Journal of Infection

Upper and/or lower respiratory tract infection caused by human metapneumovirus after allogeneic hematopoietic stem cell transplantation --Manuscript Draft--

Manuscript Number:	
Article Type:	Full Length Article
Section/Category:	Rest of the World Submissions
Keywords:	human metapneumovirus; paramyxovirus; community-acquired respiratory virus; human Coronavirus; sars-cov-2; allogeneic hematopoietic stem cell transplantation; immunocompromised; upper and lower respiratory tract disease; immunodeficiency score index; multiplex PCR assay
Corresponding Author:	Jose Luis Piñana, MD Hospital Universitario y politécnico La Fe Valencia, SPAIN
First Author:	Jose Luis Piñana, MD
Order of Authors:	Jose Luis Piñana, MD
	Gloria Tridello
	Aliénor Xhaard
	Lotus Wendel
	Juan Montoro
	Lourdes Vazquez
	Inmaculada Heras
	Per Ljungman
	Malgorzata Mikulska
	Urpu Salmenniemi
	Ariadna Perez
	Nicolaus Kröger
	J.J. Cornelissen
	Elisa Sala
	Rodrigo Martino
	Claire Geurten
	Jenny Byrne
	Johan Maertens
	Tessa Kerre
	Murray Martin
	Maria Jesús Pascual
	Moshe Yeshurun
	Jürgen Finke
	Andreas H. Groll
	Peter J. Shaw
	Nicole Blijlevens

	William Arcese
	Arnold Ganser
	Maria Suarez-Lledo
	Mohsen Alzahrani
	Goda Choi
	Edouard Forcade
	Annalisa Paviglianiti
	Carlos Solano
	Jacek Wachowiak
	Tsila Zuckerman
	Peter Bader
	Johannes Clausen
	Jiri Mayer
	Wilfried Schroyens
	Elisabetta Metafuni
	Nina Knelange
	Dina Averbuch
	Rafael de la Camara
Abstract:	Background: Human metapneumovirus (hMPV) epidemiology, clinical characteristics and risk factors for poor outcome after allogeneic stem cell transplantation (allo-HSCT) remain a poorly investigated area. Patients and methods: We report the outcome of a retrospective multicentre cohort study including all consecutive allo-HSCT recipients (adults and children) who developed upper respiratory tract disease (URTD) and/or Lower (LRTD) caused by hMPV diagnosed by multiplex PCR panels between January 2012 and January 2019. Results: We included 428 allo-HSCT recipients who developed 438 hMPV respiratory infections episodes [URTD (n= 264, 60%), LRTD (n= 174, 40%)]. Most recipients were adults (n= 400, 93%). hMPV episodes were diagnosed at a median of 373 days (min- max: -7 to 4766 days) after allo-HSCT. Recipients who developed hMPV LRTD get the infection early during the course of transplant and had a significantly higher proportion of lymphopenia (<1 x109/L), neutropenia (<0.5 x109/L), corticosteroids use and ribavirin therapy (p≤ 0.05 for all comparisons). Multivariate analysis identified lymphopenia [$\leq 0.2 \times 109/L$: Odds Ratio (OR) 5, 95% confidence interval (C.I.). 2.08-12; >0.2 to 0.5 × 109/L: OR 1.94, 95% C.I. 1.11-3.38; p= 0.0003] and corticosteroids >30 mg/d (OR 4.06, 95% C.I. (2.08-7.91), p< 0.0001) as independent risk factors for LRTD occurrence. Day 30 overall mortality after hMPV detection was 2% vs. 12% vs. 21% for URTD, possible and proven LRTD, respectively (p< 0.0001). Multivariate analysis for day 30 LRTD overall mortality identified lymphopenia ($\leq 0.2 \times 109/L$ OR 4.45, 95% C.I. 1.83-10.87, p = 0.001) as the only independent risk factor. Conclusions: hMPV after allo-HSCT involved LRTD in many instances (40%). LRTD and its severity were mainly driven by lymphopenia and corticosteroids use, and lymphopenia was independently associated with higher mortality in those with possible and particularly proven LRTD.
Suggested Reviewers:	

Valencia, October 21, 2022

Editor in-chief

Dear sir,

We are sending you our manuscript entitled "Upper and/or lower respiratory tract infection caused by human metapneumovirus after allogeneic hematopoietic stem cell transplantation", which we would like you to consider for its publication as a full-length article in *Journal of Infection*.

The current study is original research, has not been previously published and has not been submitted for publication elsewhere. All authors have seen and approved the manuscript and contributed significantly to the work. We conducted a retrospective international multicenter study across 38 transplant centers from 13 countries around the world on behalf of Infectious Diseases Working Party of the European Society for Blood and Marrow Transplantation and the Spanish hematopoietic transplant and cell therapy group. This study reports on epidemiological characteristics, clinical consequences and conditions associated with severe course of human metapneumovirus (hMPV) infection in a highly oncohematological immunossuppressed cohort of patients such as recipients of allogeneic stem cell transplantation (allo-HSCT) where very few data is available to date.

The relatively lower incidence and prevalence of hMPV compare to other common seasonal respiratory viruses has delayed the analyses of large series of hMPV infections after allo-HSCT. Our research shows that the seasonality of hMPV in allo-HSCT recipients mirrors that of the community despite usual counseling in transmission preventive measures applied worldwide. We also observed that hMPV infection severity was mainly associated with lymphopenia and the use of corticosteroids. Overall mortality was high, especially in recipients with proven LRTD, indicating that these infections can have moderate to severe direct and indirect consequences in a significant proportion of cases. We also were able to analyze the role of co-infections in the severity and found that co-infections were associated with higher rate of oxygen requirement. Finally, we analyze the effect of ribavirin through a propensity score analysis and found no benefit in terms of reduction of mortality.

Looking forward to hearing from you,

Sincerely,

Correspondence: Jose Luis Piñana MD Division of Clinical Hematology Hospital Universitario La Fe Avinguda Fernando Abril Martorell, 106 CP 46026 Valencia, Spain Tlf1: +34 96 1244000. Fax: +34 96 1246201

SUPPLEMENTARY TABLES

Table S1. Syndromic multiplex PCR platforms according to the community acquired respiratory viruses' type performance.

PCR platform
Allplex [™] Respiratory Panel 1-2-3 / Anyplex [™] RV16
Argene [®] Respiratory
BioFire® FilmArray® Respiratory
FTD [®] respiratory pathogens 33
Luminex xTAG RVP Fast v1 assay (Luminex Molecular
Diagnostics, Toronto, ON, Canada)
Multiplex RT-nested PCR assay*
NxTAG [®] Respiratory Pathogen Panel
Pneumovir®
RespiFinder®
xTAG [®] Respiratory Viral Panel

*In-house platform: M.T. Coiras, J.C. Aguilar, M.L. Garcia, et al. (2004) Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested PCR assays. J. Med. Virol. 72(3): 484-495. doi: 10.1002/jmv.20008

[‡]Total of 32 participating transplant centers: some transplant centers reported use of different PCR panels over the course of the study.

