictions of β−. This time, the difference between both
models is already noticeable for τa = 0.1. The estimated value
of β− obtained with Model 2 are higher in the entire map, as
evidenced by a warmer set of colors in the entire (ω0− τa)
plane. One can also notice that the maps of β− are split in
three regions. On the bottom left region of these maps, β− is
close to zero. This region corresponds to the locations where
β+ is maximised and defines the set of parameters where the
VIG almost works in the optimal conditions, i.e. when the
output waveforms resembles the schematic ones shown in
Fig. 2. This means that the output voltage waveform uout(t)
is almost triangular, i.e. with small values of β−. Then, as
ζ increases, the output voltage is no longer triangular and
β− increases as the second peak of uout(t) is no longer close
to zero. Finally, as ω0 and τa further increase, we reach the
top right corner where the VIG produces low multiplication
efficiencies, as was observed for β+.

Still about the β− maps, one can see that starting from
ρ0 = 1, β− > 0 in the lower left corner of the maps. One only
reaches β− = 0 near ω0 ' τa ' 0.3. This lower left corner
can actually be split into three regions, those regions are
illustrated in the map ρ0 = 1. In region (i), the first minimum
of uout(t) is actually positive, meaning that β− is negative.
The amplitude of the first minimum of uout(t) gets closer and
closer to zero until reaching zero in region (ii). Then, as ζ

keeps increasing, we enter region (iii) where β− becomes
positive, meaning that the second peak of uout(t) is indeed
negative. This means that the strange color behavior near the
ω0 = τa = 0.1 corner of the maps is actually due to the fact
that we plot the absolute values of β− while in reality, β−
changes signs in the region where the output voltage is almost
triangular.

Finally, there is one last odd behavior in the map with
ρ0 = 2, corresponding the red dashed ellipse near ω0 = 0.5
and τa = 0.1. β− suddenly reaches values much higher than
in the neighboring zone of the map, causing a discontinuity
in the map. When looking at predicted uout(t) curves in that
region, the second and third peak of uout(t) actually merge,
causing the output voltage to remain almost constant with a
slightly negative slope rather than reaching a minimum. This
causes our algorithm to return the value of the next negative
peak of uout(t), which would correspond to the fourth peak of
uout(t) in a traditional uout(t) curve. In other words, the value
that is returned by our algorithm is not β− as we define it in
the schematic waveforms of Fig. 2. Again, this is not of major
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Deepening the theoretical understanding of vector inversion generators 12

FIG. 11. Comparison of the (ω0− τa) maps of the value of the multiplication efficiency β+ related to the amplitude of the first peak of β (t)
between Bichenkov’s model and our model for several values of the loss parameter ρ0. Dots represent spiral generators configurations found
in the literature and stars represent VIG made in our lab for the experimental validation of our model. Black symbols represent the location of
each configuration when neglecting resistive losses, i.e. if ρ0 = 0.
The dashed lines are isocurves of ζ = τa

τp
= Ls

Ls+Louter
, the values are ζ = 1

20 ,ζ = 1
10 ,ζ = 1

5 ,ζ = 1
3 and ζ = 1

2 .
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Deepening the theoretical understanding of vector inversion generators 13

FIG. 12. Comparison of the (ω0−τa) maps of the value of the multiplication efficiency β− related to the amplitude of the second peak of β (t)
between Bichenkov’s model and our model for several values of the loss parameter ρ0. Dots represent spiral generators configurations found
in the literature and stars represent VIG made in our lab for the experimental validation of our model. Black symbols represent the location of
each configuration when neglecting resistive losses, i.e. if ρ0 = 0.
The dashed lines are isocurves of ζ = τa

τp
= Ls

Ls+Louter
, the values are ζ = 1

20 ,ζ = 1
10 ,ζ = 1

5 ,ζ = 1
3 and ζ = 1

2 .
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Deepening the theoretical understanding of vector inversion generators 14

FIG. 13. Comparison of the multiplication efficiencies of the first and second peak of the output voltage. The blue regions of the (ω0− τa)
maps corresponds to VIGs configurations for which the absolute value of the amplitude of the second peak of uout(t) is higher than for the first
peak, i.e. for which β− > β+. Dots represents spiral generators configurations found in the literature and stars represents VIG configurations
made in our lab for the experimental validation of our model. Black symbols represent the location of each configuration when neglecting
resistive losses, i.e. if ρ0 = 0.
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importance as it corresponds to regions of the (ω0− τa) maps
that are unlikely to be obtained in practice.

Comparison of the maps of β+ and β−

Fig. 13 shows a comparison of values of β+ and β−. The
blue region is the region where the second peak of uout(t) of-
fers higher multiplication efficiencies than the first peak. This
region is almost independent of ρ0 but strongly depends on the
model that is used for the prediction. With Model 2, the re-
gion where β− > β+ is significantly larger than with Model 3.
This result is in agreement with the conclusions taken from
the β+ and β− maps discussed earlier as it was observed that
Model 2 predicts higher values of β− than Model 3 but almost
similar values of β+. It can also be seen in Fig. 13 that most
dots and stars are located in the blue region. This gives evi-
dence that most existing configurations of VIGs are actually
located in the region where the second peak gives a higher
multiplication efficiency than the first one.

