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Abstract 

In mass production of manufactured goods using conventional milling and turning, tool wear 

is reflected in the drift of quality control measurements. Methods have been developed to 

correct this drift and compensate the wear. With the possibilities offered by the digital twin 

concept, a new method of tool wear compensation was proposed including a digital twin of 

the tool and a digital twin of the lathe, based on the measurements of the parts. This digital 

twin solution provides useful functionalities such as a heritage process between the digital 

twin of old tools and the one of the tool being used. 
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I. Introduction 

In manufacturing, the importance of 

monitoring the tool wear has always been 

a focus of attention. It has long been 

known that the wear has an impact on the 

geometry and quality of the produced 

parts, as well as the risk of significant 

damage (for the part and the machine) if 

the tool reaches the end of its life. 

As Manuele J. explained in 1945 

already [1], the main effect on this wear on 

the geometries is a “gradual trend” in the 

dimensions throughout the production, 

while the manufacturing conditions remain 

constant. Unfortunately, this trend cannot 

be known accurately since it depends on 

many different parameters such as the 

manufacturing parameters (feed rate, 

cutting speed, depth of cut, etc.), the tool 

properties themselves, the material 

manufactured and the use of lubricant [1-

2]. There are many scientific publications 

presenting studies on the influence of 

these parameters on tool wear (by looking 

at the evolution of the tool shape). In fact, 

knowing the influence of these parameters 

will help achieve optimal cost: the right 

choice is mainly based on the trade-off 

between the production time and material 

cost including the tools (maintenance, 

inspection, replacement, etc.). However, 

tool wear can only be limited but never 

suppressed, this is why there are methods 

to limit the effects of the tool wear on the 

production rates (by compensating or 

correcting these effects) [3]. 

On the other hand, digital twins, as part 

of the industry 4.0, have been in the 

spotlight in recent years for the new 

opportunities they can offer to the industry 

[4-5]. Digital twin is a concept involving a 

physical entity and its virtual 

representation that constantly mirror each 

other. The physical entity, called the 

physical twin, can either be an object (e.g., 

a part), a system (e.g., a lathe) or a 
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process (e.g., a production line) and its 

virtual representation is called the digital 

twin. Thanks to continuous data flows 

between the twins, each twin always 

remains the exact copy of the other, which 

means that any event occurring on one 

twin happens also on the other twin (for 

instance, activity of the physical twin is 

reported on the digital twin or commands 

applied on the digital twin are also applied 

on the physical twin). This concept of 

digital twin has been made possible by the 

application of the Internet of Things (IoT or 

IIoT - industrial internet of things-) enabling 

the use of networked sensors and 

actuators, it is why it has become an 

important subject of research for the last 

decade. 

Simple twins are interesting for simple 

applications such as monitoring or remote 

controlling for example, but a great 

property of digital twin is that it can be 

coupled to algorithms such as artificial 

intelligence: inside the digital twin, 

analysis and simulations can be executed 

and decisions can be made and, thus, 

applied on both twins. At that moment, the 

digital twin shows its full potential by 

becoming a “cognitive digital twin” or an 

“autonomous digital twin” [6]. In a certain 

way, the whole system can be considered 

as a cyber-physical system who self-

regulate (and the data flux from the digital 

twin to the physical twin can be seen as a 

feedback loop). This property is very 

promising in the field of manufacturing 

(particularly for tool monitoring, as Qiao et 

al. also mentioned [5]), which is stimulating 

research in that field. 

There are already studies on the 

application of the digital twin concept to the 

problematic of tool wear. They mainly 

focus on the analysis of the state of the 

tool through sensors on the lathe. Indeed, 

it has been shown that tool vibration, tool 

temperature or lathe power consumption 

are correlated with wear (among other 

parameters), and that this data can 

therefore be used to monitor its condition 

(as Siddhpura A. and Paurobally R. 

analysed in their work [7]). However, there 

are few that include the measurement of 

deviations in the dimensions produced as 

a parameter even though this is a simple 

and direct method of determining 

corrective actions. 

In this article a simple digital twin for tool 

wear monitoring and compensation based 

mainly on part measurements is 

presented. After a presentation of the 

current research in section 2, there are a 

description of our work and discussions of 

the methods used and the possibilities for 

improvements or for new research topics 

in section 3. Before the conclusion, in 

section 4, the first results obtained with our 

simulations are presented as well. 

