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A B S T R A C T

Background: Characterization of normal arousal states has been achieved by fitting predictions of corti-
cothalamic neural field theory (NFT) to electroencephalographic (EEG) spectra to yield relevant physiological
parameters.
New Method: A prior fitting method is extended to distinguish conscious and unconscious states in healthy
and brain injured subjects by identifying additional parameters and clusters in parameter space.
Results: Fits of NFT predictions to EEG spectra are used to estimate neurophysiological parameters in healthy
and brain injured subjects. Spectra are used from healthy subjects in wake and sleep and from patients with
unresponsive wakefulness syndrome, in a minimally conscious state (MCS), and emerged from MCS. Subjects
cluster into three groups in parameter space: conscious healthy (wake and REM), sleep, and brain injured. These
are distinguished by the difference 𝑋 − 𝑌 between corticocortical (𝑋) and corticothalamic (𝑌 ) feedbacks, and
by mean neural response rates 𝛼 and 𝛽 to incoming spikes. 𝑋 − 𝑌 tracks consciousness in healthy individuals,
with smaller values in wake/REM than sleep, but cannot distinguish between brain injuries. Parameters 𝛼 and
𝛽 differentiate deep sleep from wake/REM and brain injury.
Comparison with existing methods: Other methods typically rely on laborious clinical assessment, manual
EEG scoring, or evaluation of measures like 𝛷 from integrated information theory, for which no efficient
method exists. In contrast, the present method can be automated on a personal computer.
Conclusion: The method provides a means to quantify consciousness and arousal in healthy and brain injured
subjects, but does not distinguish subtypes of brain injury.
1. Introduction

One operational definition of consciousness is the presence of sub-
jective experiences (Edelman, 2003; Metzinger, 1995, 2000). Con-
sciousness is present during wakefulness and dreaming, and is also
experienced by patients suffering from the ‘‘locked-in syndrome’’, ones
who are in a minimally conscious state (MCS) (Laureys et al., 2004,
2009), or those who have emerged from MCS (EMCS). Conscious-
ness subsides in dream-free sleep states and is restored on waking.
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However, the appearance of wakefulness does not always guarantee
a conscious experience; a subject can demonstrate opening of the
eyes, but completely lack cognitive function, such as in the ‘‘unrespon-
sive wakefulness syndrome’’ (UWS), also referred to as the vegetative
state (Laureys et al., 2004, 2009, 2010; Bruno et al., 2011; Gosseries
et al., 2011a). In MCS, patients have partial preservation of conscious
awareness (Laureys et al., 2004; Bruno et al., 2011). Patients emerged
from the MCS (EMCS) recover functional communication or object
use (Giacino et al., 2004). In reality, there exists a spectrum of arousal
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and awareness, where the two are not necessarily correlated. It is
thus important not only for diagnostic purposes, but also for gauging
the effectiveness of anesthesia during surgery, to reliably measure the
level of consciousness independent of a subject’s arousal level and
responsiveness (Mashour et al., 2012; Sanders et al., 2012).

The Integrated Information Theory (IIT) (Koch et al., 2016; Tononi
et al., 2016), the Global Neuronal Workspace Theory (Baars, 2002;
Dehaene et al., 2003), and cognitive binding (Revonsuo and Newman,
1999), are attempts at characterizing the neural basis of consciousness.
IIT proposes a quantitative measure, denoted 𝛷, of the amount of
integrated information in a physical system, which is postulated to
be closely correlated with consciousness (Tononi, 2008, 2012; Oizumi
et al., 2014). However, it has been argued that given the richness of
conscious experience, any theory that quantifies the level of conscious-
ness with a single measure is likely to be overly simplified and, as a
result, limited in its scope (Seth et al., 2006, 2008; Freeman, 2007).
Instead it has been suggested that multiple quantitative measures would
more appropriately characterize the relevant complexity of the neural
systems underlying consciousness (Seth et al., 2006, 2008; Freeman,
2007).

To achieve practical relevance for studying the human brain, mea-
sures of consciousness must be calculable from experimental record-
ings. Signal analysis methods are commonly applied to the electroen-
cephalogram (EEG) to compute complexity measures that correlate
with levels of consciousness (Kim et al., 2018; Gosseries et al., 2011b;
Nunez and Srinivasan, 2006). Examples include the perturbational
complexity index (PCI), a measure of the algorithmic complexity of
cortical EEG in response to a strong localized stimulus delivered by
transcranial magnetic stimulation (TMS) (Casali et al., 2013; Casarotto
et al., 2016; Bodart et al., 2017), and the bispectral index, which is used
to monitor depth of anesthesia during surgery (Gan et al., 1997; Myles
et al., 2004). The main shortcoming of purely signal analysis methods
is that they do not take into account the brain physiology and anatomy
that actually underlie states of consciousness and generate observed
EEG signals.

Supported by significant evidence of altered consciousness stem-
ming primarily from human lesion and neuroimaging studies, corti-
cothalamic network function is understood to be essential for con-
sciousness (Sanders et al., 2012; Laureys et al., 2009; Laureys and
Schiff, 2012), although other structures, such as the basal forebrain,
are also indispensible for wakefulness (Fuller et al., 2011). In particular,
breakdown of functional connectivity in the corticothalamic system has
been associated with diminished levels of consciousness, including in
sleep, deep anesthesia, and patients with UWS (Tononi et al., 2016;
Laureys et al., 2009; Guldenmund et al., 2017; Boveroux et al., 2010).
When estimated indirectly by signal analysis methods, it is found that
the amount of integrated information is also noticeably reduced in these
states (Casali et al., 2013; Kim et al., 2018).

Physiologically based models of brain activity have been developed
using neural field theory (NFT), which averages over microscale neural
properties to predict activity at scales of a few tenths of a millimeter
and above (Deco et al., 2008). NFT of the corticothalamic (CT) system
has been used to predict EEG spectra, with the results extensively
verified against experiment (Robinson et al., 2001, 2002, 2004; Robin-
son, 2005; Rowe et al., 2004; van Albada et al., 2010). It has also
been used to investigate the alpha rhythm (O’Connor and Robinson,
2004; Robinson, 2003), age-related changes to the physiology of the
brain (van Albada et al., 2010), evoked response potentials (Rennie
et al., 2002; Zobaer et al., 2018), neuroplasticity (Robinson, 2011;
Assadzadeh and Robinson, 2018), and many other phenomena. The
model accurately predicts EEG activity from physiologically-based pa-
rameters that correspond to experimentally measurable quantities in
the brain, including parameters of the CT system across wake, REM,
and NREM sleep. Conversely, its predictions can be fitted to exper-
imental EEG spectra to estimate physiological parameters and track
2

brain state (Abeysuriya et al., 2015; Abeysuriya and Robinson, 2016;
Robinson, 2003, 2005; Rowe et al., 2004; van Albada et al., 2010);
these estimates are consistent with a range of experimental EEG-related
phenomena and independent physiological estimates (Robinson et al.,
2004; Rowe et al., 2004). A key advantage of model-based classification
is that, unlike blind signal analysis or statistical classifiers, the model
parameters relate explicitly to the properties of the physical system that
produces the signals.

In this work we develop a method to classify consciousness states by
fitting the predictions of the above established corticothalamic model
to data from EEG recordings from healthy controls, and subjects with
severe brain injury, including UWS, MCS, and EMCS. These fits allow us
to estimate parameters of the CT system of each subject. We use these
estimates together with fits to healthy subjects’ sleep and wake EEGs in
order to extend previous analyses of arousal states to identify potential
measures of consciousness derived from the fitted model parameters
that are closely linked to corticothalamic dynamics. We then test how
well these measures enable us to generalize our methods to distinguish
different states of consciousness in healthy subjects and those with
impaired consciousness. This study is designed to identify both robust
measures and other promising ones that can later be further verified
when additional brain injured subjects’ data become available.

The structure of the paper is as follows: In the Theory and Methods
section we present the mathematical framework of neural field theory
(NFT), the corticothalamic model, and the methods used to estimate pa-
rameters. In the Results section we show that specific quantities derived
from the model parameters can differentiate consciousness or its lack
thereof in healthy individuals between wake/REM and NREM sleep,
and distinguish healthy controls (across both wake and sleep) from
brain patients with severe brain injury. The Discussion and Conclusions
section summarizes and discusses the main outcomes of the work, along
with future directions.

