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Abstract. Deciding formulas that mix arithmetic and uninterpreted
predicates is of practical interest, notably for applications in verification.
Some decision procedures consist in building by structural induction an
automaton that recognizes the set of models of the formula under anal-
ysis, and then testing whether this automaton accepts a non-empty lan-
guage. A drawback is that universal quantification is usually handled by
a reduction to existential quantification and complementation. For logi-
cal formalisms in which models are encoded as infinite words, this hinders
the practical use of this method due to the difficulty of complementing
infinite-word automata. The contribution of this paper is to introduce
an algorithm for directly computing the effect of universal first-order
quantifiers on automata recognizing sets of models, for formulas involv-
ing natural numbers encoded in unary notation. This paves the way to
implementable decision procedures for various arithmetic theories.

Keywords: Infinite-word automata · first-order logic · quantifier
elimination · satisfiability

1 Introduction

Automated reasoning with arithmetic theories is of primary importance, notably
for verification, where Satisfiability Modulo Theories (SMT) solvers are regularly
used to discharge proof obligations. It is well known however that mixing arith-
metic with uninterpreted symbols quickly leads to undecidable languages. For
instance, extending Presburger arithmetic, i.e., the first-order additive theory of
integer numbers, with just one uninterpreted unary predicate makes it undecid-
able [7,8,15]. There exist decidable fragments mixing arithmetic and uninter-
preted symbols that are expressive enough to be interesting, for instance, the
monadic second-order theory of N under one successor (S1S).

The decidability of S1S has been established thanks to the concept of infinite-
word automaton [6]. In order to decide whether a formula ϕ is satisfiable, the
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approach consists in building an automaton that recognizes the set of its mod-
els, encoded in a suitable way, and then checking that this automaton accepts a
non-empty language. Such an automaton has one separate input tape for each
first-order and second-order free variable of ϕ. It is constructed by starting
from elementary automata representing the atoms of ϕ, and then translating
the effect of Boolean connectives and quantifiers into corresponding operations
over automata. For instance, applying an existential quantifier simply amounts
to removing from the automaton the input tape associated to the quantified
variable. Universal quantification reduces to existential quantification thanks to
the equivalence ∀xϕ ≡ ¬∃x¬ϕ.

Even though this approach has originally been introduced as a purely the-
oretical tool, it is applied in practice to obtain usable decision procedures for
various logics. In particular, the tool MONA [9] uses this method to decide a
restricted version of S1S, and tools such as LASH [3] and Shasta [14] use a sim-
ilar technique to decide Presburger arithmetic. The LASH tool also generalizes
this result by providing an implemented decision procedure for the first-order
additive theory of mixed integer and real variables [2].

A major issue in practice is that the elimination of universal quantifiers
relies on complementation, which is an operation that is not easily implemented
for infinite-word automata [13,17]. Actual implementations of automata-based
decision procedures elude this problem by restricting the language of interest
or the class of automata that need to be manipulated. For instance, the tool
MONA only handles Weak S1S (WS1S) which is, schematically, a restriction
of S1S to finite subsets of natural numbers [5]. The tool LASH handles the
mixed integer and real additive arithmetic by working with weak deterministic
automata, which are a restricted form of infinite-word automata admitting an
easy complementation algorithm [2].

The contribution of this paper is to introduce a direct algorithm for comput-
ing the effect of universal first-order quantification over infinite-word automata.
This is an essential step towards practical decision procedures for more expres-
sive fragments mixing arithmetic with uninterpreted symbols. The considered
automata are those that recognize models of formulas over natural numbers
encoded in unary notation. This algorithm does not rely on complementa-
tion, and can be implemented straightforwardly on unrestricted infinite-word
automata. As an example of its potential applications, this algorithm leads to a
practically implementable decision procedure for the first-order theory of natural
numbers with the order relation and uninterpreted unary predicates. It also paves
the way to a decision procedure for SMT solvers for the UFIDL (Uninterpreted
Functions and Integer Difference Logic) logic with only unary predicates.

2 Basic Notions

2.1 Logic

We address the problem of deciding satisfiability for formulas expressed in first-
order structures of the form (N, R1, R2, . . .), where N is the domain of natural
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numbers, and R1, R2, . . . are (interpreted) relations over tuples of values in N.
More precisely, each Ri is defined as a relation Ri ⊆ N

αi for some αi > 0 called
the arity of Ri.

