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Abstract

Agriculture is currently facing a series of pressing challenges such as climate change,
soil degradation, and population growth, which pose a significant threat to food secu-
rity and environmental sustainability. In the past, the green revolution, which relied
heavily on the use of inputs and new genotypes, led to significant gains in crop pro-
ductivity. Yet, the use of intensive inputs is no longer sustainable due to its negative
environmental impacts and to the societal concerns. Therefore, it is crucial to develop
new solutions that enable continued crop improvement while reducing inputs such as
fertilizers, pesticides, and water.

To effectively address these challenges, plant breeding plays a vital role, requiring
a comprehensive understanding of plant behavior from biological, physiological, and
agronomic perspectives. Large-scale phenotyping is essential to this process, as it in-
volves characterizing plants in diverse environmental and cultural situations, enabling
the identification of desirable traits for selection and optimization of crop manage-
ment practices. While manual phenotyping is labor-intensive and subject to human
subjectivity, automated phenotyping techniques utilizing sensors are being developed
to allow for faster, more precise, and objective plant characterization. However, their
application under outdoor conditions remains limited due to constraints such as wind,
changing light conditions and dense canopy.

In this work, a mobile phenotyping platform has been developed, equipped with a
set of cameras. The platform has been used to study several winter wheat trials using
two RGB cameras and one multispectral camera. The current thesis focuses mainly
on the development of the image analysis pipeline, with a pronounced investigation of
the use of artificial intelligence algorithms. The methods have enabled the detection
of wheat ears to count the density per hectare, the detection of disease-related dam-
age, and the estimation of biophysical variables such as above-ground biomass, leaf
area index and nitrogen content. The deep learning approaches showed to be better
as traditional machine learning methods and tends to better generalized. Estimated
throughout the growing seasons, these traits were used as predictors of grain yield
and yield components providing a deeper understanding of these complex yet highly
relevant traits.
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Despite significant advancements in the field of automated phenotyping, its adoption
by end-users such as breeders is still very limited. Therefore, it is essential to continue
raising awareness among stakeholders in the agricultural industry about the benefits of
using these technologies to improve sustainable agricultural production. By embrac-
ing new technologies, we can help to develop crops that are better adapted to diverse
conditions, increase crop productivity, and reduce the negative impacts of agriculture
on the environment.
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Résumé

L’agriculture est actuellement confrontée à une série de défis pressants tels que le
changement climatique, la dégradation des sols et la croissance démographique, qui
constituent une menace significative pour la sécurité alimentaire et la durabilité envi-
ronnementale. Dans le passé, la révolution verte a engendré des gains de productivité
grâce à l’utilisation d’intrants et de nouveaux génotypes. Toutefois, l’emploi excessif
d’intrants s’avère désormais insoutenable en raison de ses impacts environnementaux
et des préoccupations sociétales. Il devient ainsi primordial de concevoir des solutions
novatrices permettant d’améliorer les cultures tout en réduisant l’utilisation d’engrais,
de pesticides et d’eau.

Face à ces enjeux, la sélection variétale joue un rôle essentiel, nécessitant une com-
préhension globale du comportement des plantes d’un point de vue biologique, phys-
iologique et agronomique. La phénotypage à grande échelle est essentiel à ce proces-
sus, car il consiste à caractériser les plantes dans des situations environnementales et
de culture diverses, ce qui permet d’identifier des traits d’intérêts pour la sélection et
l’optimisation des itinéraires techniques. Alors que le phénotypage manuel est inten-
sif en main-d’œuvre et sujet à la subjectivité humaine, des techniques automatisées
basées sur des capteurs sont en développement, visant une caractérisation plus rapide,
précise et objective des plantes. Néanmoins, leur déploiement en condition extérieur
est restreint par des facteurs tels que le vent, les variations de luminosité et la densité
végétale.

Durant ces quatres années de recherche, une plateforme mobile de phénotypage a été
développée. Elle a été utilisée pour suivre plusieurs essais de blé d’hiver en utilisant
deux caméras RVB et une caméra multispectrale. La thèse actuelle se concentre prin-
cipalement sur le développement de la pipeline d’analyse d’image, avec une utilisation
importante d’algorithmes d’intelligence artificielle. Ces méthodes ont permis de dé-
tecter les épis de blé pour estimer la densité à l’hectare, d’identifier les dommages liés
aux maladies et de quantifier des variables biophysiques telles que la biomasse aéri-
enne, l’indice de surface foliaire et la teneur en azote. Finalement, la temporalité de
ces traits estimés a été exploitée pour mieux comprendre le rendement en grains et ses
composantes de rendement.
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Malgré les progrès significatifs dans le domaine du phénotypage automatisé, son
adoption par les utilisateurs finaux, notamment les sélectionneurs, demeure limitée.
Ainsi, il demeure impératif de sensibiliser les acteurs de l’industrie agricole aux avan-
tages de ces technologies. En adoptant ces nouveautés, ces acteurs auront l’opportunité
d’améliorer et d’accélérer leurs efforts pour développer des cultures résilientes, pro-
ductives et moins impactantes sur l’environnement.
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General Introduction





Chapter 1. General Introduction

1. Crop Productivity and Demands in a Changing World
The challenge of feeding a growing global population is one of the most pressing

issues facing society today. Despite the advances made in crop improvement over the
last century, current trends are unlikely to be sufficient to ensure food security by 2050
[Ray et al., 2013]. According to projections by the Food and Agriculture Organization
of the United Nations, demand for agricultural products is set to increase by more
than 50% between 2012 and 2050 [Food and Agriculture Organization of the United
Nations, 2017]. Moreover, in major crop production areas, yields have plateaued after
the green revolution [Ray et al., 2012]. Chemical inputs has substantially increased
crop production, but they have also raised concerns about sustainability and societal
impact [Foley et al., 2011; Ramankutty et al., 2018].

Climate change has further exacerbated the challenges of food production, bring-
ing both opportunities and concerns. Climate variations are responsible for a signifi-
cant portion of the global yield variation of major crops, which could exceed 60% in
some high-production areas [Ray et al., 2015]. Additionally, the scarcity of primary
resources and energy increases the competition for resources needed to sustain the
population [Food and Agriculture Organization of the United Nations, 2017].

The responsibility of finding solutions to these challenges falls heavily on farmers
and their subsidiaries, including breeders, scientists, advisers, agrochemical industries,
and policy makers. Crop breeding has been identified as a key factor in the agricul-
tural ecosystem that have the ability to address these issues [Voss-Fels et al., 2019].
Breeding is the essence of crop improvement, but it now requires a new impetus to
move towards speed breeding, which can accelerate the process of creating new crop
varieties [Hickey et al., 2019]. This approach to crop breeding involves using a combi-
nation of technologies, such as high-throughput phenotyping and genomic selection, to
develop crop varieties that can withstand environmental stress and have higher yields.

2. Phenotyping Needs
Phenotyping is the process of quantifying the traits of an individual and understand-

ing the interactions between their genotype (G), environment (E), and management
practices (M) that shape those traits. For a cropping system, a trait refers to a specific
characteristic or feature of a plant, such as its height, biomass, yield, flowering time,
or disease resistance. In other words, a trait is a specific aspect of a plant that can
be observed or measured. Humans have been practicing phenotyping for centuries by
selecting the best animals and plants for food, which forms the basis of modern plant
breeding.

As advances in genetics have exploded, phenotyping methods are now identified as
the bottleneck in the breeding pipeline [Araus and Cairns, 2014; Furbank and Tester,
2011]. In fact, to ensure a stable genotype, breeders need to evaluate their crops in
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various locations and farming practices. However, traditional methods of phenotyping
often relies on plant sampling or grading that are laborious, expensive, prone to human
subjectivity and errors. Consequently, breeders tend to focus on a limited set of major
traits related to crop yield without fully understanding the underlying changes.

To meet the growing demand for food, breeders must redirect their focus towards a
wider diversity of advanced traits [Reynolds et al., 2020]. Conventional phenotyping
methods are often insufficient to capture the complex interactions between G, E and
M, and are also subject to biases introduced by human observation. To overcome these
limitations, sensing technologies mainly based on different kind of sensors have been
developed to allow for the rapid and accurate measurement of plant traits [Araus and
Cairns, 2014; Furbank and Tester, 2011].

Coupled with advances in engineering and computer power, the emergence of novel
sensing technologies has enabled the collection of vast amounts of data on the plant
responses to their environment and the identification of new specific traits [Weiss
et al., 2020]. In addition, these technologies allow breeders to obtain objective, non-
destructive, and high-throughput data on the characteristics of crops in multiple en-
vironments and management practices throughout the crop growth cycle. Such an
approach, now well known as high-throughput plant phenotyping (HTPP), has and
will significantly improve the breeder’s ability to select for desirable traits of a crop
[Reynolds et al., 2020].

The utilization of HTPP has far-reaching implications beyond plant breeding. It of-
fers valuable opportunities for farmers, agronomists, physiologists, and scientists to
gain insights into plant characteristics. For instance, HTPP could plays a crucial role
in crop growth modeling, where researchers can enhance model accuracy and gain a
deeper understanding of crop growth processes by determining crop growth model pa-
rameters using HTPP data [Saint Cast et al., 2022]. Precision agriculture is another
field that has greatly benefited from HTPP methods. For example, satellite imagery
and field phenotyping are two related areas that can complement each other. By utiliz-
ing these technologies, farmers can optimize input usage by placing them in the right
areas at the right times, leading to increased yields, profitability, and reduced environ-
mental impact [Atzberger, 2013; Zhang and Kovacs, 2012]. Moreover, HTPP methods
are crucial for large-scale yield forecasting modeling, which is essential for many sec-
tors, including traders, governments, and grain storage companies. These players can
create maps of the agro-ecological landscape, land use, agricultural practices, or for-
est monitoring using HTPP methods, allowing them to make informed decisions and
define policies.

Overall, the implementation of HTPP methods has the potential to enhance our un-
derstanding of plant growth and development, assisting in addressing global food se-
curity issues, which are of paramount importance in today’s world.
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3. Framework of the Thesis
Despite the promising advances in HTPP, there are still numerous challenges, partic-

ularly when dealing with outdoor conditions [Machwitz et al., 2021; Sun et al., 2022].
One of the primary concerns is the collection of high-quality data, which is essential
for accurate phenotyping. Field conditions can be unpredictable and variable, making
data collection difficult due to factors such as weather, light conditions, soil condi-
tions, and crop variability. Some crops, such as cereals, may present challenges in
imaging or measuring specific traits. For instance, wheat canopy is often scattered,
overlapping, and messy, making lower leaves not visible. These difficulties can often
lead to a reduction of data quality and consistency. Furthermore, in natural conditions,
crops are usually subject to multiple biotic and abiotic stresses which are complex to
dissociate. This makes it more challenging to understand the individual effects of a
specific stress on the crop.

One other challenge of using HTPP is to deal with the large volumes of data it gen-
erates, which can be difficult to manage and analyze effectively. To ensure accuracy
and data quality, it’s crucial to have effective data management strategies for storing,
processing, and analyzing the data. The use of machine vision, machine learning algo-
rithms, and advanced deep learning algorithms may be necessary to extract meaningful
information from the complex data generated by HTPP. Many methods exist for phys-
iological and morphological measurements but they still require many improvements
[Berger et al., 2022]. One of the best path to follow nowadays are the recent advances
in neural networks. Coupled with organ scale images, they offer exciting opportunities
for addressing some of the challenges. These deep statistical processes can detect even
minor differences in complex images without human intervention. Although their use
in plant phenotyping is gaining popularity, there are still many aspects that need to be
investigated before they can be considered a reliable method for HTPP.

In crop breeding programs, the primary goal of implementing HTPP is to improve
breeder work efficiency by identifying and selecting plants with desirable traits. While
crop yield is the most important trait, it is also necessary to understand other signif-
icant agronomic traits throughout the growing season. Actually, crop yield is a com-
plex trait that can be influenced by various factors throughout the plant’s life cycle.
Indeed, HTPP can generate valuable knowledge across the growing season, aiding
in predicting, understanding how different factors impact crop yield over time. Yet,
integrating phenotyping data within breeding programs can be a challenging task, par-
ticularly if the programs are already complex and multifaceted. Overcoming these
obstacles necessitates ongoing efforts to develop and refine HTPP methods while si-
multaneously addressing the technical, logistical, and analytical challenges associated
with outdoor field conditions. To enable comparisons across different experiments and
environments, it is essential to standardize phenotyping protocols and data collection
methods. However, the phenotyping science and community are continuously evolv-
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ing, and these standards have not yet been fully integrated. Therefore, there is a need
for ongoing collaboration and communication within the community to establish and
refine these standards, ultimately enabling the full potential of HTPP to be realized in
crop breeding programs.

4. Objectives and Organization of the Thesis
This thesis was part of the PhenWheat project, funded by the Walloon Region. The

project’s goal was to study the growth dynamics of winter wheat varieties resistant to
various stresses using a ground-based phenotyping platform. Starting in 2018 for an
initial three-year span, the project was extended for three more years in 2021. The
research, alongside Sebastien Dandrifosse’s PhD thesis [Dandrifosse, 2022], has en-
abled the acquisition of high-quality data at the organ scale even in challenging outdoor
conditions.

It becomes apparent that harnessing this dataset within a comprehensive agronomic
framework is not only logical but imperative. Such utilization serves as a compelling
demonstration of the feasibility of implementing this cutting-edge methodology at the
organ level within the phenotyping community. Moreover, the recent advancements in
artificial intelligence (Artificial Intelligence (AI)) have unveiled unprecedented oppor-
tunities for overcoming the challenges faced by phenotyping community.

In light of these developments, this thesis focused on exploring the potential synergy
between an organ-scale phenotyping system and AI models to retrieve essential wheat
yield components. The core objectives encompassed:

• Employing and validating computer vision techniques to extract pertinent traits
from the collected data.

• Investigating and evaluating the effectiveness of cutting-edge deep learning al-
gorithms in facilitating data analysis. A specific emphasis was placed on the
following domains:

– Accurate segmentation of wheat organs.
– Unraveling the interaction between yellow rust and remotely sensed nitro-

gen.
– Estimation of biophysical variables.

• Bridging the gap between the derived trait estimated and agronomy, thereby
augmenting our comprehension of wheat yields within the context of their com-
ponents.

To meet these objectives, the thesis is organized into the following chapters (Fig-
ure 1.1):

Chapter 2 provides a literature review on phenotyping platforms and sensors, with
a focus on proximal systems for field trial conditions. This chapter also explains how
to convert raw sensor data into agronomic knowledge and provides an introduction to
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wheat crop.
Chapter 3 presents the field trials conducted from 2019 to 2022, including the de-

scription of all reference manual measurements and observations, the collection of
environmental data, and the protocols of image acquisition. This chapter also intro-
duces the phenotyping platforms and the sensors used, as well as some pre-processing
image analysis steps developed with Dandrifosse [2022].

Chapter 4 compares two methods for wheat ear segmentation and presents the
method to retrieve wheat ear density.

Chapter 5 investigates the effect of Yellow Rust disease on the measurement of
reflectance and explores the impacts on the estimation of wheat nitrogen status using
vegetation indices.

Chapter 6 evaluates the efficacy of Convolutional Neural Networks (CNNs) for es-
timating wheat vegetation biophysical variables. This chapter compares the results
with traditional machine learning and explores multi-task models for dry matter and
nitrogen uptake partitioning among the organs.

Chapter 7 brings together all the predicted traits from Chapters 3, 4, 5, and 6 for
a study on wheat yield and yield components. This chapter explores the best periods
and traits for modeling.

Chapter 8 takes a step back and discusses the issues surrounding the adoption of
these new technologies beyond research.
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Figure 1.1: Structure of the thesis.
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Chapter 2. Literature Review

1. Synopsis
Every living organism, whether it be an animal or a plant, possesses a distinctive

set of traits that define its identity and compose its phenotype. These traits arise from
the intricate interplay between the organism’s genotype, its surrounding environment,
and the management practices it undergoes. Phenotypes constitute a pivotal factor
considered in the field of crop enhancement. This chapter offers a comprehensive
survey of the latest advancements in phenotyping systems, sensors, and data analysis
methodologies pertinent to the central theme of this thesis: proximal sensing through
camera technology. The objective is to provide a holistic comprehension of the ongo-
ing cutting-edge progress in this domain, accentuating the most recent breakthroughs
and their potential applications (Figure 2.1). The synthesis of this chapter draws upon
a multitude of reviews that have also delved into various sensors and techniques not
mentioned here [Araus et al., 2022b; Deery and Jones, 2021; Reynolds et al., 2020;
Sun et al., 2022]. This literature review also underlines the new and original nature of
the proposed research work.

Figure 2.1: Overview of the field phenotyping systems which concern this thesis.
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2. Wheat and the Quest for Yield
Before entering into the current state of the art of phenotyping systems, let’s put

some words about the crop of interest in this thesis. Wheat is an ancient crop that has
played a significant role in human history. It is a staple food that provides around one-
fifth of the world’s food calories and protein [Shiferaw et al., 2013]. With an estimated
global cultivation area of 217 million hectares in 2018, wheat is the most widely grown
crop in the world [Erenstein et al., 2022]. The yield shows high variability. While the
high-potential areas like the Hesbaye region in Belgium can produce above 9 tons
per hectare [CRA-W, 2023], the global yield average is about 3.5 tons per hectare
[Erenstein et al., 2022].

Yield increases have remained relatively stagnant over the years. The current yield
increase is less than 1% per year globally, with the European region showing a stag-
nating trend [Foulkes et al., 2022; Ray et al., 2013]. These observations are consistent
with high heterogeneity in wheat production systems worldwide, making it challeng-
ing to develop a unified approach to address the yield gap.

Grain yield in wheat is determined by various genetic and environmental factors,
including plant growth and development, nutrient availability, water supply, tempera-
ture, light conditions and pest and disease pressure. It is a story of an entire cropping
season during which several events can occur. The crop growth is characterized by var-
ious growth stages, which are defined conventionally by the BBCH scale [Lancashire
et al., 1991]. This is based on phenological stages that range from 0 to 99 and repre-
sents specific events in the life of the plant (Figure 7.2). This scale covers all stages of
plant growth, from seed germination and emergence to flowering, fruiting, and senes-
cence. BBCH scale of wheat includes ten main growth stages, such as germination,
emergence, tillering, stem elongation, booting, heading, anthesis, grain filling, ripen-
ing, and senescence. Each growth stage has several sub-stages that refine the plant
development description.

3. Scales of Interest
The development and health of crops are influenced by a variety of factors encom-

passing the plant’s genetic makeup, environmental conditions, and management strate-
gies [Hawkesford and Riche, 2020]. However, understanding and tracking these fac-
tors in real-world agricultural settings can be quite challenging due to their complexity
and variability. When we observe changes in images or signals from the fields, these
changes may not solely be attributed to the crops themselves. Other elements, includ-
ing soil quality, weed presence, pests, and lighting conditions, can also contribute to
these observations. Consequently, it can be demanding to differentiate the individual
impact of each factor on crop growth, especially when we are looking at crops from a
high viewpoint. At elevated positions, a multitude of these factors combine for each
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data point, potentially overshadowing the actual changes in crop health. On the con-
trary, utilizing sensing systems that are closer to the crops provides more detailed data,
enabling a more comprehensive analysis of crop health and individual plant compo-
nents.

The advent of HTPP equipped with embedded sensors has substantially enhanced
data collection techniques. There exist two primary categories of these platforms:
one involves the collection of data in close proximity to the plants, often referred as
proximal sensing. The other category entails gathering data from a distance, known
as remote sensing [Jin et al., 2021]. Remote sensing platforms operating from a dis-
tance can capture a large amount of data, but their frequency is limited by factors like
weather conditions. On the other hand, the proximal-based sensing platforms offer a
more detailed view, albeit potentially with a slower throughput.

Within the realm of remote sensing in the frame of field trial characterization, Un-
manned Aerial Vehicle (UAV) are the prevalent choice for observing plant growth
due to their ability to capture detailed information and ease of use [Guo et al., 2021].
Ground platform can be categorized as handheld devices, stationary setups, and mobile
vehicles or robotic systems, each with distinct advantages and disadvantages [Xu and
Li, 2022]. Handheld devices, encompassing devices like smartphones, leaf-clipping
tools, and specialized poles, are easy to handle and transport. Stationary platforms,
requiring significant initial investment due to their fixed setup, can amass substantial
data with precise georeferencing and high temporal resolution within a single study
[Virlet et al., 2017]. Ground vehicles or robots, including tractor-based platforms,
phenomobiles, carts, and robots, can be fully or semi-autonomous and equipped with
multiple and heavy sensors [Xu and Li, 2022].

Overall, close-up sensing systems provide more detailed and versatile data collection
possibilities, leading to enhanced analysis of crop attributes compared to distant sens-
ing approaches. The choice of platform should be guided by specific study require-
ments, encompassing considerations like the need for detailed data, data collection
frequency, budget constraints, and operational ease.

4. Sensing Technologies
4.1. Morphological Traits
Crops exhibit a range of morphological traits that include plant height, canopy archi-

tecture, or the presence of awn. Thanks to recent advances in phenotyping technology,
these characteristics can now be retrieved in a high-throughput manner, as many stud-
ies did [Araus et al., 2022b; Deery and Jones, 2021; Reynolds et al., 2020; Sun et al.,
2022]. Each one of these measured traits are additional bricks that can help to explain
the final yield.
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A variety of sensors, such as Red-Green-Blue (RGB), hyperspectral, and multispec-
tral imaging, as well as Light Detection And Ranging (LiDAR) and other devices, are
capable of extracting morphological traits. Among these, RGB cameras are currently
the most popular and cost-effective modality. In fact, RGB sensors have become the
most popular data acquisition system due to their level of technological maturity, ease
of use, and affordability. In daily life, they are widely used in consumer cameras or
embedded in smartphones since this well reflects the color rendering of human vision.
Such sensors consist of an array of millions of small photosensitive cells that convert
the light intensity in an electrical signal which is directly digitized by the acquisition
system. The three-color channels are generally obtained by means of a grid of optical
filters directly placed on the sensors in order to restraint each cell to a specific spectral
band. The most common RGB filter grid is the Bayer filter which combined red, green
and blue cells in a proportion of 25%, 50% and 25%, respectively. The associated
wavelength bands of such a filter grid are rather large with 380-520 nm for the blue,
480-620 nm for the green and 580-700 nm for the red (Figure 2.1).

Apart from being capable of reproducing visually acceptable images, RGB cameras
are also an excellent source of relevant information for phenotyping tasks, for instance
to compute the canopy cover, i.e. the proportion of vegetation in the image used as a
good indicator of early vigor [Prey et al., 2018]. It can also be used for shoot biomass
estimation [Roth and Streit, 2018], as well as for Leaf Area Index (LAI) estimation
[Nielsen et al., 2012]. Tri-dimensional morphological information such as height can
be computed from a combination of multi-view RGB images as well. One of this
approach, called stereovision, works like the human vision by exploiting the difference
in image location of an object seen by two slightly different points of views. This
technique has been used by [Jay et al., 2014; Leemans et al., 2013] for plant height and
leaf area estimation. Photogrammetry, which consist in acquiring images by means
of a moving camera, is also widely used to estimate plant height, LAI, and biomass,
especially using UAV [Li et al., 2016]. Niu et al. [2019] compared different approaches
based on Vegetation Indices (VIs) and plant height information to estimate above-
ground biomass from RGB imagery. Another type of technology that might prove
useful for plant phenotyping is active sensors such as LiDAR, which is a laser-based
sensor that measures distances by computing the time it takes for an emitted signal to
return to an object after it is emitted. This technology provides a 3D point cloud and
is mainly used for physiological traits too [Lin, 2015]. LiDAR is especially accurate
in estimating plant height, as demonstrated by Zhu et al. [2021].

The future potential of RGB images is closely linked with the dazzling progress
recently made in AI. The accuracy and robustness of AI algorithms are continually
improving, providing immense potential for plant phenotyping such as fruit counting,
weed detection, disease detection and various other applications [Ferentinos, 2018;
Kamilaris and Prenafeta-Boldú, 2018; Nabwire et al., 2021]. With the help of AI,
many of these tasks have already seen significant improvements in the last years. As
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AI continues to evolve and mature, it is expected that RGB images will become an
increasingly valuable resource for researchers and practitioners alike, enabling them
to perform a wide range of analyses with greater efficiency and accuracy.

4.2. Physiological Traits
In addition to morphological traits, plants possess other characteristics that can help

explain their final yield. These traits include the measurement of pigment content or
canopy temperature, which reflect the health status of the plant and can be measured
using a wide range of sensors. While RGB imaging sensors are also reliable for this
purpose, spectroscopy sensors have even more potential.

In fact, RGB images remain excellent tool for highlighting contrasting colors and
shapes, which makes it easier to distinguish objects in an image. For example, re-
searchers have effectively used RGB imagery to identify specific patterns of plant dis-
eases in multiple studies [Mahlein, 2016]. UAV-based classification of cercospora leaf
spot [Görlich et al., 2021] and wheat yellow-rust detection [Alves et al., 2022; Zhou
et al., 2015] are two examples of such studies. RGB imagery is also useful for assess-
ing senescence or stay-green traits [Cao et al., 2021].

Spectroscopy, defined as the study of the electromagnetic radiation absorbed or emit-
ted by matter, has proven to be a powerful tool to measure, in a non-destructive way,
plant traits related to bio-chemical processes. The light reflected by vegetation is
the result of a complex combination of spectral signatures of its components, such
as chlorophyll pigments in the visible, water in the Near-infrared (NIR) and in the
Shortwave Infrared (SWIR), and proteins and carbon compounds in the SWIR [Pauli
et al., 2016] (Figure 2.1). Additionally, it is also influenced by the plant structure,
architecture, and surrounding environment [Chakraborty et al., 2015].

The spectrum of light reflected by vegetation can be measured by spectroscopy sen-
sors which allow to disperse the electromagnetic radiation into its component wave-
lengths captured by photodiodes. Such sensors can be single-spot or imaging devices
and are mainly classified according to their spectral sensitive range and their spectral
resolution, as described in [Cavaco et al., 2022].

Spectroradiometers are passive single-spot sensors which acquire spectrum data in a
specific range depending on the sensor technology with a rather fine spectral resolution
of few nanometers and with a narrow field of view, generally inferior to 25°. Such
sensors have been used to derive nitrogen content [Song et al., 2022], assess diseases
in wheat in field conditions [Anderegg et al., 2019; Koc et al., 2022], and measure
many other traits [Schiefer et al., 2021]. Spectroradiometers are an effective proximal
sensing tool that can provide comprehensive data of a mixed area, including crops and
their surrounding environment, such as the soil or the incident light. While there are
solutions available that allow for data acquisition solely on the crop using a clipping
device, this approach significantly reduces throughput and may lack representativeness

15



Wheat Yield Assessment Using Organ-Scale Phenotyping and Deep Learning

of the plant.
In addition, imaging spectroscopy sensors can be seen as arrays of spectroradiome-

ters. For plant phenotyping, hyperspectral and multispectral imaging systems are the
main considered instruments in this category. Hyperspectral imaging systems allow
discretizing the full spectrum in a specific range with a fine resolution. Different tech-
nologies have been emerging to acquire hyperspectral data cubes gathering one spec-
tral dimension with two spatial dimensions [Cavaco et al., 2022; Sarić et al., 2022],
and have the potential to touch very specific and advanced traits for a large variety
of use cases. Different measuring systems are available such as point or line scanning
describe by Sarić et al. [2022]. However, such sensing technologies remain technically
difficult to implement outdoor and the raw data are complex to analyze due to the huge
amount of generated data. On the other hand, multispectral imaging systems, which
are more operational and affordable, are specifically designed to capture the reflected
light intensity in a limited number of wavelength bands of interest. A multispectral de-
vice is composed of an array of monochromatic cameras, each of them mounted with
an optical filter passing the light in a specific wavelength. Such a device is fast and
easy to operate and can benefit from the high spatial resolution of simple consumer or
industrial cameras. It also exists some other multi/hyperspectral technologies such as
wheel filters [Bebronne et al., 2020] or snapshots cameras [Xie et al., 2023]. Both in-
struments can measure up to twenty-five wavebands offering a trade-off between multi
and hyperspectral sensor.