Variables	Log. Regr. LRTD (n=438)		NRM at 30 days in recipients with LRTD CARV COX. Regr. (n= 174)	
	Univariate ar	Univariate analysis		lysis
	OR (95% C.I.)	Р	HR (95% C.I.)	Р
Type of donor				
HLA-identical sibling donor	1.00		1.00	
Alternative donor	0.97 (0.65-1.46)	0.9	1.89 (0.71-5.07)	0.2
Recipient age				
<16 years old	1.00		1.00	
≥16 years old	1.12 (0.50-2.51)	0.8	0.68 (0.17-2.74)	0.6
HLA mismatch	0.92 (0.58-1.43)	0.7	1.26 (0.47-3.33)	0.6
ATG as a part of conditioning	0.74 (0.45-1.22)	0.2	1.96 (0.78-4.97)	0.2
GVHD prophylaxis				
Sir-Tac	1.00	0.04		
CsA + MTX	1.98 (0.87-4.55)		1.00	0.04
Post-Cy	2.18 (0.91-5.22)		1.98 (0.44-8.90)	
CsA + PDN and Others	3.00 (1.30-6.91)		3.96 (1.32-11.90)	
CARV LRTD	NT			
On IS	1.52 (1.01-2.29)	0.046	2.15 (0.74-6.26)	0.16
ANC < 0.5 × 109/L	3.66 (1.62-8.25)	0.002	2.10 (0.81-5.46)	0.13
ALC < 0.5 × 109/L	4.63 (2.88-7.46)	< 0.0001	3.15 (1.29-7.72)	0.01
ALC< 0.2 × 109/L*	4.84 (2.35-9.97)	< 0.0001	4.19 (1.83-9.62)	0.0007

ALC< 1 × 109/L	3.49 (2.30-5.29)	< 0.0001	3.95 (1.18-13.29)	0.03
ALC				
• > 1 × 109/L	1.00	< 0.0001	1.00	0.003
• ≥ 0.5 to $1 \times 109/L$	1.76 (1.03-2.98)		2.21 (0.49-9.89)	
• >0.2 to 0.49×109/L	4.35 (2.36-8.04)		1.79 (0.37-8.73)	
● ≤0.2 × 109/L	7.63 (3.78-15.43)		7.54 (2.15-26.51)	
Age ≥ 40 years*	1.39 (0.91-2.13)	0.12	0.86 (0.37-2.02)	0.7
Active GvHD at the time RVI*	1.41 (0.95-2.09)	0.09	0.87 (0.39-1.95)	0.7
Periengraftment*	3.61 (1.85-7.06)	0.0002	3.15 (1.41-7.03)	0.005
Allo-HSCT ≤ 6 months	1.52 (1.01-2.29)	0.046	2.01 (0.91-4.47)	0.09
Allo-HSCT ≤ 12 months	1.60 (1.08-2.35)	0.02	1.33 (0.58-3.05)	0.5
Allo-HSCT \leq 24 months	1.49 (0.96-2.31)	0.08	1.51 (0.51-4.48)	0.5
Allo-HSCT \leq 100 days	1.81 (1.13-2.89)	0.01	2.97 (1.35-6.57)	0.007
Myeloablative*	0.83 (0.56-1.22)	0.3	1.15 (0.49-2.69)	0.7
Corticosteroids* vs No	2.00 (1.35-2.97)	0.0006	1.98 (0.85-4.60)	0.11
• No	1.00	0.0008	1.00	0.6
• Corticosteroids < 30mg/d	1.49 (0.93-2.36)		1.41 (0.49-4.07)	
• Corticosteroids ≥ 30mg/d	3.63 (1.90-6.96)		1.75 (0.59-5.18)	
• Corticosteroids < 30mg/d vs ≥ 30mg/d	0.31 (0.17-0.59)	0.0003	0.65 (0.24-1.76)	0.4
Corticosteroids≥30mg/d vs < 30mg/d	3.19 (1.69-6.02)	0.0003	1.53 (0.57-4.12)	0.4
LRTD				
• Possible			1	
• Proven			1.66 (0.72-3.87)	0.2
Prior BOS (Y/N)	1.15 (0.60-2.22)	0.7	0.81 (0.18-3.60)	0.8
ICU admission	NT			
Oxygen support	NT			
Co-infection (Y/N)	NT		1.48 (0.66-3.30)	0.3
Ribavirin therapy	NT		2.29 (0.96-5.46)	0.06
Season			× ,	
• summer	1.00	0.4	1.00	0.8
• winter	0.72 (0.32-1.60)		2.07 (0.29-14.90)	
• spring	0.85 (0.38-1.89)		1.81 (0.25-13.04)	
• autumn	0.51 (0.20-1.33)		3.00 (0.34-26.37)	
ISI Low risk (0-2)	1.00	0.002	1.00	0.01
Moderate risk (3-6)	1.11 (0.72-1.69)		1.11 (0.40-3.13)	
High risk (7-12)	5.81 (2.25-15.00)		3.76 (1.44-9.84)	
	2.01 (2.25 15.00)		5.76 (1.11).01)	

Abbreviations: C.I., confidence interval; Log. Regr, Logistic regression model; OR, Odds Ratio; IFD, invasive pulmonary fungal disease; ATG, anti-thymocyte globuline; Sir, sirolimus; Tac, tacrolimus; CsA, cyclosporine A; MTX, methotrexate;)Post-Cy, post-transplant cyclophosphamide; PDN, prednisone; CARV LRTD, community-acquired respiratory virus lower respiratory tract disease GvHD, graft-versus-host disease; Allo-HSCT, allogeneic hematopoietic stem cell transplantation; ISI, immunodeficiency score index; ANC, absolute neutrophil count; ALC, absolute lymphocyte count; ns, not significant; NT, not tested.

Table S3. Univariate analysis of risk factors for hMPV oxygen support and hospital admission.

Variables	Log. Regr. Hospital admission (n=434)		Log. Regr. Oxygen support (n= 432)		
	Univariate ar	alysis	Univariate analysis		
	OR (95% C.I.)	Р	OR (95% C.I.)	Р	
Type of donor					
HLA-identical sibling donor	1.00		1.00		
Alternative donor	1.14 (0.73-1.78)	0.6	1.07 (0.64-1.78)	0.8	
Recipient age					
<16 years old	1.00		1.00		
≥16 years old	1.23 (0.51-2.98)	0.6	2.05 (0.60-6.98)	0.2	
HLA mismatch	0.98 (0.59-1.61)	0.9	1.08 (0.61-1.91)	0.8	
ATG as a part of conditioning	0.93 (0.55-1.58)	0.8	0.86 (0.46-1.60)	0.6	
GVHD prophylaxis					
Sir-Tac - CsA + MTX	1.00	0.01	1.00	0.0004	
Post-Cy	0.56 (0.28-1.13)		1.18 (0.54-2.61)		
CsA + PDN and Others	1.57 (0.99-2.48)		3.11 (1.79-5.39)		
CARV LRTD	NT		1.70 (1.02-2.83)	0.04	
On IS	1.24 (0.83-1.84)	0.3	1.79 (1.06-3.03)	0.03	
ANC < 0.5 × 109/L	0.51 (0.21-1.24)	0.1	1.97 (0.88-4.41)	0.1	
ALC < 0.5 × 109/L, n (%)	1.96 (1.25-3.08)	0.003	4.44 (2.62-7.52)	< 0.0001	
ALC< 0.2 × 109/L*	0.90 (0.44-1.88)	0.8	3.58 (1.81-7.07)	0.0002	
ALC< 1 × 109/L	2.01 (1.15-3.50)	0.01	3.62 (2.11-6.21)	< 0.0001	
ALC					
> 1 × 109/L	1.00	0.02	1.00	< 0.0001	
≥0.5 to 1 × 109/L	1.25 (0.72-2.17)		1.85 (0.91-3.75)		
>0.2 to 0.49×109/L	3.08 (1.63-5.82)		4.64 (2.25-9.56)		
≤0.2 × 109/L	1.31 (0.65-0.63)		6.46 (3.14-13.26)		
Age≥40 years*	1.49 (0.93-2.41)	0.1	2.10 (1.15-3.84)	0.02	
Active GvHD at the time RVI*	2.74 (1.78-4.21)	< 0.0001	2.67 (1.64-4.36)	< 0.0001	
Periengraftment*	0.24 (0.09-0.63)	0.004	2.16 (1.10-4.24)	0.03	
Allo-HSCT ≤ 6 months	0.73 (0.47-1.13)	0.2	1.55 (0.96-2.50)	0.07	
Allo-HSCT ≤ 12 months	1.00 (0.65-1.54)	1	1.42 (0.88-2.27)	0.2	
Allo-HSCT ≤ 24 months	0.57 (0.35-0.94)	0.03	1.32 (0.76-2.26)	0.3	
Allo-HSCT ≤ 100 days	0.43 (0.24-0.75)	0.003	1.46 (0.86-2.51)	0.2	
Myeloablative*	0.74 (0.48-1.14)	0.2	0.65 (0.40-1.08)	0.1	
Corticosteroids* vs No	3.22 (2.03-5.10)	< 0.0001	3.35 (2.03-5.52)	< 0.0001	
Corticosteroids ≥ 30mg/d vs < 30mg/d	4.20 (2.10-8.40)	< 0.0001	4.95 (2.52-9.73)	< 0.0001	
Corticosteroids < 30mg/d vs ≥ 30mg/d	0.24 (0.12-0.48)	< 0.0001	0.20 (0.10-0.40)	< 0.0001	
Corticosteroids*					
No	1.00	0.0002	1.00	< 0.0001	
Corticosteroids < 30mg/d	2.87 (1.73-4.74)		2.46 (1.38-4.39)		
Corticosteroids≥30mg/d	5.84 (2.52-13.56)		6.58 (3.26-13.24)		
LRTD					
Possible or Proven	2.96 (0.42-21.01)	0.2	NA		
Prior BOS (Y/N)	1.95 (1.10-3.47)	0.02	2.30 (1.17-4.50)	0.02	