The formulas in such a structure involve first-order variables x1, x2, . . . , and
second-order variables X1, X2, . . . Formulas are recursively defined as

– �, ⊥, xi = xj , Xi = Xj , Xi(xj) or Ri(xj1 , . . . , xjαi
), where i, j, j1, j2, . . . ∈

N>0 (atomic formulas),
– ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 or ¬ϕ, where ϕ1, ϕ2 and ϕ are formulas, or
– ∃xi ϕ or ∀xi ϕ, where ϕ is a formula.

We write ϕ(x1, . . . , xk,X1, . . . , X�) to express that x1, . . . , xk,X1, . . . , X� are the
free variables of ϕ, i.e., that ϕ does not involve other unquantified variables.

An interpretation I for a formula ϕ(x1, . . . , xk,X1, . . . , X�) is an assignment
of values I(xi) ∈ N for all i ∈ [1, k] and I(Xj) ⊆ N for all j ∈ [1, �] to its free
variables. An interpretation I that makes ϕ true, which is denoted by I |= ϕ, is
called a model of ϕ.

The semantics is defined in the usual way. One has

– I |= � and I �|= ⊥ for every I.
– I |= xi = xj and I |= Xi = Xj iff (respectively) I(xi) = I(xj) and I(Xi) =

I(Xj).
– I |= Xi(xj) iff I(xj) ∈ I(Xi).
– I |= Ri(xj1 , . . . , xjαi

) iff (I(xj1), . . . , I(xjαi
)) ∈ Ri.

– I |= ϕ1 ∧ ϕ2, I |= ϕ1 ∨ ϕ2 and I |= ¬ϕ iff (respectively) (I |= ϕ1) ∧ (I |= ϕ2),
(I |= ϕ1) ∨ (I |= ϕ2), and I �|= ϕ.

– I |= ∃xi ϕ(x1, . . . , xk,X1, . . . , X�) iff there exists n ∈ N such that I[xi = n] |=
ϕ(x1, . . . , xk,X1, . . . , X�).

– I |= ∀xi ϕ(x1, . . . , xk,X1, . . . , X�) iff for every n ∈ N, one has I[xi = n] |=
ϕ(x1, . . . , xk, X1, . . . , X�).

In the two last rules, the notation I[xi = n], where n ∈ N, stands for the
extension of the interpretation I to one additional first-order variable xi that
takes the value n, i.e., the interpretation such that I[xi = n](xj) = I(xj) for all
j ∈ [1, k] such that j �= i, I[xi = n](xi) = n, and I[xi = n](Xj) = I(Xj) for all
j ∈ [1, �].

A formula is said to be satisfiable if it admits a model.

2.2 Automata

A finite-word or infinite-word automaton is a tuple A = (Σ,Q,Δ,Q0, F ) where
Σ is a finite alphabet, Q is a finite set of states, Δ ⊆ Q × (Σ ∪ {ε}) × Q is
a transition relation, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
accepting states.

A path of A from q0 to qm, with q0, qm ∈ Q and m ≥ 0, is a finite
sequence π = (q0, a0, q1); (q1, a1, q2); . . . ; (qm−1, am−1, qm) of transitions from Δ.
The finite word w ∈ Σ∗ read by π is w = a0a1 . . . am−1; the existence of such a
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path is denoted by q0
w→ qm. A cycle is a non-empty path from a state to itself.

If A is a finite-word automaton, then a path π from q0 to qm is accepting if
qm ∈ F . A word w ∈ Σ∗ is accepted from the state q0 if there exists an accepting
path originating from q0 that reads w.

For infinite-word automata, we use a Büchi acceptance condition for the sake
of simplicity, but the results of this paper straightforwardly generalize to other
types of infinite-word automata. If A is an infinite-word automaton, then a run
of A from a state q0 ∈ Q is an infinite sequence σ = (q0, a0, q1); (q1, a1, q2); . . .
of transitions from Δ. This run reads the infinite word w = a0a1 . . . ∈ Σω. The
run σ is accepting if the set inf (σ) formed by the states qi that occur infinitely
many times in σ is such that inf (σ) ∩ F �= ∅, i.e., there exists a state in F that
is visited infinitely often by σ. A word w ∈ Σω is accepted from the state q0 ∈ Q
if there exists an accepting run from q0 that reads w.