Multi and hyperspectral sensors have proven to be suitable for plant phenotyping
[Cavaco et al., 2022; Verrelst et al., 2019], particularly for biotic and abiotic stress
detection and, to a lesser extent, for yield quality and plant morphology. Indeed, they
are particularly valuable for plant disease detection, which is a hot topic in plant phe-
notyping [Cheshkova, 2022; Mahlein, 2016; Wan et al., 2022]. Currently, disease de-
tection is possible in the field, such as with Fusarium Head Blight in wheat [Mustafa
et al., 2022; Tanner et al., 2022], but it still remains complicated to predict diseases
before the appearance of symptoms. Control conditions are currently more suitable.
For instance, Peng et al. [2022] detected Cassava brown streak disease "well before
symptoms emerge" using a multispectral imaging prototype in the laboratory. Crop
nitrogen status has also been accurately assessed using this technologies for decades
[Jiang et al., 2022], as well as more specific nutrient such as calcium and magnesium
[Andrade et al., 2021].

Both, biotic and abiotic stresses can display similar symptoms, or/and their interac-
tion can be very complicated [Pandey et al., 2017]. The assessment of unique stress
is currently an advanced field of research, but the evaluation of simultaneous stresses
is still in its infancy [Chowhan and Chakraborty, 2022; Khanna et al., 2019]. Many
studies have focused on a single stress, while reality is that crops in the field are sub-
ject to multiple stresses. To enhance our understanding of individual stress factors and
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their impact on agricultural yield, it is crucial to employ more accurate and precise
assessments. In such situation, hyperspectral sensing can detect subtle spectral stress
signatures that are difficult to observe with the naked eye or traditional sensors [De-
vadas et al., 2015]. Another approach to deals with this challenge involves combining
multiple sensors to capture complementary information. For instance, while pathogen-
induced symptoms can be similar to those caused by water stress, Zarco-Tejada et al.
[2021] found that using a combination of hyperspectral and thermal sensors enabled
them to differentiate between the two types of stress. By leveraging the advantages of
these advanced sensing techniques, we can better identify and manage stress factors to
reach higher yields.

In addition to RGB and multi-hyperspectral sensors, thermal imaging, can be used to
capture physiological features related to surface temperature [Pineda et al., 2020]. This
technology has relatively low spatial resolution and reproducibility and can be strongly
influenced by environmental factors such as humidity and wind. No well-established
standardization solution has yet been found for proximal sensing. Nonetheless, it is
particularly useful for the assessment of biotic stress [Kuska et al., 2022] and abiotic
stress, particularly water stress [Gonzalez-Dugo et al., 2015].

5. Unveiling Agronomic Insights: Transforming Raw
Images into Knowledge
5.1. Synopsis
This section provides an in-depth exploration of the intricate process involved in

extracting agronomic traits from raw images, a pivotal component within the field of
plant phenotyping. The contemporary landscape is enriched with a diverse array of
sensors, offering the capacity to precisely analyze both morphological and physiologi-
cal traits of plants. Moreover, HTPP not only facilitates the comprehensive monitoring
of agronomical traits but also uncovers novel plant features that hold promise for in-
tegration by breeders, as underscored by [Reynolds et al., 2020]. To accomplish this,
an array of image processing techniques can be harnessed, ranging from fundamental
image manipulation to sophisticated machine learning and AI-driven methodologies.
These methodologies collectively fall under the umbrella of computer vision. The
following subsections outline the most used methods in plant phenotyping.

5.2. "Classical" Computer Vision Approaches
The term "classical" computer vision encompasses methodologies grounded in math-

ematical manipulations of images viewed as matrices of pixels. These techniques op-
erate without the need for data-driven model training. They find utility both as pre-
processing steps and as direct sources of valuable information (Figure 2.2). Image
pre-processing stands as a pivotal initial stage within classical computer vision, aim-
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Figure 2.2: Overview of image analysis methods details in this thesis.

ing to rectify and refine raw data due to innate camera characteristics that can, to some
extent, influence image quality. A prime instance is the occurrence of vignetting; a
detrimental effect caused by lens peripheries leading to diminished light intensity in
image margins. Dedicated algorithms can correct and eliminate such effects. Distor-
tions, where straight lines in images bend, can also arise. While many cameras feature
distortion corrections, post-processing can also address this through calibration pa-
rameters. Noisy images, containing stochastic artifacts, can undergo rectification or
smoothing via convolution operations employing specific kernels. Convolution, fun-
damental to various computer vision methods such as edge detection and blurring,
constitutes the core element of Convolutional Neural Network (CNN), elucidated in
Section 5.5.

Subsequent to pre-processing, image analysis typically involves extracting relevant
features associated to the considered application. Expert practitioners, drawing from
their knowledge and expertise, frequently undertake this task. Examples of such fea-
tures encompass color intensity, edge presence, and more sophisticated attributes like
pixel or pixel-group textural characteristics.

Furthermore, a plethora of automated algorithms is available to expedite image anal-
ysis. An illustrative case is automated image segmentation, encompassing the division
of an image into distinct regions of interest. For instance, the Otsu threshold [Otsu,
1979] yields satisfactory outcomes in segmenting canopies from soil, with machine
learning algorithms further enhancing accuracy [Yu et al., 2017].

Incorporating multiple images taken from various viewpoints or sensors can remark-
ably amplify the wealth of information captured within a scene. Employing stereovi-
sion techniques, distances can be extrapolated by analyzing the relative object posi-
tions across images, thereby generating intricate 3D point clouds [Dandrifosse et al.,
2020; Jay et al., 2014]. Similarly, aerial photographs can undergo geometric correc-
tion to amalgamate into an orthomosaic, a prevalent approach within UAV research.
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Another illustration involves the utilization of image registration algorithms to align
images stemming from disparate imaging systems. This process facilitates the creation
of a holistic representation, allowing individual pixels to assimilate precise information
from diverse sensors [Henke et al., 2019]. Originating primarily from the medical do-
main, image registration proves indispensable for analyzing proximal based images.
These methodologies, devoid of the necessity for a training phase, exemplify alter-
native image analysis techniques that yield consistent outcomes. Nevertheless, it is
imperative to acknowledge that in certain scenarios, these approaches might fall short
of achieving specific objectives.

5.3. Vegetation Indices
Vegetation Indices (VIs) are fundamental numerical metrics derived from spectral

data, serving as essential tools for assessing the health, density, and/or vigor of plants,
which often elude simple RGB images. They are rooted in mathematical formula-
tions that leverage the reflectance patterns across diverse wavelengths of light from a
surface. Their inception dates back to the 1970s, a period marked by the launch of
pioneering satellites. These early attempts were constrained by limited spectral cov-
erage and computational resources. Through subsequent decades, the realm of VIs
has evolved, with researchers in the field of remote sensing continually refining these
measures. Early efforts produced rudimentary two-band indices, occasionally expand-
ing to three or four bands. A comprehensive review of these indices was recently
undertaken by [Tayade et al., 2022]. Today, over 500 VIs have been gathered in an
Index Database (https://www.indexdatabase.de/) [Henrich et al., 2009]. Notably, these
indices find widespread utility within parametric regression models and stand as the
most time-tested and commonly employed algorithms for retrieving biophysical pa-
rameters via remote sensing [Berger et al., 2020].

The adoption of VIs spans a broad spectrum of applications, particularly within the
phenotyping community. Preeminent among these is the Normalized Difference Vege-
tation Index (NDVI), renowned for its ability to assess the greenness of crops. NDVI’s
versatility extends to its relevance in assessing early vigor, biomass, Leaf Area Index
(LAI), senescence, grain yield, and nitrogen content [Rouse et al., 1974]. Beyond
that, inventive fusions of spectral bands, including RGB cameras, have yielded new
VIs suitable for unraveling biophysical characteristics encompassing both biotic and
abiotic stresses, structural traits, and the ability to limit interference from the soil.

Notwithstanding their undoubted merits, VIs are not immune to limitations. These
encompass challenges such as limited generalizability, vulnerability to saturation ef-
fects, and underexploitation of the spectral information inherent in the data [Thenk-
abail and Lyon, 2011]. Unfortunately, some studies have condensed hyperspectral
datasets, which included hundreds of bands, into a mere merging of a few selected
bands [Tayade et al., 2022]. The efficacy of a specific VI hinges heavily upon the
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underlying objective and the correlation with the agronomic data. Consequently, in-
terpreting a solitary value from an NDVI may not confer a universally consistent in-
terpretation. However, even amid the rise of machine learning methodologies, the
enduring importance of VIs persists due to their ability to provide comparable perfor-
mance [Tayade et al., 2022]. Their importance goes beyond the simple reliance on
regression models, justifying recognition as stand-alone indicators of botanical traits.

5.4. Machine Learning
The integration of advanced machine learning algorithms, such as Random Forest

(RF), Support Vector Machine (SVM), and K-Nearest Neighbours (KNN), within sci-
entific domains, particularly complex fields like remote sensing, presents profound
advantages over conventional methods such as linear regression or fundamental image
processing techniques. By harnessing machine learning’s innate abilities, it has made
significant strides in managing vast and heterogeneous data collections. A notable ex-
ample is Partial Least Squares Regression (PLSr), a renowned algorithm for handling
hyperspectral data [Sarić et al., 2022]. This aptitude not only uncovers insights that
may evade traditional methodologies but also facilitates the amalgamation of multi-
modal data, adeptly handles noise-induced variability, and fosters contextual compre-
hension. While simpler methods have their place in specific scenarios, the complexity
of modern scientific challenges and the wealth of available data highlights the central
role of machine learning in advancing our understanding of the world around us.

Machine learning is an innovative field with the capacity to acquire knowledge from
data. It involves deploying advanced algorithms and statistical models to enable these
systems to autonomously identify patterns, extract insights, and make informed predic-
tions or decisions, all without the need for explicit and rigid programming instructions.
It is a subfield of artificial intelligence and has gained immense popularity in recent
years due to its ability to automate tasks that were previously thought to be impossible
for machines to perform. The spectrum of applications spans classification, regres-
sion, prediction, clustering, and object detection (Figure 2.2). Successful implementa-
tion hinges on relevant feature selection and substantial examples with corresponding
labels for training purposes. Broadly categorized as supervised, unsupervised, and
reinforcement learning, the former involves instructing models such as RF, SVM, or
KNN using labeled data, enabling the model to extrapolate correct outputs for new
inputs. Unsupervised learning entails model training without labels, necessitating in-
dependent identification of patterns and relationships, often applied in clustering and
anomaly detection. Reinforcement learning, pivotal in robotics, gaming, and interac-
tive scenarios, guides models to maximize cumulative rewards through learned actions.
The choice of learning method rests on the problem and available data, each bearing
distinct merits.

Supervised learning has played a crucial role in phenotyping tasks, and is integrated
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into most phenotyping studies, as highlighted by [Araus et al., 2022b; Singh et al.,
2016]. Its application spans plant disease detection, yield prediction, and/or growth
monitoring [Mahlein, 2016; Sun et al., 2017; Wang et al., 2022a].

The efficacy of machine learning algorithms pivots on feature quality for training.
Conventionally, these features, derived through computer vision techniques, necessi-
tate expert domain knowledge and manual crafting. However, this process, prone to
errors and time constraints, has been alleviated by robust libraries such as OpenCV
[Bradski, 2000] or scikit-learn in Python [Pedregosa et al., 2011]. Coupled with com-
putational advancements, algorithm training times have notably diminished. Despite
these improvements, the feature engineering process remains a critical step in the ma-
chine learning workflow and requires careful consideration to ensure the best possible
performance.

5.5. Deep Learning
5.5.1. Introduction and Evolution

Deep Learning, a prominent subfield of machine learning, has revolutionized artifi-
cial intelligence by enabling the training of intricate artificial neural networks to deci-
pher intricate tasks. In contrast to conventional machine learning methods, deep learn-
ing networks possess the capacity to autonomously extract relevant features from raw
data, eliminating the need for manual feature engineering. Drawing inspiration from
the neural architecture of the human brain, the inception of deep learning dates back to
1958 when the pioneering perceptron model was proposed by Rosenblatt [Rosenblatt,
1958]. However, between the 1960s and 2010s, deep learning remained in the shadows
of other machine learning algorithms, failing to gather significant momentum. A turn-
ing point for deep learning materialized with the emergence of AlexNet [Krizhevsky
et al., 2017], a groundbreaking convolutional neural network. This pivotal moment
occurred during the ImageNet competition [Deng et al., 2009], where AlexNet not
only outperformed existing machine learning methods but also achieved an impres-
sive reduction in error rates, from 26% to 16%. This resounding victory unequivocally
positioned deep learning at the forefront of computer vision for the subsequent decade.

Deep learning networks consist of multiple layers of interconnected nodes, or neu-
rons, where each layer processes input data at varying levels of abstraction. The initial
layer receives raw input, while subsequent layers receive output from preceding ones.
Learning occurs by adjusting weights between nodes in each layer to minimize a loss
function, comparing predicted and actual outputs. This iterative adjustment process,
called backpropagation, continues until the network generates accurate predictions.

Deep learning’s impact is profound, advancing diverse fields like image and speech
recognition, natural language processing, and image analysis. Consequently, it plays
a pivotal role in our daily lives, from facial recognition on social platforms to natural
language-driven automated conversations. However, a significant challenge lies in
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the substantial data demands to achieve impressive outcomes. Unfortunately, certain
domains such as HTPP processing face limited data access, which can be both time-
consuming and costly to acquire. While free-access databases exist in some domains,
specific applications lack such resources, exacerbating the application challenge for
deep learning techniques. Nonetheless, deep learning’s potential merits are extensive,
and ongoing research strives to surmount these hurdles, rendering it more accessible
across diverse applications.

5.5.2. Convolutional Neural Networks

One of the most used types of neural networks in deep learning is the Convolu-
tional Neural Networks (CNN). CNNs are specifically designed to recognize patterns
in visual data, making them ideal for image recognition tasks. Composed of a series
of layers combined to form a single architecture, CNNs are highly versatile and can
be tailored to fit specific needs (Figure 2.2). In recent years, an impressive number of
CNN models have emerged, each aimed at maximizing performance while minimizing
the number of parameters required for training. Moreover, researchers are continually
pushing the boundaries of CNNs to improve their computational efficiency, ensuring
that they remain at the forefront of image recognition technology.

The key element of a CNN is the convolutional layers, which apply filters or kernels
to the input image. Each filter produces a feature map that highlights where those
features appear in the image, and multiple filters are applied in each convolutional
layer to extract a range of features. These features are then passed on to subsequent
layers, which can extract increasingly semantically rich features. Another essential
element of a CNN is the pooling layer, which reduces the size of the feature maps
while retaining the most significant information, helping to prevent overfitting and
decrease the number of parameters in the network. The convolution and pooling layers
essentially do the job of the engineer looking for best features in an image. The final
layers of a CNN typically include fully connected layers, which use the flattened output
from the previous layers to make predictions about the input image. The number of
neurons in these layers depends on the specific task that the network is being trained
for. To determine the best filters or neurons weight for each layer, the model update
each weight iteratively through the process of training. This can require a high level of
computing power, especially for large datasets. However, once the network has been
trained, it can process new images with a high degree of accuracy very fast.

CNNs have emerged as a powerful tool in image classification tasks and have achieved
state-of-the-art results on benchmark datasets like ImageNet [Deng et al., 2009]. How-
ever, their applications extend beyond image classification and have been employed in
a variety of other domains, including regression, object detection, and segmentation.

Thanks to the advent of accessible computing resources and libraries, CNNs have
become increasingly accessible to a broader audience. For instance, the release of
CUDA by NVIDIA and the availability of web-based platforms such as Google Colab
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have made it easier to train and run models. Furthermore, numerous frameworks,
including Tensorflow and Pytorch, offer accessible APIs that enable even novice users
to develop their own CNN models. Free access databases, such as ImageNet, and
COCO, provide a wealth of labeled data that can be used for people training and testing
these models, further contributing to their widespread use.

While CNNs have proven to be effective in a broad range of applications, it is im-
portant to note that there are still domains where their effectiveness may be limited.
For example, in more specific topics such as phenotyping, the story could be different,
especially regarding the access to large databases.

5.5.3. CNN for phenotyping

Plant phenotyping is an area where deep learning algorithms have recently shown
great promise [Jiang and Changying Li, 2020; Kattenborn et al., 2021; Singh et al.,
2018]. Early applications of CNNs in outdoor conditions were focused on plant classi-
fication and weed recognition, with the popular PlantNet web platform being a key ex-
ample [Affouard et al., 2017; Mortensen et al., 2016]. Nowadays, CNNs have demon-
strated impressive performances in a range of other tasks, such as wheat head detec-
tion, canopy segmentation, and disease classification [Dandrifosse et al., 2022b; Fan
et al., 2022; Ferentinos, 2018; Görlich et al., 2021; Serouart et al., 2022]. By find-
ing the most appropriate features, CNNs have shown better abilities to generalize than
conventional approaches. For instance, Ma et al. [2019] have shown that a CNN was
less sensitive to plant density when estimating wheat biomass at early growth stages
than a Random Forest. Furthermore, these novel methods can help to better estimate
traits and unlock the extraction of more advanced parameters such as crop growth rate
when applied to time-series data [Buxbaum et al., 2022]. Yet field conditions exhibit
much more image variability due to lighting conditions, backgrounds, and overlapping
plants. This variability could be better managed by these deep learning approaches
provided there is a sufficient dataset with large variability.

Indeed, large annotated datasets are essential for developing models that can be gen-
eralized and accurate across a broad range of cultivars and conditions. In the plant
phenotyping community, it is currently challenging to obtain a large annotated dataset
under field conditions. A training dataset is usually composed of images pairs with
their corresponding targets, such as classification category, segmentation masks, or
object detection bounding boxes, all of which require human annotation or labeling
that can be time-consuming to provide accurately. Although several tools are being
developed to assist with this task, and alleviate the need of data, model accuracy still
depends heavily on massive datasets with labels.

To address the issue of limited labeled data, several methods have been proposed to
train robust models. The two most used approach are transfer learning and data aug-
mentation. The first use pre-trained models with defined meaningful weights trained
on very large dataset like the ImageNet dataset [Russakovsky et al., 2015]. It has
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been successful in estimating forage biomass [Castro et al., 2020; de Oliveira et al.,
2021]. However, when dealing with multichannel images, pre-trained models that are
typically trained on RGB images are not suitable. Another possibility is to perform
data augmentation. It artificially increases the dataset size by applying transforma-
tions to the images [Zhang et al., 2022]. In a similar way, it might also be possible
to enlarge the dataset by creating synthetic data using a functional–structural plant
model (FSPM) [Li et al., 2023]. Other methods are also gaining popularity such as
self-supervised learning or reinforcement learning which train without fully labeled
dataset.

Recently, open-source datasets have emerged as a solution to this problem in re-
sponse to high demand of certain traits. The Global Wheat Head Detection dataset
is probably one of the best example for the phenotyping community [David et al.,
2021]. It is dedicated to wheat head detection and has gained considerable popularity
by unlocking the issue of wheat head detection. PlantNet has also released a dataset
comprising 300,000 images of plant species [Garcin et al., 2021]. The VegAnn dataset,
which was created by [Madec et al., 2023] for crop segmentation, is particularly useful
for retrieving canopy cover. Other web platforms, such as PlantVillage [Lobet et al.,
2013], also contain crop-related datasets, but with a focus on indoor conditions.

Deep learning is rapidly advancing and are quickly becoming the standard for image
analysis. These techniques have demonstrated excellent performances in various tasks.
Still, there are numerous challenges that need to be addressed regarding the phenotyp-
ing needs, for instance for regression purpose. By addressing these challenges, we can
further improve the effectiveness of CNNs for plant image analysis, and continue to
push the boundaries of what is possible in this exciting field.
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1. In-Field Phenotyping Platform
In contrast to the indoor phenotyping systems, which involve moving plants to the

measuring instruments, the demands of in-field phenotyping require the sensors them-
selves to be transported to the plants. Within the scope of the PhenWheat project,
in conjunction with both this doctoral study and the contributions of Sebastien Dan-
drifosse, an innovative motorized platform has been conceived and engineered. The
platform and the sensor system used in this study have been supported and validated in
the thesis of Sébastien Dandrifosse, and are therefore outside the scope of this current
work.

Designed to navigate and carry cameras within trial fields divided into micro-plots,
the platform initially employed over the initial three-year period was a stationary, man-
ually operated structure. This setup necessitated the involvement of two individuals for
operation and was used to capture vegetation data, as illustrated in Figure 3.1. This
static system was eventually replaced by the development of a dynamic mobile plat-
form. Extensive testing of this mobile platform was undertaken in 2021 to verify its
ability to operate smoothly throughout the 2022 growing season.

The structural design of the mobile platform was based on a four-wheel motorized
system. The mechanical construction of the chassis was performed in collaboration
with the CRA-W. The implementation of the motorization and the embedded electron-
ics to control the navigation and the data acquisition were carried out by the mecha-
tronics laboratory of Gembloux Agro-Bio Tech. The platform is modular and can
be easily dismantled into four parts for transportation and micro-plots adaptability. In
order to avoid any interference caused by shadows, the sensors were mounted on a can-
tilever beam always oriented towards the sun. The maximum height of it was 2.25m.
A tensioners were added to limit any vibration during data acquisition. Regarding the
electronic design, each wheel is driven in propulsion and steering by a control unit con-
nected via a CAN BUS network to a central unit. This assembly enables the regulation
of the rotation speed and the orientation of the four wheels for linear trajectories, i.e.
forward, backward and lateral displacements, and circular trajectories with different
curvature radii. The navigation is remotely controlled by only one operator which is
a significant improvement over the manned platform, particularly in terms of reducing
the physical demands of the work. It also contributed to increase the data acquisition
flow.

To further improve the navigation capabilities of the platform, a semi-autonomous
navigation system is currently being develop using two complementary approaches.
Firstly, a low-cost geo-referencing system such as RTK GPS will be utilized to ac-
curately position the platform at specific points. This will ensure that the platform
is always precisely located, even in challenging environments. Secondly, for simple
trajectories like micro-plots in a straight line, cameras installed at the corners of the
platform and positioned above the wheels will be used to capture the crop rows to fol-
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low. This would allow for more efficient and accurate navigation, even in situations
where the GPS signal may be weak or unreliable. By combining these two approaches,
the platform could achieve a higher level of autonomy and precision in its navigation,
leading to improved performance and efficiency.

In addition to the proposed navigation improvements, enhancing the mechanical
structure of the platform could help it better withstand the rugged terrain it operates in.
To achieve this, a stabilizer could be implemented to eliminate vibrations that the plat-
form encounters during operation. This would improve the stability of the platform
and prevent any potential damage to the sensors. By addressing these mechanical
concerns, the platform would be better equipped to operate under challenging field
conditions and collect accurate data without any disruptions.

Figure 3.1: Image acquisition system timeline.

2. Data Acquisition System
2.1. Sensors
A multi-sensor system was developed during the course of the project PhenWheat

and validate during the thesis of Sébastien Dandrifosse funded by a FRIA grant (Fig-
ures 3.1 and 3.2) [Dandrifosse, 2022]. In 2018, the data acquisition system consisted
of two RGB GO-5000C-USB cameras (JAI A/S, Copenhagen, Denmark), equipped
with a 2560 x 2048 pixels CMOS sensor and a LM16HC objective (Kowa GmbH,
Düsseldorf, Germany), with a focal length of 16 mm. The cameras had a Horizontal
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Field Of View (HFOV) of 44.3° and a Vertical Field Of View (VFOV) of 33.6°, and
the aperture was set to f/4.0.

From the 2020 season, a multispectral camera Micro-MCA (Tetracam Inc., Gainesville,
FL, USA), consisting of six monochrome cameras with 1280 x 1024 pixel CMOS sen-
sors, complemented the RGB ones. Narrow band-pass optical filters centered at 490,
550, 680, 720, 800, and 900 nm were mounted on each camera, with a width of 10
nm except for the 900 nm band, which had a width of 20 nm. The lenses had a focal
length of 9.6 mm and an aperture of f/3.2. The HFOV was 38.26° and the VFOV was
30.97°. However, the device was not yet fully mastered, and the 2019 data were not
exploited in this thesis.

In 2021, a PI640 thermal camera (Optris GmbH, Berlin, Germany) was added to the
system, equipped with a sensor of 640 x 480 pixels and covering a spectral range from
7.5 to 13 µm, with a focal length of 18.7 mm. The HFOV and VFOV were 33° and
25°, respectively. However, this sensor will not be used in the rest of this thesis.

Along with these cameras, an Incident Light Spectrometer (ILS) was also added
to the set-up. It was an AvaSpec-ULS2048 (Avantes, Apeldoorn, The Netherlands)
equipped with a cosine corrector. It had a bandwidth from 200 to 1100 nm with a
resolution of 0.5 nm. The irradiance calibration was carried out at the manufacturer on
March 23, 2020, and in winter 2021-2022.

Figure 3.2: Sensor set-up.
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2.2. Acquisition Settings
Through all the measurement campaigns from 2019 to 2022, from two to four scenes

were acquired within each micro-plot depending on the trial. Nadir frames with the
HFOV perpendicular to the wheat rows were taken by the cameras at a constant height
1.6 m above the canopy, except in 2019 where the height was 1 m. A homemade soft-
ware was developed by the lab to control the system and enabled the setting-up and
the triggering of the sensors. To ensure perfect synchronization, an external trigger
from an Arduino micro-controller was used for the two RGB cameras. The spectrom-
eter and the multispectral camera were triggered within one second due to technical
compatibility.

From 2019 to 2021, the RGB cameras recorded 12-bit and 8-bit color resolution
images, while in 2022, only 8-bit images were recorded. The 12-bit images were
reduced to 8-bit images due to the requirements of existing image processing libraries
by dividing pixel values by 16. A dichotomous algorithm was designed to find the
highest exposure time with less than 0.1% of pixels saturated in the image. It was
based on the manufacturer exposure. No change in ISO value was made. The images
were saved in TIFF format on a laptop to avoid information loss and radial distortion
was corrected using a chessboard and the OpenCV-Python library.

The exposure time of each channel of the multispectral array was determined using
a master-slaves method. An auto-exposure mode was adjusted on the channel centered
at 800 nm, considered as the master. The exposure time of the other channels were
deduced by means of correction factors, which needed to be adjusted throughout the
season. Four combinations of coefficients were used across the season, from tillering,
which had a large amount of soil in the image, through greener canopy to maturity
with yellow plants. The multispectral images were saved on SD cards and processed
in the PixelWrench software to obtain 8-bit grayscale images.

The ILS recorded an average of three spectra at each image acquisition, which took
less than one seconds. The spectral data underwent correction for dark noise and pixel
non-linearity associated with exposure time, utilizing calibration data to compensate
for these sensor and electronic-induced noise factors. A proper exposure time was
manually set through the user interface to avoid saturation in the spectrum on each
date of acquisition. Digital values were converted to irradiance data thanks to factory
calibration.

