Aerothermodynamics of high-speed flows Transonic flows

Adrien Crovato

The von Karman Institute for Fluid Dynamics

Flight speed and speed of sound

Subsonic

Sonic

http://www.chuckyeager.org/news/gen-chuck-yeager-describes-broke-sound-barrier/

The sound barrier

At high subsonic speeds, pilots could feel

- a strong resistance to further acceleration (drag divergence)
- the aircraft dropping (loss of lift)
- the aircraft responding in the opposite way as supposed to (control reversal)
- the aircraft becoming nose-heavy (Mach tuck)
- strong sustained (buffeting) or growing (flutter) vibrations

These observations led to the concept of a **barrier** that an aircraft had to **cross** in order to exceed the **speed of sound**.

Images from Wikipedia

Flow regimes explained

Subsonic regime – $M_{\infty} < 1$

• Flow is smooth

Transonic regime – $M_{\infty} \lesssim 1$

- Flow is accelerated and deviated by the body
- Supersonic regions are created and terminated by normal shocks

Transonic regime – $M_{\infty} \gtrsim 1$

- Shocks are moved towards trailing edge
- Normal bow (detached) shock is created in front of leading edge

Supersonic regime – $M_{\infty} > 1$

- Trailing edge shocks become oblique
- Leading edge shock becomes attached and oblique

Transonic flows consist of mixed subsonic and supersonic flow regions

Transonic flows

https://www.youtube.com/watch?v=HekbC6PI4_Y&ab_ch annel=RussellCroman

https://www.youtube.com/watch?v=uO4FckCAZtU&ab _channel=RealEngineering

Shock-induced separation

The **high adverse pressure gradient** created by **shocks** causes the **boundary layer** to **separate**!

Flow properties across shockwaves

Across the shock

- static pressure
- density
- static temperature
- total temperature
- total pressure
- entropy

↓ ↑

Lift drop and drag divergence

Aerodynamic center shift

Outline

Transonic aircraft design

- Sweep and thickness
- Supercritical airfoils
- Whithcomb's rule

Mathematical and numerical modeling

- Levels of fidelity
- Potential equation
- Solution methods

DARTFlo computer code

- Features
- Implementation
- Practical application

Wing sweep and airfoil thickness

Supercritical airfoils

Transonic wings

Whitcomb's area rule

Whitcomb's area rule

Images from Wikipedia

Outline

Transonic aircraft design

- Sweep and thickness
- Supercritical airfoils
- Whithcomb's rule

Mathematical and numerical modeling

- Levels of fidelity
- Potential equation
- Solution methods

DARTFlo computer code

- Features
- Implementation
- Practical application

High-fidelity aerodynamic modeling

Aerodynamic modeling for aircraft design

RANS equations	Euler equations	Full potential equation	Linear potential equation
 Subsonic Supersonic Transonic Viscous 	 Subsonic Supersonic Transonic Inviscid 	 Subsonic Supersonic ~Transonic Inviscid tropic 	 ~Subsonic ~Supersonic Transonic Inviscid

Mach number

Shock and boundary layer interaction

No friction in inviscid flow

- stronger shock ← higher total pressure gradient
- aft location ← later compression

Boundary layer must be taken into account for **accurate predictions**!

Viscous-inviscid interaction – principle

Viscous-inviscid interaction – procedure

Range of validity

The potential flow equation

- Scaled incompressible
- Subsonic or supersonic
- Not transonic

• Compressible

- Subsonic or supersonic
- Weak transonic

Challenges of potential flows – loads

Real fluid

- viscous, finite velocity
- no turn around sharp corners

Irrotational flow

- no deviation
- no load

Numerical model

- prescribe wake
- enforce continuity in physical variables

Challenges of potential flows – stabilization

Without stabilization

With stabilization

Transonic stabilization techniques

Full potential equation in conservative and non-conservative forms

$$\partial_i(\rho\partial_i\phi) = 0 \Rightarrow (a^2 - u_i^2) \partial_{ii}\phi - 2u_iu_j \partial_{ij}\phi = 0$$

+, M < 1elliptic (uniform direction of propagation)-, M > 1hyperbolic (preferred direction of propagation)

Physical and mathematical change must be reflected in numerical scheme!

Main stabilization techniques

- 1971, Murman & Cole: automatic central-to-upwind scheme switch
- 1974, Jameson & Caughey: rotated differences and artificial viscosity
- 1989, Eberle et al.: artificial density

Transonic stabilization techniques

Two-dimensional full potential equation

$$\partial_i(\rho\partial_i\phi) = 0 \Leftrightarrow \nabla \cdot \begin{bmatrix} \rho u \\ \rho v \end{bmatrix} = 0 \iff \nabla \cdot \begin{bmatrix} f \\ g \end{bmatrix} = 0$$