For both finite-word and infinite-word automata, a word w is accepted by A
if it is accepted from an initial state q0 ∈ Q0. The set of all words accepted from
a state q ∈ Q (resp. by A) forms the language L(A, q) accepted from q (resp.
L(A) accepted by A). An automaton accepting L(A, q) can be derived from A
by setting Q0 equal to {q}. The language of finite-words w read by paths from
q1 to q2, with q1, q2 ∈ Q, is denoted by L(A, q1, q2); a finite-word automaton
accepting this language can be obtained from A by setting Q0 equal to {q1} and
F equal to {q2}. A language is said to be regular (resp. ω-regular) if it can be
accepted by a finite-word (resp. an infinite-word) automaton.

3 Deciding Satisfiability

3.1 Encoding Interpretations

In order to decide whether a formula ϕ(x1, . . . , xk,X1, . . . , X�) is satisfiable,
Büchi introduced the idea of building an automaton that accepts the set of all
models of ϕ, encoded in a suitable way, and then checking whether it accepts a
non-empty language [5,6].

A simple encoding scheme consists in representing the value of first-order
variables xi in unary notation: A number n ∈ N is encoded by the infinite word
0n10ω over the alphabet {0, 1}, i.e., by a word in which the symbol 1 occurs only
once, at the position given by n. This leads to a compatible encoding scheme for
the values of second-order variables Xj : a predicate P ⊆ N is encoded by the
infinite word a0a1a2 . . . such that for every n ∈ N, an ∈ {0, 1} satisfies an = 1 iff
n ∈ P , i.e., if P (n) holds.

Encodings for the values of first-order variables x1, . . . , xk and second-order
variables X1, . . . , X� can be combined into a single word over the alphabet
Σ = {0, 1}k+�: A word w ∈ Σω encodes an interpretation I for those variables
iff w = (a0,1, . . . , a0,k+�)(a1,1, . . . , a1,k+�) . . ., where for each i ∈ [1, k], a0,ia1,i . . .
encodes I(xi), and for each j ∈ [1, �], a0,k+ja1,k+j . . . encodes I(Xj). Note that
not all infinite words over Σ form valid encodings: For each first-order variable
xi, an encoding must contain exactly one occurrence of the symbol 1 for the i-th
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q0 q1 q2

(0), (1) (0), (1) (0), (1)

(0), (1)
{x1}

(1)
{x2}

(a) x1 < x2 X1(x2)

q0 q1 q2

(0), (1) (0), (1) (0), (1)

(0), (1)
{x1}

(1)

(b) x2(x1 < x2 X1(x2))

Fig. 1. Automata recognizing sets of models.

component of its tuple symbols. Assuming that the set of variables is clear from
the context, we write e(I) for the encoding of I with respect to those variables.

3.2 Automata Recognizing Sets of Models

Let S be a set of interpretations for k first-order and � second-order variables.
The set of encodings of the elements of S forms a language L over the alphabet
{0, 1}k+�. If this language is ω-regular, then we say that an automaton A that
accepts L recognizes, or represents, the set S. Such an automaton can be viewed
as having k + � input tapes reading symbols from {0, 1}, each of these tapes
being associated to a variable. Equivalently, we can write the label of a transition

(q1, (a1, . . . , ak+�), q2) ∈ Δ as
(ak+1,...,ak+�)

V where V is the set of the variables xi,
with i ∈ [1, k], for which ai = 1. In other words, each transition label distinct
from ε specifies the set of first-order variables whose value corresponds to this
transition, and provides one symbol for each second-order variable. For each
xi ∈ V , we then say that xi is associated to the transition. Note that every
transition for which V �= ∅ can only be followed at most once in an accepting
run. Any automaton recognizing a set of valid encodings can therefore easily be
transformed into one in which such transitions do not appear in cycles, and that
accepts the same language.

An example of an automaton recognizing the set of models of the formula
ϕ(x1, x2,X1) = x1 < x2 ∧ X1(x2) is given in Fig. 1a. For the sake of clarity, labels
of transitions sharing the same origin and destination are grouped together, and
empty sets of variables are omitted.