2. Theory and methods

In this section we briefly review neural field theory (NFT), the
corticothalamic (CT) system, prediction of resulting EEG activity, and
the algorithm used to fit the model to EEG data (Robinson et al.,
1998, 2002, 2004; Rennie et al., 2002; Rowe et al., 2004; Abeysuriya
and Robinson, 2016; Deco et al., 2008; Roberts and Robinson, 2012).
Because these methods are unfamiliar to many researchers, sufficient
detail is given to make the material reasonably self-contained.

2.1. Neural field model

The brain contains multiple distinguishable populations of neurons,
which are labeled in the present work by a subscript 𝑎 that designates
the structure in which the population lies and/or the neurotransmitter
it expresses. Neural properties are averaged over scales of ∼ 0.1 mm,
resulting in mean-field quantities that obey NFT equations.

At a position 𝐫 and time 𝑡 inputs from afferent neuronal popula-
tions 𝑏 drive synaptic dynamics in neurons 𝑎 that cause postsynaptic
potential changes. These changes propagate through dendrites to the
soma, causing changes in the mean soma potential 𝑉𝑎(𝐫, 𝑡) of neurons
𝑎, measured relative to resting, which approximately obey the equation
(Rennie et al., 2002)

𝛼𝛽𝑉𝑎(𝐫, 𝑡) =
∑

𝑏
𝜈𝑎𝑏𝜙𝑏(𝐫, 𝑡 − 𝜏𝑎𝑏), (1)

where 𝛼𝛽 is defined by

𝛼𝛽 = 1
𝛼𝛽

𝑑2

𝑑𝑡2
+
(

1
𝛼
+ 1

𝛽

)

𝑑
𝑑𝑡

+ 1, (2)

where 1∕𝛽 and 1∕𝛼 are characteristic rise and decay times of the
potential due to an impulse at a synapse and 𝛽 ≥ 𝛼. The right of Eq. (1)
describes the influence of the pulse rates 𝜙𝑏 arriving at population 𝑎
from neuronal populations 𝑏, in general delayed by a time 𝜏𝑎𝑏 when
there are discrete anatomical separations between different structures.
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The average connection strength of synapses to population 𝑎 from
population 𝑏 is 𝜈𝑎𝑏 = 𝑁𝑎𝑏𝑠𝑎𝑏, where 𝑠𝑎𝑏 is the time-integrated response
in neurons of type 𝑎 to a unit signal from neurons of type 𝑏 (negative for
inhibitory synapses) and 𝑁𝑎𝑏 is the mean number of synapses (Rennie
et al., 2002; Robinson et al., 2002, 2004).

According to Eqs. (1) and (2), the response at the cell body at time
𝑡 to a delta-function input to the dendrites at time 𝑡′ is (Robinson et al.,
2002)

𝐿(𝑢) =
𝛼𝛽

𝛽 − 𝛼
(

𝑒−𝛼𝑢 − 𝑒−𝛽𝑢
)

, (3)

here 𝑢 = 𝑡 − 𝑡′. This form is the integral kernel that corresponds
o the differential operator in Eq. (2) and is a good approximation
o the soma response seen experimentally; it summarizes the com-
ined timescales of synaptic dynamics, dendritic propagation, and soma
harging/discharging (Robinson et al., 1998, 2001, 2002, 2004; Rennie
t al., 2002).

Action potentials are produced when the soma potential 𝑉𝑎 exceeds
threshold 𝜃, with a rate 𝑄𝑎 that rises steeply with 𝑉𝑎 before leveling

ff. In a population, this dependence is smeared out by differences
n individual neurons and their environments to yield the average
esponse function (Freeman, 1975; Robinson et al., 1998, 2002, 2004)

𝑎(𝐫, 𝑡) = 𝑆
[

𝑉𝑎(𝐫, 𝑡)
]

, (4)

here 𝑆 is a sigmoid function that increases from 0 to 𝑄ma𝑥 as 𝑉𝑎
ncreases from −∞ to +∞. We approximate this function by
[

𝑉𝑎(𝐫, 𝑡)
]

=
𝑄max

1 + exp
{

−
[

𝑉𝑎(𝐫, 𝑡) − 𝜃
]

∕𝜎′
} , (5)

where we assume a common mean neural firing threshold 𝜃 relative
to resting, with 𝜎′𝜋∕

√

3 being its standard deviation (Robinson et al.,
2002, 2004; Rowe et al., 2004).

Each neuronal population 𝑎 produces a field 𝜙𝑎 of pulses, that
ravels to other neuronal populations at a velocity 𝑣𝑎 through axons
ith a characteristic range 𝑟𝑎. This spreading activity dissipates if not

egenerated and approximately obeys the damped wave equation (Jirsa
nd Haken, 1996; Robinson et al., 1998, 2002, 2004; Rowe et al., 2004)

𝑎𝜙𝑎(𝐫, 𝑡) = 𝑄𝑎(𝐫, 𝑡), (6)

𝑎 =
1
𝛾2𝑎

𝜕2

𝜕𝑡2
+ 2

𝛾𝑎
𝜕
𝜕𝑡

+ 1 − 𝑟2𝑎∇
2, (7)

here the damping coefficient is 𝛾𝑎 = 𝑣𝑎∕𝑟𝑎. Eqs. (1)–(7) form a
losed nonlinear set, which can be solved numerically or examined
nalytically in the linear limit (Rennie et al., 2002; Rowe et al., 2004;
obinson et al., 1998, 2002, 2004).

Stable steady state solutions of the above equations are interpreted
s representing the baseline of background brain activity (defined to
xclude paroxysmal states such as seizures, but to include the baselines
f states of impaired consciousness considered here). These steady
tates have been found to have firing rates that are in accord with
xperiments on normal subjects (Deco et al., 2008; Robinson et al.,
002, 2004), with time dependent brain activity arising from the
erturbations. Spatially uniform steady states are obtained by setting
ll derivatives in Eqs. (1)–(7) to zero. Previous work has successfully
odeled normal brain states as lying in the linear regime (Roberts

nd Robinson, 2012; O’Connor and Robinson, 2004; Robinson et al.,
002, 2004; Robinson, 2003), allowing observable quantities such as
ransfer functions, spectra, and correlation and coherence functions to
e expressed analytically. Thus, we linearize Eq. (5) by considering only
irst-order perturbations and write

(𝐫, 𝑡) −𝑄(0) ≈ 𝜌
[

𝑉 (𝐫, 𝑡) − 𝑉 (0)] , (8)
3

𝑎 𝑎 𝑎 𝑎 𝑎
here

𝑎 =
𝑑𝑆(𝑉𝑎)
𝑑𝑉𝑎

|

|

|

|𝑉𝑎=𝑉
(0)
𝑎

. (9)

From now on we consider only perturbations from steady states.
q. (9) then yields
(1)
𝑎 (𝐫, 𝑡) = 𝜌𝑎𝑉

(1)
𝑎 (𝐫, 𝑡), (10)

here 𝑄(1)
𝑎 and 𝑉 (1)

𝑎 are perturbations (Robinson et al., 2002, 2004).
The Fourier transform Eqs. (1)–(10) yields the following spectral

epresentation of activity (Deco et al., 2008):
(1)
𝑎 (𝐤, 𝜔) =

∑

𝑏
𝐿(𝜔)𝑒𝑖𝜔𝜏𝑎𝑏𝐺𝑎𝑏𝛤

(0)
𝑎 (𝐤, 𝜔)𝜙(1)

𝑏 (𝐤, 𝜔); (11)

(𝜔) =
(

1 − 𝑖𝜔
𝛼

)−1
(

1 − 𝑖𝜔
𝛽

)−1
, (12)

𝛤 (0)
𝑎 =

[

(

1 − 𝑖𝜔
𝛾𝑎

)2
+ 𝑘2𝑟2𝑎

]−1

, (13)

where 𝐤 and 𝜔 are the wave vector (with magnitude 𝑘 = 2𝜋∕𝜆 where
𝜆 is the wavelength) and angular frequency (𝜔 = 2𝜋𝑓 where 𝑓 is the
frequency in Hz), respectively and 𝐿(𝜔) and 𝛤 (0)

𝑎 are derived from the
Fourier transforms of the differential operators defined in Eqs. (2) and
(7), respectively; 𝐿(𝜔) embodies the low-pass filter characteristics of
local dynamics (Abeysuriya et al., 2015; Kerr et al., 2008; Roberts and
Robinson, 2012; Robinson et al., 2002, 2004). The gains are defined by
𝐺𝑎𝑏 = 𝜌𝑎𝜈𝑎𝑏 = 𝜌𝑎𝑁𝑎𝑏𝑠𝑎𝑏 and denote the differential response in neurons
𝑎 per unit input from neurons 𝑏.