Murman & Cole idea

 $\begin{array}{l} f \leftarrow f + \nu \Delta f \\ g \leftarrow g \end{array}$

Jameson & Caughey idea

 $\begin{array}{l} f \leftarrow f + \nu F \\ g \leftarrow g + \nu G \end{array}$

Eberle et al. idea

Numerical methods

Boundary Element Method

- Only boundary is discretized
- Linear equations only
- Panel/lattice/particle methods

Field Method

- Whole field is discretized
- Linear and nonlinear equations
- Finite volume/element methods

Current industrial practice for aeroelastic computations

Field panel method

Boundary element method

- linear part
- on the wing surface

Field method

- nonlinear partin the field

Advantages

- extension to panel method
- simple grid generation

Disadvantages

- high memory requirement
- disagreement in literature

Combination

Outline

Transonic aircraft design

- Sweep and thickness
- Supercritical airfoils
- Whithcomb's rule

Mathematical and numerical modeling

- Levels of fidelity
- Potential equation
- Solution methods

DARTFlo computer code

- Features
- Implementation
- Practical application

Discrete Adjoint for Rapid Transonic Flows

- Steady full potential formulation
- Finite element discretization
- Unstructured tetrahedral grid
- Mesh morphing
- Analytical discrete adjoint
- Viscous-inviscid interaction
- C++ with python API

Performance (712Ke – 4.3GB @ 3.4GHz)

- Solution 100 s
- Morphing 25 s
- Gradient 45 s

https://gitlab.uliege.be/am-dept/dartflo

Acknowledgements

Lead developer

Adrien Crovato

Current developers

Paul Dechamps

Romain Boman

Former collaborators

Amaury Bilocq

Guillaume Brian

Guillem Batlle i Capa

Finite element discretization

Wake modeling

Formulation

$$\rho_{\rm u} \nabla_{\rm n} \phi_{\rm u} = \rho_{\rm l} \nabla_{\rm n} \phi_{\rm l} \quad \rightarrow \int_{\Gamma_{\rm wake}} \psi \left[\left[\rho \nabla \phi \cdot n \right] \right] dS = 0$$
$$p_{\rm u} = p_{\rm l} \qquad \rightarrow \int_{\Gamma_{\rm wake}} \left(\psi + \frac{h}{2} U_{\infty} \cdot \nabla \psi \right) \left[\left[|\nabla \phi|^2 \right] \right] dS = 0$$

Transonic stabilization

Density upwinding

Newton-Raphson procedure

$$\rho \leftarrow \rho - \nu \frac{\partial \rho}{\partial s} \Delta s$$
$$\rho \leftarrow \rho - \nu \overleftarrow{\Delta} \rho$$

Line search $F(\phi) = 0 \Rightarrow \frac{\partial F}{\partial \phi} \Delta \phi + F \approx 0$ $\phi_{\text{new}} = \phi_{\text{old}} + \lambda \Delta \phi$

Adaptive viscosity

$$\nu = \nu_{\mathbf{C}\downarrow} \left(1 - \frac{M_{\mathbf{C}\uparrow}^2}{M_{\mathrm{e}}^2} \right)$$

 $M_{\rm e} = \max[1, M, M_{\rm u}]$

Mesh morphing

Linear elasticity $\boldsymbol{\varepsilon} = \boldsymbol{H}(E, 0)\boldsymbol{\sigma}$ $E = V^{-1}$

Discrete adjoint formulation

Viscous-inviscid interaction

Quasi-simultaneous pseudo-unsteady approach

C++/Python languages

Two-dimensional viscous analysis

Three-dimensional aeroelastic analysis

NASA CRM

Cruise

 $M_{\infty} = 0.85 - FL 370$ $n = 1.0 (C_L = 0.5)$

Maneuver

$$M_{\infty} = 0.85 - FL 200$$

 $n = 2.5$

Two-dimensional shape optimization

 $M_{\infty} = 0.8$

NACA 0012

min drag w.r.t. AoA, shape s.t. lift internal volume

Two-dimensional shape optimization

Three-dimensional shape optimization

 $M_{\infty} = 0.83$

ONERA M6

min drag w.r.t. AoA, shape, twist s.t. lift internal volume

Three-dimensional shape optimization

Three-dimensional aeroelastic optimization

s. t.

RAE

Cruise

 $M_{\infty} = 0.82 - FL 350$ Maneuver

 $M_{\infty} = 0.78 - FL 200$

- min fuel = Breguet(lift, drag, weight)
- w.r.t. AoA, shape, twist, structural thickness
 - load factor internal volume structural adjacency structural failure

Three-dimensional aeroelastic optimization

Conclusion

Key points

- Transonic flows consist of mixed subsonic and supersonic flow regions
- Transonic flows are nonlinear and must be understood and modeled properly for the aircraft design to be efficient and robust
- The full potential flow equation, coupled to the boundary layer equations, is the lowest level-of-fidelity that can be used to model transonic flows
- Our in-house software DART is designed to quickly solve transonic flows for aerostructural optimization applied to preliminary aircraft design

Aerothermodynamics of high-speed flows

Transonic flows Adrien Crovato – Liège, Q2 2023

https://acrovato.github.io