ICU admission	NT			
Oxygen support	NT			
Co-infection (Y/N)	2.13 (1.38-3.27)	0.001	2.38 (1.45-3.88)	0.0006
URTD co-infection	1.54 (0.98-2.41)	0.06	1.72 (1.02-2.89)	0.04
LRTD co-infection	5.44 (2.47-12.01)	< 0.0001	6.69 (3.04-14.73)	< 0.0001
Ribavirin therapy	2.07 (1.13-3.82)	0.03	4.21 (2.12-8.35)	< 0.0001
Season		0.9		
• summer	1.00		1.00	0.9
• winter	0.81 (0.34-1.93)		0.80 (0.32-2.02)	
• spring	0.97 (0.41-2.28)		0.94 (0.37-2.40)	
• autumn	0.93 (0.34-2.53)		0.99 (0.33-2.96)	
ISI				0.1
Low risk (0-2)	1.00	0.4	1.00	
Moderate risk (3-6)	1.07 (0.65-1.75)		0.95 (0.54-1.65)	
High risk (7-12)	0.57 (0.21-1.57)		2.82 (1.20-6.64)	

Abbreviations: C.I., confidence interval; Log. Regr, Logistic regression model; OR, Odds Ratio; IFD, invasive pulmonary fungal disease; ATG, anti-thymocyte globuline; Sir, sirolimus; Tac, tacrolimus; CsA, cyclosporine A; MTX, methotrexate;)Post-Cy, post-transplant cyclophosphamide; PDN, prednisone; CARV LRTD, community-acquired respiratory virus lower respiratory tract disease GvHD, graft-versus-host disease; Allo-HSCT, allogeneic hematopoietic stem cell transplantation; ISI, immunodeficiency score index; ANC, absolute neutrophil count; ALC, absolute lymphocyte count; ns, not significant; NT, not tested.

1	U	pper and/or lower respiratory tract infection caused by human
2		metapneumovirus after allogeneic hematopoietic stem cell
3		transplantation
4 5	Jose L	uis Piñana ¹ , Gloria Tridello ² , Aliénor Xhaard ³ , Lotus Wendel ⁴ , Juan Montoro ⁵ ,
6	Lourde	es Vazquez ⁶ , Inmaculada Heras ⁷ , Per Ljungman ⁸ , Malgorzata Mikulska ⁹ , Urpu
7	Salme	nniemi ¹⁰ , Ariadna Perez ¹ , Nicolaus Kröger ¹¹ , J.J. Cornelissen ¹² , Elisa Sala ¹³ ,
8	Rodrig	go Martino ¹⁴ , Claire Geurten ¹⁵ , Jenny Byrne ¹⁶ , Johan Maertens ¹⁷ , Tessa Kerre ¹⁸ ,
9	Murra	y Martin ¹⁹ , Maria Jesús Pascual ²⁰ , Moshe Yeshurun ²¹ , Jürgen Finke ²² , Andreas H.
10	Groll ²³	³ , Peter J. Shaw ²⁴ , Nicole Blijlevens ²⁵ , William Arcese ²⁶ , Arnold Ganser ²⁷ , Maria
11	Suarez	z-Lledo ²⁸ , Mohsen Alzahrani ²⁹ , Goda Choi ³⁰ , Edouard Forcade ³¹ , Annalisa
12	Pavigl	ianiti ³² , Carlos Solano ^{1,43} , Jacek Wachowiak ³³ , Tsila Zuckerman ³⁴ , Peter Bader ³⁵ ,
13	Johanr	nes Clausen ³⁶ , Jiri Mayer ³⁷ , Wilfried Schroyens ³⁸ , Elisabetta Metafuni ³⁹ , Nina
14	Knelar	nge ⁴ , Dina Averbuch ⁴⁰ , Rafael de la Camara ^{41,42} .
15	On bel	half of the Infectious Diseases Working Party of the European Society for Blood
16	and M	arrow Transplantation and Infectious Complications Subcommittee of the
17	Spanis	h Hematopoietic Stem Cell Transplantation and Cell Therapy Group (GETH-TC)
18		
19	1.	Hematology Department, Hospital Clinico Universitario de Valencia, Spain.
20		Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico
21		Universitario de Valencia, Spain.
22	2.	Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
23	3.	Service d'Hématologie-Greffe, Hôpital Saint-Louis, Université Paris-Diderot,
24		Paris, France.
25	4.	EBMT Leiden Study Unit, Leiden, The Netherlands.
26	5.	Hematology división, Hospital universitario y politécnico La Fe, Valencia,
27		Spain.
28	6.	Hematology Department, Hospital Clinico Universitario de Salamanca, Spain.
29	7.	Hematology Department, Hospital Morales Meseguer, Murcia, Spain.
30	8.	Department of Cellular Therapy and Allogeneic Stem Cell Transplantation,
31		Karolinska Comprehensive Cancer Center, Karolinska University Hospital

32		Huddinge and Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm,
33		Sweden.
34	9.	Division of Infectious Diseases, University of Genoa (DISSAL) and IRCCS
35		Ospedale Policlinico San Martino, Genova Italy.
36	10	Hematology Department, HUCH Comprehensive Cancer Center, Helsinki,
37		Finland.
38	11	Department for Stem Cell Transplantation, University Medical Center Hamburg-
39		Eppendorf/Germany.
40	12	Hematology Department, Erasmus MC Cancer Institute, Rotterdam,
41		Netherlands.
42	13	Department of Internal Medicine III, University Hospital of Ulm, Ulm,
43		Germany.
44	14	Hematology Department, Hospital de la Santa Creu I Sant Pau, Barcelona,
45		Spain.
46	15	Hematology Department, Birmingham Children's Hospital, Birmingham, United
47		Kingdom and Centre Hospitalier Universitaire de Liege, Belgique.
48	16	Hematology Department, Nottingham University, Nottingham, United
49		Kingdom.
50	17	Hematology Department, University Hospital Gasthuisberg, Leuven, Belgium.
51	18	Hematology Department, Ghent University Hospital, Gent, Belgium.
52	19	Hematology Department, Leicester Royal Infirmary, Leicester, United
53		Kingdom.
54	20	Hematology Department, Hospital Regional de Málaga, Malaga, Spain.
55	21	Institution of Hematology, Rabin medical Center, Petach-Tikva, Israel and
56		Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
57	22	University of Freiburg, Freiburg, Germany.
58	23	Infectious Disease Research Program, Department of Pediatric Hemtology and
59		Oncology and Center for Bone Marrow Transplantation, University Children's
60		Hospital, Muenster, Germany.
61	24	The Children's Hospital at Westmead, Sydney, Australia.
62	25	Nijmegen Medical Centre, Nijmegen, Netherlands.
63	26	Tor Vergata University of Rome, Rome, Italy.
64	27	Hannover Medical School, Hannover, Germany.
65	28	Hematology Department, Hospital Clinic, Barcelona, Spain.