3.3 Decision Procedure

For the automata-based approach to be applicable, it must be possible to con-
struct elementary automata recognizing the models of atomic formulas. This is
clearly the case for atoms of the form xi = xj , Xi = Xj and Xi(xj), and this
property must also hold for each relation Ri that belongs to the structure of
interest; in other words, the atomic formula Ri(x1, x2, . . . , xαi

) must admit a
set of models whose encoding is ω-regular. With the positional encoding of nat-
ural numbers, this is the case in particular for the order relation xi < xj and
the successor relation xj = xi + 1. Note that one can easily add supplementary
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variables to an automaton, by inserting a new component in the tuples of its
alphabet, and making this component read a symbol 1 at any single position of
a run for first-order variables, and any symbol at any position for second-order
ones. Reordering the variables is a similarly immediate operation.

After automata recognizing the models of atomic formulas have been
obtained, the next step consists in combining them recursively by following the
syntactic structure of the formula to be decided. Let us denote by Lϕ the lan-
guage of encodings of all the models of a formula ϕ, i.e., Lϕ = {e(I) | I |= ϕ}.

For the Boolean operator ∧, we have Lϕ1∧ϕ2 = Lϕ1 ∩ Lϕ2 , where ϕ1 and ϕ2

are formulas over the same free variables. Similarly, we have Lϕ1∨ϕ2 = Lϕ1 ∪Lϕ2 .
The case of the complement operator ¬ is slightly more complicated, since the
complement of a language of encodings systematically contains words that do not
validly encode an interpretation. The set of models of a formula ¬ϕ is encoded
by the language Lϕ ∩ Lvalid , where Lvalid is the language of all valid encodings
consistent with the free variables of ϕ. It is easily seen that this language is
ω-regular.

It remains to compute the effect of quantifiers. The language L∃xiϕ can
be derived from Lϕ by removing the i-th component from each tuple sym-
bol, i.e., by applying a mapping Π �=i : Σk+� → Σk+�−1 : (a1, . . . , ak+�) �→
(a1, . . . , ai−1, ai+1, . . . , ak+�) to each symbol of the alphabet. Indeed, the mod-
els of ∃xi ϕ correspond exactly to the models of ϕ in which the variable xi is
removed. In the rest of this paper, we will use the notation Π�=i(w), where w is
a finite or infinite word, to express the result of applying Π�=i to each symbol in
w. If L is a language, then we write Π�=i(L) for the language {Π�=i(w) | w ∈ L}.

Finally, universal quantification can be reduced to existential quantification:
For computing L∀xiϕ, we use the equivalence ∀xi ϕ ≡ ¬∃xi ¬ϕ which yields
L∀xiϕ = L∃xi¬ϕ ∩ Lvalid .

3.4 Operations over Automata

We now discuss how the operations over languages mentioned in Sect. 3.3 can be
computed over infinite-word automata. Given automata A1 and A2, automata
A1 ∩ A2 and A1 ∪ A2 accepting respectively L(A1)∩ L(A2) and L(A1)∪ L(A2)
can be obtained by the so-called product construction. The idea consists in
building an automaton A that simulates the combined behavior of A1 and A2

on identical input words. The states of A need to store additional information
about the accepting states that are visited in A1 and A2. For A1 ∩ A2, one
ensures that each accepting run of A correspond to an accepting run in both A1

and A2. For A1 ∪ A2, the condition is that the run should be accepting in A1

or A2, or both. A complete description of the product construction for Büchi
automata is given in [16].

Modifying the alphabet of an automaton in order to implement the effect
of an existential quantification is a simple operation. As an example, Fig. 1b
shows an automaton recognizing the set of models of ∃x2(x1 < x2 ∧ X1(x2)),
obtained by removing all occurrences of the variable x2 from transition labels.
Testing whether the language accepted by an automaton is not empty amounts
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to checking the existence of a reachable cycle that visits at least one accepting
state, which is simple as well.

The only problematic operation is complementation, which consists in com-
puting from an automaton A an automaton that accepts the language L(A).
Although it preserves ω-regularity, this operation is difficult to perform on
Büchi automata [13,17]. In the context of our decision procedure, it is only
useful for applying universal quantifiers. Indeed, other instances of the nega-
tion operator in formulas can be pushed inwards until they are applied to
atomic formulas, and it is easy to construct the complement of the elemen-
tary automata recognizing the models of those atomic formulas, provided that
for each relation Ri in the structure of interest, an automaton recognizing
{(x1, . . . , xαi

) ∈ N
αi | ¬Ri(x1, . . . , xαi

)} is available. In order to eliminate the
need for complementation, we develop in the next section a direct algorithm
for computing the effect of universal quantifiers on automata recognizing sets of
models.