3. Experimental Protocol
3.1. Field Trials
Field trials were conducted in Lonzée, Belgium (50°33’50” N and 4°42’00” E) on

homogeneous deep silt loamy soil under a temperate climate over a period of four
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cropping seasons (2019-2022). To introduce a distinctive contrast in both the canopy
architecture and the fungal infection, aimed at rigorously testing the proposed phe-
notyping system, the experimental trials were meticulously structured. On one hand,
variations were introduced solely in the nitrogen fertilization strategy, while on the
other hand, a combination of fungal foliar disease protection levels and varying fer-
tilization amounts was employed. A summary of the trials is provided in Table 3.1.
The trials were set up with a seed drill after plowing. The rest of the crop itinerary
was executed under optimal conditions to avoid additional stressors. All these tasks
were carried out by the experimental farm of Gembloux Agro-Bio Tech. Thus, the
first trial focused on nitrogen fertilization (F), with different levels and fractions de-
scribed in detail in Table 3.2 and Table 3.3. The aim was to produce a range of wheat
canopies to identify significant differences in wheat growth and yield. That was based
on the nitrogen fertilization practices recommended in Belgium that suggest a total of
180kg/ha of nitrogen in three fractions of 60kg/ha at tillering (BBCH 25), stem elonga-
tion (BBCH30), and flag leaf (BBCH39), which may be adjusted based on the previous
crop and soil nitrogen residues. The fertilizer used in this trial was 27% ammonium
nitrate. The trials consisted of four complete randomization blocks for images and
reference measurements, and four other replicates for final grain yield.

The second type of trial involved a bi-factor approach (FP), combining fertilization
and fungicide treatments as described in Table 3.4. This trial was designed to in-
vestigate the interactions between plant nitrogen status and incidences of fungal dis-
eases. Nitrogen input scenarios were similar to those in the fertilization trials, with
four fungicide scenarios. The 0F scenario involved no fungicide application, while 1F
had a single fungicide application at the flag leaf stage (BBCH 39). The 2F scenario
involved fungicide application at the second node stage (BBCH 32) and at the head-
ing stage (BBCH 55). The 3F scenario involved fungicide application at BBCH 32, 39
and at flowering (BBCH 65). Fungicide mixtures were composed of Triazole (Kerstrel,
1.25Lha−1) at BBCH 30, Triazoles-Pyrazoles-carboxamides (Librax, 1.5Lha−1) at
BBCH 39 and 55, and Triazole (Prosaro, 1Lha−1) at BBCH 65. No inoculation was
performed, and the disease was allowed to occur naturally on chosen disease-sensitive
cultivars. It was actually very annoying because some diseases may or may not oc-
cur out of control (see Chapter 5). The trials comprised four complete randomization
blocks for images and reference measurements and four additional replicates for final
grain yield for 21 and 22-FP. In 2019, no replicates were sown for grain yield.

3.2. Reference Measurements
Parallel to the image acquisitions, reference measurements were conducted in order

to identify correlations between the numerical data and the conventional agronomic
knowledge. These reference measurements are described in this section.

31



Wheat Yield Assessment Using Organ-Scale Phenotyping and Deep Learning

Table 3.1: Summary of the field trials.

Trial ID Type Variety Sowing date Sowing (grains.m-2) Previous crop

19-FP Fertilization × Protection Smart 23/10/2018 250 Potato
20-F Fertilization Mentor 07/11/2019 250 Spinach

20-FP Fertilization × Protection Vertikal 05/11/2019 250 Spinach
21-F Fertilization Mentor 20/10/2020 275 Potato

21-FP Fertilization × Protection Vertikal 27/10/2020 300 Potato
22-F Fertilization Mentor 28/10/2021 300 Potato

22-FP Fertilization × Protection Bennington 28/10/2021 300 Potato

Table 3.2: Fertilization schemes of trials 20-F, 21-F and 22-F. The last column mentioned for
which modality destructive reference measurements were performed (see Section 3.2.1).

Nitrogen inputs (kg N.ha-1) at: Total nitrogen
inputs(kg N.ha-1)

Destructive
measurementsTillering Stem elongation Flag leaf

0 0 0 0 D

30 30 30 90 D

40 40 40 120
50 40 55 145
60 60 60 180 D

80 40 60 180 D

90 30 60 180
105 105 105 315 D

Table 3.3: Fertilization inputs of trial 19-F. The last column mentioned for which modality
destructive reference measurements were performed (see Section 3.2.1).

Nitrogen inputs (kg N.ha-1) at: Total nitrogen
inputs(kg N.ha-1)

Destructive
measurementsTillering Stem elongation Flag leaf

0 0 0 0 D

30 30 30 90 D

0 60 60 120
60 60 0 120
90 30 60 180
60 60 60 180 D

80 40 60 180 D

105 105 105 315 D
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Table 3.4: Fertilization inputs and fungicide treatments of trials 20-FP, 21-FP and 22-FP. The
last column mentioned for which modality destructive reference measurements were

performed (see Section 3.2.1).

Nitrogen inputs (kg N.ha-1) at: Total nitrogen
inputs(kg N.ha-1)

Fungicide at
BBCH stages:

Destructive
measurementsTillering Stem elongation Flag leaf

40 40 40 120 / D

60 60 60 180 /
80 60 60 200 /
100 80 80 260 / D

40 40 40 120 39 D

60 60 60 180 39 D

80 60 60 200 39
100 80 80 260 39 D

40 40 40 120 32 - 55
60 60 60 180 32 - 55
100 80 80 260 32 - 55
40 40 40 120 32 - 39 - 65 D

60 60 60 180 32 - 39 - 65
80 60 60 200 32 - 39 - 65
100 80 80 260 32 - 39 - 65 D

3.2.1. In-season Destructive Measurements

Destructive samples of wheat biomass were taken at major phenological stages in-
cluding stem elongation (BBCH 30), second node (BBCH 32), flag leaf (BBCH 39),
flowering (BBCH 65), medium milk (BBCH 75), and maturity (BBCH 89) stages as
shown in Figure 3.4. The growing season for each year is described in terms of Photo-
Vernalo-Thermic Units (°C-days) (UPVT) detailed in Section 3.2.4. The focus was
primarily made on the Fertilization trials (F) trials from 2019 to 2021, with destructive
measurements at all those growth stages, and fewer measurements for the Fertilization
and fungicide trials (FP) trials. Due to the COVID-19 pandemic, the first sample was
not made in 2020. In contrast, in 2022, the FP trial was sampled at all growth stages,
whereas the F trial had only three sample dates.

The sampling consisted in cutting fresh wheat plants at ground level to a length of
50 cm in three central contiguous rows. The biomass was manually divided into the
stems, the flag leaves, the other leaves, and the ears. Each category was weighed and
dried in an oven at 65°C until a constant weight was achieved. The dry matter (DM)
was then weighed and sent to an external laboratory for nitrogen concentration deter-
mination using the Dumas method. Nitrogen uptake (Nupt) of each organ was obtained
by multiplying the corresponding nitrogen concentration (%N) and DM. Nitrogen Nu-
trition Index (NNI) was also calculated based on the equation from [Justes, 1994] as
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shown below:

NNI =
%N

Nc
;Nc = 5.35(DM)−0.422 (3.1)

where %N represents the actual nitrogen concentration and Nc is the critical nitrogen
concentration corresponding to the crop DM (t/ha).

To determine LAI, plants were sampled by taking one row measuring 0.50 m in
length. The leaves were separated from the stems, weighed, spread on a white paper
using a transparent adhesive sheet, and scanned. An Otsu segmentation method was
employed to isolate the leaves from the white background [Otsu, 1979]. The leaf sur-
face area was calculated by summing the areas of the scanned paper sheets multiplied
by the proportion of pixels segmented as leaf. Since this protocol was time-consuming,
only five microplots with contrasting fertilization were selected for manual LAI mea-
surements at each collection date. These LAI values were correlated with the asso-
ciated fresh masses by means of a linear regression to predict the LAI of the other
microplots. Each correlation had a really high correlation above 0.9, thus validate this
method as a reference.

3.2.2. Grain Yield and Yield Components

The dried ear samples collected at maturity were split into grain and chaff using a
hand harvesting machine. They were then weighed and sent to an external labora-
tory for nitrogen concentration determination, which allowed for the calculation of the
grain nitrogen content (g/m2) and concentration. The grain and chaff nitrogen content
were combined using a weighted average to retrieve the ear concentration at maturity.

Grain Yield (GY) was harvested using a combine harvester in four dedicated repli-
cates, except for the 20-FP trial in which micro-plots harvested where also those with
samples holes. Thus, the 20-FP yield was corrected by accounting for the surface that
contained sample holes. Unfortunately, violent storms at the end of the 2021 season
lodged most of the two trials for several weeks before harvest. Therefore, the GY ob-
tained in 2021 was the result of manual samples that were taken earlier, which limited
the effect of lodging but induce a measurement bias.

Thousand Kernel Weight (TKW) was determined on combine harvester samples us-
ing four replicates by counting 100 seeds with a seed counter and then weighting them.
It was measured on a bare seed basis.

GY is defined by the multiplication of the three yield components: the TKW, the
number of kernels per ear, and the ear density (see Chapter 4). While calculating the
exact kernel count per ear can be complex, we can easily calculate it from the other
factors we have measured.
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Table 3.5: Scale for the visual scoring of wheat fungal diseases. The scale is based on three
criteria: i) the affected foliar floor (L1 refers to the flag leaf, L2 to the second upper leaf, . . . ),
ii) the average intensity of the infection on a leaf (Lo = low, M = medium and Hi = high), and

iii) the repartition of the disease in the micro-plot or within the plants leaves.

Affected foliar floor
L4 and < L3 L2 L1

Average intensity Lo M Hi Lo M Hi Lo M Hi Lo M Hi
<3 plants 1 1 1 1 1 1 1 1 1 1 1 1
<10 plants 2 2 2 2 2 2 2 2 2 2 2 2
10 <x <50

plants 2 2 2 2 2 2 3 3 3 4 4 4

1 in 10
plants 2 2 3 3 3 4 4 5 6 6 7 8

1 in 2 plants 2 2 3 3 4 4 5 6 6 7 8 8
All the
plants 2 2 3 3 4 5 5 6 7 7 8 9

R
ep

ar
tit

io
n

All the leaves 3 3 4 4 5 5 6 7 7 8 9 9

3.2.3. Disease Assessment

Trials were inspected at each image acquisition date, but disease grading was only
performed when necessary. The three main diseases, namely Septoria tritici blotch
(STB), Yellow rust (YR), and Brown rust (BR), were graded using a Visual Score
(VS) for all treatments, described in Table 3.5. The grade is based on the average
intensity of the disease on the highest affected foliar floor and for a certain number of
plants. It is a fast scoring method that represents the global incidence of the disease of
the micro-plot. It was re-scaled following the equation:

sV S =
9− V S

8
(3.2)

This equation scales the VS to scaled Visual Score (sVS) where a value of 0 signifies
no disease, and a value of 1 corresponds to a very high level of disease pressure. For
the trial 21-FP, scoring was performed four times on 16th, 25th of June, and 2nd, 9th
of July due to low disease pressure. However, for the trial 22-FP, diseases appeared
early in the season, so the trials were scored ten times on 19th, 25th of April, 2nd, 9th,
17th, 23th, 30th of May, 2nd, 13th, and 21st of June. It is worth noting that other trials
showed symptoms of STB in the lower leaves but were considered negligible in terms
of the date or intensity.
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3.2.4. Field Observations and Environmental Data

During each data acquisition session, a variety of information was meticulously
noted in a field notebook. This included the date, time, trial name, operators in-
volved, relative exposure settings of the multispectral camera, sensor height, plant
height, growth stage, reference measurement type (biomass sample or disease nota-
tion), weather conditions, and overall remarks. The global remarks section provided
space to highlight any noteworthy field observations or encountered issues, such as
pest problems or software bug.

Figure 3.3: Overview of the season’s precipitations in mm.

In addition to the simple weather comments, more advanced meteorological data
were provided by CRA-W/Agromet.be from a measurement station located in Sombr-
effe at five kilometers from the trials. This station recorded hourly data on air temper-
ature and precipitation. As shown in Figure 3.3, the seasons vary in terms of precip-
itation that have induced different level of diseases. 2019 and 2021 were quite dried
during the growing season. 2021 was very wet and included violent storms late in sea-
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son. 2022 was a bit wet during spring to bring high level of diseases, but in a steady
way that did not disturb data acquisition at all. The thermal time, UPVT, used in this
thesis was based on the research of [Duchene et al., 2021] which took into account a
slowdown factor for photoperiod and vernalization.

3.3. Collecting Data
Starting in 2019, a substantial volume of images was procured for analysis. The

dates of image acquisition and the corresponding destructive measurements conducted
within those years are outlined in Figure 3.4. In the initial year, 2019, the image count
was relatively limited due to project initiation and the need for a gradual launch. How-
ever, beginning from the subsequent years, the objective was to acquire data every 10
to 15 days, with careful attention to weather forecasts. Nonetheless, in both 2021 and
2022, there were extended intervals without data collection. The latter year witnessed
the impact of severe storms that caused lodging in the two trials, thereby disrupting
data collection for several weeks leading up to the harvest. Additionally, the COVID-
19 pandemic hindered data acquisition at the beginning of the 2020 season.
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Figure 3.4: Overview of the data collection for each trial across the four seasons: images
(green diamonds) and destructive measurements (blue crosses).
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4. Image Data Processing
4.1. Synopsis
This section provides a comprehensive overview of the raw image processing tech-

niques employed in this study. These methodologies were primarily developed within
the framework of Sébastien Dandrifosse’s doctoral project, carried out in collaboration
with the PhenWheat project and the proposed thesis. The central objective was to inte-
grate data captured by the multi-sensor system, detailed in Section 3.3, to derive both
depth and spectral information at the scale of individual plant organs, subsequently
extracting pertinent agronomic traits.

The image processing pipeline, depicted in Figure 3.5, encompassed several key
steps, including plant-soil segmentation, canopy height mapping via stereovision [Dan-
drifosse et al., 2020], computation of bi-directional reflectance factors (BRF) [Dandri-
fosse et al., 2021], and pixel-wise registration of all images [Dandrifosse et al., 2021].
While this section furnishes a solid foundational understanding of each procedure, for
more exhaustive insights, readers are encouraged to delve into the respective research
papers.

4.2. Plant-Soil Segmentation
The presence of soil within images can introduce noise to the accurate representa-

tion of the crop signal [Daughtry et al., 2000; Wang et al., 2022b]. A spectrum of
image segmentation techniques has been proposed to mitigate or eliminate this effect,
encompassing both elementary methods like grayscale image thresholding [Meyer and
Neto, 2008], to more sophisticated approaches such as the use of SVM [Hamuda et al.,
2017] or deep learning methodologies (refer to Chapter 5 for details).

The devised approach hinges upon utilizing the 800 nm image for two principal
reasons. Firstly, it served as the reference image during the registration process (Sec-
tion 4.4), thus remaining unaffected by any deformation. The inclusion of a vegetation
index like NDVI might not be suitable in this context, as it necessitates aligning two
images, thereby introducing potential deformations. Secondly, owing to the relatively
high reflectance of plants in the NIR region compared to soil, segmentation of plants
is more feasible even during advanced growth stages. As depicted in Figure 3.6, plant
pixels exhibit higher values compared to soil pixels. Therefore, a simplistic threshold-
based method was adopted. The threshold demarcating the two classes was determined
by identifying the first minimum in the pixel value histogram (Figure 3.6). Computa-
tion of this threshold was facilitated by the scikit-image library [Van der Walt et al.,
2014], which locates the local minimum within pixel values ranging from 25 to 50. In
scenarios where no minimum was discernible, a Gaussian mixture model with three
components was employed to ascertain the threshold, found at the intersection of the
initial two components.
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Figure 3.5: Overview of the image processing techniques.

In instances characterized by intense direct sunlight, soil pixels might exhibit higher
values than plant pixels, potentially leading to misclassification. To mitigate this, the
490 nm image was enlisted to identify strongly illuminated soil pixels, subsequently
excluded based on a 95th percentile threshold. This supplementary step was exclu-
sively executed when the cloudiness index surpassed 0.90, a derived from ILS data
through the subsequent equation:

Ct = 1− E

E0cos(z)
(3.3)

where E represents solar irradiance (W/m²) within the ILS spectral measurement range,
E0 corresponds to the solar constant (1360 W/m²), and z signifies the sun’s zenith
angle.

Though no dedicated study has been conducted to formally evaluate this method,
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its efficacy is evident from the visual assessment of the resultant masks, showcased
in Figure 3.7. These masks exhibited satisfactory visual accuracy across various sce-
narios, substantiating their capability to derive canopy cover by computing the ratio
of plant pixels to total pixels. As part of a broader investigation (Chapter 5), a novel
technique based on RGB imagery and employing deep learning was also explored.

Figure 3.6: Example of a 800 nm image with its corresponding histogram. The black dashed
line represents the minimum found by the proposed algorithm.

Figure 3.7: Result of the segmentation on the 800 nm image.

4.3. Height Map from Stereovision
This section relies on the following published paper [Dandrifosse et al., 2020]:

Dandrifosse S., Bouvry A., Leemans V., Dumont B. & Mercatoris B., 2020. Imaging
wheat canopy through stereo vision : overcoming the challenges of the laboratory to
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field transition for morphological features extraction. Front. Plant Sci. 11(February),
1–15. DOI:10.3389/fpls.2020.00096.

Figure 3.8: Stereovision pipeline (adapted from [Dandrifosse, 2022]).

Stereovision is a process that enables the acquisition of 3D information using two
closely placed cameras with different viewpoints, similar to human vision. This method
provides a depth map that assigns a height value to each pixel, enabling the extraction
of height statistical descriptors, computing leaf angle distribution, or other geometri-
cal traits. Initially developed in the laboratory [Tilneac et al., 2012], stereovision has
recently been applied in field conditions [Müller-Linow et al., 2015].

The stereovision process relied on the use of the two RGB cameras of the multi-
sensor setup. Before each campaign, the two-camera system was calibrated using a
black and white chessboard divided in 40 x 40 mm². This allowed the determination
of the intrinsic and extrinsic camera properties used to correct image distortion and in
the stereovision process. The entire process was carried out using the OpenCV-Python
library (version 4.5.3.56). The 12-bit images acquired in 2019, 2020, and 2021 were
converted to 8-bits to be compatible with this library.

Following the pipeline shown in Figure 3.8, the left image was used to segment the
green canopy using an Excess Red vegetation index (ExR) [Meyer and Neto, 2008]
with a threshold of 0.05, which was determined empirically. This yielded a satisfactory
segmentation that was adequate for deriving plant height statistics.

The first step in the stereovision process is the rectification, which aims at projecting
both images into a common y-coordinate system using the extrinsic parameters. The
images are then converted to grayscale and reduced to 1280 x 1024 pixels using 2 x
2 averaging pooling. The second step is the stereo matching, which involves finding
corresponding pixels in both rectified images using the Semi-Global Block matching
algorithm. To optimize pixel matching, the algorithm considers the image from mul-
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tiple directions to find the best matches. The disparity map is obtained by calculating
the difference between the x-coordinates of both matched pixels. Since both RGB im-
ages may not match at every pixel, a couple of filtering processes can be applied. In
this case, the Weighted Least Squares filter was chosen to smooth and fill the gaps.

Depth is inversely proportional to disparity considering the focal length and the base-
line. This results in a depth map of the scene. From there, a height map is computed
by subtracting the height of the camera from the depth map. The green canopy mask
can be applied to the height map to extract the height histogram of the crop.

The height map is the primary output of the stereovision process, with the option of
using a filling filter to enhance the results (Figure 3.9). This filtered image is a valuable
source of information and will be used in various specific tasks throughout this thesis.
Additionally, [Dandrifosse et al., 2020] proposed using the height map as a 3D point
cloud to estimate the mean tilt angle of leaves, the leaf angle distribution and the leaf
area index.

Besides the height map, statistical descriptors of the observed scene can be computed
using stereovision. For instance, in Figure 3.10, percentiles 75 and 95 were compared
to manual measurements. For the trials 18-F (similar to the 19-F trial) and 19-F, the
manual reference point was set at the flag leaf insertion, and measurements were taken
using a tape measure. Pearson’s correlation coefficients between the manual measures
and the median, percentile 75, and percentile 95 of automatic measures were 0.66,
0.58, and 0.39, respectively. These results demonstrate that this method can provide
useful height descriptors of a canopy. It also questions the relevance of comparing
these electronic measures with traditional measures.

4.4. Image Registration
This section relies on the following published paper [Dandrifosse et al., 2021]:

Dandrifosse S., Carlier A., Dumont B. & Mercatoris B., 2021. Registration and
Fusion of Close-Range Multimodal Wheat Images in Field Conditions. Remote Sens.

13(7), 1380. DOI:10.3390/rs13071380

The employed multi-sensor system comprised three distinct cameras. Due to their
proximity to the canopy and varying optical axis positions, directly combining their
individual images posed a challenge in extracting intricate traits at the pixel level.
While data fusion techniques enable merging of resultant traits, the fusion of source
data, the images, presents a distinct endeavor. Such fusion can amplify knowledge and
comprehension of the plant system by augmenting the data at each pixel [Jiang et al.,
2018]. To tackle this complexity, an automated registration approach was devised for
close-range multimodal wheat canopy images captured under field conditions. This
method harnessed local deformations, drawing inspiration from analogous challenges
encountered in the medical domain [Sotiras et al., 2013].

43



Wheat Yield Assessment Using Organ-Scale Phenotyping and Deep Learning

Figure 3.9: This figure shows the RGB image cropped to the zone commonly observed by
the two cameras, the raw height map, the height map filled with the algorithm of Yun, and the
height map filled with the WLS method. The dark blue zones, at 0 on the scale, corresponded
either to soil or to plant pixels for which the height couldn’t be computed (from [Dandrifosse,

2022]).

This section encompasses the entire multi-sensor system depicted in Figure 3.2. For
registration purposes, the 800 nm lens of the multispectral camera was designated as
the master, selected due to its central position within the sensor setup and its profi-
ciency in plant identification. Furthermore, the nearest RGB camera, i.e., the left one,
was chosen.

The primary step of the registration process involved applying a global transfor-
mation based on the canopy distance. Affirmative results from laboratory experi-
ments validated the application of an affine transformation, with the distance obtained
through stereovision serving as input. Following a meticulous laboratory calibra-
tion procedure, images were registered using this method, yielding precise alignment.
However, the global transformation alone was inadequate in accurately fusing all pix-
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Figure 3.10: Comparison of automatic and manual measurements of canopy height at flag
leaf stage. The measurements were performed on May 24th, 2018 on eleven micro-plots from

the 18-F trial, each in a different fertilization scenario (from [Dandrifosse, 2022]).

els due to challenges arising from occlusion and parallax effects.
Consequently, subsequent to the initial pre-alignment, a secondary alignment was

performed using an image-based method capitalizing on the inherent resemblances be-
tween the content of the slave and master images. Among the methodologies evaluated
by [Dandrifosse et al., 2021], the B-SPLINE approach was adopted. This technique
maximized a similarity metric between the master and slave images, employing the
normalized mutual information metric. It subsequently executed a localized transfor-
mation of slave images based on a 3rd-order (cubic) B-spline model, employing a grid
spacing of 16 units. The implementation of this technique leveraged the Elastix library,
encapsulated within the pyelastix (version 1.2) Python library.

Ultimately, all images were meticulously cropped to dimensions of 855 x 594 pixels,
capturing a common region that minimized potential distortions occurring at the image
peripheries. Furthermore, a prudent recommendation included the erosion of the plant
mask to ensure retention of solely the object of interest.

The registration results of the B-SPLINE and other tested methods are presented in
Table 3.6. The B-SPLINE outperformed all other methods with a very low error of
about 1.9 mm and 2.0 mm for the 900 nm and RGB images, respectively, in terms
of the error on manual control point. It also produced the best results for plant mask
error, but it had a high computation time. Despite the good accuracy achieved, some
distortions occurred in the images, especially in situations with moderate to high wind.
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Table 3.6: Comparison of the registration methods. The comparison is based on three
criteria: the average computation time to register one image of all the cameras, the control

point error and the plant mask error. For the RGB images, some methods were discarded (NA
values) because they did not yield a plausible alignment for all the test images (from

[Dandrifosse, 2022]).

Method Average time (s) Control point error (mm)
Plant mask

error (%)

900 nm RGB 900 nm

SIFT 4 3.7 NA 9.7
SURF 6.2 3.6 NA 9.5
ORB 1 5.5 NA 10.6

A-KAZE 2.7 3.4 NA 10.1
DDTM 2.6 5.2 NA 11.7

DFT 41.3 3.9 NA 9.7
ECC 21.9 3.2 3 9.8

B-SPLINE 176.7 1.9 2 7

This was due to the asynchronous acquisition of scenes, which could result in relative
displacement of the wheat leaves. To address this issue, a 5x5 matrix was used to erode
the plant mask. Each image registration vectors were saved that allow the registration
of other related image such as the height map or the soil segmentation mask.

4.5. Bi-directional Reflectance Factor
This section relies on the following published paper [Dandrifosse et al., 2021]:

Dandrifosse S., Carlier A., Dumont B. & Mercatoris B., 2022. In-Field Wheat
Reflectance: How to Reach the Organ Scale? Sensors 22(9), 3342,

DOI:10.3390/s22093342.

The ability to acquire crop health information from reflectance data has been intro-
duced in Chapter 2. However, the acquisition, analysis, and correlation of such data
with agronomic factors present challenges outdoors due to the dynamic interplay of
canopy anatomy, physiology, and incident light [Comar et al., 2012]. These frequent
variations during in-field data collection pose hurdles in securing accurate measure-
ments. While the utilization of vegetation indices, like the NDVI, is a straightforward
approach to address these fluctuations, it has its limitations in signal exploitation and
insight generation. To surmount these constraints and enhance reflectance data anal-
ysis, an ILS was employed to normalize the data with respect to varying illumination
conditions.
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Enabling this approach necessitated the creation of camera response curves as the
first step. These curves establish a connection between digital numbers and the corre-
sponding exposure (H(λ)), accounting for the intricacies of the camera’s electronics
and optics. To formulate these curves, a known reflectance panel was captured by the
camera at varying exposure times. Furthermore, the ILS recorded the solar spectrum,
integrated over relevant wavelength bands, and amalgamated with exposure values to
formulate the camera response curves.

Consequently, each individual camera had its unique relation, facilitating the re-
trieval of H(λ) from digital numbers, thereby enabling the computation of crop re-
flectance according to the formula:

ρ (λ) =
π ∗H(λ)

E(λ) ∗ t(λ)
(3.4)

where H(λ) signifies exposure at the camera lens (J/m² sr), E represents incident ir-
radiance (W/m²), and t(λ) denotes exposure time (s). Notably, the term "reflectance"
commonly used actually refers to Bi-directional Reflectance Factor (BRF), which ac-
commodates the directional nature of light.

An experiment conducted from 9 a.m. to 5 p.m. on six different dates assessed the
influence of the sun zenith angle on BRF measurements using the multi-sensor sys-
tem. This assessment aimed to isolate the impact of the sun zenith angle, assuming no
alterations in plant physiology or material dynamics throughout the day. The method-
ologies delineated in this chapter, encompassing soil segmentation, image registration,
and ears segmentation (Chapter 4), were employed to exclusively derive wheat leaf
BRF.