66	29. Department of Oncology, King Abdulaziz Medical City, Ministry of National
67	Guard – Health Affaris, Riyadh, Saudi Arabia.
68	30. University Medical Center Groningen, University of Groningen, Groningen, the
69	Netherlands.
70	31. Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, F-
71	33000, Bordeaux, France.
72	32. Institut Català de Oncología – Hospital Duran i Reynals, Barcelona, Spain.
73	33. Department of Pediatric Oncology, Hematology and HSCT, University of
74	Medical Sciences, Poznan, Poland.
75	34. Rambam Medical Center, Haifa, Israel.
76	35. Division for Stem Cell Transplantation, Immunology and Intensive Care
77	Medicine, Department for Pediatrics and Adolescent Medicine, University
78	Hospital, Goethe University, Frankfurt, Germany.
79	36. Department of Internal Medicine I, Ordensklinikum Linz - Elisabethinen,
80	Johannes Kepler University, Linz, Austria
81	37. Masaryk University Hospital Brno, Brno, Czech Rep.
82	38. Antwerp University Hospital (UZA), Antwerp Edegem, Belgium.
83	39. Fondazione Policlinico Universitario Agostino Gemelli IRCCS. Dipartimento di
84	Diagnostica per Immagini, Radioterapia Oncologica e EmatologiaGemelli
85	IRCCS, Roma, Italy.
86	40. Faculty of Medicine, Hebrew University of Jerusalem; Hadassah Medical
87	Center, Jerusalem, Israel.
88	41. Hematology Department, Hospital de la Princesa, Madrid, Spain.
89	42. Hematology Department, Hospital Universitario Sanitas La Zarzuela, Madrid,
90	Spain.
91 92	43. Department of Medicine. University of Valencia, Spain.
93 94	
95	
96	Short Title: hMPV infection after allo-HSCT.
97	Brief summary: hMPV infection after allo-HSCT frequently involves the lower
98	respiratory tract (40%). Pulmonary involvement was associated with substantial all-cause

99 mortality rate (14%) at day 30 after hMPV detection, particularly in those with100 lymphopenia.

- 101
- 102 Abstract word count: 284

103 Total word count: 3176

104

- 105 Key Words: human metapneumovirus, paramyxovirus, community-acquired respiratory
- 106 virus, human Coronavirus, SARS-CoV-2, allogeneic hematopoietic stem cell
- 107 transplantation, immunocompromised, upper and lower respiratory tract disease,
- 108 immunodeficiency score index, multiplex PCR assay.
- 109

110 Financial disclosure statement

111 The authors report no potential conflicts of interest

112 Correspondence:

- 113 MD. Jose Luis Piñana
- 114 Division of Clinical Hematology
- 115 Hospital Clínico Universitario de Valencia
- 116 Avda Blasco Ibañez, 17, 46010, Valencia, Spain
- 117 Phone: +34 963862625 Fax: +34 963987820
- 118 E-mail: jlpinana@gmail.com
- 119
- 120

121 Abstract

- 122 Background: Human metapneumovirus (hMPV) epidemiology, clinical characteristics
- and risk factors for poor outcome after allogeneic stem cell transplantation (allo-HSCT)
- 124 remain a poorly investigated area.
- 125 Patients and methods: We report the outcome of a retrospective multicentre cohort study
- 126 including all consecutive allo-HSCT recipients (adults and children) who developed

127 upper respiratory tract disease (URTD) and/or Lower (LRTD) caused by hMPV
128 diagnosed by multiplex PCR panels between January 2012 and January 2019.

129 **Results:** We included 428 allo-HSCT recipients who developed 438 hMPV respiratory 130 infections episodes [URTD (n= 264, 60%), LRTD (n= 174, 40%)]. Most recipients were 131 adults (n= 400, 93%). hMPV episodes were diagnosed at a median of 373 days (min-max: 132 -7 to 4766 days) after allo-HSCT. Recipients who developed hMPV LRTD get the 133 infection early during the course of transplant and had a significantly higher proportion 134 of lymphopenia ($<1 \times 10^9$ /L), neutropenia ($<0.5 \times 10^9$ /L), corticosteroids use and ribavirin 135 therapy ($p \le 0.05$ for all comparisons). Multivariate analysis identified lymphopenia [≤ 0.2 136 $\times 10^{9}$ /L: Odds Ratio (OR) 5, 95% confidence interval (C.I.). 2.08-12; >0.2 to 0.5×10^{9} /L: 137 OR 1.94, 95% C.I. 1.11-3.38; p= 0.0003] and corticosteroids >30 mg/d (OR 4.06, 95% 138 C.I. (2.08-7.91), p< 0.0001) as independent risk factors for LRTD occurrence. Day 30 139 overall mortality after hMPV detection was 2% vs. 12% vs. 21% for URTD, possible and 140 proven LRTD, respectively (p< 0.0001). Multivariate analysis for day 30 LRTD overall 141 mortality identified lymphopenia ($\leq 0.2 \times 10^9$ /L OR 4.45, 95% C.I. 1.83-10.87, p = 0.001) 142 as the only independent risk factor.

143 Conclusions: hMPV after allo-HSCT involved LRTD in many instances (40%). LRTD 144 and its severity were mainly driven by lymphopenia and corticosteroids use, and 145 lymphopenia was independently associated with higher mortality in those with possible 146 and particularly proven LRTD.

147

148 INTRODUCTION

Respiratory virus infection after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a common infectious complication caused by a wide variety of human respiratory viruses, among which human metapneumovirus (hMPV) was isolated in 152 2001¹ as a negative-sense RNA paramyxovirus genetically similar to respiratory syncytial 153 virus (RSV)². There are two subgroups, each with two clades (A1, A2, B1 and B2); 154 although all four subtypes typically co-circulate, each season often has one predominant subtype³. hMPV infects approximately 5–9% of allo-HSCT recipients^{4,5} scoring sixth in 155 156 incidence/prevalence studies after human rhinovirus (hRhV), RSV, seasonal coronavirus 157 (hCoV), human parainfluenza virus (hPiV) and influenza virus (hIV)^{6,7}. This relatively 158 lower incidence and prevalence has hindered the analyses of large series of hMPV 159 infections after allo-HSCT⁸⁻¹¹. The symptom spectrum is similar to other respiratory viruses and varies from mild to severe¹². In the allo-HSCT setting, progression from upper 160 161 (URTD) to lower respiratory tract disease (LRTD) can occur in up to 20% of cases, 162 mainly in recipients with lymphopenia, corticosteroids use or infection occurring early 163 after allo-HSCT¹³. The reported mortality rate after hMPV LRTD in patients with hematological malignancy and/or allo-HSCT recipients ranges from 10% to 40%^{4,8,9,14,15}. 164 165 The mortality rate was higher in allo-HSCT recipients (22% at 30 days) than in the general population (3%)¹⁶. In addition, the mortality rate may exceed 80% in allo-HSCT 166 167 recipients when the virus is detected in bronchoalveolar samples¹⁷. However, there is still 168 limited data on risk factors for hospital admission or oxygen requirement, and overall 169 mortality of hMPV infection after allo-HSCT.

Moreover, there are currently no authorized or approved drugs available against hMPV, so infection management is mainly focused on supportive care measures. Although ribavirin has shown certain effect against hMPV in *in vitro* studies and animal models^{18,19}, to date there is no consistent clinical data showing clear benefit for use of this drug^{20,21}. Several small case series suggest that the use of ribavirin with or without intravenous immunoglobulin (IVIG) for hMPV infection could be considered in high-risk patients²²⁻ ²⁵. However, a large study showed no protective effect of ribavirin for hMPV LRTD⁸. As ma consequence, the European Conference on Leukemia Infection did not recommend
ribavirin therapy for hMPV²⁶.