II. State of the art 

In this section is presented recent work 

about digital twins applied specifically in 

the field of tool wear monitoring. Tool wear 

compensation methods applied in industry 

today and recent publications in this 

domain are also described. 

A. Digital twin for tool wear monitoring 

As shown by Liu et al. in their review [8], 

manufacturing is the main subject of 

research on digital twin in the industrial 

domain since digital twins are a powerful 

concept to have an autonomous cyber-

physical system able to reach production 

optima. This objective is one of the main 

concepts of Industry 4.0 or smart 

manufacturing which are important topics 

in research and objectives put forward for 

economic development. Therefore, 

scientific research mainly focuses on 

building digital twins of the machines to 

optimize their production time and 

anticipate maintenance. 

On the other hand, concerning digital 

twins for tool wear monitoring, there is not 

so much research (Xie et al. [9] and 

Zhuang et al. [10] also mentioned that in 

2021), and most of it focus on on-line 

indirect measurements: since there are 
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correlations between parameters of the 

lathe working environment and the wear of 

the tool, it is possible to indirectly estimate 

the wear of the tool during the working time 

(on-line). 

Qiao et al. [5] proposed in 2019 a digital 

twin to predict the tool condition by 

measuring the forces, the vibrations on the 

tool and its acoustic emission. Inside the 

digital twin the data are used by deep 

learning technics firstly to build a predictive 

multivariate function. This function, linking 

the observed data to a predicted tool wear 

condition, help to evaluate the tool wear 

during operations. 

Later, Xie et al. [9] worked on a digital 

twin of tools that is linked to it all its life, 

from the first design and the production to 

the failure. The digital twin therefore 

collects data from different sources at 

different moments of its life. During 

manufacturing, the data collected are 

issued from the monitoring of the machine 

(feed rate, power consumption, force and 

vibrations, acoustic emission, etc.). As 

well, deep learning techniques are used to 

build models correlating these parameters 

to the wear of the tool which is measured 

off-line. 

As a last example, Zhuang et al. [10] 

built a digital twin of the turning process, 

having all the information about the tool, 

the process (feed rate, etc.) and real-time 

monitoring (forces, vibrations, and 

temperature). A particular attention is 

given to the synchronisation of the twins, 

even for the geometry of the tool with a 

node updating process. As for the other 

articles, learning techniques are applied to 

select parameters and the type of wear, 

and build a model. 

These more recent works mainly focus 

on a way to estimate the wear of the tool 

through the monitoring of the 

manufacturing process. Due to the 

complexity of wear mechanisms, this 

method requires learning algorithms and 

artificial intelligence to build and exploit 

models. However, there seems to be no 

publication on digital twins using the 

geometries of the parts produced to 

estimate wear, even though this is what is 

actually done in manufacturing. Also, 

these digital twins provide a state of the 

wear, but they do not provide corrective 

measures.  

B. Tool wear compensation 

Tool wear will incur increasing drift in 

the actual dimensions of manufactured 

parts. If the measurements are drawn 

(e.g., on a control chart [1,3,11]), a linear 

trend clearly appears, as presented in 

Figure 1. This trend depends on many 

different parameters due to the high 

complexity of the wear mechanisms: the 

tool and the lathe properties, the 

manufacturing parameters (environment 

and operations) and the material have 

direct or indirect impacts, which can be 

abrasive, adhesive, or diffusive. 

 

Figure 1: Typical profile of measurements for 

process subject to tool wear [11]. 

A common method in manufacturing to 

compensate the tool wear is applying a 

similar method as Sheikh described [3]: 

the tool parameters (mainly the tool offset) 

must be readjusted after a determined 

number of pieces have been produced, 

which is calculated from the drift and the 

distribution of the measurements (which 

both depends on the process, the tool, and 

the part). This number is a result of a 

compromise between keeping a low 

probability of producing scrap; and 

reducing downtime. When reaching the 

given number of parts, the operator 

measures the last part and applies a small 
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correction to the lathe: usually, the offset is 

changed with the difference between the 

obtained measurement and the targeted 

measurement. The method and the 

distribution of the measurments are 

represented in Figure 2.  

 

Figure 2: Common method for tool wear 
compensation. 