V. CONCLUSION

In this paper, we provided a new dimensionless transfer
function allowing to predict the analytical expression, in the
Laplace domain, of the output voltage of a vector inversion
generator. This model was obtained using the framework
proposed Rühl and Herziger17 in 1980 and by inserting in this
framework the corrections proposed by Bichenkov et al.18

in 2007 and adding two additional features: the crosstalk
between ia and ip in the switch, and more importantly,
resistive losses as suggested by Yan et al.16, introducing a
new dimensionless parameter ρ0.

We validated our model by comparing the predictions of
β (t) = uout (t)

2Nu0
given by our model with experimental measure-

ments and with the predictions provided by other existing
transfer functions17,18. The set of experiments allowed
to evaluate the effect of the switch inductance by adding
coils with different number of turns in series with a perfect
mechanical switch. It also allowed to assess the impact of
resistive losses by performing the experiments at different
temperatures, i.e. by changing the value of the conductivity
of the conductors. Results showed that our new transfer
function allows better predictions of uout(t), both in terms
of amplitude and timings, compared to formerly published
transfer functions17,18. We also showed that the difference
in amplitude mainly results from the assumption that there
are no resistive losses in the other transfer functions and that
the difference in timings is a consequence of neglecting the
interactions between both currents near the switch.

Using numerical Laplace transforms, one can use our B(p)
transfer function (Eqs. 8 to 12) to estimate time evolutions of
β (t). The transfer function we propose contains the following
dimensionless parameters, listed by order of importance:

1. Essential parameters: the following parameters are
sufficient to obtain uout(t) prediction curves:

• τa = Ls
Z0T represents the rise time of the active

waveguide. It should be as low as possible, mean-
ing that the inductance of the switch Ls should be
minimized.
• ω0 = T√

LC
represents the LC behavior of the spi-

ral generator. This parameter should also be min-
imized, meaning that the resonance frequency of
the spiral itself should be above the equivalent fre-
quency of the voltage multiplication phenomenon.
This criterion can be fulfilled by increasing the
mean diameter of by inserting a magnetic mate-
rial, increasing the value of L without affecting
other parameters.

• ρ0 =
R′T
L′ represents the resistive losses of the con-

ductors. This parameter must also be minimized.
Increasing the number of turns N results in a de-
crease of the absolute value of β (t). In the expres-
sion uout(t) = 2Nβ (t)u0, uout(t) does not actually
increase linearly with N.
• τ = T

ZC represents the fact that a load of Laplace
impedance Z is connected at the output of the spi-
ral. Note that Z includes also the impedance of
a measurement device when used. When no load
is connected at the output of the spiral generator,
this parameter is equal to zero and has no effect
on uout(t).

2. Useful for deeper understanding of spiral genera-
tors: the following set of parameters are other ways to
express the previously mentioned parameters but allow
a better understanding of the physics happening in the
voltage multiplication phenomenon:

• τp = Ls+Louter
Z0T represents the rise time of the pas-

sive waveguide. As the discharge of the passive
waveguide deteriorates the output voltage multi-
plication phenomenon, this rise time should be as
high as possible, so τp should be maximized. This
parameter is not essential because it is a combina-
tion of τa and ω0 (τp = τa+

4
ω2

0
) but it allows a bet-

ter understanding of why ω0 should be minimized.
For a given value of τa, increasing τp means in-
creasing Louter, which can be achieved by increas-
ing the mean diameter of the spiral or by inserting
a magnetic material.
• ζ = τa

τp
= Ls

Ls+Louter
is another parameter that allows

to compare the rise times of both waveguides. In
the light of what was explained above, ζ should
be minimised.

3. Practically unimportant parameters: these last two
parameters appear in the mathematical development but
can often by assumed to be equal to zero. They should
only be considered if a very accurate prediction is de-
sired:
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• ρa = Rs√
L′
C′

represents the resistive losses of the

switch.

• ρp =
Rs+Router√

L′
C′

represents the resistive losses of the

outer turn of the spiral generator.

Using our model, we generated several (ω0− τa) maps of
the predicted values of β+ and β+ for different values of ρ0.
These (ω0 − τa) maps allow someone to predict the values
of β+ and β− knowing only the essential dimensionless
parameters (these maps assume that no load is connected at
the output of the spiral generator). These maps also made it
possible to define a region where the amplitude of the second
peak of uout(t) exceeds the first one.
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Appendix A: Re-obtaining Rühl and Herziger transfer function

In this section, we re-do the development proposed in the
article of Rühl and Herziger17 and try to give some clarifica-
tions about how they obtained their results. In the model they
propose, a magnetic approach of the vector inversion gener-
ator is proposed. As there are currents circulating in loops
inside the spiral, a voltage Uind is induced in each turn. The
active conductor consisting of N turns, one has: Uout = NUind .
As each turn is considered to see the same magnetic flux,
one can deduce the first assumption: the magnetic coupling
is equal to 1.
The next step in their paper is to list all the currents circulating
in loops, i.e. the currents generating a magnetic flux:

• Circulating currents between layers reaching the active
conductor at location x: ja(x) [A/m],

• Circulating currents between layers reaching the pas-
sive conductor at location x: jp(x) [A/m],

• The current in the load, circulating through the N turns
of the active conductor: iz [A].