In this large retrospective international multicenter cohort, we aimed to characterize epidemiological and clinical features and risk factors (RFs) for LRTD and for different outcomes of hMPV infections in the immunocompromised population of allo-HCT recipients.

183

184 PATIENTS AND METHODS

185 Study population and inclusion criteria

186 This is a retrospective multicenter cohort study of collaboration between the Infectious 187 Diseases Working Party (IDWP) of the European Society for Blood and Marrow 188 Transplantation (EBMT) and the Infectious Complications Subcommittee (GRUCINI) of 189 the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group (GETH-190 TC). Participating centers were requested to include all consecutive allo-HSCT recipients 191 (children and adults) with multiplex PCR-documented hMPV respiratory infection from 192 January 1 2012 to December 30 2019, occurring from the start of conditioning regimen 193 to last follow-up. During the study period, all allo-HSCT procedures were registered in 194 the EBMT registry by completing an essential medical data form. More detailed data was 195 collected using a second transplant form containing specific information on respiratory 196 symptoms, hMPV-related hospital admission, oxygen requirement and intensive care unit 197 (ICU) admission. Variables such as immunosuppressant drugs, corticosteroids, the 198 presence of signs or symptoms of acute or chronic graft-versus-host disease (GvHD), 199 prior development of bronchiolitis obliterans syndrome (BOS) and variables for immunodeficiency scoring index (ISI) computation²⁷ (i.e. lymphocyte count, neutrophil 200 201 count, myeloablative conditioning regimen, age, corticosteroids therapy and graft-versushost disease) were requested at the time of community acquired respiratory virus PCR
screening. The commercial and in-house PCR used by participating centers for hMPV
detection are summarized in supplementary Table S1.

205

206 **Definitions**

207 hMPV URTD was defined as the combination of upper respiratory symptoms (rhinorrhea, 208 sinusitis, otitis, or pharyngitis), hMPV detected by PCR assay and the absence of LRTD 209 symptoms and/or any pulmonary infiltrates on chest X-ray or computed tomography (CT) 210 lung scan. hMPV LRTD was defined as the combination of lower respiratory symptoms 211 and/or any pulmonary infiltrates on chest X-ray or computed tomography (CT) lung scan 212 We classified LRTD as possible, probable or confirmed, as previously described²⁸. In 213 brief, possible LRTD required detection of hMPV in the upper respiratory tract in 214 recipients with pulmonary infiltrates during the episode (but without confirmation of its 215 presence in the LRT). Confirmed LRTD was defined when lower respiratory symptoms 216 were accompanied by new pulmonary infiltrates and isolation of the virus in tracheal 217 aspirates or in bronchoalveolar lavage (BAL). Probable LRTD refers to cases with hMPV 218 detection in BAL without radiological proof of pulmonary involvement. However, in the 219 current series there were no probable episodes because bronchoscopies were not 220 performed in patients without radiological proof of pulmonary involvement. Episodes 221 were defined as URTD or LRTD according to ECIL-4 recommendations²⁶. Acute and 222 chronic graft-vs-host disease (GvHD), including BOS were diagnosed according to 223 standard criteria²⁹. We considered active GvHD for both acute and chronic GvHD when 224 signs and/or symptoms were present at the time of respiratory virus screening. Co-225 infection was defined as a significant co-pathogen detected in concurrent nasopharyngeal 226 or bronchoalveolar lavage during hMPV infection and until its clinical and/or microbiological resolution. Ribavirin therapy was given according at physician discretionand/or routines at the individual center.

229

230 Endpoints and statistical analysis

The primary objective of the study was to describe epidemiological and clinical characteristics of U/LRTD in allo-HSCT recipients with hMPV infection. We also analyzed risk factors for hMPV-related hospital admission, oxygen requirement, LRTD involvement, and all-cause mortality by day 30 after hMPV detection, the latter in recipients with LRTD.

236 The main patient characteristics were reported by descriptive statistics on the total of 237 available information; median minimum and maximum were used for continuous 238 variables, while absolute and percentage frequencies were used for categorical variables. 239 Between-group differences were tested by linear or logistic regression models, using 240 generalized estimating equation methods, nested by patient, to account for the 241 dependence of observations. Variables with a p-value < 0.1 in the univariate model were 242 included in the multivariate analysis. In recipients with LRTD, the survival analysis was 243 performed by using the Cox regression model. A p-value <0.05 was considered 244 statistically significant. All p-values were two-sided. All analyses were performed using 245 the statistical software SAS vs. 9.4 (SAS Institute Inc., Cary, NC, USA).

246

247 **RESULTS**

248 **Patient characteristics**

Overall, we included 428 allo-HSCT recipients (93% adults) with a median age of 46 years (min-max 0.3 – 73.8) who developed 438 U/LRTD episodes of hMPV between January 2012 and January 2019 reported from 35 EBMT transplant centers in 13 countries. Clinical and transplant characteristics of the series are detailed in Table 1. The
study population comprised a high-risk cohort, since 66% of recipients were allografted
from alternative donors (unrelated adult donor, cord blood units (CBU) or haplo-identical
family donors). There were 419 allo-HSCT recipients with one hMPV episode whereas
nine recipients (2.1%) had two or more hMPV episodes occurring during different
seasons.

258

Epidemiology and characteristics of hMPV infections according to U/LRTD involvement

261 Figure 1 shows the epidemiology of hMPV infections in allo-HSCT recipients by month. 262 The incidence peak was observed between March and April, with 173 out of 438 episodes 263 (39%). Most cases developed only URTD (n= 264, 60%) whereas 174 (40%) had LRTD 264 (131 possible and 43 proven). Table 2 summarizes clinical and laboratory differences 265 according to URTD or LRTD involvement. As expected, recipients with LRTD had 266 higher rates of immunosuppression markers such as lymphopenia, neutropenia, active 267 GvHD, corticosteroids therapy, and higher ISI score. They also had high rates of fever, 268 co-infection, ribavirin therapy, hospital admission, oxygen requirement, ICU admission 269 and mortality at days 30 and 90 after hMPV detection ($p \le 0.05$ for all comparisons).

270

271 Risk factors for LRTD, hospital admission and oxygen requirement.

Univariate analyses of risk factors for LRTD, overall mortality, hospital admission and
oxygen requirement are provided in Supplementary Tables S2 and S3. Logistic regression
and Cox regression multivariate analyses of conditions associated with hMPV LRTD,
hospital admission and oxygen requirements are shown in Table 3.

276 We identified three conditions associated with hospital admission at the time of hMPV 277 detection; active GvHD [Odds ratio (OR) 2.65], absolute lymphocyte count (ALC) <0.5 278 $x10^{9}/L$ (OR 1.83), and corticosteroids use >30 mg/d (OR 2.37). For oxygen requirement, 279 four independent RFs were identified: ALC $<0.5 \times 10^9$ /L (OR 4.52), age >40 years old 280 (OR 3.19), active GvHD (OR 3.51) and co-infection (OR 2.42). We identified three conditions associated with risk of LRTD: ALC $<0.2 \times 10^9$ /L (OR 5), ALC between 0.2 281 282 and 0.5 $\times 10^{9}$ /L (OR 1.94) and corticosteroids >30 mg/d (OR 4.06). No significant 283 differences in outcomes were found between pediatric (< 16 years) and adult patients.

Overall mortality and risk factors

The all-cause mortality rate at 30 days after hMPV detection was 6.6% (n= 29) for the entire group. Mortality in recipients with hMPV limited to URTD was 2% (n= 4), compared with 14% in recipients with LRTD (12% (n= 16) and 21% (n= 9) in those with possible and proven LRTD, respectively) (p <0.0001). Overall survival at day 90 after hMPV detection was 96.2% for those with URTD, whereas it was 80.8% and 62.8% for possible and proven LRTD, respectively (p <0.0001) [Figure 2].

Causes of death in recipients who died by day 30 after hMPV detection were relapse (n=4), GvHD (n=3), infectious respiratory failure (n=16), and other complications (n=6; multiple organ failure, systemic infection). The additional 22 deaths occurring by day 90 were due to disease relapse (n=10), GvHD (n=3), infectious respiratory failure (n=4), and other causes (n=5; systemic infection, multiple organ failure).