As depicted in Figure 3.11, the average evolution of each BRF across the day unveils
distinct patterns. In the majority of instances, BRF exhibited a morning surge followed
by a decline and eventual stabilization. This trend was particularly pronounced for the
initial April date, which had a lower zenith angle. Two dates demonstrated consis-
tent measurements corresponding to overcast days. However, this does not unequiv-
ocally imply that the other dates enjoyed clear blue skies; cloud passages might have
occurred without impacting measurements. Overall, data collection around noon is
prudent, with observations indicating that a zenith angle surpassing 55° ensures pre-
cision in measurements. Consequently, this approach was consistently applied to all
multispectral images throughout the thesis, typically acquired between 11 a.m. and 3
p.m.
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Figure 3.11: Average bi-directional reflectance factor (BRF) measured on the leaves
throughout the day. Each subplot is dedicated to an acquisition date, designated by the

development stage of the crop and the number of days after sowing (DAS). The evolution of
the measured BRF is represented for the six different optical filters of the cameras, indicated

by a color and symbol code on each subplot ([Dandrifosse et al., 2022a]).
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Chapter 4. Detection and Segmentation of Wheat Ears

1. Synopsis
Recent advancements in sensing technologies, coupled with significant enhance-

ments in computing power, have assist in a new era of non-destructive data extrac-
tion from crop canopies throughout their growth stages. Proximal and remote sensing
techniques now leverage high-resolution imagery obtained from cameras mounted on
terrestrial vehicles or low-altitude UAVs. These technologies have enabled the dis-
crimination of various wheat plant components within the field, such as leaves, stems,
and ears. Recognizing the distinct developmental patterns and functional roles of these
components is vital for accurately interpreting sensor data in high-throughput pheno-
typing strategies.

This chapter focuses on the automated segmentation of wheat ears and introduces
two sequential methodologies that were developed for this purpose. The initial ap-
proach involves the classification of simple linear iterative clustering (SLIC) super-
pixels through feature extraction from fused RGB and multispectral images [Carlier
et al., 2022]. In contrast, the second approach employs deep learning techniques to
detect and segment ears within RGB images [Dandrifosse et al., 2022b]. The core aim
of this study was to comprehensively compare the performance of both methods using
a custom-designed evaluation framework. Furthermore, this investigation sought to
underscore the remarkable capabilities of the deep learning approach in estimating ear
density, thereby presenting a departure from conventional manual counting techniques.

2. Current State of the Art
The existing knowledge in this field underscores the significant influence of ear pres-

ence within the canopy on UAV-scale image signals, as revealed by studies conducted
by Anderegg et al. [2020]; Li et al. [2021a]; Prey and Schmidhalter [2019b]. An addi-
tional insight, emphasized by Liu et al. [2021], pertains to the scarcity of research con-
cerning light interception patterns during the post-flowering phase; a period wherein
ears assume a greater role in light interception. This knowledge gap is particularly sig-
nificant due to the pivotal role of canopy light interception in determining final yield,
with the contribution of ear photosynthesis to grain filling remaining a subject not fully
comprehended [Maydup et al., 2010]. Furthermore, the density of ears serves as a re-
liable proxy for one of the primary yield components. Although traditionally assessed
manually using a wooden stick in the field, the adoption of automated methods for head
density measurement promises enhanced accuracy and alleviates the complexities of
physical measurement. Notably, a more focused analysis on ears offers improved in-
sights into specific wheat diseases such as Fusarium head blight, which exclusively
impact reproductive organs. Consequently, the automated segmentation of ear images
emerges as a pivotal step within the domain of computer vision. This task, however, is
laden with challenges, ranging from organ overlap to the intricate variations in color
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and architecture induced by diverse growth stages, cultivars, and lighting conditions.
In the realm of computer vision, the current cutting-edge techniques for ear detection

predominantly revolve around deep learning methods, specifically leveraging CNN.
This paradigm shift is largely attributed to the advent of the Global Wheat Head De-
tection dataset V2 (GWHD) [David et al., 2021], which triggered a surge in research
endeavors. Notably, the community witnessed nearly forty research papers published
by April 2023, reflecting the dynamic response to this dataset’s availability. While
these studies yield commendable results in ear detection, they frequently limit them-
selves to bounding box delineations around the ears, omitting the provision of segmen-
tation masks or the computation of ear density.

Before the advent of the GWHD dataset, deep learning approaches for ear detection
were comparatively underdeveloped and accompanied by certain drawbacks. These
methods necessitated copious amounts of training data, which translated into arduous
and costly endeavors. Moreover, the underlying intricacies of deep learning processes
remain partially veiled Singh et al. [2018], rendering them challenging to configure
and execute. In light of these challenges, alternative strategies for ear detection and
segmentation have surfaced. For instance, Fernandez-Fernandez-Gallego et al. [2019]
explored thermal imagery for ear counting, though the method exhibited limitations
in robustness . Meanwhile, Sadeghi-Tehran et al. [2019] achieved favorable counting
outcomes through a hybrid model integrating superpixels and deep neural networks.
Textural feature-based machine vision approaches have also demonstrated efficacy in
ear counting and segmentation, particularly under diffuse lighting conditions [Coin-
tault et al., 2008; Fernandez-Gallego et al., 2018]. Additionally, wheat ear recognition
from multisensor data has been pursued using hand-crafted machine vision techniques
[Zhou et al., 2018]. However, these prior investigations were often constrained by
limited acquisition dates, and the assessment of segmentation performance remained
infrequent.

3. Machine Learning Approach
This method furnishes sufficient information to comprehend the process, which is

more detailed in the following published paper [Carlier et al., 2022]:

Carlier, A., Dandrifosse, S., Dumont, B. & Mercatoris, B., 2022. Wheat Ear
Segmentation Based on a Multisensor System and Superpixel Classification. Plant

Phenomics 2022, https://doi.org/10.34133/2022/9841985.

Following the preprocessing steps detailed in Section 3.4 Chapter 3, the ear seg-
mentation process was executed through the application of a superpixel classification
technique. Here, a superpixel denotes a collection of pixels sharing common attributes
such as color and spatial characteristics. The concept of utilizing superpixels for ear
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segmentation has been explored in previous research by Ma et al. [2020]; Sadeghi-
Tehran et al. [2019]. To generate these superpixels from RGB images, we employed
the Simple Linear Iterative Clustering (SLIC) algorithm, a variant of k-means cluster-
ing. This algorithm harnessed five features from the CIELAB color space in addition
to pixel coordinates. The use of CIELAB is advantageous for detecting subtle color
differences. The implementation was executed using the Python 3 scikit-image library
(version 0.17.2). Key parameters of the SLIC algorithm were optimized to accom-
modate all crop development stages, encompassing the approximate superpixel count,
compactness, and maximum k-means iterations. Through experimentation, values of
1500, 10, and 30 were determined for these parameters, striking a balance between
overly large or overly small superpixels.

Each generated superpixel was subsequently classified as either an ear or non-ear.
Three distinct machine learning algorithms were tested for this purpose: Random For-
est (RF), Multilayer Perceptron (MLP), and Support Vector Machine (SVM). These
algorithms were fed a comprehensive array of features, including average values of
superpixels across the six monochrome channels from the multispectral camera, nor-
malized RGB channels, Hue Saturation Value color space (HSV) values, and fifteen
vegetation indices (Table 4.2). In addition, two non-image-related features, Days After
Sowing (DAS) and the cloudiness index (refer to Equation (3.3)), were incorporated to
account for wheat growth stage and lighting conditions, respectively. Prior to classi-
fication, these features were standardized using a standard scaler technique involving
mean removal and standard deviation scaling. Classifier hyperparameters were then
fine-tuned based on these 29 features, with accuracy serving as the evaluation metric.

To refine feature selection and minimize noise from redundant attributes, a sequential
backward feature selection procedure was performed. In each iteration, the algorithm
generated all possible feature subsets of size n-1 (where n denotes the total feature
count) and subjected each subset to 5-fold cross-validation on the training set. The
feature with the least contribution to the highest-accuracy subset was removed. This
iterative process continued until performance stabilizes. Subsequently, a second round
of hyperparameter optimization was conducted utilizing the selected features.

Constructing the classification dataset involved labeling superpixels into two cate-
gories: leaves and ears. The labeling procedure employed RGB images from the 20-F
and 21-FP trials and was executed using an online machine learning platform available
at https://www.apeer.com. Labeled regions were manually delineated using a brush-
like pointer, as illustrated in Figure 4.1. To ensure dataset diversity and class balance,
a comparable amount of data was allocated to both leaves and ears (46% earmarked
as ears). These labeled regions were then translated into labeled superpixels, with su-
perpixels containing at least 10% labeled pixels of a class being assigned to that class.
Superpixels housing labeled pixels for both classes or having fewer than two pixels
were excluded. Rigorous attention was given to selecting images representative of di-
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Figure 4.1: Illustration depicting the superpixel labeling process. Manual labeling was
performed using a brush-like pointer.

verse acquisitions, spanning nitrogen input, growth stages, and lighting conditions. A
minimum of two images from each date were chosen for labeling, yielding a dataset
of 43 images. This dataset comprised 15,765 superpixels, randomly partitioned into
an 80% training set and a 20% validation set.

4. Deep Learning Approach
This method furnishes sufficient information to comprehend the process, which is

more detailed in the following published paper [Dandrifosse et al., 2022b]:

Dandrifosse S., Ennadifi E., Carlier A., Gosselin B., Dumont B. & Mercatoris B.,
2022. Deep learning for wheat ear segmentation and ear density measurement: From

heading to maturity. Comput. Electron. Agric. 199(June).
DOI:10.1016/j.compag.2022.107161.

The second approach utilized a deep learning method to detect and segment the
wheat ears. The state-of-the-art object detection algorithm YOLOv5 was employed
along with images from the Global Wheat Head Detection dataset V2 [David et al.,
2021] containing more than 275 000 labeled wheat heads, supplemented with addi-
tional images from the 20-F and 20-FP trials. To accommodate the size of the im-
ages, supplemented images were divided into four sub-images of 1280 × 1024 pix-
els, and each sub-image was resized to 1024 × 1024 pixels. The LabelImg tool
(https://github.com/tzutalin/labelImg) was used to label the sub-images, resulting in
two labeled datasets: a validation dataset and a dataset to augment the GWHD V2
for model training. The validation dataset consisted of around forty randomly selected
sub-images from each acquisition date and trial, resulting in 64,091 labeled ears across
566 sub-images. The training set included images from growth stages not sufficiently
represented in the GWHD V2, specifically heading and maturity. One hundred and
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three sub-images were randomly selected from two dates at the heading stage (June
3rd for trial 20-F, June 2nd for trial 20-FP), and thirty-two sub-images were randomly
selected from three dates at the maturity stage (July 29th for trial 20-F, July 13th and
July 22nd for trial 20-FP). The training set contained a total of 13,566 labeled ears
across 135 sub-images.

The training process involved four stages. In the first stage, the GWHD V2 was used
to train the model. In the second stage, the trained model was employed to predict ear
bounding boxes for all images taken in 2020, and the predicted boxes were recorded
as pseudo-labels. In the third stage, the GWHD V2 labels and pseudo-labels were
utilized together to retrain the model. Lastly, transfer learning was applied to enhance
the model using the labeled training set obtained from our 2020 images. Consequently,
the most recent model weights were based on reliable data, ensuring its credibility.

The DeepMAC neural network model was then used to segment wheat ears within
the bounding boxes without the need for manual training masks [Birodkar et al., 2021].
The pre-trained DeepMAC model had strong generalization abilities, and ear masks
were generated for each sub-image. The sub-masks were then transformed back to the
original sub-image size to form a mask of the same format as the original RGB image.
However, parts of the ears cut at the sub-image junctions did not match to the pixel, so
a filling algorithm was used to consider pixels between two ear pixels from either side
of a junction as belonging to the ear mask. While there was a risk of regrouping ear
parts that did not belong to the same ear, the filling algorithm proved to be useful.

Finally, the ear density, expressed in ears per square meter, was calculated by divid-
ing the number of ears in the image by the area of the image, i.e., the image footprint
at ear height. To generate a map of ear depths, the ear mask obtained from the seg-
mentation step was applied to the depth map obtained through stereovision. Since the
ears were mostly vertical, the depth points were considered to be located at the tops of
the ears. To estimate the image footprint in the middle of the ear layer, the median of
ear depths was increased by 0.05 m empirically to account for the size of the ears.

5. Pixel-Based Segmentation Evaluation
The assessment of segmentation methods at the pixel level necessitated an approach

that extended beyond the evaluation of superpixel classification or DeepMAC model
performance. A supplementary evaluation framework was designed to encompass
the complete segmentation process. To this end, a protocol was devised, culminat-
ing in the creation of a custom annotation tool. This tool aimed to facilitate rapid
and straightforward evaluation, enabling a comprehensive comparison of method per-
formances across different dates and fertilization treatments. The design employed
involved annotating 18 pixels, strategically distributed in three rows within each RGB
image (Figure 4.2). This configuration was judiciously chosen to strike a balance be-
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tween representing image heterogeneity and expediting the evaluation process across
a substantial number of images. The tool systematically zoomed in on each pixel, al-
lowing the operator to assign one of three classes: class 1 for background elements
(soil, leaves, stems, etc.), class 2 for ears, and class 3 for cases where distinguishing
between class 1 and class 2 proved challenging. This scenario often occurred when
pixels were positioned at the boundary between an ear and the background.

This procedure was implemented across images for half of the dates spanning from
heading to maturity in both 2020 trials. The maturity stage was reached approximately
62 days after heading. For robust statistical comparison between human annotations
and predicted segmentations, the F1-score was adopted. Particularly suited for ad-
dressing unbalanced classes, which characterize this problem, the F1-score is defined
as:

F1score = 2× precision× recall

precision+ recall
(4.1)

Precision =
TP

TP + FP
;Recall =

TP

TP + FN
(4.2)

where TP, FP, and FN represent true positives, false positives, and false negatives,
respectively, derived from the confusion matrix.

Furthermore, to gauge potential biases arising from the rapid human annotation pro-
cess, annotations from three different operators were compared using Cohen’s kappa
coefficient. Widely acknowledged for its robustness compared to accuracy, Cohen’s
kappa accounts for the likelihood of true values arising by chance. It is defined as:

k =
p0 − pe
1− pe

(4.3)

where p0 denotes the empirical probability of agreement on the label assigned to any
sample (the observed agreement ratio), and pe represents the anticipated agreement
when both operators assign labels randomly, in accordance with scikit-learn documen-
tation.

6. Results and discussion
6.1. Comparative Evaluation of Segmentation Approaches
The comprehensive evaluation of superpixel classification across RF, MLP, and SVM

algorithms yielded overall accuracies of 0.93, 0.94, and 0.94 on the test set, respec-
tively. Consequently, the SVM algorithm was selected for superpixel classification.
Fine-tuning led to the configuration of the SVM model with a C regularization param-
eter of 100, a radial basis function kernel, and a kernel gamma coefficient set at 0.1.
However, it is prudent to scrutinize the model’s robustness considering the validation
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Figure 4.2: Schematic representation of the pixel-based evaluation approach. Annotators
select 1, 2, or 3 to classify pixels into background, ears, or uncertain categories.

dataset’s construction. Notably, the possibility arises that superpixels in the validation
set might be proximate to superpixels present in the training dataset.

A comparative analysis based on the pixel-level evaluation unequivocally demon-
strates the superior performance of the deep learning approach in contrast to the super-
pixel method across all dates (Table 4.1). The deep learning technique exhibited an im-
provement of over 16%, showcasing consistent high performance across diverse dates.
Conversely, the machine learning approach exhibited subpar results during the initial
dates around flowering. With this compelling outcome in mind, and acknowledging
the broad generalization capacity inherent to the deep learning model, we proceeded
to adopt the method that integrates both YOLOv5 and DeepMac for the subsequent
phases of this thesis.

6.2. Human Annotation Analysis
Human annotation has rarely been evaluated in previous studies, yet it is also a source

of error in the calculation of the final metric. The class 3, “uncertain”, was added to
the pixel-based segmentation evaluation tool to build the cleanest dataset possible in
a quick way. In fact, this label was attributed to 3.2% of the total amount of pixels,
ranging from 1.3 to 4.5% depending on the considered date. It mainly concerned
pixels at the edges between the ears and the background or pixels difficult to identify,
for example, in shaded zones. Depending on the nitrogen treatment and the date, 62 to
77% of the pixels labeled “uncertain” have been predicted as background which shows

57



Wheat Yield Assessment Using Organ-Scale Phenotyping and Deep Learning

Table 4.1: F1-score comparison between the two ear segmentation methods for common
dates of trials 20-F and 20-FP. Both trials commenced on May 28th.

Date Trial Superpixel Deep learning

06-02 20-FP 0.38 0.76
06-03 20-F 0.47 0.75
06-16 20-FP 0.65 0.88
06-18 20-F 0.81 0.90
07-07 20-FP 0.82 0.91
07-13 20-F 0.68 0.74
07-22 20-FP 0.79 0.84
07-29 20-F 0.68 0.86

Average 0.71 0.83

that this class has fulfilled its mission well and is therefore recommended.
Three annotations from different human operators were compared on the best date,

i.e., on June 18th. Cohen’s kappa coefficients of 0.79, 0.75, and 0.78 between the dif-
ferent operators were computed, which can be interpreted as “good to strong” agree-
ment and thus validate the evaluation method used. Although algorithms are capable
of detecting objects that might be missed by human annotators in images with direct
illumination, such as those where the lower part of the canopy is darker, there are often
doubts regarding the reliability of the ground truth determined by humans when using
AI.

6.3. Ear density estimation
The ear detection using YOLOv5 consistently achieved high accuracy with an F1-

score above 0.9 from heading to maturity [Dandrifosse et al., 2022b]. However, the
best performance was observed between the end of flowering and early dough growth
stage. Figure 4.3 presents a comparison of ear density measurements obtained through
the use of the algorithms, three human operators in the field, and a reference measure-
ment from samples counted in the laboratory, for the eight fertilization scenarios of
trial 20-F. The reference method recorded the highest ear densities for all scenarios,
while operator 3 consistently recorded the lowest values. A two-way variance analysis
revealed an interaction between the measurement method and the fertilization scenario
factor. As a result, the methods were statistically compared separately for each fertil-
ization level. Nearly all of the corresponding one-way variance analyses showed a
significant effect of the measurement method. Therefore, a post-hoc Tukey HSD tests
were conducted. In most scenarios, operators 1 and 3 differed significantly from the
reference, while operator 2 differed only in one scenario. These significant differences
indicate the presence of an operator bias observable in Figure 4.3. This bring back into
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question the previous statement about is the ground truth the real truth. Overall, the
deep learning method, on the other hand, was never found to be significantly different
from operator 2 or the reference. Based on this insights, deep learning was considered
a more accurate estimator than operators and used for the rest of the thesis.

Figure 4.3: Comparison of the trial 20-F ear densities estimated by three operators in the field
(July 6th), the deep learning algorithm (images from July 7th) and the reference measurement

carried out on wheat samples after the harvest. The standard deviation is indicated on each
bar (from [Dandrifosse et al., 2022b]).

7. Conclusion
This chapter delved into two distinctive approaches for ear segmentation. The ini-

tial method revolved around superpixel classification, yielding satisfactory outcomes
albeit necessitating an additional step for pinpointing individual ears. In contrast, the
second approach, a pioneering fusion of YOLOv5 bounding box detection and the
DeepMAC segmentation model, offered a comprehensive solution encompassing ear
counting and segmentation. Significantly, this segmentation approach demonstrated
superior performance over the machine learning alternative, thereby shaping the tra-
jectory of this thesis. Through coupling this technique with the height map derived
from stereovision, the computation of ear density became feasible. Remarkably, the
automatic method produced more accurate outcomes compared to the labor-intensive
field-based counting procedure.

These performances also prompt inquiries into the accuracy of ground truth mea-
surements, particularly when these measurements are resource-intensive and time-
consuming. The findings underscore the potential limitations of conventional mea-
surement methods, raising questions about their reliability and precision. As these
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techniques are further developed and applied, it becomes imperative to reassess es-
tablished measurement practices and consider the evolving landscape of technology-
enabled alternatives. This reflection is vital for ensuring the accuracy and robustness
of agricultural research and practice.

8. Supplementary Materials

Table 4.2: Description of the 15 vegetation indices and the normalized RGB components
used as features for the machine learning algorithms aiming to separate leaves and ears. r, g
and b are the channels of the RGB camera. blue, green, red, rededge and nir are the channels

of the multi-spectral camera array, respectively at 490, 550, 680, 720 and 800 nm.

Index Index formula Reference

NDVI nir−red
nir+red [Rouse et al., 1974]

GNDVI nir−green
nir+geen [Gitelson et al., 1996]

NDRE nir−rededge
nir+rededge [Barnes et al., 2000]

GRVI nir
green [Sripada et al., 2006]

mNDblue blue−red
blue+nir [Jay et al., 2017]

SR nir
rededge /

RDVI NDV I × (Nir − red) [Roujean and Breon, 1995]
OSAVI (1+0.16)×(nir−red)

nir+red+0.16 [Rondeaux et al., 1996]
TDVI 1.5 nir−red√

nir+red+0.5
[Roujean and Breon, 1995]

MSAVI (2nir+1−
√

(2nir+1)2−8(nir−red)
2 [Qi et al., 1994]

MCARI ((rededge − red)−0.2×(rededge−green))×

rededge
red

[Daughtry et al., 2000]

TCARI 3 × ((rededge − red) − 0.2 × (rededge −

green) × rededge/red)

[Haboudane et al., 2002]

VARI green−red
green+red−blue [Gitelson et al., 2002]

CIrede nir
rededge − 1 [Roujean and Breon, 1995]

CIgreen nir
green − 1 [Roujean and Breon, 1995]

R r
r+g+b /

G g
r+g+b /

B b
r+g+b /
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Chapter 5. To What Extent Does Yellow Rust Infestation Affect Remotely Sensed
Nitrogen Status?

1. Synopsis
This chapter relies on the following published paper [Carlier et al., 2023]:

Carlier, A., Dandrifosse, S., Dumont, B. & Mercatoris, B., 2023. ‘To what extent do
leaf disease pressures affect remotely sensed nitrogen status? The case study of
yellow rust’, Plant Phenomics, Aug. 2023, doi: 10.34133/plantphenomics.0083.

In field conditions, crops are exposed to several stresses at the same time. Whether
biotic, such as pests and diseases, or abiotic such as drought and nutrient deficiency,
stresses result in the reduction of the quantity and/or the quality of the harvest. While
agricultural inputs have historically been the primary means of mitigating these stresses
on a large scale, their extensive use has recently been the subject of many societal and
environmental concerns. Moreover, the emergence of concurrent or sequential stresses
can exacerbate their negative impact, altering the pattern of symptoms and further hin-
dering crop productivity and stress identification [Pandey et al., 2017; Suzuki et al.,
2014]. On this basis, understanding how plants respond to multiple stresses is essen-
tial for improving crop yield and quality [Pandey et al., 2017]. In this context, this
chapter investigates how wheat yellow rust infestation influences reflectance measure-
ments and nitrogen status assessment by remote sensing. The chapter includes all the
elements included in the corresponding research document with very few adaptations
for this thesis.

2. Current State of the Art and Objectives
Stress identification and quantification have become common practices using re-

motely sensed data. Recent plant phenotyping methods offer new possibilities to
screen plants in high-throughput, non-destructive and objective way [Araus and Cairns,
2014; Furbank and Tester, 2011]. They have been identified as promising tools to as-
sist plant improvement [Deery and Jones, 2021; Reynolds et al., 2020; Weiss et al.,
2020]. Nonetheless, the diversity of data acquisition systems, data management, and
analyses bring many challenges to the phenotyping community [Machwitz et al., 2021;
Morisse et al., 2022; Sun et al., 2022].

In this context, the investigation of abiotic stresses continues to be a prominent and
ongoing subject of study [Al-Tamimi et al., 2022]. One particular area of focus is the
detection of nitrogen deficiency, which plays a crucial role in agricultural practices,
particularly in relation to fertilization strategies [Berger et al., 2020; Hawkesford and
Riche, 2020]. Insufficient nitrogen availability in crops can result in reduced biomass
growth and the manifestation of yellowing leaves, both of which are key indicators of
nitrogen deficiency. Spectral data analysis, facilitated by techniques such as machine
learning, radiative transfer modeling, and vegetation indices (VIs), either indepen-
dently or in combination, has proven to be effective in tracking these symptoms across
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entire crop areas [Berger et al., 2020; Cammarano et al., 2014; Peng et al., 2021; Song
et al., 2022]. Moreover, it is important to acknowledge that the presence of background
elements, such as soil, can introduce mixing and disturbances to the targeted data as-
sociated with the specific plant under study. For instance, Song et al. [2022] reported
that the accuracy of nitrogen status estimation using a spectroradiometer was relatively
lower during the early growth stage of crops compared to the subsequent vegetative
phase. Consequently, certain researchers have effectively addressed this issue of spec-
tral mixing at the canopy level. Wang et al. [2021] proposed a novel approach known
as abundance-adjusted VIs, which mitigates spectral mixing at the canopy level and
enhances the accuracy of leaf nitrogen concentration estimation. Noteworthy achieve-
ments have been attained by researchers who have focused their analysis on specific
regions within the canopy. For instance, Jay et al. [2017] successfully estimated beet
chlorophyll content by concentrating on the most illuminated pixels of green vegeta-
tion.

Under field conditions, the detection of diseases still comes up against many diffi-
culties such as the similarity of symptoms, the possibility of observing them, and the
diversity of plant responses [Berger et al., 2022]. Common methods include the use
of spectral data [Wan et al., 2022] or RGB images [Mahlein, 2016]. For instance, An-
deregg et al. [2019] has quantified Septoria Tritici Blotch using spectral and temporal
features from a spectroradiometer. Other image analysis methods, such as textural
analysis from proximal multispectral images, were relevant to estimate the severity
of wheat main diseases [Bebronne et al., 2020]. Recently, deep learning algorithms
are paving a new avenue for plant phenotyping [Jiang and Changying Li, 2020; Kat-
tenborn et al., 2021; Singh et al., 2018]. In particular, convolutional neural networks
(CNNs) have indeed demonstrated their good performances in phenotyping task re-
lated to object detection [David et al., 2021], segmentation [Fan et al., 2022], or disease
classification [Ferentinos, 2018; Görlich et al., 2021].

Despite all these stress detection possibilities, very few studies have addressed the
effects of multi-stress and their interactions on single trait estimation, as depicted by
[Berger et al., 2022; Zhang et al., 2019]. Authors emphasised the need for further
research to address this challenge. In fact, all mentioned studies related to nitrogen
stress estimation have treated the question in optimal management practices, while it
is known that diseases could substantially disturb the nitrogen dynamic [Simón et al.,
2020]. The nutritional habit of the disease could induce a reduction in leaf nitrogen
concentration [Bancal et al., 2008], and thus induce a bias in the nitrogen status estima-
tion. Hyperspectral systems appear as the most suitable sensor to face this challenge.
For instance, Devadas et al. [2015] was able to delimit stripe rust and nitrogen defi-
ciency using specific vegetation indices with a spectrometer. Another solution might
be the use of multi-sensor approach. For instance, while symptoms associated with a
pathogen were similar to those of water stress, Zarco-Tejada et al. [2021] were able to
distinguish between both stresses using the combination of hyperspectral and thermal
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sensors. Generally speaking, many biotic stresses manifest visible symptoms that can
be segmented provided sufficient spatial resolution. In this context, close-range sys-
tems such as mobile platforms or gantries are good candidates, as they can carry mul-
tiple sensors in close range and thus provide high-resolution data [Xu and Li, 2022].

This chapter presents an approach to investigate the impact of yellow rust on veg-
etation indices that are usually used in the frame of nitrogen status retrieval. The
hypothesis is that the diseases induce a bias in the estimation of nitrogen status not
only through its visible symptoms but also through its biological interaction with the
plant. To test this hypothesis, proximal RGB and multispectral images were acquired
on a wheat field trial spanning two cropping seasons, where different fungicide appli-
cations and nitrogen inputs were combined. The methodology involved isolating the
leaves within the images, segmenting disease symptoms (i.e. leaf damages), and using
the resulting mask to study the correlation between vegetation indices from healthy or
diseased leaves, and nitrogen status variables of the plant.