In this definition, x is defined as the curvilinear abscissa along
the spiral, with x = 0 being the location of the switch, x = nl
the end of the n-th turn and x = xmax = Nl the center of the
spiral, near the load.

Using Maxwell law of induction with the previously men-
tioned currents, one obtains:

Uind =−sLturn

[
NIz +

∫ Nl

0
Ja(x)dx+

∫ Nl

0
Jp(x)dx

]
. (A1)

The next equations proposed in their original article seemed
to have some typos. The two following equations are a cor-
rected version:

Jp(x− l)+2Ja(x)+ Jp(x)−
∂ Ia(x)

∂x
−

∂ Ip(x)
∂x

= sC′Uind ,

(A2)

Ja(x)+2Jp(x)+ Ja(x+ l)+
∂ Ia(x+ l)

∂x
+

∂ Ip(x)
∂x

= sC′Uind .

(A3)

To understand where these relations come from, let us split
the currents generating a magnetic flux as follows: the ones
flowing through the active waveguide and the ones flowing
through the passive waveguide, as illustrated in Fig. 14a.

• Currents flowing across the active waveguide: let us
enumerate all the circulating currents flowing in the
active waveguide along a radial portion of length dx:

– Active waveguide: From the telegrapher’s equa-
tions, a current −∂ Ia(x)

∂x dx flows in the parallel
branch of a cell of length dx,

– Passive waveguide: generates no current across
the active conductor,

– Circulating current reaching the active line at lo-
cation x: Ja(x)dx,

– Circulating current reaching the passive line at lo-
cation x− l: Jp(x− l)dx.

As the active and passive waveguides have the same di-
mensions and physical properties, these currents will
generate a voltage Uind

2 . It yields the following relation
using Ohm’s law:

sC′dx
Uind

2
= Ja(x)dx+ Jp(x− l)dx− ∂ Ia(x)

∂x
dx. (A4)

• Currents flowing across the passive waveguide: let us
enumerate all the circulating currents flowing in the
passive waveguide along a radial portion of length dx:

– Active waveguide: generates no current across the
passive waveguide,

– Passive waveguide: From the telegrapher’s equa-
tions, a current −∂ Ip(x)

∂x dx flows in the parallel
branch of a cell of length dx,

– Circulating current reaching the active line at lo-
cation x: Ja(x)dx,

– Circulating current reaching the passive line at lo-
cation x: Jp(x)dx.

These currents will also generate a voltage Uind
2 . Using

Ohm’s law, it gives:

sC′dx
Uind

2
= Ja(x)dx+ Jp(x)dx−

∂ Ip(x)
∂x

dx. (A5)

Summing Eqs. A4 and A5 and dividing by dx allows to
retrieve Eq. A2.

A similar reasoning with currents balances but one half turn
upwards, as illustrated in Fig. 14b allows to retrieve Eq. A3.
One can then add up Eqs. A2 and A3 allows to obtain:

2sC′Uind = 3Jp +3Ja + Jp(x− l)+ Ja(x+ l)

−∂ Ia(x)
∂x

−2
∂ Ip

∂x
− ∂ Ia(x+ l)

∂x
. (A6)

This equation is then integrated from x = 0 to x = Nl. One can
notice that Ja(x) = 0 and Jp(x) = 0 for x < 0 and x > (N−1)l.
The same applies for waveguide currents: Ia(x) = 0 and
∂ Ia(x)

∂x = 0 if x < 0 and x > Nl and Ip(x) = 0 and ∂ Ip(x)
∂x = 0 if

x < 0 and x > (N−1)l.
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FIG. 14. Currents flowing through a portion dx of the active and passive waveguide at location x. A voltage Uind/2 is generated on each
waveguide. (a) Current balance to obtain Eq. A2. (b) Current balance to obtain Eq. A3.

These considerations allow to write:∫ Nl

0
Jp(x− l)dx =

∫ (N−1)l

−l
Jp(x)dx =

∫ Nl

0
Jp(x)dx,∫ Nl

0
Ja(x+ l)dx =

∫ (N+1)l

l
Ja(x)dx

=
∫ Nl

0
Ja(x)dx−

∫ l

0
Ja(x)dx,∫ Nl

0

∂ Ia(x+ l)
∂x

dx =
∫ (N+1)l

l

∂ Ia(x)
∂x

dx

= Ia(x = Nl)− Ia(x = 0)−
∫ l

0

∂ Ia(x)
∂x

dx

=−Is−
∫ l

0

∂ Ia(x)
∂x

dx.