2.2. Corticothalamic model and EEG power spectrum

The corticothalamic model used here describes the interactions of
four populations: cortical excitatory (𝑒), cortical inhibitory (𝑖), thalamic
reticular (𝑟), and thalamic relay (𝑠) (Rowe et al., 2004; Roberts and
Robinson, 2012), whose connectivity is shown in Fig. 1. The system
is driven by external stimuli 𝜙𝑛 to the thalamic relay nuclei, which
project to the thalamic reticular nucleus and the cortex. The long
range cortical axons connect distant regions of the cortex, while some
excitatory axons connect the cortex to the thalamic populations 𝑟 and
𝑠. The populations 𝑖 and 𝑟 are inhibitory, so 𝑟 and 𝑖 projections suppress
activity in the relay nuclei (𝑠) and the cortex, respectively.

Eq. (11) for the CT system gives four simultaneous equations de-
scribing the pulse rates 𝜙𝑒, 𝜙𝑖, 𝜙𝑟, and 𝜙𝑠 in terms of incoming ac-
tivity from other populations and the external stimulus 𝜙𝑛. Synapses
projecting to the cortex have the same chance per target neuron of
terminating on an inhibitory or excitatory neuron (random connectiv-
ity) (Braitenberg and Schüz, 1998; Wright and Liley, 1996). Using this
simplification (i.e., 𝜈𝑖𝑏 = 𝜈𝑒𝑏), we can eliminate 𝜙𝑖, 𝜙𝑟, and 𝜙𝑠 to obtain
the transfer function to 𝜙𝑒, with (Robinson et al., 2002, 2004, 1998)
𝜙𝑒(𝐤, 𝜔)
𝜙𝑛(𝐤, 𝜔)

=
𝐺𝑒𝑠𝑛exp(𝑖𝜔𝑡0∕2)

(1 − 𝐺𝑠𝑟𝑠𝐿2)(1 − 𝐺𝑒𝑖𝐿)(𝑘2𝑟2𝑒 + 𝑞2𝑟2𝑒 )
, (14)

𝑞2𝑟2𝑒 =
(

1 − 𝑖𝜔
𝛾𝑒

)2
− 1
1 − 𝐺𝑒𝑖𝐿

{

𝐿𝐺𝑒𝑒 +

[

𝐿2𝐺𝑒𝑠𝑒 + 𝐿3𝐺𝑒𝑠𝑟𝑒
]

𝑒𝑖𝜔𝑡0

1 − 𝐿2𝐺𝑠𝑟𝑠

}

, (15)

where 𝐺𝑒𝑠𝑛 = 𝐺𝑒𝑠𝐺𝑠𝑛 is the overall gain along the path from exter-
nal inputs to the cortex, and the quantities 𝐺𝑒𝑠𝑒 = 𝐺𝑒𝑠𝐺𝑠𝑒, 𝐺𝑒𝑠𝑟𝑒 =
𝐺𝑒𝑠𝐺𝑠𝑟𝐺𝑟𝑒, and 𝐺𝑠𝑟𝑠 = 𝐺𝑠𝑟𝐺𝑟𝑠 correspond to the overall gains for the
excitatory corticothalamic, inhibitory corticothalamic, and intracorti-
cothalamic loops, respectively. The EEG power spectrum 𝑃 (𝜔) can then
be calculated by integrating |𝜙𝑒(𝐤, 𝜔)|2 over 𝐤. Because of its finite size
the cortex is approximated here as a rectangular sheet and periodic
boundary conditions are imposed to speed numerical computation of
model spectra, but this approximation does not change the results
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Fig. 1. Structure of the corticothalamic system. Connections are represented by arrows
that show connectivity between the cortical excitatory (𝑒) and inhibitory (𝑖), and
thalamic relay (𝑠) and reticular (𝑟) populations. Inhibitory connections are shown
dotted (Rennie et al., 2002).

significantly (Robinson et al., 2001). This yields (Robinson et al., 2001,
2002, 2004)

𝑃 (𝜔) =
∞
∑

𝑚=−∞

∞
∑

𝑛=−∞
|𝜙𝑒(𝑘𝑥, 𝑘𝑦, 𝜔)|

2𝐹 (𝑘)𝛥𝑘𝑥𝛥𝑘𝑦, (16)

𝑘𝑥 = 2𝜋𝑚
𝐿𝑥

, 𝑘𝑦 =
2𝜋𝑛
𝐿𝑦

, 𝑘 =
√

𝑘2𝑥 + 𝑘2𝑦, (17)

where 𝐿𝑥 × 𝐿𝑦 is the size of the two-dimensional rectangular cortex,
with 𝐿𝑥 = 𝐿𝑦 = 0.5 m (Abeysuriya et al., 2015). The electrical activity
of the cortex is spatially smoothed by volume conduction within the
head when measured on the scalp, which reduces the power in spatial
modes with large 𝑘. This effect is approximated by multiplying by the
filter function

𝐹 (𝑘) = 𝑒−𝑘
2∕𝑘20 , (18)

with 𝑘0 ≈ 10 m−1 as the state-independent low-pass cutoff (Srinivasan
et al., 1998; Robinson, 2003; Nunez and Srinivasan, 2006). The model
power spectrum has been shown to match closely with EEG spectral
data (Robinson et al., 2002; van Albada et al., 2010; Abeysuriya et al.,
2015). The characteristic shape of the EEG power spectrum then de-
pends on 𝑘0, the temporal parameters 𝛼, 𝛽, 𝛾, and 𝑡0, and the gains 𝐺𝑒𝑒,
𝐺𝑒𝑖, 𝐺𝑒𝑠𝑒, 𝐺𝑒𝑠𝑟𝑒, and 𝐺𝑠𝑟𝑠.

2.3. Stability

The stability of the CT system can be directly determined from
the denominator in Eq. (14), whose zeros are the solutions of the
system dispersion relation (Robinson et al., 2002; Rennie et al., 2002;
Abeysuriya et al., 2015)

(1 − 𝐿2𝐺𝑠𝑟𝑠)(1 − 𝐺𝑒𝑖𝐿)(𝑘2𝑟2𝑒 + 𝑞2𝑟2𝑒 ) = 0. (19)

The system is stable if all the zeros 𝜔0 of Eq. (20) satisfy Im(𝜔0) < 0.
Stable brain states can be represented in a three-dimensional space,

which is easier to visualize than the five-dimensional set of gains
in the full linear model (Robinson et al., 2002, 2004; Roberts and
4

Robinson, 2012; Abeysuriya et al., 2015). The reduced parameters
enable simplified insights into the locations of stability boundaries,
from which strengths of resonances, damping, and general features of
the power spectrum can be determined. These three dimensions are
defined by

𝑋 =
𝐺𝑒𝑒

1 − 𝐺𝑒𝑖
, (20)

𝑌 =
𝐺𝑒𝑠𝑒 + 𝐺𝑒𝑠𝑟𝑒

(1 − 𝐺𝑠𝑟𝑠)(1 − 𝐺𝑒𝑖)
, (21)

𝑍 = −𝐺𝑠𝑟𝑠 =
(𝛼 + 𝛽)2

𝛼𝛽
𝑍, (22)

where the auxiliary quantity 𝑍 is introduced for brevity; 𝑋, 𝑌 , and
𝑍 parametrize corticocortical, corticothalamic, and intrathalamic loop
strengths, respectively. The gains 𝐺𝑒𝑖 and 𝐺𝑠𝑟 are negative because they
correspond to inhibitory connections between their respective popula-
tions, while the remaining gains are positive. The quantities 𝑋 and 𝑍
are therefore positive, whereas 𝑌 can be positive or negative depend-
ing on the balance between excitatory and inhibitory corticothalamic
feedback.

By substituting the parameters 𝑋, 𝑌 , and 𝑍 into Eq. (20) we find

0 =
(

1 − 𝑖𝜔
𝛾

)2
−𝑋 −

𝑌 (1 − 𝐺𝑠𝑟𝑠)

1 + 𝐿2𝑍
𝑒𝑖𝜔𝑡0 . (23)

This equation has been widely employed to determine the locations of
stability boundaries in the reduced 3D space, and provides relatively
simple semiquantitative guidance and insights into low-frequency cor-
ticothalamic instabilities and the roles of feedback loops in producing
them (Robinson et al., 2002; Kerr et al., 2008; Roberts and Robinson,
2012). It is strictly valid in the low-frequency limit 𝜔 ≪ 𝛼, 𝛽, 𝛾, but
there are only moderate changes to the shape of the stability zone
shown in Fig. 2 so long as 𝜔 ≲ 𝛼, 𝛽, 𝛾, a point previously discussed
with regard to cortical dynamics (Robinson et al., 1998, 2002).