3. Materials and Methods
3.1. Color Image Segmentation
3.1.1. SegVeg method

A robust RGB image segmentation technique, known as SegVeg, was utilized in this
study, as described in the work by [Serouart et al., 2022]. To ensure accurate and
reliable results, the method employed a combination of two distinct techniques: (i) a
deep learning approach for soil-vegetation segmentation and (ii) a pixel-wise approach
for green-yellow vegetation segmentation. This approach allowed for the generation
of a robust model that effectively removes soil, enables specific classification of plant
pixels and reduces the effort of annotating them. Furthermore, employing a binary
classification approach twice would not result in detrimental instances of misclassifi-
cation, unlike a three-class approach where a disease could potentially be misidentified
as soil.

The deep learning approach was based on the popular U-NET model, which has
been successfully applied in various image segmentation tasks [Ronneberger et al.,
2015]. To leverage the benefits of pre-trained models and accelerate training conver-
gence, the U-NET structure utilized different pre-defined encoders, or backbones, that
were pre-trained on ImageNet [Deng et al., 2009]. The encoder, which is the down-
sampling part of the U-NET, was implemented using two state-of-the-art architectures
- ResNet34 proposed by [He et al., 2015], and EfficientNetB2 proposed by [Tan and
Le, 2020]. The decoder, or the up-sampling part of the U-NET was implemented as a
classical design.

The pixel-wise segmentation was carried out using features from the RGB images.
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Different color spaces and transformations were computed, namely the normalized
RGB channels, the HSV, the CIELab, and the Sobel filter. That made a total of ten
features per pixel. Two models were tested; the support vector machine (SVM) widely
used in phenotyping [Singh et al., 2016], and the eXtreme Gradient Boosting known
as XGboost, a bagging approach known for its performances and rapidity.

The implementation of the algorithms was done using the ’Segmentation Models’
package by [Iakubovskii, 2019], Tensorflow 2.4, XGBoost 1.7 and Scikit-learn 1.2.

3.1.2. Dataset Preparation and Training

The VegAnn dataset [Madec et al., 2023] has been enhanced with additional images
from the current study. This dataset comprises a collection of RGB images along with
corresponding binary masks for plant-soil segmentation. The VegAnn dataset encom-
passes 3775 multi-crop RGB images captured under diverse illumination conditions,
using various systems and platforms, and representing different phenological stages.

To ensure the adequacy of the model to the present study, 30 RGB images from the
22-FP trial dataset and 8 from the 21-FP trial dataset have been selected. This two
trial were refereed as 2022 and 2021 respectively in this chapter. The other trials were
not used. The RGB images have been manually segmented into two classes: soil and
plant parts with and without damage. The masks were generated using the plug-in
Labkit [Arzt et al., 2022] from the Fiji software [Schindelin et al., 2012]. It is a user-
friendly platform for manual and automated image segmentation. The segmentation
process involved manually drawing the soil and plants on a few areas in the image,
after which a fast Random Forest based pixel classifier was used to segment the entire
image. The number of manually drawn areas varied depending on the annotator’s
judgement and the heterogeneity of the image and comprised several dozens of pixels.
This approach allowed for improving the integrated Random Forest by adding more
labels to regions that were poorly predicted by the classifier. Although less accurate
than manual labelling, this tool provided a faster way to generate masks.

Then, the images and corresponding masks were partitioned into twenty non-overlapping
images of 512 × 512 pixels, similar to the VegAnn dataset. One-third of this dataset
was used as the validation dataset, comprising a total of 260 patches.

For training, a batch size of 16 was set for 100 epochs. The Adam optimizer with
default parameters of Tensorflow was used, and each image was scaled according to
the corresponding backbone, similar to the ImageNet pre-processing. The dice loss
was chosen as the loss function as it presents better capacity to handle unbalanced
dataset.

Secondly, to generate a comprehensive pixel-wise segmentation dataset, 120 RGB
images from the 2022 dataset were selected for training, and 33 RGB images from
the 2021 dataset were selected for validation. The manual annotations included a few
pixels of both green and damaged parts to ensure a balanced distribution of each class.
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This annotation were also done using the Labkit tool without applying the Random
Forest classifier. The selection of images was based on the need to represent the het-
erogeneity of images encountered. Thus, the training dataset comprised approximately
15,000 pixels for each class, while the validation dataset contained around 2,500 pixels
for each class.

3.1.3. Evaluation Metrics

Models were evaluated using the accuracy as a standard metric (Equation (5.2)). A
common other metric for semantic segmentation is the Intersection over Union (IoU)
(Equation (5.1)) with a threshold of 0.5. It is the ratio between the area formed by the
overlap of the predicted and the labeled regions and the area formed by the set of these
two regions. It ranges from 0 to 1. The lower the IoU, the worse the prediction result.
The computing configuration was a NVidia Tesla V100 GPUs.

IoU =
Intersection

Union
=

TP

FP + TP + FN
(5.1)

Accuracy =
TP + TN

TP + FP + TN + FN
(5.2)

TP, TN, FP, and FN, respectively, stand for the number of pixels of true positives, true
negatives, false positives, and false negatives.

3.2. Image Analysis Pipeline
3.2.1. Processing of Images

The developed image analysis pipeline is presented in Figure 5.1. First, the RGB
image was used to segment the soil, the green plant parts which were mainly leaves,
and the damaged parts (Section 3.1). Then, wheat ears were detected using YoloV5
and segmented within each bounding box by the Deep Mac model (Chapter 4). Those
masks were combined to build a mask with four classes: the soil, the ears, the damaged
parts of the leaves and the green parts of the leaves. Note that, the leaves refer to the
leaves complemented by the stem parts visible in a nadir view. Secondly, these masks
were applied on the multispectral images.

The other processes details in Section 3.4 were also performed. That encompassed
the image registration process and the BRF calculation. Thus, five vegetation indices
(VIs) were selected for their demonstrated relationships with crop nitrogen status and
plant health, disease, or senescence (Table 5.4). These VIs included the Normalized
Difference Red Edge (NDRE) index [Barnes et al., 2000], the modified normalized
difference blue Index (mDNb) [Jay et al., 2017], and the Chlorophyll Index Red Edge
(CIred-edge) [Gitelson et al., 2006], which are known to be correlated with crop ni-
trogen status, and the Normalized Difference Vegetation Index (NDVI) [Rouse et al.,
1974] and the Plant Senescence Reflectance Index (PSRI) [Anderegg et al., 2020; Mer-

67



Wheat Yield Assessment Using Organ-Scale Phenotyping and Deep Learning

Figure 5.1: Image analysis pipeline. RGB images were used to segment the scene into soil,
ear, green leaf and damage. Combined with multispectral images, the pipeline allows to

extract the BRFs of each mentioned classes.

zlyak et al., 1999] for their sensitivity to plant health, disease, or senescence.

3.2.2. Foliar Damage Quantification

On the basis of the RGB segmentation, the proportion of pixels representing green
and damaged parts of the plants were computed. The green fraction (GF) was defined
as the number of green plant pixels divided by all pixels in the image, meanwhile,
the damage index (DI) was calculated as the proportion of damage pixels relative to
the sum of the green plant and damage pixels. The study made the assumption that
the observed damage was primarily attributed to disease and that no other sources of
damage, such as physiological or insect-related damages, were observed throughout
the experiment.

To correctly assess the disease importance throughout the growing season and take
into account the temporal dynamics of the severity of the disease, the area under the
disease progression curve (AUDPC) was computed following the procedure proposed
by [Simón et al., 2020]. Thus, AUDPCsVS was calculated from the sVS scores ob-
served within plots whereas AUDPCDI was computed from the DI extracted from the
mask.

3.3. Statistical Analysis
The study employed a comprehensive data analysis approach that integrated vari-

ous statistical methods. A analysis of variance (ANOVA) was conducted to assess the
impact of treatments on both image features and agronomical data. However, it was
important to exclude the 180_1F treatment from the agronomic data analysis. This ex-
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Table 5.1: IoU and accuracy of the SegVeg model. Soil-Plant results refer to the U-NET
model, and the Green-Damage results refer to the pixel-wise classifier.

Soil-Plant Green-Damage
EfficienNetB2 ResNet34 Xgboost SVM

Training
IoU 0.89 0.84 0.85 0.86
Accuracy 0.94 0.91 0.92 0.92

Validation
IoU 0.76 0.67 0.78 0.79
Accuracy 0.87 0.83 0.88 0.88

clusion was necessary because this specific nitrogen treatment had only one fungicide
factor, which could introduce bias into the statistical analysis. Therefore, to ensure ac-
curate interpretation of the results, it is crucial to consider this exclusion. Furthermore,
a post-hoc Tukey HSD test was performed to identify any significant differences in the
data.

In addition, Pearson correlation coefficient (r) was utilised to explore the relationship
between image features and agronomical data. The study also employed a multiple lin-
ear regression to determine the added value of image features in modeling agronomical
data, with the calculation of coefficient of determination R². The hypothesis was that
GF and DI were good indicators of plant health and could improve the estimation
model performances.

Finally, paired t-tests were conducted to compare BRFs and VIs obtained from the
leaves with those obtained from the entire image and green elements.

4. Results
4.1. Disease Pressure
The EfficientNetB2 backbone demonstrated the best performance, achieving an IoU

of 0.76 and an accuracy of 0.87 for soil segmentation on the validation set (Table 5.1).
In terms of distinguishing between green elements and damaged ones, both pixel-wise
classifiers showed high accuracy and IoU. Notably, the Xgboost model was selected
over the SVM due to its speed, being approximately 10 times faster. Consequently, the
SegVeg model was formulated by combining the EfficientNetB2 and Xgboost models
to effectively segment the entire dataset. This unified model facilitated highly accurate
segmentation of soil, green elements, and damaged regions, even in difficult strong
direct sunlight conditions, as visually demonstrated in Figure 5.2.

When the SegVeg approach was applied throughout the entire cropping season, it
became apparent that the 2021 season was characterized by a relatively low disease
pressure. However, during the grain filling period, there was a slightly increased in-
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Figure 5.2: Examples of segmentation utilizing the SegVeg approach, which combines the
EfficientNetB2 and XGboost models, along with ear segmentation employing Yolov5 and

DeepMAc on April 25, May 5, and May 30, respectively from left to right. In the
segmentation results, the soil regions are depicted in shades of grey, green plants in blue, ears

in sky blue, and damages in red.

cidence of diseases, although specific data is not presented. Among the diseases af-
fecting wheat, Septoria Tritici Blotch (STB) was the primary concern, with only a few
treatments reaching an average severity value score (sVS) of 0.625 in early July. Yel-
low Rust (YR) was detected on less than 20% of the plots and had a maximum average
sVS of 0.625.

In contrast, the climatic conditions experienced in 2022 resulted in the early onset
of YR at the end of April, specifically at growth stage (GS) 30. Subsequently, the dis-
ease exhibited significant development across all experimental plots during the stem
elongation period, as depicted in Figure 5.3. Notably, the 0F treatment displayed the
highest sVS and damage index (DI) throughout the season, with the DI reaching a
maximum of approximately 60%. Conversely, the 1F treatment effectively managed
the disease pressure through the application of fungicide on May 17, resulting in a
stabilization of sVS and a decrease in DI. The 2F and 3F treatments exhibited similar
dynamics of disease pressure until the end of May, as illustrated in Figure 5.3 and ta-
ble 5.5. However, after the flowering stage, the effectiveness and timing of application
of the 3F treatment became evidently discernible.

The calculation of the Area Under the Disease Progress Curve (AUDPC) serves as
a reliable indicator of the overall disease pressure throughout the cropping season, of-
fering an advantage over single-point notations such as sVS or DI. The correlation
between AUDPCsVS and AUDPCDI and the final grain yield indicates that as the sea-
son progressed, the correlations became stronger (in absolute value), as depicted in
Figure 5.4. Notably, both AUDPC measurements exhibit a high correlation after the
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Figure 5.3: Scaled Visual Score and damage index curves during the 2022 season. Shaded
bands represent standard deviation.

Figure 5.4: Pearson correlation between the 2022 grain yield, and both AUDPCsVS and
AUDPCDI.

flowering stage. However, the proposed method, AUDPCDI, demonstrates a higher
correlation compared to AUDPCsVS, which tends to reach a plateau earlier in the sea-
son, around May 30. Furthermore, prior to any fungicide applications, the AUDPCDI
values for the lower fertilization treatment were statistically different from those of
the higher nitrogen treatments, as indicated in Table 5.5. In a broader sense, it can be
observed that the Tukey HSD grouping was initially determined based on the nitro-
gen treatment at the beginning of the season and subsequently based on the fungicide
treatment, which transitioned from May 9th to May 17th. This observation reveals that
the differences initially arose from variations in nitrogen input and subsequently from
variations in disease pressure.

4.2. Disease Effects on Bi-Directional Reflectance Factor
In Figure 5.5, the blue boxplot represents the entire image signal, which includes

soil reflectance. Comparing the blue boxplot to the boxplots of leaf and green element
reflectance, significant differences were observed across most dates for all BRFs, ex-
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Figure 5.5: Boxplot of the Bi-Directional Reflectance Factor according to its source, i.e.,
from the entire image, only the leaves and only the green elements at different growth stages.

cept for the dates specified in Table 5.7. Furthermore, the differences in BRFs were
more pronounced early in the season when the canopy cover was low. For BRF 800,
the maximum variation rate, calculated as the percentage difference between the mean
BRF 800 and the mean BRF 800 of leaves, reached up to 41.8% (Table 5.2).

The first hypothesis of this study posited that diseases or any damaging stress could
impact the BRFs of the crop, primarily due to the presence of lesions and the poten-
tial signal disturbance caused by soil. The results revealed that BRFs obtained from
the leaves and those derived from the green elements exhibited similar values; how-
ever, a paired t-test revealed statistically significant differences between them, with a
few exceptions (refer to Table 5.6). Notably, BRF 680 demonstrated higher variation
compared to BRF 800, which was minimally affected (Table 5.2). For instance, in
2022-GS65, disease led to a reduction of 12.5% in between BRF 680 of the leaves and
of the green elements.

Moreover, a strong correlation was observed between the discrepancy in BRFs de-
rived from the leaves and those from the green elements, and the damage index, rep-
resenting the extent of disease (see Table 5.8). The majority of these correlation ex-
ceeded 0.5 in absolute value, with values as high as 0.9 observed during periods of
heightened disease pressure. These findings were consistent when analyzing vegeta-
tion indices as well. It can be concluded that the discrepancy of BRFs was clearly
influenced by the amount of damages in this study.
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Table 5.2: Rate of change between BRFs of image and leaves (I-L), and between leaves and
green elements (L-G) in %.

BRF 490 BRF 550 BRF 680 BRF 720 BRF 800

I-L L-G I-L L-G I-L L-G I-L L-G I-L L-G
2022-GS30 0.40 -1.70 16.28 -0.70 -23.30 -3.22 32.42 -0.49 41.81 0.35
2022-GS32 -1.08 -1.47 9.55 -2.33 -28.00 -3.60 19.87 -1.81 26.60 -0.29
2022-GS39 20.83 -1.36 20.15 -3.44 -15.37 -10.56 22.23 -2.57 31.04 1.08
2022-GS65 20.15 -3.77 23.17 -5.77 4.47 -12.53 25.08 -4.89 26.94 -0.68
2022-GS73 11.72 -2.74 6.74 -3.06 10.15 -9.63 8.72 -2.67 16.59 0.51

The second hypothesis of this study proposed that diseases not only affect visibly
symptomatic plant parts but also symptomless ones, with varying impacts depend-
ing on the nutritional strategy of the disease [Simón et al., 2020]. Consequently, this
phenomenon could potentially disrupt the measurement of green element BRFs. To
exemplify this effect, the NDRE was selected as a well-established vegetation index
associated with nitrogen status. An analysis of variance (ANOVA) revealed that the
NDREgreen, computed on healthy areas, was influenced not only by fertilization but
also by the fungicide treatment (refer to Table 5.3).

Furthermore, during GS39 in 2022, the NDREgreen value for the 120_3F treatment
was found to belong to the same group as the other 3F treatments, but not with the
120_0F treatment (Figure 5.6). This discrepancy indicates that the presence of disease
impacted the NDREgreen value for the 120_3F treatment differently compared to the
120_0F treatment.

Additionally, it was observed that the difference (∆3F-xF), which represents the varia-
tion between the values obtained from full protection and those obtained with reduced
protection under constant nitrogen input, exhibited a strong correlation with the DI
for both BRFsgreen and VIsgreen. Specifically, the correlation between ∆3F-xF of the
NDREgreen and the DI exceeded 0.70 starting from May 17, as indicated in Table 5.9..

4.3. Analysis and Modeling of Nitrogen Status Variables Under
Fertilization and Fungicide Treatments
The analysis of variance revealed only one significant interaction term for all nitro-

gen status variables (see Table 5.3) - %N leaves 2021-GS65. However, values close
to 0.05 were also observed for 2022-GS65 for NNI and %N leaves. Therefore, while
the two factors can be analyzed separately, caution must be exercised when drawing
conclusions.

The fertilization factor significantly impacted most variables, with %N leaves and
%N total showing significance at tillering (2022-GS30). However, no effect was ob-
served on Nuptake leaves and Nuptake total for 2021-GS39, as well as on NNI, Nup-
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Figure 5.6: NDREgreen according to the treatment for major growth stages. Letters represent
the groups created by the post-hoc Tukey HSD test.

take total, and %N total for 2022-GS75.
Fungicide did not affect NNI and %N total, except for the maturity growth stage.

However, Nuptake leaves and Nuptake total were significantly influenced by fungicide
starting from 2022-GS65. %N leaves were affected earlier, at 2022-GS39.

NDREgreen displayed a similar trend to %N leaves in 2022 regarding the impact
of fungicide application. However, it was not affected by fertilization at GS75. In
2021, it was influenced by both fertilization and fungicide. Additionally, NDREgreen
exhibited a stronger correlation with leaf nitrogen status than NDREleaves when disease
was present, specifically from GS 39 to 75 in 2022 (Figure 5.7). Meanwhile, the
correlation with NNI was much lower in 2022 compared to 2021 for GS 39 and 65. It is
noteworthy that there was a decrease in the correlation between %N of leaves and plant
nitrogen status variables, such as NNI and %N total, during periods of high disease
pressure. Moreover, an interesting result is that the correlation between NDREleaves
and NDREgreen was perfect while the values may differ (see above section).

Finally, some multiple regression analyses were conducted using features from both
RGB and multispectral imagery. The inclusion of the green fraction and the damage
index improved most of the model performances for dates with high disease pressure
(Table 5.10). Moreover, it also improve general model which encompass all data, i.e.,
dates and plots.
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Table 5.3: P-values (ANOVA) of NNI, %N leaves, Nuptake leaves, %N total, and Nuptake
total at different growth stages, where ’Total’ refers to the entire plant.

Source of variation 2021-GS39 2021-GS65 2021-GS89 2022-GS30 2022-GS32 2022-GS39 2022-GS65 2022-GS75 2022-GS89

NNI
Fertlisation (N) <0.01 <0.01 <0.01 0.08 <0.01 <0.01 <0.01 0.197 <0.05
Fungicide (F) 0.199 0.531 0.429 0.404 0.965 0.414 0.676 0.055 <0.05
N × F 0.814 0.198 0.553 0.328 0.579 0.914 0.058 0.185 0.473
%N leaves
Fertlisation (N) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01
Fungicide (F) 0.55 0.456 <0.01 0.96 0.815 <0.05 <0.01 <0.01 <0.01
N × F 0.845 <0.05 0.642 0.355 0.263 0.679 0.056 0.169 0.535
Nuptake leaves
Fertlisation (N) 0.27 <0.01 <0.01 0.562 <0.01 <0.01 <0.01 <0.01 <0.01
Fungicide (F) 0.392 0.631 0.074 0.156 0.904 0.225 <0.05 <0.01 <0.01
N × F 0.445 0.237 0.706 0.451 0.672 0.724 0.285 0.538 0.385
%N total
Fertlisation (N) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.269 <0.01
Fungicide (F) 0.322 0.463 0.313 0.96 0.9 0.461 0.476 0.487 0.342
N × F 0.379 0.098 0.242 0.355 0.383 0.985 0.254 0.179 0.736
Nuptake total
Fertlisation (N) 0.232 <0.01 <0.05 0.562 <0.01 <0.01 <0.01 0.151 <0.05
Fungicide (F) 0.385 0.62 0.36 0.156 0.857 0.467 <0.05 <0.01 <0.01
N × F 0.384 0.349 0.769 0.451 0.722 0.867 0.09 0.238 0.346
NDREgreen

Fertlisation (N) <0.01 <0.01 0.409 <0.01 <0.01 <0.01 0.682
Fungicide (F) <0.01 <0.05 0.512 0.568 <0.01 <0.01 <0.01
N × F 0.417 0.891 0.72 0.258 0.248 0.905 0.352

Figure 5.7: Correlation matrix between NDRE and nitrogen status variables at different
growth stages.
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5. Discussion and Conclusion
5.1. CNN as a Promising Damage Detection Tool
Plant diseases are commonly identified through the observation of visible symptoms,

a process conducted by agronomists to assess the plant’s resistance capabilities. How-
ever, this approach can be time-consuming, labor-intensive, and susceptible to subjec-
tivity. To address these limitations, a scoring method named SegVeg was proposed
by [Serouart et al., 2022] for evaluating non-green elements, predominantly character-
ized as disease symptoms in the present study. The SegVeg model employed a two-
step methodology that involved generating a mask with three distinct categories: soil,
green plant parts, and damaged parts. This approach utilized a U-NET architecture in
conjunction with a pixel-wise classifier. While the model yielded satisfactory segmen-
tation masks, it was found that misclassified pixels could arise under direct sunlight
conditions [Serouart et al., 2022]. To mitigate this issue, additional data encompass-
ing various illumination conditions were incorporated into the VegAnn dataset as part
of the current study. Nevertheless, due to the inherent scattered nature of the wheat
canopy, particularly in intense sunlight conditions, the creation of accurate masks be-
came more challenging, as exemplified in the left image of Figure 5.2. Specifically,
the lower regions of the canopy tended to exhibit significant darkness. The utilization
of a high dynamic range (HDR) camera presents a potential solution to alleviate the
aforementioned issues.

Both visual scoring and the SegVeg method have demonstrated their efficacy in char-
acterizing the impact of fungicide treatment on wheat plants. In contrast to the study
conducted by [Koc et al., 2022], these two methods are distinct and yield different
outputs. However, they can be utilized for similar purposes, such as estimating the
effect of disease on yield loss. The SegVeg method lead to the damage index that ob-
jectively quantifies the extent of damage in a nadir view, providing a 2D assessment.
On the other hand, visual scoring considers the disease intensity on the most signifi-
cant leaves. In our study, the damage index indicated very high levels of infestation,
exceeding 50% in the zero protection treatment, which resulted in a completely dev-
astated plot even under natural inoculation. Conversely, the well-protected treatment,
with minimal disease observed by human assessors, yielded a damage index value of
10%, suggesting a slight overestimation by the models. The current nadir view system
restricts observations to visible symptoms on the upper leaves, limiting its capacity to
assess diseases such as STB that primarily develop in the lower canopy. To address
this limitation, a potential solution could involve implementing a system that opens
the canopy, similar to the manual manipulation performed by human assessors during
visual scoring. This approach could be combined with an object detection CNN to
detect and quantify disease spots, as demonstrated by [Schirrmann et al., 2021]. Fur-
thermore, extending the pixel-wise annotation to include damage classification could
offer enhanced insights into the nature of the damage. However, this would require
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substantial efforts in image acquisition and annotation tasks.
The nadir view perspective can also explain the observed decrease in the damage

index when new green leaves emerge. This phenomenon led to the utilization of the
AUDPC as a metric to account for the negative impact of disease throughout the sea-
son, which proves to be a suitable measure for studying its influence on grain yield. As
the season progresses, the treatments became more distinguishable from one another,
and their correlation with the final grain yield has strengthened. Similar findings were
reported by [Zhou et al., 2015] using the green fraction. Towards the end of the sea-
son, computer vision techniques surpassed the visual scoring method, likely because
sVS reaches its maximum value early on and can no longer differentiate between the
different treatments. Notably, foliar diseases have a detrimental effect on carbon ac-
cumulation by reducing the green leaf area until senescence occurs [Bancal et al.,
2008; Simón et al., 2020]. However, the fungicide mixture, consisting of Triazoles-
Pyrazoles-carboxamides, may also significantly impact the green leaf area, while the
last triazole appeared to have no effect. This fungicide interaction adds complexity
to the already complex relationship between nitrogen plant fluxes and rust severity
[Schierenbeck et al., 2019b]. In fact, biotrophic pathogens like Yellow Rust usually
benefit from high nitrogen availability [Simón et al., 2020]. However, in this study, no
statistically significant differences were observed in the damage index to confirm this
statement.

Lastly, it is worth noting that the grouping of AUDPCDI in Table 5.5 initially focused
on nitrogen input and subsequently on fungicide treatment. This suggests that distin-
guishing between different nitrogen treatments may not be possible beyond a certain
level of disease pressure, as the plant is unable to fully recover from the damage.

5.2. Disease Affects Reflectance in Two Ways
The findings of this study highlight the importance of accurately differentiating the

elements present in multispectral imagery of crops. Specifically, the removal of soil
and other background elements from crop scenes is crucial for the proper evaluation
of crop phenotypes, as shown in Table 5.2.

Similar conclusions can be drawn regarding the impact of diseases. Diseases, through
their symptoms, lead to a reduction in healthy areas [Bancal et al., 2008]. The results
of the study indicate that damage symptoms have a significant effect on BRFs, with
the 680nm wavelength exhibiting a particularly pronounced impact. This suggests that
spectral data at this specific wavelength can serve as a valuable tool for distinguishing
between healthy and diseased plants [Anderegg et al., 2019; Ashourloo et al., 2014;
Whetton et al., 2018]. Furthermore, a strong correlation was observed between vari-
ations in BRFs and the extent of damage caused by the disease, indicating that as the
disease progresses, the differences in BRFs become more pronounced.

The study also revealed that diseases affect the BRFs of the green area of the plant.
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It was hypothesized that diseases can significantly impact the biophysical and bio-
chemical properties of wheat plants, thereby influencing the measurement of BRFs
and subsequent vegetation indices [Simón et al., 2020]. In the presence of disease, the
measurement of NDREgreen showed a stronger correlation with nitrogen status vari-
ables compared to NDREleaves. Specifically, it exhibited a high correlation with leaf
nitrogen concentration and leaf nitrogen uptake, but not with other nitrogen status
parameters. However, the nitrogen status of the leaves appeared also to deviate from
other nitrogen parameters such as the NNI and the overall plant nitrogen concentration.
This deviation is likely due to the complex influence of diseases on the overall nitro-
gen status of the plants [Simón et al., 2020]. In fact, yellow rust was found to impact
the photosynthetic capacity of the green elements, but not the nitrogen content of the
stem [Bancal et al., 2008]. Therefore, while spectral measurements, which primarily
capture information from leaves, may effectively represent the nitrogen status of the
leaves, they may not necessarily reflect the nitrogen status of the entire plant. This has
important implications for fertilization decision-making tools. It was observed that a
single value of NDREgreen could represent different nitrogen input levels (Figure 5.6),
which could potentially result in misleading interpretations. This is particularly rele-
vant when considering the last fertilisation input made at GS 39 in Belgium.