The main error committed by Rühl and Herziger lies in this
step where they wrongly state that Ia(x = 0) = Is, hence
neglecting current in the passive waveguide.

Including these integrals in Eq. A6 and dividing by 2 yields:

sC′NlUind =2
∫ Nl

0
Ja(x)dx+2

∫ Nl

0
Jp(x)dx

− 1
2

∫ l

0

(
Ja(x)−

∂ Ia(x)
∂x

)
dx− Is.

Neglecting the integral ranging from x = 0 to x = l and re-
arranging the terms leads to:∫ Nl

0
Ja dx+

∫ Nl

0
Jp dx =

1
2
(
sC′NlUind + Is

)
.

Injecting this relation in A1 gives:

Uind =−sLturn

[
NIz +

1
2

sC′NlUind +
1
2

Is

]
.

After replacing Uout = NUind and Iz =
Uout

Z , one obtains:

Uout =
− 1

2 sIs
1

NLturn
+ 1

2 s2C′l + sN
Z

.

One can then define L = N2Lturn and C = C′l
2N , leading to the

transfer function proposed by Rühl and Herziger:

Uout(s) =
−sIs

2NC
(
s2 + s

ZC + 1
LC

) . (A7)

The next step is to use the waveguide equations to find a
way to express Is as a function of Uout . Using Ohm’s law on a
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portion dx of the active waveguide gives:

sC′dxUa(x,s) =−
∂ Ia(x,s)

∂x
dx+ Ja(x)dx+ Jp(x− l)dx.

(A8)

Assuming that the waveguide acts as the undisturbed
waveguide, one can write:

Ia(x,s) = I+e−γx− I−eγx,

with γ = s
√

L′C′ for a lossless waveguide. Using the bound-
ary condition Ia(Nl) = 0 allows to re-write the previous ex-
pression as:

Ia(x,s) = I+
(

e−γx− eγ(x−2Nl)
)
.

The next step is to inject this expression of Ia(x,s) in equa-
tion A8. The latter also contains Ja(x) and Jp(x) terms which
are unknown quantities. To overcome this issue, it is assumed
that the space derivative of circulating currents is negligible
and replace them by their mean value:

Ja(x)'
1

Nl

∫ Nl

0
Ja(x)dx,

Jp(x− l)' 1
Nl

∫ Nl

0
Jp(x− l)dx =

1
Nl

∫ Nl

0
Jp(x)dx.

One can then re-use equation A1 and try to make these Ja(x)
and Jp(x) integrals also appear:

Uout

N
=−sLturn

[
NIz +

∫ Nl

0
Ja dx+

∫ Nl

0
Jp dx

]
⇔
∫ Nl

0
Ja dx+

∫ Nl

0
Jp dx =

−1
sLturn

Uout

sN
−N

Uout

Z

⇔
∫ Nl

0
Ja dx+

∫ Nl

0
Jp dx'−NUout

[
1
sL

+
1
Z

]
.

Which means that the sum of the mean integral values of cir-
culating currents can be replaced as follows:

1
Nl

∫ Nl

0
Ja dx+

1
Nl

∫ Nl

0
Jp dx' −Uout

l

[
1
sL

+
1
Z

]
.

This last relation can be injected in equation A8 and one can
then solve for the I+ constant:

sC′Ua(x,s) =−
∂ Ia(x,s)

∂x
+ Ja(x)+ Jp(x− l)

⇔sC′Ua(x,s) = I+
[
γe−γx + γeγ(x−2Nl)

]
−Uout

l

[
1
sL

+
1
Z

]
⇔Ua(x,s) = Z0I+

[
e−γx + eγ(x−2Nl)

]
−Uout

sC′l

[
1
sL

+
1
Z

]
.

where Z0 =
√

L′
C′ =

γ

sC′ is the characteristic impedance of a
lossless waveguide. Using the boundary conditions at x = 0:

Ua(0,s) =
u0

s
−ZsIs =

u0

s
−ZsIa(0,s),

allows to solve for I+:

I+ =
u0
s + Uout

sC2N

( 1
sL + 1

Z

)
(1− e−sT )

(
Z0 coth

( sT
2

)
+Zs

) ,
which finally makes it possible to replace Is = Ia(x = 0) in the
transfer function Uout :

Is = I+
(

1− e−2γNl
)
= I+

(
1− e−sT )

⇔Is =
u0
s(

Z0 coth
( sT

2

)
+Zs

) + Uout
2Ns

( 1
sLC + 1

ZC

)(
Z0 coth

( sT
2

)
+Zs

) .
Calling A(s) = 1

s
1

(Z0 coth( sT
2 )+sLs)

, one can find the expression

of the output voltage Uout(s) by re-using Eq. A7:

Uout(s) =−
su0A(s)+ sUout

2N

( 1
sLC + 1

ZC

)
A(s)

2NC
(
s2 + 1

ZC s+ 1
LC

)
⇔Uout(s) =−

sA(s)u0

2NCs2 +
(

2NC− A(s)
2N

)( s
ZC + 1

LC

) . (A9)

The final step is to make the following dimensionless pa-
rameters appear:

• p = sT the Laplace variable,

• τa =
Ls

Z0T accounting for the effects of the switch,

• τ = T
ZC accounting for the effects of the output load,

• ω0 =
T√
LC

the dimensionless resonance frequency .