The plot presented in Figure 2 is close 

to a control chart, which usually plot the 

average measurement depending on the 

number of the batch. Control chart can 

also be used for tool wear when the drift is 

so light (hence the tool wear is small) that 

many pieces are required to see it 

graphically. Control charts has existed for 

a century now and give an easy graphical 

way to set up a stable process with respect 

to the tolerances. It is normally combined 

with statistical process control which gives 

the mathematical relations between the 

tolerance interval and the measurement 

distribution [11,12], so it can be used to 

determine behaviours or to set the process 

for instance. 

Gibson and Hoang worked in 1994 on a 

lathe computing by itself the required 

correction on the tool offset using 

statistical process control [13]: an 

inspection probe installed inside the lathe 

helps to collect measurements and the 

software computes with the statistical 

process control method if a correction or a 

tool change are required. The purpose of 

this system is mainly to correct 

automatically unexpected events but, 

based on the method implemented, it 

seems tool wear can be compensated. In 

this article, the position of the gauging 

system and the moment to use it with 

respect to the process are also discussed. 

The authors pointed out possible 

improvements which are subjects to 

research nowadays such as combining 

artificial intelligence to statistical process 

control, building smart manufacturing 

system which self controls, etc. 

Few years later, Fraticelli [14] proposed 

sequential tolerance control with an 

application for tool wear. Sequential 

tolerance control consists in readjusting 

the targeted dimensions (i.e., the tool path) 

based on the measurements of the 

geometry realized by the previous 

operation of the process, to achieve the 

tolerances (i.e., it is a compensation 

applied on a dimension). It is close to the 

method employed by operators on manual 

lathe. In the application for tool wear, the 

compensation is computed based on the 

sequential tolerance control method but 

adjusted with the deviation due to the 

wear. This deviation is determined by the 

drift of the measurements using linear 

regression. 

III. Work and discussions 

The purpose of this research is to find a 

digital twin solution for the tool wear 

monitoring and compensation, whose data 

source is mainly the controlled geometries 

of the parts that are produced. Our solution 

and discussions about it are presented in 

this section. Discussions concern the 

choice of the digital twin, but also what 

should be done at the end of life of the tool 

and its legacy. The results obtained with 

our simulations on our digital twin are 

presented in the next section. 

A. Digital twin solution definition 

Since wear is a property of the tool, it 

seems logical that the digital twin must be 

that of the tool. The input would be the 

deviations of the geometries produced by 

the tool with respect to the target 

measurement, and the output will be the 

recommended corrections based on the 

drift determined. The drift due to the tool 
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wear is computed from the deviation 

between the measurement of the 

geometry and the targeted measurement 

for two reasons: as explained in 

subsection II.B, the drift due to the wear is 

an error added on the target 

measurement, thus the difference helps to 

isolate the wear, and the deviation will not 

take into account corrections applied on 

the lathe (otherwise the axis shifts and 

linear regression cannot be applied). Also, 

the tool is not responsible for the target 

measurement as it is a parameter of the 

lathe (i.e., position of the tool imposed by 

the lathe based on commands) and the 

part. The fact that it is a relative value 

makes easier to compare tool wear 

between operations or parts too. 

This version of the digital twin solution 

would however be limited, as explained in 

the next subsection concerning heritage. 

The digital twin solution proposed here is 

therefore an aggregate of the digital twin of 

the lathe and the digital twin of the current 

tool (following the definition of an 

aggregated digital twin provided by 

Schroeder G. et al. [15]), as illustrated in 

Figure 3. 

As a mirror of the physical lathe, its 

digital twin can link the use of the tool to 

monitored manufacturing parameters, 

therefore the lathe builds a history of the 

“dead” digital twins of the former tools. 

This history is used as a database for new 

tools to function as a model and the 

selection criterium is the similarity of the 

manufacturing parameters. This process 

has been called “heritage”, since the “new” 

digital twin of the current tool inherit 

information from an old digital twin. In this 

process, the digital twin of the lathe only 

helps to select a digital twin that was in 

similar process conditions as it is part of its 

working parameters and not one of the 

tool. 

On the side of the digital twin of the tool, 

the measurements coming from the 

physical world and the information 

provided by the heritage will help the 

algorithm to determine the correction. This 

correction can either be based on the drift 

computed or on the model provided by the 

heritage depending on the decision taken. 