To address this issue, it is important to carefully consider disease quantification in
nitrogen estimation models based on spectral data. The use of NDREgreen, or the addi-
tion of features from the RGB image, such as the damage index, could aid in modeling
nitrogen status variables. In addition, on each individual date, we observed a strong
and significant correlation between both NDRE values. It is important to clarify that
this correlation does not imply that the values are identical, but rather indicates a high
degree of association between them. Consequently, using these NDRE measurements
in relative terms may not pose any issues. However, in the context of a larger case
study or when considering absolute values, it is possible that discrepancies or chal-
lenges may arise. In fact, it can be challenging to develop a model that accurately
represents the nitrogen concentration for all growth stages, while the total nitrogen
uptake is more easily assessed across all dates [Prey and Schmidhalter, 2019a]. Hy-
perspectral systems have an advantage in distinguishing between nitrogen deficiency
and rust infection, as they use narrower wavebands [Devadas et al., 2015]. Addition-
ally, from a nadir view, they are more effective at detecting diseases that develop in the
canopy by sensing overall plant health [Yu et al., 2018]. However, their use in the field
may be limited due to practical constraints, higher costs, and equipment complexity

Lastly, during the research, an unsupervised clustering model was tested using all
image features. Initially, the model clustered the plots based on nitrogen levels and
subsequently, from the middle of May, it differentiated them according to fungicide
treatment, even when utilizing RGB features (data not shown). This further supports
our earlier assertion that above a certain threshold of disease pressure, accurately de-
termining the nitrogen treatment of a plot without historical information becomes chal-
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lenging. It became evident that studying temporal features emerged as a reliable ap-
proach for disentangling stress factors [Anderegg et al., 2019; Berger et al., 2022].
Therefore, based on these findings, it is recommended to conduct further research on
nitrogen stress modelling using spectral data in the presence of disease. It is worth
noting that different diseases may exhibit distinct interactions with plant nitrogen sta-
tus, as explained by [Simón et al., 2020], implying that the observations made in this
study for Yellow rust may not necessarily apply to other diseases such as Septoria.

6. Supplementary Materials

Table 5.4: Vegetation indices selected in this study

Name VI forumlation Reference

NDRE λ800−λ720
λ800+λ720 [Barnes et al., 2000]

mNDb λ490−λ720
λ490+λ800 [Jay et al., 2017]

Cirede λ800
λ720 − 1 [Gitelson et al., 2006]

NDVI λ800−λ680
λ800+λ680 [Rouse et al., 1974]

PSRI λ680−λ490
λ800 [Anderegg et al., 2020; Merzlyak et al., 1999]

Table 5.5: Tukey HSD test to investigate the effect of the treatment on the AUDPCDI across
the cropping season.

Treatment 19/04/2022 25/04/2022 02/05/2022 09/05/2022 17/05/2022 23/05/2022 30/05/2022 02/06/2022 13/06/2022 21/06/2022 04/07/2022

120_0F a b a b c a b c d a a a b a b a b a b c a a
120_1F a b a b a b c a a a b a b c d a b c d c d e b c b
120_2F a a a a a a b a b c d b c d e d e f g b c d b c
120_3F a b a b a b a a a b b c d c d e e f g c d c
180_0F b c a b c d a b c d a a a b a b a a a a
180_1F a b c a b c d a b c d a a a b a b c d a b c d e c d e f b c b
180_2F b c a b c d a b c d a a a b b c d c d e d e f g b c d b c
180_3F a b c a b c d a b c d a a a b c d d e f g d c
200_0F c b c d a b c d a a a a a a a a
200_1F b c b c d a b c d a a a b a b c d a b c d e c d e b b
200_3F c c d b c d a a a b c d d e f g d c
260_0F c d c d a a a b a b a b a b a a
260_1F c d d a a a b a b c a b c b c d b b
260_2F c c d b c d a a a b b c d c d e d e f g b c d b c
260_3F c d b c d a a b d e g d c
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Table 5.10: R² of the linear regression associating several feature combinations with
agronomic data. GF stands for green fraction and DI for damage index.

Date Features Nuptake total Nuptake leaves Nuptake stem Nuptake Ears %N total %N leaves %N stem %N Ears NNI

NDREleaves 0.49 0.33 0.52 0.65 0.62 0.62 0.65
NDREgreen 0.48 0.32 0.50 0.67 0.63 0.64 0.65
NDREgreen + GR 0.53 0.34 0.62 0.67 0.64 0.64 0.66

2021-GS39

NDREgreen + GF + DI 0.53 0.34 0.62 0.68 0.64 0.64 0.66
NDREleaves 0.43 0.49 0.46 0.05 0.66 0.63 0.62 0.38 0.58
NDREgreen 0.42 0.47 0.45 0.05 0.66 0.63 0.61 0.37 0.57
NDREgreen + GR 0.46 0.50 0.48 0.15 0.66 0.68 0.61 0.37 0.58

2021-GS65

NDREgreen + GF + DI 0.46 0.50 0.48 0.15 0.67 0.68 0.62 0.39 0.58
NDREleaves 0.13 0.13 0.17 0.17 0.20
NDREgreen 0.13 0.13 0.17 0.17 0.20
NDREgreen + GR 0.20 0.20 0.17 0.17 0.23

2022-GS30

NDREgreen + GF + DI 0.21 0.21 0.42 0.42 0.32
NDREleaves 0.61 0.58 0.52 0.53 0.59 0.33 0.63
NDREgreen 0.59 0.57 0.49 0.54 0.61 0.33 0.62
NDREgreen + GR 0.59 0.57 0.50 0.54 0.62 0.33 0.62

2022-GS32

NDREgreen + GR+ DI 0.59 0.57 0.50 0.59 0.62 0.47 0.63
NDREleaves 0.28 0.38 0.08 0.27 0.50 0.01 0.30
NDREgreen 0.32 0.41 0.11 0.27 0.55 0.01 0.33
NDREgreen + GR 0.34 0.42 0.15 0.28 0.56 0.02 0.35

2022-GS39

NDREgreen + GF + DI 0.38 0.52 0.15 0.39 0.64 0.02 0.43
NDREleaves 0.18 0.19 0.03 0.32 0.00 0.69 0.03 0.01 0.08
NDREgreen 0.18 0.18 0.03 0.35 0.00 0.69 0.03 0.02 0.08
NDREgreen + GR 0.18 0.23 0.03 0.35 0.04 0.69 0.06 0.22 0.09

2022-GS65

NDREgreen + GR+ DI 0.47 0.48 0.28 0.40 0.50 0.85 0.29 0.35 0.54
NDREleaves 0.57 0.50 0.06 0.43 0.02 0.48 0.29 0.08 0.29
NDREgreen 0.59 0.51 0.06 0.46 0.02 0.49 0.30 0.09 0.31
NDREgreen + GR 0.60 0.54 0.06 0.49 0.06 0.53 0.30 0.17 0.34

2022-GS73

NDREgreen + GF + DI 0.67 0.70 0.14 0.51 0.11 0.57 0.32 0.18 0.41
NDREleaves 0.54 0.64 0.41 0.01 0.39 0.01 0.00 0.17 0.46
NDREgreen 0.58 0.61 0.43 0.00 0.44 0.03 0.00 0.16 0.46
NDREgreen + GR 0.59 0.63 0.44 0.16 0.56 0.35 0.05 0.35 0.47

All

NDREgreen + GF + DI 0.64 0.63 0.59 0.40 0.72 0.50 0.10 0.35 0.48
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Chapter 6. Comparing CNNs and Traditional Machine Learning for Estimating
Wheat Organs Biophysical Variables Using Proximal Sensing

1. Synopsis
This chapter relies on the following under-review paper:

Carlier, A., Dandrifosse, S., Dumont, B. & Mercatoris, B., 2023. Comparing CNNs
and Traditional Machine Learning for Estimating Wheat Organs Biophysical

Variables Using Proximal Sensing. Frontiers in Plant Science 2023

Biophysical vegetation variables are indicators of plant growth and health, providing
essential information for understanding plant-environment interactions [Hawkesford
and Riche, 2020; Lemaire and Ciampitti, 2020]. Leaf area index (LAI), aboveground
biomass (AGB), and nitrogen uptake (Nupt) are some of the most critical variables
that can aid in crop monitoring and yield prediction. These variables can also help un-
derstand the physiological processes that govern the associations between final yield,
genotype and surrounding environment, and determine traits related to these processes
such as the harvest index, the remobilization efficiency, and the nitrogen use efficiency.
As concerns about climate change and its impact on human food security continue to
grow, there is a growing need for reliable and efficient techniques for the quantitative
assessment of vegetation variables [Hickey et al., 2019].

Convolutional neural networks (CNNs) have shown great potential in the field of
phenotyping research. However, further investigation is necessary to determine their
effectiveness in estimating biophysical variables such as AGB, LAI, nitrogen concen-
tration, and nitrogen uptake from proximal images of wheat. To address this, this chap-
ter conducted a thorough investigation of the use of CNNs for this purpose across sev-
eral growing seasons, testing various CNN architectures and employing a customized
training pipeline. The pipeline included a first training phase using transfer learning
and a second phase using a customized pseudo-labeling method, which utilized the
large amount of unlabeled data and biological temporal curve to correct the pseudo-
labels. Models were also trained to predict the dry matter and nitrogen uptake par-
titioning among the different wheat organs. To evaluate the gain of such methods,
the results were compared to a traditional machine learning approach. The chapter
includes all the elements included in the corresponding research document with very
few adaptations for this thesis.

2. Current State of the Art and Objectives
Recent developments in phenotyping systems have revolutionized the way crops are

screened in high-throughput and non-destructive ways [Araus et al., 2022a; Reynolds
et al., 2020; Sun et al., 2022]. These systems are able to measure most biophysical
variables using different vision-based methods [Verrelst et al., 2019]. Methods for
estimating above-ground biomass (AGB) and leaf area index (LAI) rely on crop archi-
tecture, vegetation indices, radiative transfer models, or a combination of these models
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[Brocks and Bareth, 2018; Raj et al., 2021; Schiefer et al., 2021; Tilly et al., 2015; Wan
et al., 2021; Yue et al., 2019]. Such methods are also widely used for assessing crop
nitrogen status [Berger et al., 2020].

Assessing biophysical variables using remote sensing and proximal sensing meth-
ods requires expertise in both agronomy and data analysis, as these traits are highly
complex and influenced by numerous factors. Achieving a comprehensive understand-
ing of biophysical variables demands a holistic approach, considering a wide range
of environmental, genetic and management variables [Hawkesford and Riche, 2020].
However, most of the phenotyping studies often focus on a local area or agricultural
management, which limits their wider applications and the generalization of proposed
models [Chao et al., 2019]. Therefore, it is important to design studies that capture the
diversity of the crop populations and the variability of the growing conditions. Exter-
nal factors such as soil, weeds and biotic and abiotic stresses, and plant characteristics
such as growth stage, canopy architecture significantly limit the possibility of accurate
measurements. While remote sensing which have lower spatial resolution can capture
the canopy in its entirety, it may be affected by these factors. In contrast, proximal
sensing at the organ level can provide more precise measurements and limit the impact
of them [Deery et al., 2014]. In fact, ground-based phenotyping systems equipped
with multiple sensors can acquire high-resolution data, enabling better identification
of plant organs, diseases, or yellow and green plant parts [Carlier et al., 2022; Dandri-
fosse, 2022; Serouart et al., 2022; Tanner et al., 2022; Xu and Li, 2022].

Recent advances in deep learning algorithms, such as convolutional neural networks
(CNNs), have further enhanced the capabilities of these systems and opened up new
avenues for the phenotyping community [Arya et al., 2022; Kattenborn et al., 2021;
Singh et al., 2018]. CNNs have gained significant attention in the field of crop pheno-
typing due to their ability to outperform traditional machine learning algorithms and
exhibit better generalization given sufficient data. For example, in estimating wheat
biomass at early growth stages, CNNs were less influenced by plant density compared
to other methods [Ma et al., 2019]. These novel methods improve the capacities to
better estimate traits and can unlock the extraction of more advanced parameters, such
as crop growth rate, when applied to time-series data [Buxbaum et al., 2022]. The
availability of ready-to-use libraries, datasets, and emerging methodologies such as
transfer learning have made these sophisticated algorithms transferable to crop char-
acterization. However, it is crucial to ensure the accuracy and robustness of these
models by validating them with ground-truth data and regression CNN is still in its
infancy [Jiang and Changying Li, 2020].

Although preliminary attempts have been made to estimate crop yield, CNNs still
face some challenges in phenotyping. The ever-growing availability of neural net-
works architectures and hyperparameters can present a challenge when it comes to se-
lecting or designing the most suitable architecture. While some authors have success-
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fully created their own neural architectures that perform comparably to well-known
ones in terms of accuracy [Li et al., 2021b], it is still highly recommended to use es-
tablished and widely recognized architectures. Furthermore, CNN models require a
large amount of annotated or ground-truth data to determine the numerous trainable
parameters. This is particularly challenging when dealing with biophysical variables,
such as AGB, which require a significant amount of human labor to construct a dataset.
To address this need of data, several methods have been proposed to train robust mod-
els with a limited amount of labeled data. One approach is to use pre-trained models
with transfer learning, which has been successful in estimating forage biomass [Cas-
tro et al., 2020; de Oliveira et al., 2021]. However, when dealing with multispectral
images, pre-trained models that are generally trained on RGB images may not per-
form well. Another approach is to use data augmentation to artificially increase the
dataset size by applying transformations to the images. Advanced data augmentation
methods, such as generative adversarial networks (GANs), have been used to improve
wheat yield estimation [Zhang et al., 2022]. Finally, phenotyping centers often ac-
quire large amounts of unlabeled data that still can be used to train CNNs. For this
purpose, semi-supervised learning methods allow training the convolutional parts of
CNNs from unlabeld datasets to retrieve relevant feature. For instance, the pseudo-
labeling approach involves predicting unlabeled data that are subsequently inserted
into the training dataset [Lee, 2013].

3. Materials and Methods
3.1. Machine Learning Approach
A conventional machine learning approach was tested to confront the CNN models.

As machine learning algorithms require relevant image features to be extracted, addi-
tional processes were applied after performing the pre-processing steps as described in
Chapter 3. Firstly, a stereovision process was used to extract plant height information
using the 95th percentile of the height map (Section 4.3). Secondly, the plant ratio was
computed as the proportion of plants in the scene, using a simple threshold method
on the 800 nm image as detailed in (Section 4.2). Finally, three vegetation indices,
namely the NDVI [Rouse et al., 1974], NDRE [Barnes et al., 2000], and CIrede [Gi-
telson et al., 2006], were calculated and averaged on the entire image and on the plant,
i.e., after segmenting (Section 4.5).

A partial least square regression (PLSr) model was trained and validated using these
features for DM, %N and Nupt of the entire plant. The trials used here were those
presented in Table 3.1. Notably, the training data did not include the 2019 data, as
only one RGB camera was available at that time. Additionally, the pseudo-labeling
strategy mentioned in Section 3.2.3 was also tested for the PLSr.
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3.2. CNN Training
3.2.1. Architecture

Three CNN architectures available in the python library Tensorflow 2.4. and Keras
2.4 were tested in this study. They were Resnet50 [He et al., 2015] and EfficientNetB0
and B4 [Tan and Le, 2020]. They represent the actual state-of-the-art CNN models
with different properties (i.e., architecture and number of parameters) and purposes.

The CNN architectures were customized to perform two tasks: (i) a single-output
model to estimate LAI, DM, %N and Nupt of the whole plant respectively; and (ii) a
multi-output model to estimate organ-specific DM, %N, and Nupt, respectively. A lin-
ear activation function was considered for the last neuron of each single-output model.
Regarding the multi-output models, four output neurons were considered, one for each
organ. A linear activation function was used for the estimation of %N whereas soft-
max activation function were used for DM and Nupt to keep the values between 0 and
1. All models were initialized with weights from the ImageNet dataset [Deng et al.,
2009].

The CNN architectures were originally designed for three-channel images, but the
multispectral images used in this study had six channels. To accommodate this, a
2D convolutional layer with three filters and a kernel size of (1,1) was added at the
beginning of each model when using multispectral images. It allowed to provide a
three channels input required for the CNN models with pre-trained weights.

3.2.2. Dataset Configuration

In this chapter, all trials presented in Table 3.1 were used. Thus, the study used a
dataset consisting of 1809 RGB images and 1391 multispectral images. These num-
bers correspond to the multiplication of the dates, samples, replicates, and images per
plot. Each image was associated with a specific combination of agronomic variables.
From this dataset, two treatments from F trials (Table 3.2 and Table 3.3), and one treat-
ment from FP trials (Table 3.4) were selected for the validation dataset that included
424 RGB images and 341 multispectral images.

In addition to the images acquired on the same days as the manual sampling, each
trial was monitored continuously throughout the season, as illustrated in Figure 3.4.
All those acquisitions yielded a dataset comprising 16 812 RGB images and 14 491
multispectral images. To prepare the data for the CNN models, some pre-processing
steps were taken.

The first pre-processing step involved determining the image size, which is a trade-
off between retaining as much information as possible and limiting the computing
time and resources required. Additionally, when using pre-trained models, it is rec-
ommended to set the input image size to match the size used during initial training.
Therefore, all images were resized to 224 x 224 for the ResNet50 and EfficientNetB0
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models, and to 380 x 380 for the EfficientNetB4 model. It is worth noting that the
images were previously cropped into a square to avoid distortion.

In addition to image resizing, the pixel scaling was also adjusted for each model.
For the RGB images, pixel scaling was adapted according to the Keras documentation
and the requirements of each model. For the multispectral images, Bi-directional Re-
flectance Factor (BRF) values were first normalized between 0 and 1. Next, the data
was standardized based on the mean and standard deviation of the training dataset.
This ensures that the multispectral images are on the same scale as the RGB images,
making it easier to combine the two types of images during training. To further en-
hance the dataset, data augmentation techniques, namely random flip up/down and
right/left, were applied. These techniques increase the diversity of the dataset, which
can improve the generalization performance of the models.

3.2.3. Training Pipeline

Figure 6.1: Proposed training pipeline. (1) is the training with transfer learning, and (2) is the
training with pseudo-labels. Ytrue corresponds to the reference measurements of dry matter

or nitrogen uptake of the plant and of each organ. Ypred are the predicted labels and Ypse the
smoothed predicted values. n and m correspond to the number of reference measurements and

total images respectively.

Exploiting unlabeled data to improve the performance of machine learning models
is an underused approach. It relies on pseudo-labels, which can be introduced into
the training dataset if they meet a certain confidence threshold. In classification tasks,
pseudo-labels are assigned based on the predicted class probabilities. However, in re-
gression tasks, the last activation function is linear, so probabilities are not calculated.
To address this issue and correct the predicted values, the data from each micro-plot
were plotted against time to generate a crop growth curve. This curve captures the
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expected growth pattern of the crop over time and can be used to correct the predicted
values. Specifically, the predicted values are adjusted to fit the growth curve, which
can help to improve the accuracy of the regression models used in this study.

Based on this idea, a pipeline was designed (Figure 6.1). The pipeline involved train-
ing CNN models pre-trained on ImageNet using transfer learning for 40 epochs with a
learning rate of 1×10−3, followed by fine-tuning for 10 epochs with a learning rate of
1 × 10−5. The transfer learning approach involved training only the last layer, which
was the linear dense layer, while freezing the rest of the model. The last convolutional
layer block was then unfrozen and retrained to obtain the Model 1.

Then, the Model 1 was used to generate predicted labels (Ypred) for the entire
training dataset. Ypred labels were plotted against the Photo-Vernalo-Thermic Units
(°C-days) [Duchene et al., 2021], and smoothed using a cubic B-Spline with a high
smoothing condition for LAI and a cubic polynomial function for other variables. Ba-
sic correction conditions were also added, such as setting organ values to 0 when they
were not present at a specific time. The resulting "corrected" pseudo-labels (Ypseu)
were used in the second stage.

In the second stage, pre-trained CNNs from ImageNet were fine-tuned on Ypseu for
30 epochs with a learning rate of 1× 10−5. This resulted in the development of Model
2, which showed improved performance compared to Model 1.

The Mean Square Error (MSE) loss function and Adam optimizer were used in all
models. However, in the case of %N of the organs, the MSE calculation was limited to
true labels above 0. This means that if an organ was not yet visible (e.g., the ear during
tillering growth stage), the loss function did not take it into account, which prevented it
from interfering with the loss function. Additionally, a weight was applied to the loss
calculation when working with relative values. Specifically, the flag leaf pool weights
were multiplied by twenty to ensure consistency with the order of magnitude of the
other organ pools. This helped to balance the contributions of different organ pools
and prevent one pool from dominating the loss calculation. All models were trained
on an NVidia Tesla V100 GPUs.

To evaluate the performance of all models, two metrics were used: the determination
coefficient (R²) and the root mean square error (RMSE).

4. Results
4.1. Biophysical Vegetation Variable Models
At the plant level, the EfficientNetB4 model trained on pseudo-labels achieved the

best performance for DM (Table 6.1), with a R² of 0.92 and a RMSE of 1.50 on the
validation dataset. The PLSr model had the lowest R² of 0.76 and the higher RMSE of
2.67. The ResNet50 trained on pseudo-labels had the highest R² of 0.82 (Table 6.2) for
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Table 6.1: Model performances for DM of the plant.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 1.76 0.91 2.11 0.83
EfficientNetB0 pseudo 0.91 0.95 1.66 0.91
EfficientNetB4 Ytrue 1.38 0.93 1.89 0.86
EfficientNetB4 pseudo 1.09 0.96 1.50 0.92
Resnet50 Ytrue 0.78 0.98 1.87 0.89
Resnet50 pseudo 1.05 0.97 1.64 0.90
PLSr Ytrue 2.88 0.74 2.67 0.76
PLSr Ypseu 2.95 0.73 2.67 0.76

Table 6.2: Model performances for LAI.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 1.06 0.69 1.18 0.57
EfficientNetB0 Ypseu 0.72 0.86 0.80 0.80
EfficientNetB4 Ytrue 0.68 0.86 0.78 0.80
EfficientNetB4 Ypseu 0.67 0.87 0.78 0.81
Resnet50 Ytrue 0.27 0.98 0.79 0.79
Resnet50 Ypseu 0.66 0.88 0.78 0.82
PLSr Ytrue 0.83 0.71 0.88 0.72
PLSr Ypseu 0.84 0.71 0.93 0.68

LAI. Using the multispectral images, the best R² values were obtained with ResNet50
(0.80, Table 6.4) for %N and EfficientNetB0 (0.73, Table 6.3) for Nupt.

The other CNN models also showed very good and similar performances with the
pseudo-labeling training pipeline. The differences between the results on the valida-
tion and training datasets were reduced when using pseudo-labels. In contrast, PLSr
performance did not benefit from the pseudo-labeling method and was consistently
worse than that of the CNN models.

The models were able to successfully assess the variables throughout the growing
season, as evidenced by Figures 6.2 and 6.3. However, there were some outliers that
significantly deviated from the ideal 1:1 relationship between predicted and true val-
ues. Additionally, we noticed a saturation effect where the models were unable to
accurately capture the maximum values of each variable, leading to a lack of detail in
certain growing seasons. The patterns observed in the data appeared scattered like a
cloud rather than forming a clear line, indicating that there is still room for improve-
ment in the models. Therefore, further refinement of the models is necessary to address
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Table 6.3: Model performances for Nupt of the plant.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 42.42 0.65 37.97 0.66
EfficientNetB0 Ypseu 28.84 0.84 34.38 0.72
EfficientNetB4 Ytrue 37.46 0.70 43.39 0.47
EfficientNetB4 Ypseu 25.33 0.87 34.05 0.69
Resnet50 Ytrue 14.24 0.96 37.27 0.68
Resnet50 Ypseu 26.69 0.86 33.89 0.73
PLSr Ytrue 38.84 0.67 42.92 0.66
PLSr Ypseu 40.06 0.65 46.24 0.60

Table 6.4: Model performances for %N of the plant.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 0.37 0.74 0.36 0.72
EfficientNetB0 Ypseu 0.24 0.90 0.30 0.79
EfficientNetB4 Ytrue 0.33 0.75 0.32 0.55
EfficientNetB4 Ypseu 0.23 0.89 0.31 0.73
Resnet50 Ytrue 0.14 0.97 0.32 0.78
Resnet50 Ypseu 0.24 0.90 0.30 0.80
PLSr Ytrue 0.56 0.56 0.41 0.58
PLSr Ypseu 0.61 0.47 0.40 0.59
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these issues and improve their accuracy.

Figure 6.2: Comparison between observed and estimated values of DM of the whole plant
and LAI for both training and validation datasets, using the EfficientNetB4 model for DM and
the Resnet50 model for LAI. The dots are color-coded according to the stages in the season,

with darker dots indicating later stages. The dark line represents the 1:1 line.

4.2. Temporal Wheat Dry Matter and Nitrogen Uptake Parti-
tioning
The multi-output models produced diverse results for dry matter and nitrogen uptake

partitioning, as indicated in Table 6.5. The ear and stems organs were more accurately
estimated by the models, while the flag leaf (L1) was poorly estimated. In terms of
%N models, the tiller and inferior leaf pools were best estimated.

EfficientNetB0 was found to be the best model for estimating Nupt at the organ level,
with R² values of 0.7, 0.59, 0.69, and 0.86 for stem, Linf, L1 and ear, respectively. The
pseudo-labeling method improved its performance slightly. However, this method did
not improve the estimation of DM and %N of each organs. For both, the Resnet50
model was found to be the most effective, as shown in Table 6.5.

Figure 6.4 displays the estimated partitioning of wheat dry matter and nitrogen up-
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Figure 6.3: Comparison between observed and estimated values of %N and Nupt of the
whole plant for both training and validation datasets, using the Resnet50 model. The dots are
color-coded according to the stages in the season, with darker dots indicating later stages. The

dark line represents the 1:1 line.

take over the growing season for a single micro-plot. These curves represent raw
predicted data that have not undergone any filtering process, but they can be smoothed
if necessary using a method similar to pseudo-labeling. Both the RGB and multispec-
tral models successfully detected the emergence of new organs, including the flag leaf
and ear. Notably, the dry matter model shows an earlier appearance of ears compared
to the nitrogen uptake model in this particular example.

5. Discussion
The aim of this study was to demonstrate the effectiveness of recent CNNs in assess-

ing important biophysical vegetation variables, such as dry matter, LAI, and nitrogen
uptake and concentration. Traditionally, accurately measuring these traits from remote
sensing data has required specialized knowledge in agronomy and computer vision.
However, CNNs can learn to extract relevant features directly from the data, eliminat-
ing the need for manual feature extraction.
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Table 6.5: R² of the different models to estimate DM, Nupt and %N of each organ using the
multi-output models.

Model Data Dataset
Nuptake DM %N

Tiller Linf L1 Ear Tiller Linf L1 Ear Tiller Linf L1 Ear

EfficienNetB0
Ypseu train 0.84 0.78 0.77 0.92 0.91 0.49 0.08 0.97 0.71 0.86 -0.08 -2.18
Ytrue train 0.72 0.67 0.7 0.91 0.90 0.49 0.17 0.96 0.60 0.75 0.60 -1.09

EfficienNetB4
Ypseu train 0.54 0.02 0.65 0.75 0.90 0.53 -0.11 0.96 0.67 0.75 -0.10 -1.95
Ytrue train 0.6 0.48 -0.47 0.7 0.92 0.65 0.57 0.97 0.38 0.56 0.10 -2.46

Resnet50
Ypseu train 0.8 0.75 0.76 0.93 0.88 0.51 0.15 0.94 0.73 0.87 -0.05 -2.10
Ytrue train 0.84 0.78 0.8 0.96 0.93 0.76 0.67 0.98 0.86 0.93 0.95 0.52

EfficienNetB0
Ypseu val 0.7 0.59 0.69 0.86 0.83 0.28 -0.09 0.95 0.54 0.84 -0.43 -2.64
Ytrue val 0.63 0.47 0.54 0.86 0.82 0.34 -0.16 0.93 0.47 0.69 0.58 -1.72

EfficienNetB4
Ypseu val 0.51 -0.2 0.52 0.66 0.83 0.38 -0.15 0.94 0.59 0.73 -0.46 -2.11
Ytrue val 0.41 0.3 -1.66 0.65 0.84 0.55 0.14 0.94 0.10 0.55 0.13 -3.91

Resnet50
Ypseu val 0.64 0.52 0.64 0.85 0.87 0.57 0.22 0.94 0.48 0.84 -0.45 -3.17
Ytrue val 0.67 0.56 0.66 0.86 0.87 0.62 0.38 0.94 0.50 0.76 0.69 -1.07

Figure 6.4: Estimated partitioning of dry matter and nitrogen uptake throughout the season
for a micro-plot from the 22-F trial.