With this change of variable, A(s) becomes A(p):

A(s) =
1
s

1
Z0 coth

( sT
2

)
+ sLs

=
1
Z0

1

scoth
( sT

2

)
+ s2Ls

Z0

=
1
Z0

1
sT
T coth

( sT
2

)
+ s2LsT

Z0T

=
T
Z0

A(p).

To simplify calculations, one can use the following relation:

T
Z0

=
2Nl
√

L′C′√
L′
C′

= 2NlC′ = (2N)2C.

One then has:

Uout(s) =
−su0A(p)(2N)2C

2NCs2 +
(

2NC− (2N)2CA(p)
2N

)( s
ZC + 1

LC

)
⇔

Uout(p)

2Nu0T
=

1
T

−sA(p)
s2 +(1−A(p))

( s
ZC + 1

LC

)
⇔B(p) =

1
T 2

−pA(p)
p2

T 2 +(1−A(p))
(

τ p
T 2 +

ω2
0

T 2

) . (A10)
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Deepening the theoretical understanding of vector inversion generators 20

Which after cancellation of the T 2 terms is the final dimen-
sionless transfer function provided in the article:

B1(p) =
Uout

2Nu0T
=

−pA(p)
p2 +(1−A(p))

(
τ p+ω2

0

) , (A11)

with: A(p) = 1
pcoth( p

2 )+p2τa
.

Appendix B: Our complete mathematical developments

1. Considering the discharge of the passive waveguide

In our model, we took the discharge of the passive waveg-
uide into account. The difference when taking this discharge
into account is in the boundary conditions at x = 0. The new
set of boundary conditions is:


Ua(x = 0,s) = u0

s −ZsIs(s),
Up(x = 0,s) = −u0

s −ZsIs(s)−ZouterIp(x = 0,s),
Is(s) = Ia(x = 0,s)− Ip(x = 0,s).

Let us first see how it affects the first transfer function given
by Rühl and Herziger. When integrating the following relation
from x = 0 to x = Nl:

2sC′Uind = 3Jp +3Ja + Jp(x− l)+ Ja(x+ l)

−∂ Ia(x)
∂x

−2
∂ Ip

∂x
− ∂ Ia(x+ l)

∂x
.

the term Ia(x = 0) appeared. There is now a similar term
for the passive line. The rest of the development being un-
changed, the new transfer function is:

Uout(s) =
−s(Ia(x = 0)+ Ip(x = 0))

2NC
(
s2 + s

ZC + 1
LC

) . (B1)

One must now solve the wave equations in the active and pas-
sive waveguides to obtain an expression for the numerator. As
before, let us assume that the waveguides act as undisturbed
waveguides:

Ia(x,s) = Ia+

(
e−γx− eγ(x−2Nl)

)
,

Ip(x,s) = Ip+

(
e−γx− eγ(x−2Nl)

)
.

Similarly to what was done before, one must now find expres-
sions for Ua(x,s) and Up(x,s) by replacing the displacement
currents by their mean value. For Ua(x,s) it yields:

Ua(x,s) = Z0Ia+

(
e−γx + eγ(x−2Nl)

)
−Uout

C′l

(
1
sL

+
1
Z

)
For the sake if visibility, we define U∗out =

Uout
sC′l

( 1
sL + 1

Z

)
. Do-

ing the same for the passive waveguide finally gives the fol-

lowing set of equations:

Ua(x,s) = Z0Ia+

(
e−γx + eγ(x−2Nl)

)
−U∗out

s
,

Up(x,s) = Z0Ip+

(
e−γx + eγ(x−2Nl)

)
−U∗out

s
.

Using the boundary conditions at x = 0, one can obtain the
following set of equations and solve for Ia+ and Ip+:

Z0Ia+(1+ e−sT )−U∗out

s
=

u0

s
−ZsIa+

(
1− e−sT ) (B2)

+ZsIp+
(
1− e−sT ) ,

Z0Ip+(1+ e−sT )−U∗out

s
=
−u0

s
+ZsIa+

(
1− e−sT ) (B3)

−(Zs +Zouter)Ip+
(
1− e−sT ) .

From Eq. B2, one can obtain the following relation:

Ia+
(
1− e−sT

)[
Z0 coth

( sT
2

)
+Zs

]
= u0

s + U∗out
s +ZsIp+

(
1− e−sT

)
⇔ Ia+

(
1− e−sT

)
= A(s)u0 +A(s)U∗out

+ sZsA(s)Ip+
(
1− e−sT

)
, (B4)

in which we define A(s) = 1
s

1
Z0 coth( sT

2 )+Zs
.