The digital twin of the lathe will use this 

correction to change the tool parameters 

in the manufacturing code and update it on 

its physical twin (as the manufacturing 

code is part of the synchronized data). 

To get access to the manufacturing 

parameters, the digital lathe will have 

access to the CNC controller and a 

temperature sensor inside the physical 

lathe. It would then be possible to have the 

digital twin inside the controller (thus, it 

would be an embedded digital twin [15]), 

but external data storage might be 

necessary. However, the choice of the 

measuring device must be considered: if 

there is a gauging system inside the lathe 

(as in the work of Gibson and Hoang [13]) 

or if it is a coordinate-measuring machine, 

the digital twin might be better supported 

by an independent machine (computer on 

the industrial network or cloud). 

Concerning this measuring device, we 

can think along the same lines as Gibson 

and Hoang [13]: the measuring system 

can be in-process (measuring at the same 

time as turning), in-cycle (measuring 

between turning operations) or post-

process (measuring by another machine 

than the lathe). The first system has the 

less downtime but is the least precise 

method, and the third one induced no 

downtime and is very precise, but the 

     

    

              

                           

       

     

             
          

                 
          

            
           

 
  
  
  
 

 
 
  
  
 
 
 
 

   

    

Figure 3: Schematic of the digital twin. 
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measurement are delayed compared to 

the production. The second one might be 

a compromise between the two: it is 

precise enough, not delayed but it 

seriously increases the downtime. 

B. Heritage for digital twin 

Strictly applying the definition of a digital 

twin, it is assumed that every time a new 

tool is used by the lathe, a new digital copy 

must be generated. This means in other 

words that when the tool dies its digital 

twin also dies, and it would imply that all 

the information computed including the 

drift due to the tool wear would no more be 

used or would be deleted. Unfortunately, 

as Liu et al. [8] pointed out, there is very 

few research in this field, but Grives and 

Vickers [16] explained that the retiring 

digital twin should be at the disposal of the 

system for new digital twins to have 

access to past instances. 

As a matter of fact, if the manufacturing 

parameters do not change significantly 

between two different tools, it can be 

assumed that the tool wear (thus the 

computed drift) will not change 

significantly as well. Starting from zero 

each time a new tool is installed will be a 

waste of time and resources. Furthermore, 

to obtain a stable and correct estimate of 

the drift by linear regression (as described 

in subsection II.C), a certain quantity of 

parts must be measured, which means 

that the correction will not be applied 

directly after the first part, whereas the 

estimated drift from previous digital twin 

could be used since the calculations are 

likely to give similar results if the 

manufacturing conditions are not changed 

from part to part, and tool to tool. 

Our solution was to set up a system of 

inheritance between digital twins. The 

digital twins of tools should have access to 

the previous digital twins to use their 

results as a model: it allows them to use it 

as a substitute when the computations are 

unreliable, to anticipate behaviour such as 

the expected end-of-life, and to compare 

their results to detect abnormalities. We 

determined that the entity who should be 

responsible of that inheritance must be the 

digital twin of the lathe because the history 

of tools used is a property of the lathe 

(which is not in contradiction with the 

concept of digital twin concept). More 

importantly, the manufacturing parameters 

are linked to the use of the lathe, which 

means that if there is a digital twin of the 

lathe, this data can be monitored and 

correlated with the digital twin of the tool 

on an ongoing basis. 

C. Model and computations 

Since the drift in measurements due to 

the tool wear is supposed to be linear (see 

subsection II.B), the least square linear 

regression method should be enough to 

determine this drift (as Fraticelli [14] did for 

sequential tolerance control). Based on 

the principles of the least square method 

(as detailed by Duncan [11]), formulae for 

the drift and the distribution were 

determined. 

The first part produced may have 

measurements outside the tolerance 

interval due to the difficulties to manually 

set the tool on the lathe correctly. This is 

why there is always a calibration after: the 

tool offset is changed in the controller to 

compensate. Thus, the following parts are 

produced by operations whose the 

reference system does not induce an 

offset geometric error, meaning that the 

measured deviation between the target 

measurement and the actual 

measurement is only induced by the 

process and the tool. Mathematically it 

means that, after the calibration, 

deviations will be directly measured and 

are referenced to the origin, therefore the 

Slope 
(drift due to tool 
wear) 

b =
∑ 𝑖 d𝑖  

∑ 𝑖𝟐
 

Distribution 
(standard deviation 
along the slope) 

σ̂ = √
∑ d𝑖

2   −  b2 ∑ 𝑖2

n − 2
 

Table 1: Formulae adapted from linear least square 
method for the digital twin. 
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interception of the linear regression at the 

origin is zero (as presented in Figure 4). 