In this study, transfer learning, a common training method, outperformed traditional
machine learning approaches, consistent with prior research [Castro et al., 2020; Ma
et al., 2019]. This underscores the exceptional ability of convolutional neural network
models to extract significant features, although interpreting their meaning remains a
challenge. Some research is devoted to developing techniques to explain CNN predic-
tions [Selvaraju et al., 2020]. Resnet50 has demonstrated good performance in similar
studies [Castro et al., 2020], but EfficientNet has also produced promising results and
was particularly effective for DM of the whole plant. However, it could be argued that
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the advantage of EfficientNetB4 was due to its ability to capture finer details in larger
images. Interestingly, recent research has shown that having larger images does not
always result in better performance beyond a certain level [Li et al., 2021b]. This out-
come may be architecture-dependent, as EfficientNet is specifically designed for easy
scaling to optimize performance for specific datasets [Tan and Le, 2020].

Deep learning, especially in regression topics like biophysical variables, faces a sig-
nificant challenge due to the scarcity of sufficient datasets for training purposes. To
overcome this limitation, a training pipeline was devised to make use of the abundance
of unlabeled data available in every high-throughput phenotyping installation. This
proposed approach employs the temporal aspect of the data to correct pseudo-labels,
leading to significant improvements in the performance of CNN models.

The smoothing method utilized in this study employed a cubic curve due to its ease in
representing biophysical curves and its ease to be fitted. Finer curves, such as P-splines
or logistic curves [van Eeuwijk et al., 2019], were also tested but the fitting process
proved to be difficult. As noted by [Roth et al., 2020], one to two measurements
per week are necessary to accurately fit such curves, but our data did not meet this
frequency requirement. To limit the introduction of bias, we added some correcting
conditions, which were particularly important for organ models. For instance, when
an organ was not present at time t, we set the corresponding pseudo-label to 0, which
may seem like a common-sense correction, but it was valuable.

The pseudo-labeling method effectively reduced overfitting of the model, as demon-
strated by the smaller performance gap between the training and validation datasets.
This suggests that the smoothed models were able to identify more general features
than the transfer learning features method. During the research, more advanced data
augmentation methods were also tested such as 90° rotation and color space trans-
formations. However, caution should be exercised when applying such methods, as
they may negatively impact model performance in certain cases, as observed in some
models in [Castro et al., 2020]. On the other hand, [Ma et al., 2019] reported clear
performance improvements with such methods. One possible explanation for this dis-
crepancy is that the model may become overly reliant on certain features, such as the
wheat lines in the case of image rotation. Therefore, data augmentation should be used
judiciously.

An effective approach for evaluating model performance is to combine their predic-
tions into a single variable. In this study, we used DM and %N of the plant estimated
from their respective models to calculate the NNI. The R² values for the training and
validation datasets were 0.71 and 0.33, respectively, indicating that this method could
be useful for measuring NNI. Although these models require improvements in terms
of trait saturation and lack of accuracy within specific growth stage, their potential
is significant. They can be used to compute advanced traits such as growth rate and
spot ideotypes using temporal curves, as demonstrated in a recent study [Roth et al.,
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2022a].
The machine learning approach that combines features from the multi-sensor system

consistently underperformed CNN models. Nonetheless, this approach still exhibited
reasonable performance, with an R² value exceeding 0.6, akin to Yue et al. [2019].
This method could serve as a viable option for small datasets and may also be utilized
as a pseudo-labeling tool.

Research on the allocation of major plant elements, such as sink/source regulation
processes and their relationship with grain nitrogen content, is primarily based on dry
matter and nitrogen uptake partitioning [Gaju et al., 2014; Martre et al., 2003]. The
partitioning models proposed in this study have yielded promising results, as demon-
strated in Table 6.5, with good performance in most cases. However, certain organs
exhibited poor performance, such as %N of the ear, which could be attributed to the
lack of visible traits that could account for it, such as a greener ear. The poor per-
formance of DM and Nupt for L1 could mainly be attributed to the bad performances
of the multi-ouputs model for this organ, which also showed poor performance in
Table 6.6. Indeed, the flag leaf was not well-accounted for in the multi-task model,
despite having a higher weight in the loss function. Some other tested weight values
did not improved the results. It’s possible that the models had too few images with
only flag leaves, as the ear develops quite rapidly behind them.

The multi-ouput or multi-task model represent an exciting opportunity for plant phe-
notyping. In this study, a simple approach was used by sharing the loss function, but
the benefits of multi-task learning can be substantial. For example, a single model
that assesses both dry matter (DM) and leaf area index (LAI) can greatly reduce com-
putational costs and processing time, while maintaining high accuracy for both tasks.
Studies have shown that when tasks share complementary information, they can act as
regularizers for each other, improving prediction performance for each task [Standley
et al., 2020]. However, combining complex associations between tasks, such as classi-
fication and regression tasks, requires careful consideration of the model architecture,
loss function, and training strategy to achieve optimal performance. Ongoing research
is being conducted in this area [Vafaeikia et al., 2020; Vandenhende et al., 2020].

The models’ ability to discover the appearance of new organs, such as ears and flag
leaves, on their own is particularly interesting and opens up exciting new avenues for
research. This suggests the feasibility of developing growth stage estimation mod-
els per RGB image in a similar way. Such models could be further used for various
purposes, such as optimizing crop model [Yang et al., 2021a].

Overall, the performances of the models may be questioned in light of the limited
dataset that only includes a few genotypes. However, the study underscores the po-
tential of convolutional neural networks and highlights the necessity of data sharing to
advance model performance and generalization capabilities. By processing diverse and
large-scale data, CNNs can produce more robust and precise models. Therefore, the
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phenotyping community should prioritize developing vast and well-annotated datasets
for crucial phenotyping challenges, like the Global Wheat Head Detection (GWHD)
dataset [David et al., 2021].

6. Conclusions
This chapter aimed to investigate the potential of convolutional neural networks

(CNNs) for estimating biophysical vegetation variables in wheat from RGB and mul-
tispectral images. To overcome the need for agronomic data, a training pipeline was
developed to generate pseudo-labels using transfer learning. These pseudo-labels were
then corrected using the temporality of the data, greatly expanding the size of the
training dataset. The performance of CNN models was enhanced by the use of these
corrected pseudo-labels, outperforming the machine learning approach. In addition to
estimating biophysical vegetation variables, models were also trained to estimate the
dry matter and nitrogen uptake partitioning between various wheat organ pools, includ-
ing the tiller, inferior leaf, flag leaf, and ear. These models demonstrated promising
performance and highlighted the potential of multi-output model to estimate complex
variables in plants. Overall, this chapter suggests that CNNs are a promising candi-
date for accurately retrieving biophysical parameters in wheat when given a sufficient
dataset size. However, further data collection and investigation of models are still
needed to fully unlock their capabilities.

7. Supplementary Materials

Table 6.6: R² of the different models to estimate DM and Nupt proportion of each organ.

Model Data Dataset
Nuptake DM

Tiller Linf L1 Ear Tiller Linf L1 Ear
EfficienNetB0 Ypseu train 0.95 0.99 0.75 0.91 0.59 0.87 -0.14 0.95
EfficienNetB0 Ytrue train 0.82 0.93 0.61 0.88 0.91 0.96 -0.02 0.93
EfficienNetB4 Ypseu train 0.49 0.68 0.65 0.62 0.58 0.87 -0.37 0.93
EfficienNetB4 Ytrue train 0.66 0.83 -1.38 0.55 0.93 0.98 0.5 0.95
Resnet50 Ypseu train 0.81 0.95 0.73 0.92 0.52 0.85 0.04 0.86
Resnet50 Ytrue train 0.97 0.99 0.84 0.99 0.98 0.99 0.71 0.98
EfficienNetB0 Ypseu val 0.83 0.97 0.75 0.87 0.58 0.87 -0.17 0.94
EfficienNetB0 Ytrue val 0.77 0.91 0.49 0.85 0.84 0.95 -0.31 0.92
EfficienNetB4 Ypseu val 0.4 0.7 0.49 0.51 0.62 0.88 -0.24 0.93
EfficienNetB4 Ytrue val 0.55 0.83 -1.8 0.44 0.87 0.96 0.2 0.94
Resnet50 Ypseu val 0.63 0.92 0.73 0.88 0.59 0.86 0.12 0.87
Resnet50 Ytrue val 0.78 0.96 0.66 0.9 0.91 0.98 0.46 0.96
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1. Synopsis
As agricultural systems approach the biophysical limits of crop yields, pursuing fur-

ther advances in productivity becomes increasingly complex, requiring a deeper un-
derstanding of the deterministic pathways leading to improved yields [Reynolds et al.,
2012]. A comprehensive understanding of yield-determining characteristics is essen-
tial, encompassing aspects such as the crop’s capacity to efficiently capture and utilize
available radiation, allocate dry matter across competing organs, successful genera-
tion of reproductive organs, and optimize water and nutrient absorption and utiliza-
tion. Presently, drawing on insights drawn from research into yield components and
mechanisms, breeders possess a more discerning awareness of which mechanisms or
components to refine in order to ultimately improve yield. This informed perspective
guides the selection of diverse directions that may elucidate the intricacies of yield
[Reynolds et al., 2009; Slafer et al., 1996].

Within this chapter, we adopted a classical physiological approach focused on ob-
servable and countable traits (Figure 7.1). Our inquiry centers on elucidating yield
and yield components through organ-scale traits [Slafer et al., 1996]. Here, yield (per
m−2) was expressed as:

Y ield = Ear ×Grain ear−1 × TKW (7.1)

Where:
• Ear Density: Determined by the number of ears per square meter, ear density is

influenced by plant density at the end of winter and the plant’s ability to sustain
them until the flowering phase.

• Grains per Ear: The establishment of the number of grains per ear hinges upon
spikelet formation in each tiller, which subsequently generates flowers that ne-
cessitate effective fertilization during the flowering period.

• Thousand Kernel Weight (TKW): The weight of individual grains starts accu-
mulation after the flowering period, culminating in ripening.

The concept of yield unfolds as a intricate narrative, with each yield component
is susceptible to an array of stresses that ultimately impact the final yield [Khadka
et al., 2020]. Consequently, strategic fertilization practices in Belgium are commonly
employed at three pivotal growth stages: tillering (BBCH 28), initial stem elonga-
tion (BBCH 30), and the flag leaf (BBCH 39). The first application promotes tiller
number, tthe second allows tillers to grow and develop their ear, and the third input
enhances ear fertility, grain filling, and grain quality. However, an intricate trade-off
exists among these components, where enhancing one could potentially lead to a de-
cline in another [Quintero et al., 2014; Slafer et al., 2014]. Elements such as seeding
rate and plant density can influence the number of ears per unit area, while genetic
traits, environmental conditions, and other management practices impact grain weight
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Figure 7.1: Key yield components (adapted from [Slafer et al., 1996]).

and the quantity of grains per ear. Thus, a comprehensive grasp of these yield com-
ponents and their evolution throughout the crop’s life cycle is imperative to formulate
strategies for optimizing crop productivity and elevating wheat production.

Through this thesis and the encompassing literature, a substantial potential emerges
for phenotyping systems to precisely evaluate crop traits, thereby assisting breeders
and physiologists [Reynolds et al., 2020]. For instance, with a rich temporal dataset,
Roth et al. [2022a] successfully construct ideotypes, representing ideal trait curves.
Precise assessment of crop yield remains a challenge due to the diverse array of traits
involved and the timing of their measurement [Jin et al., 2021; Prey and Schmidhal-
ter, 2020]. In fact, the timing of data acquisition might hold equal importance to the
traits themselves [Araus et al., 2022b]. While in early developmental stages, varia-
tions in vegetation indices may primarily stem from disparities in early vigor, in more
advanced phenological stages characterized by denser canopies, discrepancies in veg-
etation indices might arise from other distinct crop characteristics. Although single
NDVI measurements have demonstrated efficacy in assessing yield, this approach may
fall short for larger datasets. To improve yield modeling, some researchers have sug-
gested the use of temporal data [Sun et al., 2017], or by integrating much more other
features such as weather report or crop growth models. Furthermore, one other hy-
pothesis might be that the precision of yield assessment might improve as harvest
approaches [Hassan et al., 2019].

In addition, despite the current emphasis on the evaluation of ear density (Chapter 4),
little research has focused on the evaluation of the other yield components via pheno-
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Figure 7.2: Wheat development stages and yield components. Each principal stage of the
BBCH scale is indicated by a number from 0 to 9. The three yield components appear in the

red boxes below the drawings. The blue boxes contain the elements influencing the
elaboration of these yield components. The black down arrows represent nitrogen inputs

according to a conventional fertilization strategy (from [Dandrifosse, 2022]).

typing methods. Thus, the aim of this chapter was to illustrate how the amalgamation
of all extracted features from preceding chapters can offer insights into deciphering
yield components. Furthermore, this also addressed a pivotal inquiry for phenotypers:
that of ascertaining the most suitable criteria, timing, and methodologies for measuring
these components.

2. Materials and Methods
2.1. Overview of Used Predicted Traits
The variables used in this chapter have been derived either from AI predictive mod-

els or directly computed using advanced computer vision techniques detailed in the
previous chapter. A concise overview of these traits is presented in Table 7.2. No-
tably, all of these traits were consistently available across multiple trials, as detailed in
Table 3.1, except for the 19-FP trial. Regrettably, an unexpected and severe storm to-
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wards the end of the 2021 season had a detrimental impact on the micro-plots, leading
to lodging for an extended duration. This weather event resulted in significant yield
losses. As depicted in Figure 7.3, the micro-plots subjected to higher nitrogen inputs
exhibited particularly poor yields due to increased lodging occurrences. Consequently,
the data from the 2021 season has been omitted from this chapter. Furthermore, the
damage removal technique employed in Chapter 5 was not applied in this context. This
decision was influenced by the fact that only the 22-FP trial exhibited notable disease
pressure, potentially disrupting the models presented within this chapter.

To ensure data consistency, the analysis was limited to a specific timeframe spanning
from 330 to 1100 °C-Days (see Figure 3.4). This duration corresponds to the period
between the second node growth stage (BBCH 32) and the early stages of maturity
growth (BBCH 89). For the purpose of generating comprehensive time-series data, a
cubic B-spline interpolation method with a high smoothing factor was employed. This
approach facilitated the estimation of values for each individual °C-Day, resulting in a
coherent and complete dataset.

Table 7.1: Output traits of this chapter.

Trait Unit Data Source Measurement Method

Grain Yield kg.m−2 Combine Harvester Direct Harvesting
Thousand Kernel
Weight (TKW)

g Sample Measure-
ment

Weighted

Ear Density Chapter 4 CNN: YOLOv5
Grain ear−1 Grain Yield

TKW×Ear Density
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2.2. Analysis of Yield and Yield Components: Modeling and
Correlation
The relationships between each yield component (Table 7.1) and a range of pre-

dicted traits (Table 7.2) throughout the growing season were assessed using Pearson
correlation coefficients. To capture the evolving correlation patterns across the crop-
ping season, the dataset was intelligently divided into four distinct periods, delineated
by accumulated temperature (°C-Days): <502, 502-665, 665-891, and >891, aligning
with the key growth stages 39, 65, 75, and 89 according to the BBCH scale. The com-
puted correlation coefficients were then averaged for each period, and these averages
were categorized for clarity: "o" (<0.2), "+" (<0.4), "++" (<0.6), and "+++" (>0.6).
Notably, correlations surpassing 0.6 were considered remarkably strong, while a few
cases of minimum correlations exceeding 0.8 were also observed.

Furthermore, a Two-Way Analysis of Variance (ANOVA) was conducted to scruti-
nize the treatment effects for each trial. Remarkably, the year’s influence was inten-
tionally omitted from the analysis due to its known variability; instead, the primary
focus was directed towards highlighting the pronounced treatment effects. Note that
to perform these analyses, the two fungicide treatments were removed because they
contained one less fertilization treatment.

To comprehensively merge all input traits, a Random Forest regressor was employed.
This advanced modeling technique was harnessed to decipher the intricate interac-
tions within the dataset. Leveraging a robust 5-fold cross-validation approach for each
timestamp, the model’s performance underwent evaluation, with the R² metric serving
as the benchmark for assessment.

3. Results and discussion
3.1. Yield Analysis
The analysis of variance (ANOVA) highlights an influence of fertilization on yield,

thousand kernel weight (TKW), and ear density throughout each year of the fertil-
ization trial (Table 7.3). Notably, while the number of grains per ear demonstrates
a stronger correlation with genotype, the remaining yield components exhibit a pro-
nounced sensitivity to environmental factors, as outlined by Slafer et al. [2014]. Among
these factors, nitrogen input emerges as the dominant driver of these effects [Jaenisch
et al., 2022]. Here, the correlation between yield and grains per ear exhibited a rela-
tively stable trend, ranging from 0.20 to 0.80. Notably, across six trials, four instances
revealed a correlation within the range of 0.47 to 0.60.

Turning our attention to the fertilization and fungicide treatments trials, a more intri-
cate narrative unfolds. Despite the absence of interaction terms, the dynamics proved
multifaceted. The narrower range of fertilization inputs (120-260 kgN.ha−1), com-
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pared to the fertilization trial, shows a less constant fertilization effect. Actually, this
effect might have been obscured by the concurrent onset of disease. Specifically, in
Chapter 5, we observed the substantial susceptibility of 22-FP to yellow rust, signif-
icantly impacting all three yield components (Table 7.3). The temporal variation in
disease appearance between 2021 and 2022 exerts varying effects on ear density, with
delayed disease incidence in 2021 sparing this component.

Indeed, the emergence of foliar diseases before anthesis, along with their persistence
during grain-filling stages, triggers a decline in the plant’s green leaf area. This, in turn,
hampers the plant’s efficiency in capturing and utilizing radiation, thereby reducing the
production of essential assimilates crucial for grain development [Schierenbeck et al.,
2019a]. Such a potential discord between diminished assimilate supply and elevated
demand can culminate in the abortion of kernels and ultimately lead to a reduction in
overall yield [González et al., 2011]. These physiological assertions provide insight
into the observed fluctuating correlations depicted in Figure 7.4. When considering
the thousand kernel weight (TKW), the presence of disease appears to enhance the
correlation with yield, suggesting a potential interplay between disease-induced stress
and grain development [Simón et al., 2020]. Conversely, for ear density, the strongest
correlation is observed within the context of the fertilization trials, highlighting the
dominant influence of fertilization on this particular yield component.

Notably, the influence of violent storms in 2021 emerges as a significant variable,
substantially impacting higher nitrogen inputs due to long lodging period (Figure 7.3).
Indeed, yield in 2021 were expected to exhibit an upward trajectory in line with pat-
terns from 2020 and 2022.

3.2. Individual Traits Analyses
Grain yield reveals robust correlations with a range of individual traits, as demon-

strated in Table 7.4. Specifically, parameters such as DMplant and Nuptplant exhibit a
consistent enhancement in correlation, progressing from 0.5 during tillering to 0.75
during grain filling. This ascending pattern is visually depicted in Figure 7.6. Simi-
larly, NNI and LAI exhibit parallel trends, maintaining alignment with grain yield until
the end of flowering. Notably, as the season progresses, %NL1/Linf/tiller demonstrates
an inverse correlation of approximately -0.5, while DMear and Nuptear attain a notable
correlation of 0.7. Furthermore, an analogous trajectory to DMplant emerges within
most VIs and the leaf-to-plant ratio, as evident from Figure 7.7.

While only a handful of traits surpass a 0.4 correlation threshold with TKW, it’s
pertinent to highlight certain traits such as %NL1/Linf/tiller, NuptL1/Linf/tiller, Nuptear, and
selected VIs(Table 7.4). In particular, the correlation with TKW accentuates post-
flowering. However, TKW’s determination primarily occurs during grain filling and
pertains to grain dimensions—such as width, thickness, and surface area [Simmonds
et al., 2014; Xie et al., 2015]—which are less directly captured by the camera setup.
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Figure 7.3: Boxplot illustrating yield variations across different trials in response to varying
levels of nitrogen input. Notably, the impact of violent storms in 2021 is evident as lodging

persisted for several weeks, influencing the results.

Figure 7.4: Pearson correlation between each yield component.
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Table 7.3: ANOVA analysis for each trial and each yield component according to the
fertilization (F) and fungicide (P) treatments and their interactions (*, P < 0.05; **,

P < 0.01; ***, P < 0.001).

Trial Treatment Yield TKW Ear density Grains ear -1

20-FP
F ** ***
P **
F x P

21-FP
F ** *** ***
P *** *** ***
F x P

22-FP
F *
P *** *** *** ***
F x P

20-F
F *** *** ***

21-F
F *** *** ***

22-F
F *** ** ***
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Addressing this challenge has proven complex, with a few studies attaining satisfac-
tory outcomes [Garriga et al., 2017; Prey et al., 2020]. Thus, a deeper exploration of
grain filling and ensuing senescence phases becomes imperative. Time-related metrics,
like senescence duration, could potentially offer enhanced insight into these periods,
enabling the identification of traits more closely related to TKW.

Pre-flowering, the number of grains per ear correlates most prominently with traits
indicative of the plant’s nitrogen status, encompassing NNI, %Nrate, and the plant
ratio (Table 7.4). Vegetation indices also exhibit a good correlation with this variable,
as they are also sensible to the presence/absence of plant. This parameter is notably
sensitive to the plant’s well-being during stem elongation, while also being susceptible
to stresses during anthesis [González et al., 2011]. Consequently, capturing wheat
phenotypes during this critical period becomes essential. Nevertheless, post-flowering,
as the number of grain is already established, correlations assume greater relevance to
grain yield itself, in accordance with recent findings [Jaenisch et al., 2022].

The establishment of ear density primarily occurs before the flag leaf growth stage
(BBCH 39). Prominent correlations exceeding 0.6 emerge between vegetation in-
dices associated with nitrogen, such as NDRE, GNDVI, CIREDE, and ear density
(Table 7.4). Likewise, traits linked to nitrogen status exhibit correlations surpassing
0.4 pre-flag leaf growth stage, encompassing NNI, Nuptplant/Linf, LAI, and DMLinf.
These findings corroborate the well-established understanding of ear density’s strong
reliance on nitrogen availability, a fundamental aspect of agricultural fertilization prac-
tices [Koppensteiner et al., 2022]. Beyond this stage, robust correlations emerge due
to the visual distinctiveness of ears, facilitating accurate enumeration through deep
learning techniques (as detailed in Chapter 4).
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3.3. Random Forest Modeling

Figure 7.5: Random Forest R² to assess yield components in a 5 folds cross-validation.
Shaded ribbons represent the standard deviation from the cross-validation.

Random Forest modeling was employed to predict yield components and yield, and
the results of this analysis are presented in Figure 7.5. Initially, the R² of predict-
ing grain yield and TKW was modest, but both exhibited steady improvement until
plateauing around 650°C-days after ear emergence. Subsequently, the yield estima-
tion demonstrated good performance, achieving an R² value of up to 0.8, while TKW
yielded an R² value of 0.7. This pattern is consistent with plant physiology, as TKW is
set post-flowering (Figure 7.2). The similarity between the trends of TKW and yield
could suggest a potential high correlation between these variables. However, a closer
examination of the correlation reveals that this relationship is not uniformly consis-
tent across all trials (Figure 7.4). This indicates that the Random Forest model likely
identified additional relevant features beyond this correlation.

Additionally, ear density consistently showed high and stable R² values ranging from
0.7 to 0.8. Conversely, the number of grains per ear also had stable results, but with
a lower performance of around 0.4. This is also in line with the physiology of the
plant, as both variables are established during the vegetative phase and then do not
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change afterwards (Figure 7.2). The moderate performance of the Random Forest
model to predict the number of grain per ear, when compared to the high correlation
exhibited by individual traits, suggests that each of these traits did not provide any
additional information on the number of grains per ear. Thus, only few of them might
be sufficient.

These findings resonate with various studies that have successfully harnessed remote
sensing techniques for yield estimation [Abbas et al., 2020; Li et al., 2022b; Wang
et al., 2019]. Importantly, akin to this study, many of these investigations demonstrated
low heterogeneity within their datasets, facilitating straightforward correlations. How-
ever, a comprehensive review delineating the panorama of yield prediction studies
remains absent, hindering a comprehensive understanding of possibilities, challenges,
and limitations. Nonetheless, the amalgamation of machine learning techniques, lever-
aging diverse features, emerges as a robust tool for yield estimation [Li et al., 2022a].

In light of these insights, it becomes apparent that some traits pose greater com-
plexity for estimation through phenotyping systems. This study opted for a statistical
modeling approach based on phenotyping features, resulting in dataset-specific mod-
els that yielded intriguing results. It’s important to acknowledge that this approach’s
goals and use might differ from mechanistic approaches. The selected approach may
prove effective for generating precise data on a local area, whereas methods such as
crop growth model could excel at broader scales. While few recent studies compare
phenotyping and crop growth modeling specifically for yield estimation, numerous
successful endeavors have effectively fused remote sensing and crop growth models
[Della Nave et al., 2022; Yang et al., 2021b; Yue et al., 2021].

4. Conclusions
This study delved into an intricate analysis of the correlations between various yield

components and a diverse array of image-derived traits, detailed in the preceding chap-
ter through computer vision methodologies. The correlations were analyzed across
different growth periods, revealing shifting relationships over time. Each yield com-
ponent showed strong correlations with multiple traits, ranging from hard-to-obtain
traits, such as NNI, to more readily available traits, such as various vegetation indices.

To comprehensively integrate these complex interactions, a Random Forest regres-
sor was employed for modeling. The R² values obtained from this analysis illustrated
the predictive power of image-based traits in estimating yield components. Notably,
the model exhibited increasing accuracy as the season progressed, reflecting the tem-
poral dynamics of yield determination. These statement are also in accordance with
the physiological knowledge. Ear density and yield were particularly well-predicted
by the model, suggesting that image-derived traits effectively capture the underlying
dynamics of these components. However, the prediction of the number of grains per
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ear showed a modest performance, indicating that additional factors beyond the traits
considered in the analysis may contribute to its determination.

Overall, this chapter provided valuable insights into the complex relationships be-
tween image-based traits and key yield components in wheat. It showcased the po-
tential of advanced computer vision techniques and statistical modeling to enhance
our understanding of crop physiology and improve yield estimation. The findings ac-
centuate the need for a judicious choice of traits and a holistic consideration of their
temporal dynamics across the agricultural season. As such, these innovative pheno-
typing systems stand as a potent tool in aiding crop improvement.

5. Supplementary Materials

Table 7.5: Description of the 15 vegetation indices and the normalized RGB components
used as features for the machine learning algorithms aiming to separate leaves and ears. r, g
and b are the channels of the RGB camera. blue, green, red, rededge and nir are the channels

of the multi-spectral camera array, respectively at 490, 550, 680, 720 and 800 nm.

Index Index formula Reference

NDVI nir−red
nir+red [Rouse et al., 1974]

GNDVI nir−green
nir+geen [Gitelson et al., 1996]

NDRE nir−rededge
nir+rededge [Barnes et al., 2000]

MCARI ((rededge − red)−0.2×(rededge−green))×

rededge
red

[Daughtry et al., 2000]

CIrede nir
rededge − 1 [Roujean and Breon, 1995]

NPCI red−blue
red+blue [Devadas et al., 2009]
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Figure 7.6: Pearson correlation between yield components and modeled traits.