Injecting Eq. B4 in Eq. B3 gives:

Ip+
[
Z0
(
1+ e−sT

)
+(Zs +Zouter)

(
1− e−sT

)]
=

−u0
s + U∗out

s +ZsA(s)u0 +ZsA(s)U∗out

+ sZ2
s A(s)Ip+

(
1− e−sT

)
⇔Ip+

(
1− e−sT

)[
Z0 coth

( sT
2

)
+(Zs +Zouter)− sZ2

s A(s)
]

= u0
(−1

s +ZsA(s)
)
+U∗out

( 1
s +ZsA(s)

)
. (B5)

Defining P(s) = 1
s

1
Z0 coth( sT

2 )+(Zs+Zouter)
to simplify Eq. B5

yields:

Ip+
(
1− e−sT )= u0

(−1
s +ZsA(s)

)
+U∗out

( 1
s +ZsA(s)

)
1

sP(s) − sZ2
s A(s)

⇔Ip+
(
1− e−sT )= u0 [−P(s)+ sZsA(s)P(s)]

1−Z2
s sA(s)sP(s)

+
U∗out [P(s)+ sZsA(s)P(s)]

1−Z2
s sA(s)sP(s)

, (B6)

which allows to find an expression for Ia+ by re-injecting
Eq. B6 in Eq. B4:

Ia+
(
1− e−sT )=u0 [A(s)− sZsA(s)P(s)]

1−Z2
s sA(s)sP(s)

+
U∗out [A(s)+ sZsA(s)P(s)]

1−Z2
s sA(s)sP(s)

.
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Deepening the theoretical understanding of vector inversion generators 21

With this, one can find a value for:

Ia(x = 0)+ Ip(x = 0) = Ia+
(
1− e−sT )+ Ip+

(
1− e−sT )

It gives:

Ia(x = 0)+ Ip(x = 0) = u0
A(s)−P(s)

1−Z2
s sA(s)sP(s)

+U∗out
A(s)+P(s)+2sZsA(s)P(s)

1−Z2
s sA(s)sP(s)

= u0 F(s)+U∗out G(s). (B7)

Eq. B7 can be re-injected in Ruhl’s modified equation of
Uout(s) (Eq. B1) to obtain the following transfer:

Uout(s) =
−su0F(s)

2NCs2 +
(

2NC− G(s)
2N

)( s
ZC + 1

LC

) . (B8)

The final step is to make dimensionless parameters appear
in the transfer function. As we now considered a new physi-
cal phenomenon, we need to define a parameter related to the
discharge of the passive waveguide: τp = Ls+Lturn

Z0T . This new
parameter is related to the other ones by the following rela-
tion:

τp =
Ls +Lturn

Z0T

⇔ τp =
Ls

Z0T
+

L
N2

Z0T

⇔ τp = τa +
L
T

1

N2
√

L′
C′

⇔ τp = τa +
L
T

√
C′

N2
√

L′

√
C′l√
C′l

4
4

⇔ τp = τa +
L
T

C′l
2N

1
2Nl
√

L′C′
4

⇔ τp = τa +4
LC
T 2

⇔ τp = τa +
4

ω2
0
. (B9)

Let us now see how F(s) and G(s) can be rendered dimen-
sionless:

F(s) =
A(s)−P(s)

1−Z2
s sA(s)sP(s)

=

T
Z0
(A(p)−P(p))

1− s2(sLs)2 T 2

Z2
0

A(p)P(p)

=
T
Z0

A(p)−P(p)

1− s4 T 2

Z2
0

L2
s A(p)P(p)

=
T
Z0

A(p)−P(p)
1− p4τ2

a A(p)P(p)

=
T
Z0

F(p),

G(s) =
A(s)+P(s)+2sZsA(s)P(s)

1−Z2
s sA(s)sP(s)

=
Num

Denom
,

Num =
T
Z0

A(p)+
T
Z0

P(p)−2ssLs
T 2

Z2
0

A(p)P(p)

=
T
Z0

[
A(p)+P(p)+2s2Ls

T
Z0

T
T

A(p)P(p)
]

=
T
Z0

[
A(p)+P(p)+2p2

τaA(p)P(p)
]
,

Denom = 1− s2(sLs)
2 T 2

Z2
0

A(p)P(p)

= 1− p4
τ

2
a A(p)P(p).