4 Universal Quantification

4.1 Principles

Let ϕ(x1, . . . , xk,X1, . . . , X�), with k > 0 and � ≥ 0, be a formula. Our goal is
to compute an automaton A′ accepting L∀xiϕ, given an automaton A accepting
Lϕ and i ∈ [1, k].

By definition of universal quantification, we have I |= ∀xi ϕ iff I[xi = n] |= ϕ
holds for every n ∈ N. In other words, L∀xiϕ contains e(I) iff Lϕ contains
e(I[xi = n]) for every n ∈ N. Conceptually, we can then obtain L∀xiϕ by defining
for each n ∈ N the language Sn = {e(I) | e(I[xi = n]) ∈ Lϕ}, which yields
L∀xiϕ =

⋂
n∈N

Sn.
An automaton A′ accepting L∀xiϕ can be obtained as follows. Each language

Sn, with n ∈ N, is accepted by an automaton An derived from A by restricting
the transitions associated to xi to be followed only after having read exactly n
symbols. In other words, the accepting runs of An correspond to the accepting
runs of A that satisfy this condition. After imposing this restriction, the variable
xi is removed from the set of variables managed by the automaton, i.e., the
operator Π �=i is applied to the language that this automaton accepts, so as to
get Sn = L(An). The automaton A′ then corresponds to the infinite intersection
product of the automata An for all n ∈ N, i.e., an automaton that accepts the
infinite intersection

⋂
n∈N

Sn. We show in the next section how to build A′ by
means of a finite computation.

4.2 Construction

The idea of the construction is to make A′ simulate the join behavior of the
automata An, for all n ∈ N, on the same input words. This can be done by
making each state of A′ correspond to one state qn in each An, i.e., to an infinite
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tuple (q0, q1, . . .). By definition of An, there exists a mapping μ : Qn → Q, where
Qn and Q are respectively the sets of states of An and A, such that whenever a
run of An visits qn, the corresponding run of A on the same input word visits
μ(qn).

If two automata An1 and An2 , with n1, n2 ∈ N, are (respectively) in states qn1

and qn2 such that μ(qn1) = μ(qn2), then they share the same future behaviors,
except for the requirement to follow a transition associated to xi after having
read (respectively) n1 and n2 symbols. It follows that the states of A′ can be
characterized by sets of states of A: The infinite tuple (q0, q1, . . .) is described
by the set {μ(qi) | i ∈ N}. Each element of this set represents the current state
of one or several automata among the An. This means that the number of these
automata that are in this current state is not counted. We will establish that
this abstraction is precise and leads to a correct construction.

During a run of A′, each transition with a label other than ε must correspond
to a transition reading the same symbol in every automaton An, which in turn
can be mapped to a transition of A. In the automaton An for which n is equal
to the number of symbols already read during the run, this transition of A is
necessarily associated to xi, by definition of An. It follows that every transition
of A′ with a non-empty label is characterized by a set of transitions of A, among
which one of them is associated to xi.

We are now ready to describe formally the construction of A′, leaving
for the next section the problem of determining which of its runs should be
accepting or not: From the automaton A = (Σ,Q,Δ,Q0, F ), we construct
A′ = (Σ′, Q′,Δ′, Q′

0, F
′) such that

– Σ′ = Π �=i(Σ).
– Q′ = 2Q \ {∅}.
– Δ′ contains

• the transitions (q′
1, (a

′
1, . . . , a

′
k+�−1), q

′
2) for which there exists a set T ⊆ Δ

that satisfies the following conditions:
* q′

1 = {q1 | (q1, (a1, . . . , ak+�), q2) ∈ T}.
* q′

2 = {q2 | (q1, (a1, . . . , ak+�), q2) ∈ T}.
* For all (q1, (a1, . . . , ak+�), q2) ∈ T , one has a′

j = aj for all j ∈ [1, i − 1],
and a′

j = aj+1 for all j ∈ [i, k + � − 1].
* There exists exactly one (q1, (a1, . . . , ak+�), q2) ∈ T such that ai = 1.

• the transitions (q′
1, ε, q

′
2) for which there exists a transition (q1, ε, q2) ∈ Δ

such that
* q1 ∈ q′

1.
* q′

2 = q′
1 ∪ {q2} or q′

2 = (q′
1 \ {q1}) ∪ {q2}.

– Q′
0 = 2Q0 \ {∅}.