117



Wheat Yield Assessment Using Organ-Scale Phenotyping and Deep Learning

Figure 7.7: Pearson correlation between yield components and images features.
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1. An Emerging Science With Great Potential
The field of plant phenotyping is rapidly emerging as a dynamic and innovative sci-

entific frontier, as evidenced by its exponential growth [Morisse et al., 2022; Sun et al.,
2022]. A remarkable testament to this evolution can be found in a study by Saint Cast
et al. [2022], revealing an astounding 2600% surge in published papers within the plant
phenotyping domain between 2015 and 2019. This unprecedented trajectory is largely
propelled by technological advancements, amplified computational capacities, and no-
tably, the advancement of AI [Arya et al., 2022]. However, despite these remarkable
strides, the field remains in its infancy as a scientific discipline, still grappling with
diverse and formidable challenges tied to extracting agronomic insights from sensor
data collected directly in field.

This thesis demonstrates the efficacy of an affordable phenotyping system in cap-
turing a diverse array of data on wheat, encompassing crucial metrics such as plant
height, biomass, and disease impact. Each of these traits, either individually or gather,
contributes valuable insights toward understanding grain yield. The advent of high-
throughput phenotyping systems is enabling a transformation in crop improvement
by facilitating rapid and objective assessments, and by shedding light on new traits
[Araus et al., 2022b; Reynolds et al., 2020]. While final yield remains the pivotal met-
ric evaluated, the capacity to measure an array of traits throughout the crop cycle has
expanded significantly. In essence, remote and proximal sensing offer a repertoire of
methods and tools/devices, ranging from vegetation indices, BRFs, stereovision, and
AI to RGB, multi and hyperspectral cameras, as well as thermal sensors, all aimed
at retrieving these intricate traits. As illustrated in this thesis, the amalgamation of
RGB and multispectral images, when combined with AI models, yields valuable in-
sights into traits such as biomass, nitrogen content, LAI, plant height, and the impact
of diseases.

Moreover, this thesis presents a temporal analysis of estimated traits and their corre-
lation with yield components, which are typically not directly measurable in the field
except for ear density. These findings provide insights into the optimal timing for
observing specific traits throughout the growth cycle. However, the quest for more ex-
tensive data persists, necessary to draw sturdier conclusions from this approach and to
conduct meta-analyses, ultimately leading to a deeper comprehension of the intricate
relationships among these traits, thereby enhancing our understanding of crop yield
dynamics [Roth et al., 2022b; van Eeuwijk et al., 2019].

This reservoir of data serves as a guiding compass for breeders, aiding in the selec-
tion of optimal plant varieties for specific growth conditions, thereby culminating in
amplified yields and enhanced crop quality. Furthermore, these insights facilitate the
identification of ideotypes, unraveling temporal patterns and extracting time-linked
traits, in addition to genes/QTL [Mir et al., 2019]. With continued research in this
area, we can further harness the power of high-throughput phenotyping to improve
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crop yields and ensure food security for future generations.
As technology continues to progress, the decreasing costs of components render phe-

notyping systems increasingly accessible to a broader audience. The system outlined
in this thesis exhibits relative affordability in terms of hardware, with the camera rep-
resenting the most substantial expense. Specifically, while multispectral cameras often
cost around C10,000, an RGB-D camera can be acquired for C350. Additionally, the
integration of deep learning has evolved into an indispensable facet of all phenotyp-
ing systems, empowering researchers to overcome once insurmountable challenges. A
salient instance of this progress is the automated counting of wheat heads, facilitated
by object detection algorithms and a publicly available extensive dataset [David et al.,
2021]. Notwithstanding these strides, a disparity persists between phenotyping sys-
tems in research and their widespread utilization in large-scale field trials. Bridging
this gap is imperative to fully realize the potential of phenotyping systems in address-
ing agricultural challenges.

2. Present Challenges
2.1. Technical Obstacles
Over the course of several years of development, we encountered numerous chal-

lenges that shed light on the slow uptake of this approach among users. Our experience
highlighted one prominent hurdle: technical challenges arising from the use of custom-
made hardware and software. These challenges inevitably led to setbacks. Across a
four-year span, we faced multiple obstacles that complicated the implementation of
this approach. Yet, we consider these challenges integral to the research process and
will present the limitations we encountered as examples of the complexities associated
with this approach. Despite the difficulties we encountered, we remained resolute in
our pursuit, gaining valuable insights and lessons along the way.

As noted by Dandrifosse [2022], the use of a multimodal set-up increased the com-
plexity of the system, making it more susceptible to issues. This was true for both the
mobile platform and the sensor set-up. As the platform and electronic system had to be
reassembled for each acquisition, there was a risk that some cables might be forgotten
in the laboratory, screws might not be tightened correctly, or devices could be dam-
aged. Given the large number of cables required to connect all the sensors, managing
the system and guarantee its robustness were undoubtedly challenging.

One other issue to manage was that the cameras used in our system required specific
calibrations and settings. We found that the stereovision cameras needed to be recal-
ibrated periodically, possibly due to imperfections in the metal support. The relative
exposure time of the multispectral camera had to be adjusted several times per year to
prevent over- or under-saturated pixels, depending on the crop growth stage. Unfortu-
nately, these cameras saved the images onto SD cards, making it challenging to verify
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them in the field. These SD cards also added multiple steps to the image unloading
process and increased the burden on external storage. However, we did not encounter
any issues related to data storage. The key was to stay organized and follow a ba-
sic folder structure on each external disk, given that each acquisition date generated
several gigabytes of data.

The homemade acquisition system we implemented came with its fair share of bugs.
Frequently, situations arose where perfect lab performance didn’t translate to the field.
This was more common initially, but it provided valuable lessons on project manage-
ment. One of the most challenging aspects was synchronizing all the sensors, each of
which had its own Python Software Development Kits (SDK) working differently with
varying levels of detail.

Obtaining high-quality data is essential for effective phenotyping and model build-
ing. Addressing this challenge consumed a significant amount of time, particularly in
Sebastien Dandrifosse’s thesis. The image analysis pipeline also underwent significant
changes throughout our research. A large Python script incorporating most methods
was written to process the images, with each pipeline step often relying on the output
of a preceding step. Insufficient verification phases, however, occasionally resulted
in bugs and code crashes, particularly concerning given the code’s computationally
intensive nature.

Field conditions present a more complex environment than laboratories, where the
plant itself primarily drives changes. Weather is a major factor that can disrupt data
acquisition and affect data quality. Wind can impede the use of sensors that require
a significant amount of time to acquire data, such as hyperspectral imaging systems
[Bebronne et al., 2020]. Rain can also hinder data acquisition as many technologies
are not designed to withstand water, and can make the field less accessible. Finally,
the sun, in combination with clouds, can be a significant challenge. Numerous studies
have demonstrated the effects of sunlight on data quality, particularly in image data,
where high illumination conditions enhance contrast and could hide the bottom of the
canopy [Dandrifosse et al., 2022b; Serouart et al., 2022]. Solutions exist to mitigate
these issues, such as using a flash or concealing the area, but these solutions can also
introduce biases into the data and increase the complexity of the system. External
factors such as soil color, soil heterogeneity, or the presence of weeds can affect plant
measurements. To mitigate external factors, we implemented various methods such as
soil segmentation, but achieving consistent results still requires additional knowledge,
especially when working outside controlled environments.

Many studies have successfully identified valuable plant traits but there are still many
other traits that require further investigation. For example, although there have been
notable improvements in identifying diseases in crops [Tanner et al., 2022], predict-
ing diseases before symptoms appear, differentiating between diseases with similar
symptoms, and detecting diseases hidden within a canopy, such as STB in wheat, still
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present significant challenges. Thermal imaging technology is another promising tool
for detecting water stress, but no operational method currently allows for large-scale
application. Yet, it is certain that these challenges would greatly benefit from a wealth
of data.

The challenges we faced during this work, particularly in regards to image acqui-
sition and analysis, underscore the fact that implementing a phenotyping system is a
complex task and not easy to handle by novices. Currently, there are very few user-
friendly commercial solutions available, despite the proliferation of commercial cam-
eras and UAVs. While these technologies are becoming more affordable and accessi-
ble, there remains a significant knowledge barrier to their effective use. A solution that
can instantly capture an image and produce a list of traits is not yet available, and users
must possess a high level of technical expertise to operate these commercial cameras
and UAVs from image to knowledge. Furthermore, the diverse needs of different end-
users mean that there is no one-size-fits-all image analysis pipeline, and each problem
may require a bespoke solution. Technical challenges represent one major but not the
only barrier to the adoption of phenotyping systems.

2.2. Matching Needs and Utilization of Phenotyping Systems
Plant phenotyping systems cater to a diverse range of end users with distinct needs

and purposes. Nevertheless, all these users play a pivotal role in enhancing crop qual-
ity. Despite the potential advantages that phenotyping systems offer to plant breeding,
their adoption remains in its early stages. Current research in this domain often stems
from available technologies rather than being driven by breeders’ specific demands,
even though breeders are the ultimate intended users of these systems.

The potential of phenotyping techniques is intriguing, and the rapid production of
massive amounts of imaging and remote-sensing data is impressive. However, the
complexity involved in integrating this data with genotypic and environmental infor-
mation poses the risk of lingering unresolved. For instance, trying to predict grain
yield by correlating a single vegetation index with final yield might not be suitable
across all regions due to the multifaceted nature of yield as a trait. A simplistic ap-
proach of this kind wouldn’t satisfy breeders, given that yield is a multifarious trait
that can’t be reliably predicted from a single measurement.

Breeders’ requirements primarily revolve around yield and technical crop parame-
ters, such as disease resistance, rather than precise factors like plant height or nitrogen
content in the context of wheat. Moreover, breeders might have needs that current
technology cannot meet, like determining kernel weights under field conditions. Addi-
tionally, considering the crop type and the stage of the breeding program, the breeders’
needs can vary in terms of measurement throughput and trait priorities.

On contrary, agronomists or physiologists might necessitate more specific measure-
ments to provide advice to farmers, evaluate input efficacy, or address research queries.
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Thus, when designing phenotyping systems, it’s imperative to factor in the end users’
needs to ensure successful adoption and effective utilization in crop enhancement.

Modern high-throughput phenotyping systems can now measure numerous previ-
ously unmeasured or underexplored traits, such as color data, canopy coverage, and
temperature. While these traits can serve as supplementary variables or be correlated
with established variables, their role as predictive elements raises questions about their
agronomic significance. The debate over whether end users or technologies should
adapt to each other forms part of a wider societal discourse on embracing new agri-
cultural technologies. The optimal approach likely lies in a combination of strategies,
each contributing an added advantage.

2.3. Data: The Core of Phenotyping
To design reliable and meaningful models, the quality of the data itself stands as the

primary factor to reckon with. The concept of reproducibility within the field of phe-
notyping might still be relatively unexplored [Kedron and Frazier, 2022], a situation
that extends to deep learning models and the training phase as well [Maxwell et al.,
2022]. Field conditions inherently vary, and the repeatability or heritability of genet-
ically intricate traits can differ due to interactions with the environment. Thus, it’s
imperative to either measure or control these environmental factors as meticulously as
possible, to maximize heritability as traits advance through the selection process.

The expression of most traits also interacts with the growth stage. This is evident
when assessing phenology or conducting growth analysis, for instance. Yet, for other
traits where changes might not be easily visible, this interaction can be less apparent.
Sensors can also introduce inaccuracies. When collecting data using certain sensors,
particularly spectroscopy sensors, external inputs like reflectance calibration panels
are necessary to ensure precision. Sensor parameters such as exposure time and aper-
ture need consideration to avoid image saturation and blurriness. Devices like UAVs
require external tools like georeferenced targets to capture consistently located images,
along with an understanding of flying parameters. Thankfully, hardware manufactur-
ers are incorporating these features to automate data acquisition to the fullest extent.
However, it’s worth noting that high-quality data remains vital for specific phenotyping
tasks, such as wheat ear counting or canopy cover estimation. It’s been demonstrated
that high throughput can offset lower data quality [Lane and Murray, 2021]. Thus,
the trade-off between high throughput and high-resolution data depends on the task or
requirement.

Developing truly "user-friendly" phenotyping systems remains a challenge, with data
handling arguably being a significant bottleneck. At the core of phenomics data man-
agement lies the pivotal process of translating raw sensor data into biologically per-
tinent traits. While there are various data processing options available for numerous
applications, data processing still demands familiarity with data science and coding.
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Moreover, modeling a singular target trait could entail several approaches, leaving
users grappling with choosing the best one. While certain user-friendly tools like
PlantCV software [Fahlgren et al., 2015] have surfaced to streamline image analysis
pipelines, many applications still necessitate specific requirements that must be in-
cluded in the code. Consequently, crafting user-friendly phenotyping systems capable
of accommodating diverse personalized tasks remains a challenge.

Agronomic reference measurements like biomass, LAI, yield, and plant height are
frequently assessed, modeled, or predicted through various methodologies. Statistical
approaches, the prevalent choice [Berger et al., 2020; Verrelst et al., 2019], establish
correlations between these variables and features extracted from images. While these
methods offer adaptability in connecting target values with phenotyping data, their
broader applicability is limited since they often hinge on relationships created for the
specific task. Their performance in a different context could significantly diverge.

Although acquiring all these target measurements is crucial, it’s labor-intensive, de-
manding, and can be costly to measure, as seen with nitrogen uptake that require both
biomass samples and laboratory analyses. Additionally, models are invariably tested
on a subset of the dataset to evaluate their performance. Selecting the appropriate sub-
set can be intricate; it must be independent yet within the dataset’s variability to avoid
overfitting. Nevertheless, over the course of this thesis, it has become apparent that
constructing and segmenting such datasets can be tricky, still they retain their funda-
mental importance for evaluating a model’s efficacy. Therefore, the incorporation of
image features like Vegetation Index (VI) as alternative variables in breeding pipelines
could potentially surmount the constraints imposed by manual measurements.

While phenotyping systems generate substantial amounts of phenotypic data, the
concept of big data introduces challenges and considerations to be tackled. Big data
necessitates considerable storage and computational resources, and the infrastructure
to support these needs can be expensive and challenging to manage. Managing and
storing extensive data can also raise concerns about data privacy and security.

2.4. Enhancing Collaboration through Standardization
The significance of open and shared data in addressing phenotyping challenges can-

not be emphasized enough. However, the proliferation of distinct data storage systems
can complicate data sharing. To facilitate collaboration and data exchange within the
scientific community, a standardized approach to data management and storage is im-
perative. This strategy could help surmount the challenges posed by big data and
facilitate the culture of open and shared data.

Standardization and harmonization of measurement protocols are critical for the ex-
change of this data. Phenomic experiments are susceptible to environmental varia-
tions, making replication a challenge [Kedron and Frazier, 2022]. Thus, it is essential
to ensure that any scientist, including those in the future, can reuse phenotypic data
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and replicate data workflows for large-scale analyses. This necessity has given rise
to the development of norms known as FAIR (findable, accessible, interoperable, and
reusable) principles, which concentrate on tracing data, protocols, methods, and work-
flows [Wilkinson et al., 2016]. The meticulous collection of metadata holds signifi-
cance, encompassing basic data linked to field attributes, management practices, crop
phenology, data acquisition dates, and setup parameters. In this regard, initiatives like
the Minimum Information About a Plant Phenotyping Experiment (MIAPPE) were in-
troduced to offer a checklist for accurately describing phenotyping experiments. How-
ever, there is still a considerable effort ahead to establish a unified language within the
phenotyping community, facilitating seamless information exchange and extending its
impact into domains such as crop modeling [Saint Cast et al., 2022]. This harmoniza-
tion would undoubtedly yield mutual benefits, enhancing the compatibility of both
disciplines and allowing them to mutually refine and amplify each other’s efficacy.

These protocols are equally essential for the reference measurements linked to phe-
notyping data. While many of these measurements are inherently standardized, such as
area-based variables like biomass or yield, recent open databases associated with deep
learning, like the Global Wheat Head Dataset 2 (GWHD2), demand consistent an-
notations such as bounding boxes and segmentation for constructing accurate models
[David et al., 2021]. In fact, to ensure annotation consistency, the dataset authors have
opted to outsource the annotation process rather than allowing individual contributors
to annotate their own images.

Lastly, the community could greatly benefit from a form of quality assurance. This
would assure relevance to end-users as well as competent authorities responsible for
certifying agricultural products [Morisse et al., 2022]. Such authorities could recom-
mend these tools in the certification process, elevating these tools to highly recom-
mended status.

3. Conclusions and Perspectives
Phenotyping systems have become increasingly popular among researchers owing

to remarkable technological advancements. While this field has witnessed substan-
tial growth within the research community, its broader adoption is still in its infancy.
Presently, technology is predominantly embraced by early adopters on the Rogers
curve [Rogers, 1995] (Figure 8.1). These early adopters are visionary, recognizing
the project’s trajectory and embracing an evolving product. In 2023, we consider that
some few companies have already adopted such technologies in routine. However, for
wider dissemination, the technology must traverse the Chasm, a critical juncture be-
tween early adopters and the more pragmatic early majority. Crossing this Chasm is
pivotal for engaging the rest of the end-users.

This thesis offers insights into the potential and limitations of phenotyping systems,
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Figure 8.1: Rogers Curve illustrating the estimated positioning of phenotyping technologies
in 2023.

encapsulated in the SWOT analysis (Table 8.1). Contemporary measurement tech-
niques expand the horizon for rapid, precise, and comprehensive data collection for
diverse objectives, even unveiling novel and significant traits. The horizon of phe-
notyping systems is promising, particularly with the burgeoning influence of AI. The
research community is currently working on gathering large datasets that will bene-
fit all phenotyping users and help build increasingly accurate models. Nevertheless,
data collection, especially under field conditions, confronts numerous challenges, with
weather proving a pivotal variable. Furthermore, the diverse array of sensors and anal-
ysis pipelines demands expertise that might frighten some end-users. To alleviate this,
standardization and quality assurance mechanisms, whether services or user-driven
initiatives, could inspire confidence and allow users to fully exploit the benefits of
phenotyping systems. These measures could even gain traction in the field of agri-
cultural input approvals by policymakers, potentially positioning certain phenotyping
systems as recommended tools for this function. Consequently, phenotyping system
adoption could significantly reduce the laborious task of annotations and help over-
come agricultural challenges more quickly.

While the sector is in its developmental phase, its organizational framework remains
nascent. The query arises whether breeders should construct their own phenotyping
systems and competencies or rely on a burgeoning market to provide systems and
services. If breeders opt for in-house development, it may disproportionately favor
larger corporations endowed with ample resources, potentially marginalizing smaller
entities clinging to traditional approaches. Yet, these industry giants can also serve as
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beacons, expanding phenotyping systems’ reach beyond the Chasm and democratizing
access across the sector. Ultimately, the choice between internal system development
and outsourcing will hinge on individual breeder circumstances, constituting a long-
term goal.

Table 8.1: SWOT analysis on the adoption of phenotyping solutions.

Strengths Weaknesses
Technological Innovations:

Advanced sensors, high-resolution
imaging, and AI-driven analytics.

Abundance of traits:
High-throughput, objective and

non-destructive measure.
New traits opportunities: New traits

are available such as vegetation
indices.

Data Complexity: Managing and
interpreting large datasets require

specialized skills.
Multifacets: Affected by multiple

factors such as the weather.
Sensor and Limitations: Sensors

can’t capture all traits.
Dependency on reference data:

Over-reliance on agronomic reference
data.

Cost and Accessibility: Expensive
technology limits accessibility for

smaller organizations.
Opportunities Threats

AI Integration and improvement:
Automation for data processing and

analytics.
Data Collaboration: Standardized

protocols for enhanced
cross-laboratory collaboration.

Sensing Technology: Continued
improvement of sensors.

Agricultural Challenges: Addressing
global agricultural issues.

Cost Reduction: Lowering expenses
for wider adoption.

Growing Community: Expanding
phenotyping expertise.

Resistance to Change: Overcoming
reluctance to adopt new technologies.

Matching Needs: Driven by
technologies instead of needs.

Data Privacy and Security: Ensuring
data privacy and protection.

Environmental Impact: Considering
the ecological implications of

technology.
Regulatory Challenges: Potential

regulatory challenges related to safety,
environment, and intellectual property.

Skills Gap: Disparities in technical
skills may widen.
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1. Summarizing Key Conclusions
The field of high-throughput plant phenotyping emerges as a potent tool, holding the

promise to support crop enhancement and address the intricate challenges in agricul-
ture to sustain global food security in a sustainable manner. However, the use of these
new technologies to assess crop traits within field conditions is laden with complexi-
ties, given that the plant is one factor in a broader context. The focal aim of this thesis
was to bridge the chasm between raw data, predominantly images, and agronomic
knowledge through the utilization of a functional mobile platform. Employing diverse
image analysis methodologies, this work has showcased the capacities in extracting
a spectrum of wheat traits across the growing season. Moreover, it underscores the
feasibility of leveraging these traits collectively to explore their potential in explaining
grain yield and its components.

A sensor pod equipped with two RGB cameras and a multispectral camera, placed
on the mobile platforms, served several purposes. Primarily, the stereovision technique
harnessed the twin RGB cameras to capture height data. Additionally, a deep learn-
ing algorithm displayed a F1-score of 0.91 for ear segmentation through YOLOv5 and
DeepMac models, outperforming a superpixel-based machine learning approach. Fur-
thermore, the SegVeg method exhibited remarkable success in segmenting the wheat
canopy into soil, green, and damaged pixels. Capitalizing on ResNet50 and Efficient-
Net models, the RGB images demonstrated remarkable promise in quantifying wheat
biomass, distributing dry matter, and assessing LAI. These deep learning models out-
performed a conventional PLSr methodology.

Turning to the multispectral camera, a pivotal preliminary step entailed normalizing
the values through bi-directional reflectance factor calculations to accommodate vary-
ing illumination conditions. Particularly noteworthy, the 800 nm image proved helpful
in discerning soil from crops. By integrating diverse canopy masks coming from the
previous segmentation, an array of vegetation indices were computed at the organ
scale. Our investigation revealed that diseases not only perturb the vegetation indices
of the damaged parts but also impact those of unaffected green elements, potentially
undermining the reliability of reflectance-based decision-making tools when diseases
are present. Additionally, the multispectral images exhibited substantial promise in
assessing nitrogen-related variables, spanning uptake and concentration across plants
and individual organs. In this regard, the ResNet CNN model outperformed a tradi-
tional PLSr method as well.

Each image underwent meticulous registration, a pivotal step facilitating the overlay
of images and masks, a prerequisite for subsequent organ-scale studies. In the cul-
minating phases, all predicted traits were validated as robust indicators in explicating
yield development and its constituents. Notable instances include the Random Forest
model, yielding an enhanced grain yield estimation post-flowering with an R² of 0.8,
alongside the Thousand Kernel Weight model that yielded around 0.7 R². Consistent
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performances marked ear density, grains per ear count, and grain nitrogen concen-
tration across the growth stages, showing R² values of approximately 0.8, 0.4, and 0.4
respectively. Furthermore, the potency of several vegetation indices in correlating with
yield components underscores their efficacy as a resource-efficient tool for this pursuit.

While this study elucidated the potential of proximal field trial phenotyping in ex-
tracting detailed phenotypic insights, the real-world uptake of such systems remains
limited amongst end-users. A major hindrance is the huge array of sensors, platforms,
and analytical approaches available, often leaving users perplexed in their quest for the
most suitable fit. Moreover, some technologies are operationally challenging and pro-
hibitively expensive, further dampening adoption rates. A lack of benchmark dataset,
coupled with a lack of protocol and data standardization, compounds the challenge of
data exchange, process streamlining, and model generalization. Such standardization
would not only facilitate cross-study comparisons but also bolster our comprehension
of plant traits and their interplay with yield.

Propelled by strides in technology and artificial intelligence, the research community
is getting ready to offer more user-friendly and economically viable tools accessible to
a broader spectrum of users. As these tools become increasingly accessible, the latent
benefits of field trial phenotyping can be harnessed by a diverse cohort of stakeholders,
including plant breeders, farmers, and researchers. Ultimately, increased adoption of
phenotyping systems could potentially accelerate the development of new crop vari-
eties and amplify agricultural productivity in a sustainable way globally.

2. Perspectives and Future Work
The landscape of addressing agricultural challenges is tackled by the complemen-

tary roles of a multitude of actors. Scientific inquiry drives the innovation of novel
solutions, while breeders and agronomists must align with societal needs to surmount
agricultural hurdles. A dynamic interplay exists, with researchers benefiting from lab-
oratory flexibility to ideate and refine solutions, yet culminating in a need for robust
standardization to serve end-users. This transition necessitates a symbiotic alliance
among researchers, breeders, and agronomists to ensure lab-derived solutions harmo-
nize with practicality, efficacy, and the needs of the farming community.

Through the course of building an affordable multimodal camera prototype, that
promises faster and more efficient data acquisition, our exploration of homemade
equipment has also underscored challenges requiring technical expertise. In the pursuit
of improving the system, two paths are available to us. Primarily, an elevated iteration
of the current platform, characterized by comprehensive automation, promises accel-
erated acquisition and free up time for other tasks. Alternatively, the development of
a portable system that allows for simpler sensor integration could also be explored.
These two pathways could be intended to technicians at the Gembloux Agro-Bio Tech
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Experimental Farm, thus aligning developments with the practical requisites and con-
straints of end-users.

In the course of this work, the power of Convolutional Neural Network (CNN) mod-
els has manifested remarkably, charting a course for further exploration. The decade
ahead brims with extraordinary prospects. Hence, I advocate accentuating CNN’s tra-
jectory to refine numerous methodologies elucidated in this work, encompassing:

• Pioneering the integration of CNN to amplify disparity maps within the stereo-
vision process, while delving into monocular depth perception.

• Leveraging recent strides in image registration to accelerate and improve the
registration procedure.

• Advancing and expanding upon the Unet model introduced in Chapter 5 for
canopy segmentation.

• Exploring multi-task models as an avenue to curtail computational demands and
potentially enhance model performance for individual traits.

The future holds a tapestry of promising avenues for exploration. Delving into high
dynamic range techniques that yield diffuse RGB images regardless of sunlight con-
ditions bears immense potential. Another area of investigation concerns the analysis
of the influence of data acquisition conditions, such as lighting on the repeatability
and reproducibility of measurements. Moreover, a multi-scale strategy employing Un-
manned Aerial Vehicles (UAVs) and/or satellites could amplify the efficiency of data
collection and analysis across expansive landscapes. Moreover, even though our study
focused on wheat, the adaptive nature of the system can extend to various crops. Var-
ious image analysis methodologies can be directly transferrable, with some requiring
adaptation. Thus, further research can be directed towards optimizing the system for
other crops and identifying new traits that can be measured within the system.

Notwithstanding the considerable strides made in phenotyping, a range of challenges
still shadows the community. While certain challenges are actively engaged, others
persist with enigmatic resolutions. Of these, the potential of thermal imagery remains
underexplored, holding promise for discerning biotic and abiotic stress but braked by
the complexities of environmental influences. Disease detection, especially for in-
canopy and early-stage identification, remains a formidable enigma, compounded by
the need to differentiate diverse stress factors. Another crucial frontier is root phe-
notyping, at the crossroads of importance and complexity. However, the pursuit of
accurate and comprehensive root phenotyping data encounters formidable challenges.

In summation, the field of phenotyping calls for sustained dedication, with recent
breakthroughs in machine learning, computer vision, and image processing opening
up tantalizing avenues. The amalgamation of these innovations with the fervor of
breeders, the tenacity of researchers, and the entrepreneurial spirit of farmers holds the
promise of transforming the agroecosystem. As we navigate this synergy and lever-
age novel tools and techniques, a more sustainable and resilient future for agriculture
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and food production awaits, underpinned by collaborative endeavor and technological
prowess.
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