In the end, the dimensionless form of the transfer function
becomes:

B3(p) =
Uout

2Nu0T
=

−pF(p)
p2 +(1−G(p))

(
τ p+ω2

0

) (B10)

containing the following dimensionless functions:

A(p) =
1

pcoth
( p

2

)
+ p2τa

, (B11)

P(p) =
1

pcoth
( p

2

)
+ p2τp

, (B12)

F(p) =
A(p)−P(p)

1− p4τ2
a A(p)P(p)

, (B13)

G(p) =
A(p)+P(p)+2p2τaA(p)P(p)

1− p4τ2
a A(p)P(p)

. (B14)

The transfer function proposed by Bichenkov et al. can be
obtained with our approach by considering no current interac-
tion in the switch. This is valid when τa << 4

ω2 . One then has
the following set of boundary conditions:

Ua(x = 0,s) = u0
s −ZsIa(x = 0,s),

Up(x = 0,s) = −u0
s − (Zs +Zouter−turn)Ip(x = 0,s),

Is(s) = Ia(x = 0,s)− Ip(x = 0,s).

These conditions are easier to solve for Ia+ and Ia−. Doing the
algebra yields the following dimensionless transfer function:

B2(p) =
Uout

2Nu0T
=

−p(A(p)−P(p))
p2 +[1− (A(p)+P(p))]

(
τ p+ω2

0

) .
(B15)
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Note that Bichenkov et al. used a totally different approach,
based on electric fields and voltages rather than a magnetic
approach, but still obtained the exact same transfer function.

2. Considering resistive losses

Our major contribution to the modeling of VIGs is to make
it possible to account for resistive losses. Resistive losses are
present along the conductors and can be taken into account by
means of a resistance per unit length R′. Our model neglects
losses in the dielectric layer, but these losses could also be
considered by also adding a conductance per unit length G′ in
the waveguide equations. One can also consider the resistance
of the switch by adding resistive terms to Zs = sLs +Rs and
Zouter = sLouter + Router = sLouter + R′πD. The resulting
transfer function has a similar form as before:

B̃3(p) =
Uout

2Nu0T
=

−pF̃(p)
p2 +

(
1− G̃(p)

)(
τ p+ω2

0

) , (B16)

where the tilde quantities denote the fact that they have been
updated with additional terms to account for resistive losses.

The resistance per unit length of the conductors will only
modify A(s) and P(s) as the wave equations are modified. The
updated parameters of the waveguides are now:

• Z̃0 =
√

R′+sL′
sC′ =

√
L′
C′

√
1+ R′

sL′ ,

• γ̃ =
√

s2L′C′+ sR′C′ = s
√

L′C′
√

1+ R′
sL′ ,

• one still has the following relation: γ̃

sC′ = Z̃0.

Doing the algebra leads to the following waveguide current
responses:

Ã(s) =
1

s
[

Z̃0 coth
(

sT
2

√
1+ R′

sL′

)
+Zs

]
=

1

s
[√

L′
C′ ·
√

1+ R′
sL′ coth

(
sT
2

√
1+ R′

sL′

)
+Zs

] ,
P̃(s) =

1

s
[

Z̃0 coth
(

sT
2

√
1+ R′

sL′

)
+(Zs +Zouter)

]
=

1

s
[√

L′
C′ ·
√

1+ R′
sL′ coth

(
sT
2

√
1+ R′

sL′

)
+(Zs +Zouter)

] .
As far as Rs and Router are concerned, these quantities will

appear in all the parts of the developments that involves Zs and
Zouter, that is in A(s) and P(s) but also in the F(s) and G(s)
functions. Let us first focus on A(s) and P(s):

Ã(s) =
1

s
[√

L′
C′ ·
√

1+ R′
sL′ coth

(
sT
2

√
1+ R′

sL′

)
+ sLs +Rs

] ,
which we can, as before, try to turn into a dimensionless ex-
pression:

Ã(s) =
1√

L′
C′

· 1

s
√

1+ R′
sL′ coth

(
sT
2

√
1+ R′

sL′

)
+ s2Ls√

L′
C′

+ sRs√
L′
C′

,

which we can further simplify into:

Ã(s) =
T√

L′
C′

1

p
√

1+ ρ0
p coth

(
p
2

√
1+ ρ0

p

)
+ p2τa + pρa

=
T√

L′
C′

A(p),

with ρ0 =
R′T
L′ , τa =

Ls√
L′
C′ T

and ρa =
Rs√

L′
C′

.

A similar reasoning for P(s) yields:

P̃(s) =
T√

L′
C′

1

p
√

1+ ρ0
p coth

(
p
2

√
1+ ρ0

p

)
+ p2τp + pρp

=
T√

L′
C′

P̃(p),

with τp =
Ls+Louter√

L′
C′ T

and ρp =
Rs+Router√

L′
C′

.

The remaining step is to see how resistive losses affect F(s)
and G(s). F̃(s) = Ã(s)−P̃(s)

1−Z2
s sÃ(s)sP̃(s) =

Num
Denom , the numerator is al-

ready dealt with as the expressions of Ã(s) and P̃(s) have just
been established. One must only take care of the denominator
of F̃(s) to consider the change in Zs:

Denom = 1−Z2
s sÃ(s)sP̃(s)

= 1− T 2

L′
C′

s2 (sLs +Rs)
2 Ã(p)P̃(p)

= 1− T 2

L′
C′

s2 (s2L2
s +R2

s +2sLsRs
)

Ã(p)P̃(p)

= 1−

[
s2L2

s T 2

L′
C′

+
s2R2

s T 2

L′
C′

+
2s3LsRsT 2

L′
C′

]
Ã(p)P̃(p)

= 1−
[
p4

τ
2
a +2p3

ρaτa + p2
ρa
]

Ã(p)P̃(p).