Only a few global instabilities occur at small 𝜔, which can easily
be visualized in 𝑋𝑌𝑍 space (Robinson et al., 1998, 2002; Roberts
and Robinson, 2012) which highlights the roles of the three feedback
loops in determining stability. To approximate the locations of stability
boundaries, we first set 𝐿 = 1 in the numerators of the terms in Eq. (24).
This has the effect of enhancing the size of terms that would otherwise
be more strongly low-pass-filtered; however, it makes only moderate
quantitative differences to the stability zone (Roberts and Robinson,
2012; Robinson et al., 2002). However, the frequency dependence of
𝐿 must be retained in the denominator 1 −𝐿2𝐺𝑠𝑟𝑠, which has a zero at
the spindle frequency 𝜔 = (𝛼𝛽)1∕2 for 𝐺𝑠𝑟𝑠 = −(𝛼 + 𝛽)2∕(𝛼𝛽) (Robinson
et al., 2004, 2002; Zobaer et al., 2018). The boundaries in 𝑋𝑌𝑍 space
of the stable zone are defined by the first instability to set in as
one moves out from the origin. Analysis of stability of perturbations
relative to the steady state that represents normal activity finds just
four global instabilities for 𝑘 = 0, each defining one boundary in
Fig. 2 (Breakspear et al., 2006; Robinson et al., 2001, 2002, 2004).
The boundary at 𝑋 + 𝑌 = 1 is due to a slow-wave instability at
𝜔 = 0, caused by the disappearance of the system’s fixed point
via a saddle–node bifurcation (Robinson et al., 2002; Roberts and
Robinson, 2012). The right boundary is defined by an alpha instability
at ∼ 10 Hz, via a subcritical Hopf bifurcation; the top boundary is
determined by the occurrence of an intrathalamic spindle instability
at 𝜔 = (𝛼𝛽)1∕2; the left boundary corresponds to an instability that
sets in via a supercritical Hopf bifurcation (Breakspear et al., 2006;
Robinson et al., 2002), with a theta–delta band frequency of 3 – 6
Hz toward the rear, falling toward 0 Hz at the front as the slow-wave
boundary is approached (Robinson et al., 2002; Zobaer et al., 2018).
These instabilities have previously been associated with pathological
paroxysmal brain activity, including epileptic seizures (Robinson et al.,
2002; Breakspear et al., 2006; Roberts and Robinson, 2012) but not the
relatively quiescent pathological states considered here. Stable brain
states must lie in the stability zone (Robinson et al., 2002; Abeysuriya
et al., 2015).
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Fig. 2. Stability zone in the reduced CT model for 𝛼 = 45 s−1, 𝛽 = 185 s−1, 𝛾 = 116 s−1, and 𝑡0 = 80 ms. (Robinson et al., 2002; Roberts and Robinson, 2012). Colors indicate the
dominant resonances close to the instability boundary, as labeled, with the front right-hand face (𝑋 + 𝑌 = 1 plane) left unshaded.
Fig. 3. Summary of the methodology and aims of the present paper. EEG artifacts are removed from raw data obtained from patients by rejecting epochs that exceed the voltage
or power thresholds determined by the statistics of the data (Abeysuriya and Robinson, 2016). Corticothalamic NFT is used to predict EEG spectra, which are fitted to experimental
spectra (Robinson et al., 2004; Abeysuriya et al., 2015). The fits are used to estimate neurophysiological parameters of the corticothalamic system, which are compared across
states of consciousness.
2.4. Fitting and state tracking

We now briefly review the methods used to fit the model to ex-
perimental EEG data (Abeysuriya and Robinson, 2016; Robinson et al.,
2004). The method uses the Metropolis–Hastings (MH) Markov chain
Monte Carlo (MCMC) algorithm (Metropolis et al., 1953; Hastings,
1970). Our approach, discussed below, is summarized in Fig. 3.

Before fitting the model spectrum, we need to take into account
the electromyogram (EMG) component of the experimental signals.
Activity in pericranial muscles results in the EMG which increases
5

EEG power at frequencies above ∼ 25 Hz. Hence, we include an
EMG component 𝑃EMG in the model power spectrum (Abeysuriya and
Robinson, 2016; Rowe et al., 2004):

𝑃total(𝜔) =𝑃 (𝜔) + 𝑃EMG(𝜔), (24)

𝑃EMG(𝜔) =𝐴EMG
(𝜔∕2𝜋𝑓EMG)2

[

1 + (𝜔∕2𝜋𝑓EMG)2
]2
. (25)

The units of 𝑃 (𝜔) in Eq. (17) are s−1, because ∫ 𝑃 (𝜔)𝑑𝜔 has the same
units as

[

𝜙 (𝑡)
]2, and 𝜙 (𝑡) has units s−1. Thus the units of 𝑃 (𝜔)
𝑒 𝑒 total
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and 𝐴EMG are also s−1. Because the experimental power spectrum has
nits V2 s, it is obtained by multiplying 𝑃total(𝜔) by a dimensional
onstant (Robinson et al., 2001, 2004). Experimental ranges for 𝐴EMG
nd 𝑓EMG are listed in Table 2.

Let 𝐱opt be the vector of parameter values that yields the best
atch to the experimental power spectrum 𝑃 exp. The goodness of fit

s characterized by the weighted squared fractional difference between
he model prediction 𝑃 (𝐱) and 𝑃 exp, written as

2(𝐱) =
∑

𝑗
𝑊𝑗

|

|

|

|

|

𝑃𝑗 (𝐱) − 𝑃 exp
𝑗

𝑃 exp
𝑗

|

|

|

|

|

2

, (26)

here 𝑗 labels the frequency components of the fast Fourier transform.
he function 𝑊𝑗 ∝ 𝑓−1

𝑗 provides equal weighting for each frequency
ecade (Rowe et al., 2004) to compensate for the larger number of
oints per decade at high frequencies.

The MH algorithm is used to generate samples of a posterior distri-
ution 𝑝(𝐱|𝑃 exp), which is maximal at 𝐱opt and not known in advance.
e write the posterior distribution as

(𝐱|𝑃 exp) ∝ 𝐿(𝐱), (27)

(𝐱) = exp
[

−𝜒2(𝐱)
2

]

, (28)

here the likelihood function 𝐿(𝐱) is maximal when 𝜒2 is minimized
t 𝐱opt . Samples are generated using a random walk, with increments
ampled from a normal distribution centered at 𝐱𝑖 (proposal distribu-

tion) and the next step𝐱𝑖+1 is accepted with probability 𝑝(𝐱𝑖+1)∕𝑝(𝐱𝑖).
he set of successively accepted 𝐱𝑖 traversed by the walk defines a
hain of points in parameter space, whose distribution of the parameter
alues converges to 𝑝(𝐱|𝑃 exp) as the chain grows longer. A total of 104
oints are sampled by the chain with the first 10% discarded to exclude
ransients.

To track temporal changes in parameters, and thus the brain state,
ayes’s theorem is applied, which uses the posterior distribution of each
it as the prior distribution of the next fit; i.e.,

𝑡+1(𝐱) ∝ 𝐿(𝐱)𝑝𝑡(𝐱). (29)

pdating the priors at successive fits reduces the sensitivity of the fits
o rapid changes in the spectrum, which are more likely to be due to
oise than true state changes. This also increases the efficiency of the
ethod by narrowing down the parameter space from which the next

et of parameters is sampled.

.5. Data acquisition and preprocessing

Patients with severe brain injuries were diagnosed according to
he best out of five Coma Recovery Scale-Revised (CRS-R) evaluations
erformed by experienced and trained clinicians (Giacino et al., 2004;
annez et al., 2018) within one week of hospitalization. Inclusion

riteria for the study consisted of confirmed diagnosis of a disorder of
onsciousness or being EMCS. No restrictions on etiology were present.
ll patients were medically stable, spontaneously breathing, residing

n a hospital, rehabilitation center or at home. Patients were suffering
rom a prolonged brain injury (> 28 days after injury) and hospitalized
or a one-week assessment of their state of consciousness by means
f a multimodal assessment including behavioral and neuroimaging
aradigms. Exclusion criteria consisted of large (open) cranectomies.
ee Table 1 for the demographic and clinical data of the patients with
evere brain injury.