- Finally, the only condition associated with increased mortality at day 30 after developing
- hMPV LRTD in multivariate analysis was ALC $< 0.5 \times 10^{9}$ /L [hazard ratio (HR) 4.45]

298 (Table 3).

299 **Co-infection characteristics**

300 As expected, co-infections were more frequent in proven (26/42, 62%) than in possible 301 LRTD (33/131, 25%) or in URTD [60/264, 22%] (p< 0.001). Table 4 summarizes the 302 characteristics of co-infectious episodes among all episodes and according to U/LRTD. 303 Most co-infections were of respiratory virus, followed by fungal and bacterial origin. 304 Among respiratory virus co-infection, enterovirus/rhinovirus followed by influenza and 305 respiratory syncytial virus (RSV) were the predominant co-infective agents, whereas 306 Aspergillus spp was the most common among fungal co-infections. Lastly, *Pseudomonas* 307 spp was the commonest bacterial co-infective agent. Co-infection was only associated in 308 multivariate analyses with oxygen requirement (see Table 3), without any significant 309 effect on mortality. To further evaluate the effect of co-infection on mortality, we 310 compared outcomes in five groups, focusing only on those with possible or proven LRTD, 311 finding no significant differences in overall survival [virus mono-infection (n=144, 19 312 deaths at 30 days, 30 deaths at 90 days); virus/virus co-infection (n=5, 0 deaths at 30 days, 313 2 deaths at 90 days); viral/bacterial co-infection (n=5, 1 death at 30 days, 2 deaths at 90 314 days); virus/fungal co-infection (n=14, 3 deaths at 30 days, 4 deaths at 90 days); mixed 315 co-infections virus/virus +/- bacterial +/- fungal co-infection (n=6, 2 deaths at 30 days, 3 316 deaths at 90 days)].

317 **Ribavirin therapy characteristics**

Ribavirin therapy was administered in 36 (8%) hMPV episodes. Table 5 summarizes clinical and laboratory characteristics of the infection according to treatment or not with ribavirin. Recipients treated with ribavirin had hMPV infection earlier during the course of allo-HSCT, and were more likely to have LRTD (in particular proven LRTD), oxygen requirement, hospital and ICU admission, RSV co-infection, immunosuppressive drugs and lymphopenia compared to those not treated. Overall mortality at day 90 in patients treated with ribavirin was 33% compared to 9.7% in the non-treated group (p< 0.001). To evaluate the effect of ribavirin therapy we performed a propensity score analysis and found no benefit in terms of mortality at day 30 and 90 after hMPV detection according to ALC <0.5 $\times 10^{9}$ /L, high-risk ISI, timing of hMPV infection (<180 days after stem cell infusion), oxygen requirement, or hospital and/or ICU admission (Table 6).

329

330 **DISCUSSION**

331 This study provides clinical insights into hMPV infection after allo-HSCT in a large and 332 multicenter series from the IDWP of the EBMT and the GETH-TC groups. Incidence of 333 hMPV in allo-HSCT recipients reached a peak between March and April. LRTD was 334 frequent, occurring in 40% of all cases. Overall mortality was as high as 37% in recipients 335 with developed proven hMPV LRTD. Co-infections were frequent (27%), but no effect 336 was observed on any outcome except oxygen requirement. Corticosteroids therapy and 337 lymphopenia were the main RFs for LRTD, hospital admission, oxygen requirement and 338 overall mortality. These conditions could serve as the basis for prospective clinical trials 339 design.

The epidemiology of hMPV infections in our allo-HSCT series mirrored that of the 340 341 general population, with seasonal peak incidence from February to April³⁰. Despite 342 repeated guidance from transplant teams on transmission prevention measures (hand 343 washing, social distancing, mask wearing, etc.) provided to allo-HSCT recipients and 344 caregivers, we still observed equivalent epidemiological curves, not only in hMPV but 345 also with other human respiratory viruses such as influenza virus, seasonal human 346 coronavirus and recently with SARS-CoV-231-33. This indicates that even if 347 immunosuppressed patients strictly adhere to preventive measures, if community 348 incidence rises these viruses will eventually reach patients through their environment, 349 visitors, friends, family members, etc. However, when application of global respiratory

preventive transmission measures involves the whole community, as occurred during the COVID-19 pandemic, a dramatic reduction in respiratory virus infections, including hMPV, was observed in recipients of allo-HSCT³⁴. This fact supports extending preventive measures to any individual in potential close contact with allo-HSCT recipients, particularly in the health care system where nosocomial outbreak of hMPV infections in immunocompromised patients could be life-threatening³⁵.

356 The severity of hMPV infection after allo-HSCT seems similar in terms of LRTD rates 357 to other Paramyxoviridae respiratory viruses (RSV and HPiV)³⁶. In this large series we 358 observed a 10% rate of proven LRTD, rising to 40% when possible LRTD were included. 359 The ability of hMPV to reach the LRT in the allo-HSCT setting has been estimated at 15%-60% of cases in shorter series^{4,8,13}. These facts support that hMPV frequently 360 361 involves the LRT in these highly immunocompromised patients. In our series, RFs 362 associated with LRTD were corticosteroids use (>30mg/d) and low lymphocyte count 363 $(<0.5 \text{ x}10^{9}/\text{L})$, in line with a prior report⁸. These two LRTD RFs are repeatedly identified in several other CARV infections in the allo-HSCT setting^{8,31,37}, emphasizing the pivotal 364 365 role of T-cell immune response in controlling and clearing respiratory viruses which 366 warrants further efforts to improve T-cell function and numbers as early as possible 367 following allo-HSCT.

The large number of recipients included in the current series enabled us to identify RFs for other outcomes of interest such as hospital admission and oxygen requirement that had not previously been analyzed. Hospital admission was required in 29% of cases in the overall cohort and in 56% of those with possible or proven hMPV LRTD. Again, lymphocyte count (<0.5 x10⁹/L) and corticosteroids use were identified as RFs, while presence of active GvHD also increased the risk of hospitalization. Additionally, we observed that age (\geq 40 years) and co-infections along with lymphopenia, corticosteroids as GvHD prophylaxis, and active GvHD at the time of hMPV infection increased the risk for oxygen support. These findings are not surprising given that corticosteroids, lymphopenia, moderate to severe GVHD, age and co-infections are known to increase the severity of respiratory virus infections in immunocompromised patients^{27,38,39}. These variables could be useful for accurate assessment of individual risk in daily clinical practice.

Very few studies have analyzed mortality after hMPV infection in allo-HSCT. In our 381 382 series we analyzed the all-cause mortality rate at day 30 and day 90 after hMPV detection 383 to evaluate the direct (day 30) and indirect (day 90) effects of hMPV infection. Overall 384 mortality at day 30 and 90 was 2% and 4% in URTD, 12% and 19% in possible LRTD 385 and 21% and 37% in those with proven LRTD (p < 0.001), respectively. These data 386 indicate that all-cause mortality increases with the probability of true hMPV pulmonary involvement. These numbers are similar to those of other Paramyxoviridae viruses^{4,40} and 387 388 crucially, are remarkably similar to those recently reported with SARS-CoV-2 in the allo-HSCT setting⁴¹, although the later in the context of an extremely high community 389 390 circulation. Altogether, mortality in allo-HSCT appears to be similar across all respiratory 391 virus types, suggesting that the immunosuppression status of these patients is may be 392 more important than the virus virulence by itself. This assumption could be justified in 393 part by the identification of profound lymphopenia ($<0.2 \times 10^9/L$) as the only RF for 394 overall mortality in the current and in most published series irrespective of the infection 395 timing with regard to the stem cell infusion. T-cell lymphocytes contribute to clearance 396 of hMPV infection in mice while depletion of T cells leads to prolonged viral replication³. 397 Again, seemingly efforts to limit the severity of hMPV infection should include strategies 398 that enhance T-cell immune reconstitution early after allo-HSCT without increasing the 399 risk of GvHD. In this regard, adoptive T-cell transfer from third party donors to prevent 400 and/or treat respiratory virus infections in immunocompromised patients looks
401 appealing⁴².