And as G̃(s) = Ã(s)+P̃(s)+2sZsÃ(s)P̃(s)
1−Z2

s sÃ(s)sP̃(s) , the denominator is the
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same as before, one must just adapt the numerator of G̃(s):

Num = Ã(s)+ P̃(s)+2sZsÃ(s)P̃(s)

=
T√

L′
C′

Ã(p)+
T√

L′
C′

P̃(p)+2sZs
T 2

L′
C′

Ã(p)P̃p)

=
T√

L′
C′

Ã(p)+ P̃(p)+2s(sLs +Rs)
T√

L′
C′

Ã(p)P̃(p)


=

T√
L′
C′

[
Ã(p)+ P̃(p)+2

(
p2

τa + pρa
)

Ã(p)P̃p)
]
.

Appendix C: Expression of the current in the switch

It was stated above that Is(s) = Ia(x = 0,s)− Ip(x = 0,s).
The two contributions to the switch currents were also derived
in the mathematical development leading to the transfer func-
tion B(p):

Ia(x = 0,s) =
u0 [A(s)− sZsA(s)P(s)]

1−Z2
s sA(s)sP(s)

+
U∗out [A(s)+ sZsA(s)P(s)]

1−Z2
s sA(s)sP(s)

,

Ip(x = 0,s) =
u0 [−P(s)+ sZsA(s)P(s)]

1−Z2
s sA(s)sP(s)

+
U∗out [P(s)+ sZsA(s)P(s)]

1−Z2
s sA(s)sP(s)

.

Injecting U∗out =
Uout
sC′l

( 1
sL + 1

Z

)
= Uout

2N
1

sLC (with the last simpli-
fication holding when there is no load connected at the output
terminals of the generator) as well as assuming there is no re-
sistance in the switch (Zs = sLs) leads to:

Ia(x = 0,s) =u0

[
A(s)− s2L2

s A(s)P(s)
]

1− s4L2
s A(s)P(s)

+
Uout

2NsLC

[
A(s)+ s2LsA(s)P(s)

]
1− s4LsA(s)P(s)

,

Ip(x = 0,s) =u0

[
−P(s)+ s2LsA(s)P(s)

]
1− s4L2

s A(s)P(s)

+
Uout

2NsLC

[
P(s)+ s2LsA(s)P(s)

]
1− s4L2

s A(s)P(s)
.

The final step is to inject the following expression of Uout(s)
which was also obtained previously:

Uout(s) =
−su0F(s)

2NCs2 +
(

2NC− G(s)
2N

)( s
ZC + 1

LC

) .

This finally yields the following three expressions:

Is(s) =
u0

1− s4L2
s A(s)P(s)

A(s)+P(s)−2s2LsA(s)P(s)−
[A(s)−P(s)]2

1−s4L2
s A(s)P(s)

(2NC)2 (1+ sLC)− A(s)+P(s)+2s2LsA(s)P(s)
1−s4L2

s A(s)P(s)

 , (C1)

Ia(x = 0,s) =
u0

1− s4L2
s A(s)P(s)

A(s)− s2LsA(s)P(s)−
[A(s)−P(s)][A(s)+s2LsA(s)P(s)]

1−s4L2
s A(s)P(s)

(2NC)2 (1+ sLC)− A(s)+P(s)+2s2LsA(s)P(s)
1−s4L2

s A(s)P(s)

 , (C2)

Ip(x = 0,s) =
u0

1− s4L2
s A(s)P(s)

−P(s)+ s2LsA(s)P(s)−
[A(s)−P(s)][P(s)+sLsA(s)P(s)]

1−s4L2
s A(s)P(s)

(2NC)2 (1+ sLC)− A(s)+P(s)+2s2LsA(s)P(s)
1−s4L2

s A(s)P(s)

 . (C3)

To consider resistive losses in the conductors, one can simply replace A(s) by Ã(s) and P(s) by P̃(s).

Performing a similar mathematical development with the boundary conditions used by Bichenkov et al. leads to the following
three expressions:

Is(s) = u0

[
A(s)+P(s)− [A(s)−P(s)]2

(2NC)2 (1+ sLC)−A(s)+P(s)

]
, (C4)

Is(s) = u0

[
A(s)− [A(s)−P(s)]A(s)

(2NC)2 (1+ sLC)−A(s)+P(s)

]
, (C5)
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Is(s) = u0

[
−P(s)− [A(s)−P(s)]P(s)

(2NC)2 (1+ sLC)−A(s)+P(s)

]
. (C6)
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