High-density EEG recordings (256 scalp saline-solution electrodes,
lectric Geodesics) were obtained with a sampling rate of 500 Hz.
esting state EEG recordings were done in the dark for about a duration
f 30–40 min. The EEG was performed about 10 min before until
alf hour after the F-FDG injection for a PET scan before which the
ensor net was removed. Patients were continuously monitored to be
6

Table 1
Summary of brain-injured patient demographics and average CRS-R sub-scores (Giacino
et al., 2004) for the EMCS, MCS, and UWS groups. Etiology for traumatic brain injuries:
7 UWS, 26 MCS, 4 EMCS. Etiology for other categories (e.g., stroke, cardiac arrest): 9
UWS, 22 MCS, 5 EMCS. Mean time since injury (months): 31 ± 45 UWS, 39 ± 42 MCS,
32 ± 44 EMCS.

Diagnosis

EMCS MCS UWS

N 9 48 16
Age (mean) 41 38 36
Age (range) 18–66 5–73 21–59
N male, female 6, 3 26, 22 7, 9

CRS-R subscale
(Avg.)

Auditory (4) 3.4 2.6 1.3
Visual (5) 4.1 2.8 0.7
Motor (6) 5.3 2.8 1.8
Oromotor (3) 2.8 1.6 1.6
Communication (2) 1.6 0.2 0
Arousal (3) 2.6 1.7 1.8

Avg. Total (23) 19.8 11.6 7.1
Med. Total 21.0 11 7
IQR Total 6.0 5 2

awake (i.e., eyes open) and were aroused using the arousal stimulation
protocol as described in the CRS-R if repeated or prolonged eye closure
was observed.

The EEG data were collected from healthy awake controls (𝑛 =
30), UWS (𝑛 = 16), MCS (𝑛 = 48), and EMCS (𝑛 = 9) subjects.
Patient demographics and CRS-R scores for the brain-injured subjects
are listed in Table 1. Sleep data were obtained from a previous study
of 28 manually scored polysomnograms (AASM protocol) of healthy
controls (Abeysuriya and Robinson, 2016), recorded in two earlier
clinical studies (D’Rozario et al., 2013; Wang et al., 2005), and fitted
using the same model. The reader is referred to the references cited for
further details.

The EEG data were imported into MATLAB (2019) for analysis.
Power spectra were obtained from electrodes located on top of the scalp
(47 electrodes), excluding face, neck, and ear locations. Spectra were
computed within a rectangular sliding window of 4 s moved in 1 s
increments. The final spectra used in the fits are generated by averaging
the 4 s blocks inside a 30 s sliding window (average of 27 spectra for
the 4 s intervals starting at 0, 1, 2, … 26 s within each sliding window).
The purpose of using a longer window of 30 s is to further reduce noise
and exclude blocks containing artifacts when calculating the average.
A 4 s block is rejected for inclusion in the cumulative 30 s spectrum if
any of the following occur: (i) If the power at frequencies below 4.5 Hz
in the block lies outside 3 standard deviations of the mean of such
powers across all 4 s windows. (ii) If the block contains high frequency
artifacts. Specifically, if the power integrated from 30 to 45 Hz is more
than 3 standard deviations higher than the mean in all the 4 s blocks.
(iii) If the voltage does not change in an interval greater than 0.5 s,
which may be due to problems with the recording device. This resulted
in approximately 5% of blocks being discarded.

For each subject, an EEG of duration ∼ 30 min, or ∼ 1800 spectra, is
analyzed and fitted, following the method outlined in Section 2.5. The
theoretical EEG spectrum in Eq. (17) has 15 parameters that determine
the shape of the spectrum, as listed in Table 2. These parameters have
previously been estimated in normal wake states (Rowe et al., 2004;
Robinson et al., 2004), across sleep stages (Abeysuriya et al., 2015),
and abnormal states including seizures (Robinson et al., 2002; Zhao
and Robinson, 2015) and Parkinson’s disease (Müller et al., 2017; van
Albada and Robinson, 2009). Explorations of variants of the model with
significantly more parameters have also shown that the use of too many
additional parameters leads to an increase in fit error and inability to
obtain robust estimates of the parameters (Rowe et al., 2004).

The reduced CT model with the 5 gains listed in Table 2 has
been found to offer the best quality and robustness of fits when com-
pared via model selection criteria such as the Bayesian information
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Table 2
Physiological estimates of parameter ranges and initial step sizes used in the MCMC random-walk. The fitted
parameters are ones where the value of the initial step size is specified. The values for fixed parameters are
based on previous work (Kim et al., 1997; Lopes da Silva et al., 1974; Suffczynski et al., 2001; Robinson
et al., 2002, 2004; Roberts and Robinson, 2012; Rennie et al., 2002; van Albada et al., 2010; Rowe et al.,
2004). The constraints on the fitted parameters are from previous works (Abeysuriya et al., 2015; Abeysuriya
and Robinson, 2016).

Parameter Description Value Step size Unit

𝛾𝑒 Cortical damping rate 116 – s−1
𝑟𝑒 Excitatory axon range 86 – mm
𝑄𝑚𝑎𝑥 Maximum firing rate 340 – s−1
𝜃 Firing threshold 12.9 – mV
𝜎′ Threshold spread 3.8 – mV
𝐿𝑥 , 𝐿𝑦 Linear dimensions of cortex 0.5×0.5 – m
𝜙𝑛 Input stimulus amplitude 1 × 10−5 – s−1
𝐺𝑒𝑒 Excitatory cortical gain 0–20 0.4 –
−𝐺𝑒𝑖 Inhibitory cortical gain 0–40 0.4 –
𝐺𝑒𝑠𝑒 Corticothalamic loop gain 0–40 1 –
−𝐺𝑒𝑠𝑟𝑒 Corticothalamic loop gain 0–40 1 –
−𝐺𝑠𝑟𝑠 Intrathalamic loop gain 0–5 0.2 –
𝛼 Decay rate of cell-body potential 10–100 5 s−1
𝛽 Rise rate of cell-body potential 100–800 40 s−1
𝑡0 Corticothalamic loop delay 75–140 5 ms
𝐴EMG Normalized EMG power 10−15–10−12 5 × 10−14 s−1
𝑓EMG Characteristic EMG frequency 10–50 0.2 Hz
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criterion (BIC), which measures the relative quality of a model based
on the goodness of fit, but with a penalty on the number of model
parameters (Abeysuriya and Robinson, 2016).

The cortical damping rate 𝛾𝑒, excitatory axon range 𝑟𝑒, sigmoid
oltage-firing response parameters 𝑄max, 𝜃, and 𝜎′, and the cortical
imensions 𝐿𝑥 and 𝐿𝑦, are fixed here to previously determined val-
es (Rowe et al., 2004; Abeysuriya et al., 2015). The physiological
anges for the fitted parameters are listed in Table 2, and are consistent
ith ranges obtained from independent experimental data and theo-

etical estimates (Lopes da Silva et al., 1974; Suffczynski et al., 2001;
obinson et al., 2004; Rowe et al., 2004; Abeysuriya et al., 2015).

The fits allow the compound gains in the model to be inferred:
𝑒𝑠𝑒 = 𝐺𝑒𝑠𝐺𝑠𝑒 is the net gain of the direct corticothalamic feedback;
𝑒𝑠𝑟𝑒 = 𝐺𝑒𝑠𝐺𝑠𝑟𝐺𝑟𝑒 is the net corticothalamic feedback via 𝑟 (thalamic

eticular nucleus); and 𝐺𝑠𝑟𝑠 = 𝐺𝑠𝑟𝐺𝑟𝑠 is the net gain between the
relay nuclei (𝑠) and 𝑟. The reduced parameters 𝑋, 𝑌 , and 𝑍 are
combinations of the gains. From these parameters the strengths of
resonances, damping, and general features of the power spectrum can
be determined.

2.6. Linear discriminant analysis

A linear discriminant analysis (LDA) was performed using the stan-
dard Matlab LDA routine (MATLAB, 2019) to classify the subjects into
three categories, comprising healthy conscious states (wake and REM),
healthy sleep (N3) states, and patients with severe brain injury (UWS
and MCS). Because of the limited number of data, it was impossible to
carry out cross-validation, so this classification should be considered to
be provisional.