The formulae for this special case are 

presented in Table 1. 

This formulation is only valid after the 

calibration, otherwise the offset term of the 

linear regression is not zero. This also 

implies that any offset correction must 

never be considered in the deviation, 

otherwise these data are not referenced 

the same way. As a result, the points used 

for the regression do not have a linear 

behaviour since a correction applied acts 

as a reset of the origin (the plot of Figure 4 

would have sawtooth shape) and the wear 

will be underestimated implying 

corrections increasing exponentially. 

Hence, the deviation measured between 

the target measurement and the actual 

measurement must be corrected with the 

cumulative correction before being added 

to the data for the regression computation. 

The drift computed acts as an 

approximated wear law giving the 

deviation between measurements due to 

the tool wear. Therefore, by interpolating 

this law, the dimension of next part can be 

estimated, and a correction can be 

determined to avoid this drift. However, 

before applying directly the correction, the 

stability of the computations must be 

verified. 

The stability of the computed slope is a 

way to check the convergence of the 

value. The more correct the slope is 

(because points are being added), the less 

the slope changes. Oscillations appear 

due to the process stability and the 

precision of the measuring device: the 

more scattered are the points, the more 

points are needed to differentiate the slope 

from the distribution around it. We can 

consider that the values are correctly 

approximated when the slope or the 

standard deviation converge. In other 

words, if the derivative of the slope 

relatively to the slope becomes small, the 

value of the slope becomes trustable. If 

this value is greater than the criterion (for 

our simulation, we obtained satisfactory 

results with a value of 5%), the slope 

calculated must not be used for the 

correction because of the risk of a too 

large correction, which could result in 

production of scraps. In that case, the 

digital twin can either decide to use his 

heritage as a temporary model for the 

correction or, in the case there is no 

heritage, to do nothing (the process is 

normally designed to be stable enough to 

allow the production of a few parts without 

controls). 

The computation of the digital tool helps 

to have a glance at the end-of-life of the 

tool: if the slope begins to change faster 

and/or the standard deviation begins to 

increase, it might signify an advanced 

wear of the tool. 

Simulations were conducted in order to 

evaluate this first version of the digital twin 

and the results are detailed in the next 

section.  
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Figure 4: illustration of the linear regression method 
applied to the deviation measured. 
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Figure 5: Deviation in the measurements due 
to the lathe started after a night without working in 

winter. 
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D. Possible improvements 

 As it is a first version of a digital twin 

based on measurements, there are a few 

things that can be improved. In this section 

we present areas of possible 

improvement. 

Thermal effects 

The method presented in the previous 

subsection to determine the drift induced 

by the tool wear does not consider the 

temperature of the lathe. Unfortunately, if 

the temperature fluctuates between parts 

(which is the case when the lathe starts on 

a cold morning for instance), its impact on 

the measurements can be as important as 

the tool wear. Furthermore, the variations 

it induces on the measurements is not 

linear, which makes the previously 

detailed formulae unusable. An example 

of the deviation in these conditions is 

presented in Figure 5: the slope seems 

negative whereas it should be positive 

(since this point comes from the 

measurements on an external cylinder). 

We propose two suggestions. One would 

be to find or build a model with one 

parameter directly depending on the 

temperature monitored by the digital lathe, 

to compute the proportion of the deviation 

induced by the temperature. The other one 

would be that the measurements are 

grouped according to the temperature, so 

that the thermal variation between these 

data can be neglected, and the method 

presented in previous subsection can still 

be used but that will certainly require more 

data to reach the same precision (i.e., a 

complete set of data at each temperature). 

Moving linear regression 

Tool wear changes at two moments of 

the life of the tool: at the very beginning 

(usually not seen in the measurements 

because it happens on a short time) and at 

the end of life. In fact, an exponential 

increase of the tool wear can be 

interpreted as the beginning of the end of 

life of the tool. Unfortunately, if all the 

points used in the linear regression 

computation keep the same weight, the 

new points showing signs of an increase 

will not significantly influence the value of 

the slope, thus the increase will not be 

measured on time (which increases the 

risks of tool failure). A linear regression 

method with weights that change 

according to the number of parts 

measured may reduce this lack of 

sensitivity. However, attention must be 

given not to have the same problem of 

stability of the slope, as explained 

previously. 