– F ′ = Q′ for now. The problem of characterizing more finely the accepting
runs will be addressed in the next section.

The rule for the transitions (q′
1, (a

′
1, . . . , a

′
k+�−1), q

′
2) ensures that for each

q1 ∈ q′
1, each automaton An that is simulated by A′ has the choice of fol-

lowing any possible transition originating from q1 that has a label consistent
with (a′

1, . . . , a
′
k+�−1). One such automaton must nevertheless follow a transition
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{q0} {q0, q1} {q0, q1, q2}

(0), (1)

(0), (1)

(0), (1) (1)

Fig. 2. First step of construction for ∀x1∃x2(x1 < x2 ∧ X1(x2)).

associated to the quantified variable xi. The rule for the transitions (q′
1, ε, q

′
2)

expresses that one automaton An, or any number of identical copies of this
automaton, must follow a transition labeled by ε, while the other automata stay
in their current state.

As an example, applying this construction to the automaton in Fig. 1b, as a
first step of the computation of a representation of ∀x1∃x2(x1 < x2 ∧ X1(x2)),
yields the automaton given in Fig. 2. For the sake of clarity, unreachable states
and states from which the accepted language is empty are not depicted.

4.3 A Criterion for Accepting Runs

The automaton A′ defined in the previous section simulates an infinite combi-
nation of automata An, for all n ∈ N. By construction, every accepting run of
this infinite combination corresponds to a run of A′.

The reciprocal property is not true, in the sense that there may exist a run of
A′ that does not match an accepting run of the infinite combination of automata
An. Consider for instance a run of the automaton in Fig. 2 that ends up cycling
in the state {q0, q1, q2}, reading 0ω from that state. Recall that for this example,
the automaton A that undergoes the universal quantification operation is the
one given in Fig. 1b. The run that we have considered can be followed in A′,
but cannot be accepting in every An. Indeed, in this example, the transition of
An reading the (n + 1)-th symbol of the run corresponds, by definition of this
automaton, to the transition of A that is associated to the quantified variable
x1. By the structure of A, this transition is necessarily followed later in any
accepting run by one that reads the symbol 1, which implies that no word of the
form u · 0ω, with u ∈ {0, 1}∗, can be accepted by a run of An such that n ≥ |u|.
This represents the fact that the words accepted by all An correspond to the
encodings of predicates that are true infinitely often.

One thus needs a criterion for characterizing the runs of A′ that correspond
to combinations of accepting runs in all automata An.

It is known [11] that two ω-regular languages over the alphabet Σ are equal
iff they share the same set of ultimately periodic words, i.e., words of the form
u · vω with u ∈ Σ∗ and v ∈ Σ+. It follows that it is sufficient to characterize
the accepting runs of A′ that read ultimately periodic words. The automaton
A′ accepts a word u · vω iff every An, with n ∈ N, admits an accepting run that
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reads this word. Note that such a run also matches a run of A, and that this
run of A always ends up following a cycle from an accepting state to itself.

Our solution takes the following form. For each state q of A, we define a
language Uq ⊆ Σ+ of non-empty words u such that A accepts uω from q, after
dismissing the input tape associated to the quantified variable xi. The alphabet
Σ is thus equal to {0, 1}k+�−1. Remember that each state q′ of A′ is defined as
a subset of states of A, corresponding to the current states in the combination
of copies of A that are jointly simulated by A′. In order for the word uω to be
accepted by A′ from q′, it should therefore be accepted by A from each state
q ∈ q′, i.e., u must belong to all the languages Uq such that q ∈ q′.

It must also be possible to read uω from the state q′ of A′. We impose a
stronger condition, by requiring that there exists a cycle from q′ to itself labeled
by u. This condition leads to a correct acceptance criterion.

In summary, the language U ′
q′ = L(A′, q′, q′) ∩ ⋂

q∈q′ Uq characterizes the
words u such that uω must be accepted from the state q′ of A′. Note that for
this property to hold, it is not necessary for the language Uq to contain all words
u such that uω ∈ Π �=i(L(A, q)), but only some number of copies up, where p > 0
is bounded, of each such u. In other words, the finite words u whose infinite
repetition is accepted from q do not have to be the shortest possible ones.