3. Results

Probability density functions (PDFs) of the fitted gain parameters
in normal states (wake, REM, and NREM sleep) and UWS are shown
on the left panels in Fig. 4. To avoid excessive overlap of plotted
distributions, MCS and EMCS are shown in the right panels with a
repeat of UWS for comparison. (i) The clearest overall difference occurs
for the cortical excitatory gain 𝐺𝑒𝑒, which is found to be larger in deep
sleep (N3) and UWS, with lower values and larger variability during
wake and REM sleep. (ii) The distributions of 𝐺𝑒𝑒 in brain-injured
subjects strongly overlap (Fig. 4A and B) and are similar to that in deep
sleep. (iii) In healthy subjects, increasing cortical excitation in sleep is
accompanied by anticorrelated changes in 𝐺 that reflect a decrease
7

𝑒𝑖
in cortical inhibition. These cortical changes have previously been
argued to compensate for the decrease in corticothalamic feedback 𝐺𝑒𝑠𝑒
in sleep (Abeysuriya et al., 2015). (iv) Average 𝐺𝑒𝑖 is similar across
abnormal states and sleep (−18 ± 3), with less inhibition and larger
standard deviations in REM (−17 ± 4), and wake (−13 ± 4). (v) The
positive corticothalamic feedback 𝐺𝑒𝑠𝑒, differentiates between wake
(13 ± 7), and other states (4 ± 2), which include both REM and non-
REM sleep, and patients with severe brain injury. (vi) The negative
corticothalamic feedback 𝐺𝑒𝑠𝑟𝑒, which incorporates the contribution of
the inhibitory reticular nucleus of the thalamus, is anticorrelated with
𝐺𝑒𝑠𝑒; i.e., there is more corticothalamic inhibition in wake (−7±6) than
in other states (−4±2). (vii) The intrathalamic inhibition 𝐺𝑠𝑟𝑠 is small in
brain-injured subjects (−0.1±0.1), and stage 3 sleep (−0.09±0.10), and
relatively larger inhibition is observed in REM (−0.4 ± 0.3), and wake
(−1.1 ± 0.8).

Fig. 5 shows the PDFs of 𝑋, 𝑌 , and 𝑍 from Eqs. (21)–(23). This
3D space is a useful representation of model states because stability
and key spectral features chiefly depend on these quantities (Robinson
et al., 2002). The intracortical loop gain 𝑋 is reduced in wake and
REM, and is reflected in flattening of the power spectrum below ∼ 1
Hz. As shown in Fig. 5A and B, 𝑋 differentiates the healthy conscious
states of wake (𝑋 = 0.7 ± 0.1) and REM (𝑋 = 0.7 ± 0.1) from deep
sleep (𝑋 = 0.9 ± 0.1) and subjects with disorders of consciousness
and brain injuries (𝑋 = 0.9 ± 0.1). High 𝑋 corresponds to the cortex
being increasingly self-driven and disconnected from external inputs
and feedbacks (Robinson, 2017).

The distributions of the total corticothalamic loop gain 𝑌 are shown
in Fig. 5C and D. The parameter 𝑌 is anticorrelated with 𝑋, because
wake states with large values of 𝑌 require small values of 𝑋 for the
state to be linearly stable. This relationship between 𝑋 and 𝑌 is also
elated to the observation in both theory and experiment that the
rain operates near marginal stability (i.e., criticality), and the wake
tates lie close to the stability boundary 𝑋 + 𝑌 = 1 (Roberts and
obinson, 2012; Breakspear et al., 2006; Robinson et al., 2002; Stam,
005; Robinson, 2017). In general, wake states are associated with
maller 𝑋 (cortical) and larger positive 𝑌 (corticothalamic) than sleep
tates (Robinson et al., 2002; Abeysuriya et al., 2015). The larger values
f 𝑌 in wake (𝑌 = 0.1 ± 0.1) indicate positive feedback between the
ortex and the thalamus, which is also characteristic of a strong alpha
eak arising from the corticothalamic loop in relaxed waking (Robinson
t al., 2002). During REM (𝑌 = 0.03±0.09) and light sleep stages there is
elatively weak corticothalamic interaction, which suppresses the alpha
eak. The statistical distributions peak at strong intracortical coupling



Journal of Neuroscience Methods 398 (2023) 109958S. Assadzadeh et al.
Fig. 4. Probability density functions for gains in the reduced CT model derived from fitted parameters and normalized to have the same integral. These distributions are aggregated
over all the multiple fits made during the recording for each subject, and over all subjects in each group. Left column: Distributions of the indicated gains in healthy arousal
states (wake, REM sleep, and deep sleep/N3), and those in unresponsive wakefulness syndrome (UWS). Right panels compare the corresponding gains in minimally conscious state
(MCS), emerged from MCS (EMCS), and unresponsive wakefulness syndrome (UWS). Note that blue and red are used for different groups in the left and right columns.
(large 𝑋) and near-criticality (𝑋 + 𝑌 ≈ 1) in deep sleep and states in
brain-injured subjects, which places these states at small 𝑌 .

The intrathalamic loop gain 𝑍 has previously been shown to be
large only when sleep spindles are present and can differentiate lighter
sleep stages from deep sleep (Abeysuriya et al., 2015). The distributions
of 𝑍 are shown in Fig. 5E and F. The average intrathalamic feedback
is found to be largest in wake (𝑍 = 0.2 ± 0.1), followed by REM
(𝑍 = 0.05±0.05), deep sleep (𝑍 = 0.01±0.02), and subjects with severe
brain injury (𝑍 = 0.01 ± 0.03), all subject to 𝑍 ≥ 0.

The distributions of 𝛼 and 𝛽 across healthy arousal states and injured
brain states are plotted in Fig. 6. The rates 𝛼 and 𝛽, are those of the fall
and rise of the soma response, respectively, and together account for
low-pass filtering in the model due to synaptodendritic effects. We find
significantly smaller values in non-REM sleep (𝛼 = 32 ± 10 s−1) than in
wake (𝛼 = 53±20 s−1), REM (𝛼 = 52±20 s−1), and UWS (𝛼 = 52±20 s−1).
In previous studies, increased sensory processing (eyes-open) relative
to an absence of visual processing (eyes closed) was associated with
larger 𝛼 (Robinson et al., 2004; Rowe et al., 2004; Abeysuriya et al.,
2015). This is consistent with the larger 𝛼 observed in groups where
some form of visual activation is present. Comparison of 𝛼 across the
disorders of consciousness (Fig. 6A and B) shows similar distributions in
UWS (𝛼 = 52±20 s−1), MCS (𝛼 = 63±20 s−1), and EMCS (𝛼 = 57±10 s−1).
8

The parameters 𝛼 and 𝛽 in the model are weighted averages that
capture the neurotransmitter dynamics over the corticothalamic sys-
tem. Previous works have shown that 𝛼 and 𝛽 are correlated, with
𝛽 ≈ 10𝛼 (Robinson et al., 2004; Niedermeyer and Lopes da Silva,
2005). In general, the negative thalamic feedback is more dominant
during sleep, which is consistent with the observation that the GABAB
receptor is more active in sleep states and results in a fall of the synaptic
response rates (Robinson et al., 2004). Thus wake states are typically
associated with larger rates 𝛼 and 𝛽 than sleep states.

The distributions of 𝛽 in the groups are seen in Fig. 6C and D, which
show a distinction between values of 𝛽 in healthy states vs. brain-
injured. The distributions lean toward smaller 𝛽 in wake (𝛽 = 300 ±
160 s−1), REM (𝛽 = 370 ± 160 s−1), N3 (𝛽 = 320 ± 120 s−1), and larger
𝛽 in UWS (𝛽 = 560 ± 170 s−1), MCS (𝛽 = 620 ± 170 s−1) and EMCS
(𝛽 = 590±110 s−1). The parameter estimates from all the studied groups
are summarized in Table 3.