Monitoring during process 

As presented in section II, most of the 

digital twin designed for tool wear 

monitoring uses indirect measurement 

such as the forces or vibrations. This can 

also be included in the digital twin to detect 

abnormal behaviour during process, as 

the measurements only provide 

information after the operations and not 

during it. It can give additional information 

for the determination of the end-of-life of 

the tool too (for instance the work of 

Bombinski et al. [17] about detection of 

accelerated tool wear). 

Pattern recognition 

One of the interests for control chart is 

the detection of phenomena in the 

process, by recognizing patterns. Since 

the deviation graph works similarly as 

control charts it might interesting to add 

pattern recognition features to correct 

other perturbations than tool wear. 

Sampling frequency adaptation 

Once the drift due to the wear is known, 

it is not necessary to keep measuring 

every part produced as it may not give 

additional information. Hence, it would be 

interesting to adapt the sampling rate to 

reduce downtime. This feature would 

determine the right interval based on 

probabilities of having an important 

variation. 



9 
 

 

IV. Results 

To verify our method, simulations were 

executed with python scripts. A script 

generates the measurements for the 

simulation. This method only requires 

three parameters, which are the interval of 

dimensions, the drift due to the tool wear, 

and the standard deviation due to the 

process. It is also possible to set the 

(in)accuracies of the lathe and the 

measuring system, which will simulate the 

behaviour of the equipment by rounding 

the values. 

The parameters set for the first 

simulation (called Test 1) are presented in 

Table 2 (the values are arbitrary chosen 

but within a range of plausible values). For 

this simulation, the real values of the 

measurements are used as an input of the 

digital twin, but the corrections applied 

(output) have an accuracy of 5 µm. 

The measurements of the parts 

produced are represented in Figure 6a and 

the deviations deduced in Figure 6b. This 

first simulation already proves the 

efficiency of the digital twin as all the parts 

produced have a dimension close to the 

one targeted, except for the first parts due 

to the required amount of data necessary 

to have a trustable value of the slope. In 

fact, few measurements were required 

before having small variations in the 

derivative of the slope as shown in Figure 

7 (for Test 1, it is after the 6th part produced 

that the digital twin definitively applies the 

slope it computes). The remaining 

deviations appearing in Figure 6a (despite 

the application of corrections) are due to 

the standard deviation, which cannot be 

suppressed, as well as the limited action of 

the correction due to the precision of the 

lathe. In this case, the standard deviation 

estimated by the digital twin is not the one 

of our parameters due to the accuracy of 

the lathe. For instance, if the correction 

proposed by the digital twin is 2 µm, it will 

not be applied by the lathe since it only 

applies correction in multiples of 5 µm. 

Simulation without taking into account 

inaccuracy of the lathe (on top of no 

inaccuracies of the measurements) would 

not be interesting because the system will 

apply corrections after each piece and the 

linear regression computation will 

converge very quickly. Of course, in 

reality, both the lathe and the measuring 

system have inaccuracies. The impact of 

the inaccuracies is discussed in the 

subsection C with the analysis of the 

limitations induced by the equipment. 

A. Heritage 

The heritage can be evaluated by 

running a new simulation (called Test 2 

whose parameters are detailed in). 

New measurements are generated with 

this new simulation but, this time, the 

results from the previous simulation are 

known, thus a model exists for the digital 

tool. As presented in Figure 9, when the 

criterium of stability is not met, the slope is 

the one inherited (the last value obtained 

during Test 1) instead of zero (as it can be 

seen in Figure 7 for Test 1), which results 

in having all measurements close to the 

target as shown in Figure 8a. 