Once the language U ′
q′ has been obtained, we build a widget, in the form of

an infinite-word automaton accepting (U ′
q′)ω, along the state q′ of A′, and add

a transition labeled by ε from q′ to the initial state of this widget. This ensures
that every path that ends up in q′ can be suitably extended into an accepting
run. Such a widget does not have to be constructed for every state q′ of A′: Since
the goal is to accept from q′ words of the form uω, we can require that at least
one state q ∈ q′ is accepting in A. We then only build widgets for the states q′

that satisfy this requirement.

4.4 Computation Steps

The procedure for modifying A′ in order to make it accept the runs that match
those of the infinite combination of automata An, outlined in the previous
section, can be carried out by representing the regular languages Uq and U ′

q′

by finite-state automata. The construction proceeds as follows:

1. For each state q ∈ Q of A, build a finite-word automaton Aq that accepts all
the non-empty words u for which there exists a path q

v→ q of A that visits
at least one accepting state qF ∈ F , such that u = Π �=i(v). This automaton
can be constructed in a similar way as one accepting Π�=i(L(A, q, q)) (cf.
Sects 2.2 and 3.4), keeping one additional bit of information in its states for
determining whether an accepting state has already been visited or not.

2. For each pair of states q1, q2 ∈ Q of A, build a finite-word automaton Aq1,q2

accepting the language Π �=i(L(A, q1, q2)) (cf. Sects 2.2 and 3.4).
3. For each state q ∈ Q of A, build an automaton AUq

=
⋃

r∈Q (Aq,r ∩ Ar)
accepting the finite-word language Uq.
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{q0} {q0, q1} {q0, q1, q2} q′
repeat

(0), (1)

(0), (1)

(0), (1) (1)

(0), (1)

(0), (1)

(0), (1)

(1)

ε

ε

ε

Fig. 3. Automaton recognizing the set of models of ∀x1∃x2(x1 < x2 ∧ X1(x2)).

4. For each state q′ of A′ such that q′ ∩ F �= ∅, where F is the set of accepting
states of A, build a finite-word automaton A′

U ′
q′
= A′

q′ ∩ ⋂
q∈q′ AUq

accepting

U ′
q′ , where A′

q′ is an automaton accepting L(A′, q′, q′) (cf. Sect. 2.2).
5. Then, turn each automaton A′

U ′
q′

into an infinite-word automaton A′
(U ′

q′ )ω

accepting (U ′
q′)ω:

(a) Create a new state q′
repeat .

(b) Add a transition (q′
repeat , ε, q0) for each initial state q0, and a transition

(qF , ε, q′
repeat ) for each accepting state qF , of A′

U ′
q′

.

(c) Make q′
repeat the only initial and accepting state of A′

(U ′
q′ )ω .

6. For each state q′ of A′ considered at Step 4, add the widget A′
U ′

q′
alongside

q′, by incorporating its sets of states and transitions into those of A′, and
adding a transition (q′, ε, q′

repeat). In the resulting automaton, mark as the
only accepting states the states q′

repeat of all widgets.

This procedure constructs an automaton that accepts the language L∀xiϕ.
Applied to the automaton A′ in Fig. 2, it produces the result shown in Fig. 3. For
the sake of clarity, the states from which the accepted language is empty have
been removed. A detailed description of the computation steps for this example
and the proof of correctness of the construction are given in [1].

5 Conclusions

This paper introduces a method for directly computing the effect of a first-
order universal quantifier on an infinite-word automaton recognizing the set of
models of a formula. It is applicable when the first-order variables range over
the natural numbers and their values are encoded in unary notation. Among its
potential applications, it provides a solution for deciding the first-order theory
〈N, <〉 extended with uninterpreted unary predicates.

The operation on regular languages that corresponds to the effect of a univer-
sal first-order quantifier has already been studied at the theoretical level [12]. Our
contribution is to provide a practical algorithm for computing it, that does not
require to complement infinite-word automata. This algorithm has an exponen-
tial worst-case time complexity, which is unavoidable since there exist automata
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for which universal quantification incurs an exponential blowup in their number
of states (see [1] for details). The main advantage over the complementation-
based approach is however that this exponential cost is not systematic, since
only a fraction of the possible subsets of states typically need to be constructed.

Our solution is open to many possible improvements, one of them being to
extend the algorithm so as to quantify over several first-order variables in a single
operation. For future work, we plan to generalize this algorithm to automata over
more expressive structures, such as the automata over linear orders defined in [4].
This would make it possible to obtain an implementable decision procedure for,
e.g., the first-order theory 〈R, <〉 with uninterpreted unary predicates [10].
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