3.1. Healthy vs. injured subjects in state space

The correlations and differences in the physiological parameters
discussed in the previous section motivate us to search for parameters
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Fig. 5. Distributions of the total cortical loop gain 𝑋, total corticothalamic loop gain 𝑌 , and total intrathalamic loop gain 𝑍 in healthy arousal states and disorders of consciousness.
Left column: PDFs in wake, REM sleep, deep sleep/N3 and UWS. Right column: distributions of 𝑋, Y, and Z, in UWS, MCS, and EMCS. Note that blue and red are used for different
groups in the left and right columns.
Fig. 6. Distributions of 𝛼 and 𝛽, which correspond to rise and fall rates of the soma response, respectively. Left column compare the distributions of 𝛼 and 𝛽 in wake, REM sleep,
deep sleep/N3 and UWS, while the distributions of brain-injured subjects (UWS, MCS, and EMCS) are plotted in the right column. Note that blue and red are used for different
groups in the left and right columns.
that can successfully differentiate between the various brain states.
The first key parameters to consider are the total intracortical (𝑋)
and corticothalamic loop gains (𝑌 ). Points in Fig. 7A represent the
mean values of 𝑋 and 𝑌 for 𝑛 = 134 subjects (note that N3 sleep
and REM data were collected from the same subjects), estimated from
∼ 30 min EEG recordings. Points in 𝑋𝑌 space reflect key features
of the corresponding power spectra. Smaller 𝑋 values (weak cortical
9

feedback) and larger 𝑌 (larger corticothalamic feedback) are signatures
of wake, which places wake states toward the top-left of Fig. 7 (blue
circles). On the other hand, deep sleep states tend to occupy the bottom-
right (black circles), while the lighter sleep states (N1, N2, and REM)
are scattered in between. The mean 𝑋 and 𝑌 values for UWS, MCS,
and EMCS subjects are also shown for comparison. The 𝑋 and 𝑌 values
for the brain-injured states lie mostly toward the bottom right corner
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Table 3
Mean parameters for representative examples of each brain state. Parameter values
are obtained by fitting the model to EEG spectra obtained from 131 subjects (∼ 1800
spectra for each subject). The fitting method is described in Abeysuriya and Robinson
(2016), and is briefly reviewed in Section 2.4. Because mean values are similar in MCS
and EMCS, these groups are combined for brevity in the column headed EMCS/MCS.

𝑛 = 30 𝑛 = 28 𝑛 = 28 𝑛 = 16 𝑛 = 57
Quantity Wake REM N3 UWS EMCS/MCS

𝐺𝑒𝑒 13.1 11.9 15.4 16.9 16.3
𝐺𝑒𝑖 −17.9 −16.9 −17.2 −18.8 −19.0
𝐺𝑒𝑠𝑒 12.1 3.9 4.2 3.0 3.5
𝐺𝑒𝑠𝑟𝑒 −7.4 −3.2 −4.0 −3.3 −3.7
𝐺𝑠𝑟𝑠 −1.0 −0.38 −0.09 −0.15 −0.22
𝑋 0.69 0.67 0.84 0.86 0.87
𝑌 0.12 0.03 −0.01 −0.01 −0.01
𝑍 0.15 0.05 0.01 0.01 0.02
𝛼 53 52 32 52 62
𝛽 310 370 310 560 470

of the plot in Fig. 7, which places them near stage 3 non-REM (N3)
sleep.

Each coarse-grained phenomenological AASM arousal stage corre-
sponds to a range of possible spectra. For example, the alert waking
state is qualitatively different from a drowsy wakeful state and the
difference is readily noticed when the two spectra are compared; yet
both these states are often simply classified as ‘wake’. The variations
within the stages can thus account for much of the apparent intersubject
variability of 𝑋 and 𝑌 in Fig. 7.

The dashed diagonal line 𝑋 + 𝑌 = 1 corresponds to a saddle–node
bifurcation of the model dynamics. States above this line are linearly
unstable and have previously been shown to represent unstable brain
dynamics such as in epileptic seizures (Roberts and Robinson, 2012;
Robinson et al., 2002). The values of 𝑋 + 𝑌 determine the degree of
criticality (Robinson et al., 2002; Robinson, 2017); for 𝑋+𝑌 just below
unity, the resulting near-critical dynamics allows for complexity and
information processing (Robinson et al., 2001, 2002; Robinson, 2017).
The estimated states are all distributed with 0.6 ≲ 𝑋 + 𝑌 ≲ 0.9, and we
observe that REM has lower average 𝑋+𝑌 than other states, and show
greater intersubject variability.

As seen in Fig. 5, estimates of mean 𝑋 and 𝑌 in patients with severe
brain injury are distributed similarly to those of healthy subjects in
deep sleep, where the level of consciousness is minimal. The quantity
𝑋−𝑌 is used to parametrize the level of healthy consciousness, because
the largest variance occurs along the 𝑋 − 𝑌 axis. The dotted lines
orthogonal to the stability boundary in Fig. 7A show values of 𝑋 − 𝑌
nd demonstrate that conscious wake and sleep (REM) states can be
argely differentiated from deep sleep and brain-injured patients by a
artition at 𝑋 − 𝑌 ≈ 0.73.

Because of the variances along 𝑋+𝑌 and 𝑋−𝑌 in the states observed
in Fig. 7A, we replot the subject means in these coordinates in Fig. 7B,
showing boundaries of three regions that separate wake, REM, and deep
sleep/brain injury. These simple criteria correctly classify 79% of points
into REM, with a 4% false positive rate. The boundaries successfully
separate 79% of wake states (8% false positive), and deep sleep and
brain-injured states are distinguished from the other two groups with
a success rate of 93% and false positive rate of 11%.

3.2. Synaptic response rate differences between healthy and brain-injured
subjects

As shown in Fig. 5, the values of 𝛽 are larger in patients with severe
brain injury (𝛽 ≈ 650 ± 100 s−1), than for healthy subjects in different
states of arousal (𝛽 ≈ 300 ± 150 s−1), whereas 𝛼 is similarly distributed
in both brain-injured cases and healthy conscious (wake and REM) with
𝛼 ≈ 50±20 s−1, but in N3 sleep the value is smaller with 𝛼 ≈ 30±10 s−1.
As discussed in Section 2.1, 𝛼 and 𝛽 determine the profile of the
ffective soma response to an incoming spike; its the characteristic fall
10
and rise times are 1∕𝛼 and 1∕𝛽. Individual values of these response rates
re shown in Fig. 8. The observed reduction of 𝛼 in deep sleep (Fig. 8A),
nd increase of 𝛽 in brain-injured subjects (Fig. 8B) relative to other
roups, indicate average slower and faster synaptic responses in those
tates, respectively. The change in the synaptic response via these two
ifferent pathways hints at possible different mechanisms that underlie
he differences in synaptodendritic dynamics in these states. Robinson
t al. (2004) argued that the slower responses in deep sleep/N3 were
onsistent with the greater role of feedback via the reticular thalamic
ucleus in this state, a nucleus in which the relatively slow GABAB
ynamics is dominant.

The plot of 𝛽 vs. 𝛼 in all the studied groups is shown in Fig. 8D. The
earson correlation coefficient 𝑟 is highest in the brain-injured group
𝑟 = 0.7), followed by healthy wake and sleep (𝑟 = 0.3), and REM sleep
𝑟 = 0.2).

In order to reduce 𝛼 and 𝛽 to a single quantity that reflects the
ffective soma response time, we consider the characteristic time scale
f synaptodendritic and soma-charging effects given by 𝑡𝛼𝛽 = 1∕𝛼 +
∕𝛽, which approximates the width of the response curve introduced
n Eqs. (3) and (4). The mean of 𝑡𝛼𝛽 and 𝑋 − 𝑌 in the individuals
s plotted in Fig. 8C. The horizontal axis approximately reflects the
evel of consciousness, with progressively larger values as we go from
ake, to REM, and to deep sleep and brain-injured states. The vertical
xis is the characteristic duration of the synaptic response 𝑡𝛼𝛽 , and it
ifferentiates severe brain injury from healthy sleep and wake states.

A linear discriminant analysis (LDA) was performed using the stan-
ard Matlab LDA routine (MATLAB, 2019) to classify the subjects into
hree categories, comprising healthy conscious states (wake and REM),
ealthy sleep (N3) states, and patients with severe brain injury (UWS
nd MCS). Because of the limited number of data, it was impossible to
arry out cross-validation, so this classification should be considered to
e provisional. However, as illustrated in Fig. 9, it shows that healthy
onscious states are differentiated from brain injury and sleep by the
pproximately vertical line at 𝑋 − 𝑌 ≈ 0.73. On the other hand, the
uantity 1∕𝛼 + 1∕𝛽 separates sleep from the other two categories.

. Discussion and conclusions

We have developed a method to classify arousal and conscious-
ess in healthy and brain injured subjects. This involved fitting an
stablished corticothalamic model to EEG data from subjects in var-
ous states of consciousness, including wake, REM sleep, deep sleep
N3), and severely brain-injured subjects, including patients suffering
rom UWS, MCS, and EMCS. Estimates of physiological parameters
ssociated with corticothalamic dynamics were obtained from these
its of our corticothalamic neural field model to EEG spectra. The
stimates were then compared to previous parameter values in sleep
𝑁 = 28), which allowed direct comparison of large-scale physiological
arameters across various states of consciousness and arousal.