For Test 1 and 2, the heritage process 

does not seem to be important because 

without heritage the efficiency of the digital 

twin is already sufficient (the maximum 

deviation without heritage is about 10 µm 

whereas the heritage provides deviations 

below 5 µm). However, when the precision 

of the equipment is worse, it impacts the 

Parameter Test 1 Test 2 

Slope (µm/part) 3 

Standard 
deviation (µm) 

1 

Dimension 
interval (mm) 

13.43 +0.07 -
0.03 

Accuracy of the 
measurements 
(µm) 

- 

Accuracy of the 
lathe (µm) 

5 

Heritage No Yes 
Table 2: Parameters of the simulator for Test 1 & 2. 
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measurement distribution, making the 

regression less stable (the linear 

regression requires more measurements), 

which can cause an important drift if the 

heritage is unavailable as it is explained in 

the next subsection. 

B. Influence of the equipment 

The heritage will be more useful when 

the system lacks accuracy. In order to 

prove it, four more tests were executed.  

Tests 3 and 4 show the impact of the 

accuracy of the measuring machine on the 

system, and the proof that heritage 

compensates it. Tests 5 and 6 show the 

sensibility of the digital twin to a highly 

perturbed system (simulated with a high 

standard deviation) and they once again 

show the interest of heritage. The 

parameters set for these four tests are 

detailed in Table 3. 

Influence of the accuracy of the 

measuring system (tests 3 & 4) 

The accuracy of the tool has an impact 

on the measurements sent to the digital 

     

                 
      
          
            

                 
                
            

Figure 6: Test 1 - (a: left) Measurements of the geometry produced; (b: right) the deviation of the measurements. 

              
           
               

              
                  

Figure 7: Slope and its variation computed by the 
digital twin for Test 1. 

              
           
               
               

              
                  

Figure 9: Slope and its variation computed by the 

digital twin for Test 2. 

                 
      
          
            

                 
                
            

     

Figure 8: Test 2 - (a: left) Measurements of the geometry produced; (b: right) the deviation of the measurements. 
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twin. If this accuracy is greater or equal to 

the standard deviation of the process, the 

distribution will mainly be caused by the 

rounding of the measurement, and the 

standard deviation computed by the digital 

twin will be higher than the real one. 

The “rounding” behaviour combined 

with normal distribution can be seen 

graphically as oscillations and implies a 

larger number of measurements to have a 

stable slope. As it can be seen in Figure 

10 and Figure 12, the required number of 

parts before the digital twin trusts its slope 

is about two times more than in the first 

tests. 

This test showed the impact of the 

accuracy of the data on the digital twin 

efficiency: decreasing the accuracy of the 

measures implies delays for the digital twin 

before starting to adjust, allowing a more 

important drift in the measurements for the 

first parts produced. Hence, the measuring 

system must be chosen with respect to the 

range of tolerance and the expected 

process parameters. 

It is also important to point out that, 

once the digital twin has determined the 

drift due to the tool wear, the corrections 

are applied efficiently: as we can see in 

Figure 10a, some corrections seem 

invisible in the measurements (two 

consecutive parts have equal dimensions 

despite the fact that a correction was 

applied between the two process) due to 

the fact that these corrections were 

applied in advance to counteract the drift 

due to the tool wear. 

     

                 
      
          
            

                 
                
            

     

Figure 11: Test 4 - (a: left) Measurements of the geometry produced; (b: right) the deviation of the measurements. 

 

                 
      
          
            

                 
                
            

     

     

Figure 10: Test 3 - (a: left) Measurements of the geometry produced; (b: right) the deviation of the measurements. 

 

Parameter Test 
3 

Test 
4 

Test 
5 

Test 
6 

Slope (µm/part) 3 

Standard 
deviation (µm) 

1 5 

Dimension 
interval (mm) 

13.43 
+0.07 -

0.03 

13.45 
+0.05 -0.05 

Accuracy of the 
measurements 
(µm) 

10 

Accuracy of the 
lathe (µm) 

5 

Heritage No Yes No Yes 

Table 3: Parameters of the simulator for tests 3 to 6. 
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If the heritage process is available (as it 

is for Test 4), the delay for the estimated 

drift to converge cannot be deduced from 

the measurements. As shown in Figure 

11a, almost every dimensions measured 

are on target, definitivetly prooving that 

inherited model is a good substitute to 

avoid large deviations for the first parts. 

However, if we look at the values of the 

slope determined by the digital twin 

(presented in Figure 13), the delay is 

visible and is obviously the same as 

without heritage. 

In a way, it seems that heritage can 

compensate the bad accuracy of the 

measuring system, so the choice of this 

device might be not very critical. However, 

we need to keep in mind that heritage 

implies that “retired” digital twins of the tool 

managed to find a drift close to the real 

one, which means that the first tool would 

require particular attention as it cannot 

inherit. 