402 Treatment of hMPV infection currently consists of supportive care as there are no licensed 403 antivirals against hMPV. Two potential treatments that have been investigated are 404 ribavirin and immunoglobulin. Ribavirin, a nucleoside with activity against RNA viruses, 405 exhibits in vitro activity against hMPV¹⁸ and showed efficacy in mice¹⁹. Few studies 406 report successful treatment of hMPV infections with ribavirin, either with or without 407 intravenous polyclonal immunoglobulins^{22,23,43-45}; however, the data are limited to small 408 case series or case reports, with no randomized controlled trials available. Other studies have shown no benefit with ribavirin^{12,46}. In our series, recipients treated with ribavirin 409 410 showed high-risk features such as early infection after transplant, higher rates of 411 hospitalization, ICU admission, LRTD and oxygen requirement. They also showed higher rates of co-infection with RSV, lymphopenia and/or immunosuppressant administration. 412 413 As a consequence, ribavirin-treated episodes showed a higher mortality rate (see Table 414 5). All these figures suggest that ribavirin was used in the context of more severe and 415 urgent cases. However, after adjustment for these confounding factors and although 416 mortality differences were reduced among groups, the propensity score analysis did not 417 show any benefit of ribavirin therapy in terms of overall mortality. Thus infection control 418 measures are particularly important for mitigating hMPV incidence, and thus hMPV 419 associated mortality, as there are no effective treatments or vaccines.

Lastly, we conducted an in-depth analysis on the occurrence and effect of significant coinfections during hMPV infections. After respiratory virus co-infections, the most common co-infection was invasive fungal infections (IFI). The risk of IFI may increase particularly in recipients with LRTD respiratory virus infection developing the infection during the first year after transplant, receiving corticosteroids or ATG-based GvHD 425 prophylaxis⁴⁸. IFI was common and since our identified risk factors for hMPV LRTD 426 also have been identified as risk factors for fungal infections, antifungal prophylaxis 427 should be strongly considered. Otherwise, in multivariate analysis, co-infection only 428 showed a significant effect on the need for oxygen support, without any effect on other 429 events of interest, including overall mortality, likely due to the low number of patients 430 available for comparative purpose.

Although the current study represents the largest series of hMPV infection after alloHSCT reported to date, some limitations merit attention, such as the retrospective nature
of the analyses, the low proportion of bronchoalveolar lavage performed, the absence of
lung tissue analyses to establish the exact role of hMPV, and the use of different PCR
methods varying in analytical performance for detection and identification of hMPV
subtypes.

In conclusion, we provide insights into seasonal hMPV infections after allo-HSCT in terms of epidemiology and clinical outcome. hMPV infection severity was mainly associated with lymphopenia and the use of corticosteroids. Overall mortality was high in recipients with proven LRTD, indicating that these infections can have moderate to severe direct and indirect consequences in a significant proportion of cases. Vaccine and drug developments are urgently needed to limit the dismal prognosis observed in highrisk patients.

444

445 **CONFLICT OF INTERESTS**

446 The authors declare no conflict of interests.

447 Peter Bader declares Research Grants from Neovii, Riemser, Medac (to Institution);
448 Advisory Board for Novartis, Cellgene, Amgen, Medac, Servier (personal and to

- 449 Institution); Speakers Bureau von Miltenyi, Jazz, Riemser, Novartis, Amgen (to
- 450 Institution) and Patent und Royalties from Medac.

451 **NOTES**

452 This work had no funding support.

453 **REFERENCES**

454 References

455

- Van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA,
 et al. A newly discovered human pneumovirus isolated from young children with
 respiratory tract disease. Nat Med 2001; 7:719–24.
- 459
 2. Schildgen V, van den Hoogen B, Fouchier R, Tripp RA, Alvarez R, Manoha C, et
 460
 461
 461
 461
 462
 461
 461
 463
 464
 464
 464
 465
 464
 464
 465
 464
 464
 464
 465
 464
 465
 466
 466
 466
 467
 467
 467
 468
 469
 469
 469
 469
 469
 469
 460
 460
 460
 460
 460
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 <l
- 462 3. Shafagati N, Williams J. Human metapneumovirus what we know now.
 463 F1000Res. 2018 Feb 1;7:135. doi: 10.12688/f1000research.12625.1.
- 464
 4. J.V. Williams, R. Martino, N. Rabella, M. Otegui, R. Parody, J.M. Heck, et al. A
 465 prospective study comparing human metapneumovirus with other respiratory
 466 viruses in adults with hematologic malignancies and respiratory tract infections,
 467 J. Infect. Dis. 192 (2005) 1061–1065.
- 468 5. A.J. Peck, J.A. Englund, J. Kuypers, K.A. Guthrie, L. Corey, R. Morrow, et al.
 469 Respiratory virus infection among hematopoietic cell transplant recipients:
 470 evidence for asymptomatic parainfluenza virus infection, Blood 110 (2007) 1681–
 471 1688.
- 472
 6. Piñana JL, Madrid S, Pérez A, Hernández-Boluda JC, Giménez E, Terol MJ, et
 473
 al. Epidemiologic and Clinical Characteristics of Coronavirus and Bocavirus
 474
 474
 475
 475
 476
 476
 476
 477
 476
 477
 478
 479
 479
 479
 470
 470
 470
 470
 470
 470
 471
 471
 472
 472
 473
 474
 474
 474
 475
 475
 475
 475
 476
 476
 477
 477
 478
 478
 479
 479
 479
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 471
 471
 472
 472
 472
 473
 474
 474
 474
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 475
 476
 476
 476
 476
 476
 476
 476
 476</l
- 476
 476
 477
 478
 478
 7. Milano F, Campbell AP, Guthrie KA, Kuypers J, Englund JA, Corey L, et al. Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients. Blood. 2010 Mar 11; 115 (10): 2088-94.
- 8. Seo S, Gooley TA, Kuypers JM, Stednick Z, Jerome KR, Englund JA, et al. Human Metapneumovirus Infections Following Hematopoietic Cell Transplantation: Factors Associated With Disease Progression. Clin Infect Dis. 2016 Jul 15;63(2):178-85. doi: 10.1093/cid/ciw284.
- 483
 9. Renaud C, Xie H, Seo S, Kuypers J, Cent A, Corey L, et al. Mortality rates of 484
 484
 485
 485
 485
 486
 486
 487
 486
 486
 486
 487
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486</l
- 487 10. Spahr Y, Tschudin-Sutter S, Baettig V, Compagno F, Tamm M, Halter J, et al.
 488 Community-Acquired Respiratory Paramyxovirus Infection After Allogeneic