Based on the parameter differences at the group and individual
evel, we have found that the measure 𝑋 − 𝑌 , which characterizes the

difference of normalized strengths of corticocortical (𝑋) and corticotha-
lamic (𝑌 ) feedbacks, approximately tracks levels of consciousness in
healthy subjects. The difference 𝑋−𝑌 is found to be sensitive to graded
changes in the level of consciousness; it is minimal during normal
wake and increases progressively with sleep depth and in brain-injured
subjects. In healthy subjects we found a threshold value of 𝑋−𝑌 ≈ 0.73
above which consciousness is reduced (in NREM sleep). This parameter
also separates brain-injured from healthy conscious states, but does not
distinguish between brain injury subtypes (i.e., between UWS, MCS,
and EMCS).

These results accord with large 𝑋 and small 𝑌 indicating strong
corticortical interactions with less input from thalamus and the external
world. It is also consistent with fMRI studies in healthy volunteers
during visual perception (Min et al., 2020) and illusions (Schmidt et al.,
2020) that show that the absence of conscious perception is associated
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Fig. 7. (A) Mean 𝑋 and 𝑌 in healthy individuals during wake, REM, and deep sleep (N3), and patients with severe brain injury. (B) Mean 𝑋 + 𝑌 vs. mean subject 𝑋 − 𝑌 for the
same subjects. The filled circles mark healthy conscious subjects (blue for wake, and red for REM sleep), black circles mark healthy sleep subjects (N3), and open symbols are
used to mark the brain-injured subjects. The dashed line corresponds to 𝑋 + 𝑌 = 1 and separates stable brain dynamics from unstable ones that lie above it (e.g., seizures). The
orthogonal dotted lines show values of 𝑋 − 𝑌 , as labeled.
with a decoupling of the thalamus and cortex. In patients with disorders
of consciousness, (covert) fMRI task performance was positively related
to corticothalamic connectivity strength, suggesting that a specific
balance between corticothalamic connectivity is required for conscious-
ness (Monti et al., 2015). Indeed, using electrophysiology it has been
shown that the cortical circuits silence in patients with pathological
loss of consciousness, lacking thalamic driving input (Rosanova et al.,
2018). EMCS/MCS patients are considered unconscious according to
the cortico-cortical and corticothalamic criteria. This is surprising,
because MCS patients and especially those who show motor response
to command (MCS plus) (Bruno et al., 2011) have been reported
11
to have preserved dynamics between the thalamus and motor cor-
tex (Fernández-Espejo et al., 2015). Our results might reveal a different
pattern, as we consider the gain averaged over the whole cortex, rather
than a specific cortical area.

We also found that the parameters 𝛼 and 𝛽, which denote the
decay and rise rate of the synaptic response, differentiate healthy sleep
states from wake, and from brain-injured subjects. The characteristic
duration of the synaptic response was found to be highest in normal
non-REM sleep. We also showed that the threshold at 1∕𝛼 + 1∕𝛽 ≈
30 ms differentiated between subjects in NREM sleep, and those with
severe brain injury. Conscious processing should be associated with
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Fig. 8. Soma response rates vs. 𝑋 − 𝑌 . (A) Individual averages of 𝛼 and 𝑋 − 𝑌 during wake, REM, and deep sleep (N3), and for patients suffering from severe brain injury. The
legend applies to all frames. (B) 𝛽 vs. 𝑋 − 𝑌 . (C) Effective duration of the soma response vs. 𝑋 − 𝑌 . (D) 𝛽 vs. 𝛼.
Fig. 9. LDA classification of subject groups. (A). Regions of healthy conscious, sleep, and brain injured patients. The solid line separates the conscious and brain-injured individuals.
Subjects in normal sleep and brain-injured patients are separated by the dashed line. The dash-dot line separates healthy conscious and sleeping individuals. (B) Corresponding
confusion matrix. The numbers along the rows and columns correspond to the true and predicted number of subjects in each class, respectively.
high frequency oscillations that respond fast, as a vehicle for conscious
experiences (Hameroff, 2010), so longer synaptic latencies are likely
12
to be associated to unconscious states or responses. Delayed synaptic
responses have been proposed to be at the basis of altered consciousness
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of several psychiatric diseases such as schizophrenia (Miterauer and
Baer, 2020).

We emphasize that the method we use to extract physiological
parameters, including the new measures of consciousness 𝑋 − 𝑌 and
ynaptic rates 𝛼 and 𝛽, is computationally fast, such that the values
an potentially be tracked in real time and at the bedside to give
oment-by-moment estimates (unlike calculation of 𝛷 from integrated

information theory, for example, which is computationally prohibitive),
e.g., to determine whether brief periods of greater consciousness are oc-
curring. As shown previously, fluctuations of entropy in the EEG signals
occur especially in MCS patients and might potentially depict moments
of high and low consciousness (Piarulli et al., 2016). Indeed, also the
behavioral assessments need to be repeated at least five times to reduce
misdiagnosis, perhaps due to moments of low consciousness (Wannez
et al., 2018). The method is also robust to noise and sudden changes in
EEG (often due to artifacts that are prevalent in the EEG of patients with
disorders of consciousness) because we use a Bayesian method to track
temporal parameter changes. In this approach prior estimates of the
fitted parameters are used to compute parameters during subsequent
fits, thereby enforcing temporal continuity.

Overall, our method is able to distinguish between the three group-
ings of (i) wake and REM states, (ii) N3 sleep, and (iii) brain-injured
states. However, resting state EEG does not appear to contain sufficient
information with high enough signal to noise ratio to allow robust
discrimination of the different brain-injured states (e.g., MCS vs. UWS)
by fitting the parameters of the corticothalamic model. Several studies
have suggested that basic measures such as delta and alpha band
power or connectivity can be used for the diagnosis of disorder-of-
consciousness (DoC) patients (Sitt et al., 2014); however, their use
for the diagnosis of patients with a DoC could not be evaluated in a
meta-analysis due to insufficient data (Kondziella et al., 2016). UK,
US, and European guidelines only support the use of visual assessment
of resting EEG data, mostly to rule out comorbidities such as epilepsy
or hypertonus, which might confound behavioral evaluation (Giacino
et al., 2018). A more recent systematic review qualitatively assesses
that resting state EEG measures can be used for the diagnosis of patients
with a DoC, but summarizing statistics are lacking (Bai et al., 2021).

Data acquired with a transcranial magnetic stimulation evoked-
response protocol might be better suited to assess the capacity for
conciousness (Casali et al., 2013). Lee and colleagues have used such
evoked-response data to develop the explainable consciousness in-
dicator, which can classify arousal and awareness levels in various
pathological, pharmacological and pathological states of reduced con-
sciousness (Lee et al., 2022). The corticothalamic model parameters
can also be fitted to such evoked-response data, probably improving
the fit as less noise is to be expected in such transcranial magnetic
stimulation evoked responses. Nevertheless, the current work provides
a proof of concept that EEG data acquired in brain-injured patients
can be fitted via a corticothalamic model. Individual-subject trends
in parameters over time may be more robust to track changes in the
patients cerebral function than comparisons with group means. The
thalamocortical model could in the future be fine-tuned for states of
consciousness in patients with a DoC and provide a testing-ground for
the evaluation of treatment on ongoing dynamics. The model could
eventually be used for the identification of patients who might respond
well to treatment, by the addition of plasticity parameters in the model.
All these potential extensions and usages of the thalamocortical model
will provide better understanding about the pathology of DoC and
provide unique new avenues for the development of treatments in
ways that are impossible with classical statistics or machine learning
approaches.

Future studies could include further validation of our results against
data from additional subjects. The results could also be extended to
incorporate spatial information and to include measurements for addi-
tional groups of brain-injured subjects, including those suffering from
13

locked-in syndrome, where conscious wakefulness is present despite
the lack of voluntary movement, and also healthy individuals under
different types of anesthesia. The effects of other structures could
also be included; for example lesions in the basal forebrain would
tend to reduce both 𝑋 and 𝑌 parameters and are known to suppress

akefulness in rats (Fuller et al., 2011). Fits to stimulation data are
lso likely to be useful in distinguishing better between subtypes, as
oted above.
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