Behaviour of the digital twin in a process 

with a large distribution (tests 5 & 6) 

The special case where the range 

imposed by the tolerances is tight 

compared to the precision of the 

manufacturing process (which can be 

interpreted through the standard 

deviation) will be evaluated on the digital 

twin to see its limits. This kind of case does 

not usually happen in manufacturing, as 

we want to keep a low probability of scrap 

production: the process is selected to have 

a small distribution, or the tolerances are 

adapted to fit the capabilities of the 

machine, according to the statistical 

process control theory [11]. 

For the tests 5 and 6, the standard 

deviation set is 5 µm, which means that the 

measurements are mainly distributed on a 

range of ±15 µm (99.7% of probability). As 

we decided to set the middle of range as 

the target dimension, the process would 

have a significant probability to produce 

scraps after the 13th part produced (with a 

drift of 3 µm/ art, there will be less than 2σ 

after the 13th part, meaning that the 

probability that the 14th part is scrap is 

more than 15%). 

A more difficult case for the digital twin 

is when the first digital tool is created as 

the heritage is impossible. As it is shown 

in Figure 14, the digital tool managed to 

find a wear law before the dimensions 

reached the upper limit. For sure, if the 

accuracy of the measurements was 

smaller than the standard deviation, the 

digital twin would have corrected sooner 

as explained before. However, if the 

accuracy were worse, there would 

certainly be scraps produced. 

The heritage process (Test 6) is once 

again interesting as it can be seen in 

Figure 15 : the only deviations seen in the 

measurements are due to the standard 

deviation which cannot be suppressed. 

     

              
                  

              
           
               

Figure 12: Slope and its variation computed by the digital 
twin for Test 3. 

     

              
                  

              
           
               
               

Figure 13: Slope and its variation computed by the 
digital twin for Test 4. 
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If the drift produced by the tool wear 

was completely compensated by the 

digital twin, the only detected deviations 

would be only due to the distribution of the 

process. If this scenario becomes possible 

it means that the whole process reaches a 

high level of precision, so it would be 

possible to have a range of tolerance as 

tight as the distribution. This allows to 

produce more precise parts, even if the 

process is highly perturbed. The opposite 

action, i.e. allowing the process to be less 

precise due to the range of the tolerance, 

is not possible since all the manufacturing 

parameters change and thus the wear, 

making the heritage obsolete. 

V. Conclusion  

A new method of compensating for tool 

wear for lathes is presented, based on the 

concept of the digital twin, which offers 

new ways of achieving intelligent 

manufacturing systems. This digital twin 

solution is an aggregate of two digital 

twins: one for the lathe and one for the tool 

as they have different properties. 

This digital twin has two data sources: 

the measurements of the geometries 

produced by the tool and the monitoring of 

the lathe. The digital tool uses the 

measurements to determine the deviation 

caused by the tool wear and calculates an 

approximated law to provide offset 

correction as compensation. The digital 

lathe will then use this correction to update 

its manufacturing code. 

The greatest interest for using two 

different twins is what we called heritage: 

it is now possible to store data from old 

digital twins of the tool (as they supposed 

to disappear with their physical twin) in the 

digital twin of the lathe. The principle of 

heritage is that when a new digital tool is 

used in same conditions as an old digital 

tool this new digital tool can use the data 

from the old one as a model, which is 

useful when collected data are not 

      

                 
      
          
            

     

              
                  

              
            
                

Figure 14: Test 5 - (a: left) Measurements of the geometry produced; (b: right) the slope and its variation 
computed by the digital twin. 

      

                 
      
          
            

     

              
                  

              
            
               
               

Figure 15: Test 6 - (a: left) Measurements of the geometry produced; (b: right) the slope and its variation computed 
by the digital twin. 
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sufficient to apply corrections. These 

manufacturing conditions are provided by 

the digital lathe. 

Simulations were conducted to try and 

to evaluate the efficiency of such a system 

and the results are very promising: it 

allows the lathe to produce more precise 

parts and even more when the heritage 

process takes place. However, it is a first 

version of this kind of digital twin as there 

are very useful possible improvements 

such as adding compensation for the 

thermal effects or detection of abnormal 

behaviour. 
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