489		Hematopoietic Cell Transplantation: A Single-Center Experience. Open Forum
490		Infect Dis. 2018 Apr 12;5(5):ofy077. doi: 10.1093/ofid/ofy077.
491	11.	Debur MC, Vidal LR, Stroparo E, Nogueira MB, Almeida SM, Takahashi GA, et
492		al. Human metapneumovirus infection in hematopoietic stem cell transplant
493		recipients. Transpl Infect Dis. 2010 Apr;12(2):173-9. doi: 10.1111/j.1399-
494		3062.2009.00465.x.
495	12.	Shah DP, Shah PK, Azzi JM, El Chaer F, Chemaly RF. Human metapneumovirus
496		infections in hematopoietic cell transplant recipients and hematologic malignancy
497		patients: A systematic review. Cancer Lett. 2016 Aug 28;379(1):100-6. doi:
498		10.1016/j.canlet.2016.05.035.
499	13.	C. Renaud, A.P. Campbell, Changing epidemiology of respiratory viral infections
500		in hematopoietic cell transplant recipients and solid organ transplant recipients,
501		Curr. Opin. Infect. Dis. 24 (2011) 333–343.
502	14.	Hoellein A, Hecker J, Hoffmann D, Göttle F, Protzer U, Peschel C, et al. Serious
503		outbreak of human metapneumovirus in patients with hematologic malignancies.
504		Leuk Lymphoma 2016; 57:623–7.
505	15.	Egli A, Bucher C, Dumoulin A, Stern M, Buser A, Bubendorf L, et al. Human
506		metapneumovirus infection after allogeneic hematopoietic stem cell
507		transplantation. Infection 2012; 40:677–84.
508	16.	Koo HJ, Lee HN, Choi SH, Sung H, Kim HJ, Do KH. Clinical and Radiologic
509		Characteristics of Human Metapneumovirus Infections in Adults, South Korea.
510		Emerg Infect Dis. 2019 Jan;25(1):15-24. doi: 10.3201/eid2501.181131.
511	17.	J.A. Englund, M. Boeckh, J. Kuypers, W.G. Nichols, R.C. Hackman, R.A.
512		Morrow, et al. Brief communication: fatal human metapneumovirus infection in
513		stem-cell transplant recipients, Ann. Intern. Med. 144 (2006) 344-349.
514	18.	Wyde PR, Chetty SN, Jewell AM, Boivin G, Piedra PA. Comparison of the
515		inhibition of human metapneumovirus and respiratory syncytial virus by ribavirin
516		and immune serum globulin in vitro. Antiviral Res. 2003;60: 51-59.
517	19.	Hamelin ME, Prince GA, Boivin G. Effect of ribavirin and glucocorticoid
518		treatment in a mouse model of human metapneumovirus infection. Antimicrob
519		Agents Chemother. 2006;50:774-777.
520	20.	Principi N, Esposito S. Paediatric human metapneumovirus infection:
521		epidemiology, prevention and therapy. J Clin Virol 2014; 59:141-7.
522	21.	Wen SC, Williams JV. New approaches for immunization and therapy against
523		human metapneumovirus. Clin Vaccine Immunol 2015; 22:858-66.
524	22.	Bonney D, Razali H, Turner A, Will A. Successful treatment of human
525		metapneumovirus pneumonia using combination therapy with intravenous
526		ribavirin and immune globulin. Br J Haematol 2009; 145:667–9.
527	23.	Kamble RT, Bollard C, Demmler G, LaSala PR, Carrum G. Human
528		metapneumovirus infection in a hematopoietic transplant recipient. Bone Marrow
529		Transplant 2007; 40:699–700.
530	24.	Raza K, Ismailjee SB, Crespo M, Studer SM, Sanghavi S, Paterson DL, et al.
531		Successful outcome of human metapneumovirus (hMPV) pneumonia in a lung
532		transplant recipient treated with intravenous ribavirin. J Heart Lung Transplant
533		2007; 26:862–4.

534 25. Safdar A. Immune modulatory activity of ribavirin for serious human 535 metapneumovirus disease: early i.v. therapy may improve outcomes in 536 immunosuppressed SCT recipients. Bone Marrow Transplant 2008; 41:707-8. 537 26. Hirsch HH, Martino R, Ward KN, Boeckh M, Einsele H, Ljungman P. Fourth 538 European Conference on Infections in Leukaemia (ECIL-4): guidelines for 539 diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, 540 metapneumovirus, rhinovirus, and coronavirus. Clin Infect Dis 2013; 56: 258-66. 541 27. Shah DP, Ghantoji SS, Ariza-Heredia EJ, Shah JN, El Taoum KK, Shah PK, et al. 542 Immunodeficiency scoring index to predict poor outcomes in hematopoietic cell 543 transplant recipients with RSV infections. Blood. 2014; 123(21):3263-3268. 544 28. Seo S, Xie H, Campbell AP, Kuypers JM, Leisenring WM, Englund JA et al. 545 Parainfluenza virus lower respiratory tract disease after hematopoietic cell 546 transplant: viral detection in the lung predicts outcome. Clin Infect Dis 2014; 58: 547 1357-68. 548 29. Schoemans HM, Lee SJ, Ferrara JL, Wolff D, Levine JE, Schultz KR, et al. 549 EBMT-NIH-CIBMTR Task Force position statement on standardized 550 terminology & guidance for graft-versus-host disease assessment. Bone Marrow 551 Transplant. 2018;53(11):1401-1415. 552 30. Lagacé-Wiens P, Bullard J, Cole R, Van Caeseele P. Seasonality of coronaviruses 553 and other respiratory viruses in Canada: Implications for COVID-19. Can 554 Commun Dis Rep. 2021 Mar 31;47(3):132-138. doi: 10.14745/ccdr.v47i03a02. 555 31. Piñana JL, Xhaard A, Tridello G, Passweg J, Kozijn A, Polverelli N, et al. 556 Seasonal Human Coronavirus Respiratory Tract Infection in Recipients of Allogeneic Hematopoietic Stem Cell Transplantation. J Infect Dis. 2021 May 557 558 20;223(9):1564-1575. doi: 10.1093/infdis/jiaa553. 559 32. Piñana JL, Pérez A, Montoro J, Giménez E, Gómez MD, Lorenzo I, et al. Clinical 560 Effectiveness of Influenza Vaccination After Allogeneic Hematopoietic Stem Cell 561 Transplantation: A Cross-sectional, Prospective, Observational Study. Clin Infect 562 Dis. 2019 May 17;68(11):1894-1903. doi: 10.1093/cid/ciy792. 563 33. Piñana JL, Martino R, García-García I, Parody R, Morales MD, Benzo G, et al; 564 Infectious Complications Subcommittee of the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group (GETH). Risk factors and outcome of 565 COVID-19 in patients with hematological malignancies. Exp Hematol Oncol. 566 567 2020 Aug 25;9:21. doi: 10.1186/s40164-020-00177-z. 568 34. De la Puerta R, Montoro J, Aznar C, Lorenzo I, González-Barberá EM, Balaguer-569 Roselló A, et al. Common seasonal respiratory virus infections in allogeneic stem cell transplant recipients during the SARS-COV-2 pandemic. Bone Marrow 570 571 Transplant. 2021 Sep;56(9):2212-2220. doi: 10.1038/s41409-021-01319-5. 572 35. Hoellein A, Hecker J, Hoffmann D, Göttle F, Protzer U, Peschel C, et al. Serious 573 outbreak of human metapneumovirus in patients with hematologic malignancies. 574 Leuk Lymphoma. 2016;57(3):623-7. doi: 10.3109/10428194.2015.1067699. 575 36. Shah DP, Ghantoji SS, Mulanovich VE, Ariza-Heredia EJ, Chemaly RF. 576 Management of respiratory viral infections in hematopoietic cell transplant 577 recipients. Am J Blood Res. 2012;2(4):203-18. 578 37. Montoro J, Sanz J, Lorenzo I, Balaguer-Roselló A, Salavert M, Gómez MD, et al. 579 Community acquired respiratory virus infections in adult patients undergoing

580		umbilical cord blood transplantation. Bone Marrow Transplant. 2020
581		Dec;55(12):2261-2269. doi: 10.1038/s41409-020-0943-0.
582	38.	García-Cadenas I, Rivera I, Martino R, Esquirol A, Barba P, Novelli S, et al.
583		Patterns of infection and infection-related mortality in patients with steroid-
584		refractory acute graft versus host disease. Bone Marrow Transplant. 2017;52:107-
585		13. doi: 10.1038/bmt.2016.225.
586	39.	Piñana JL, Gómez MD, Pérez A, Madrid S, Balaguer-Roselló A, Giménez E, et
587		al. Community-acquired respiratory virus lower respiratory tract disease in
588		allogeneic stem cell transplantation recipient: Risk factors and mortality from
589		pulmonary virus-bacterial mixed infections. Transpl Infect Dis. 2018
590		Aug;20(4):e12926. doi: 10.1111/tid.12926.
591	40.	Akhmedov M, Wais V, Sala E, Neagoie A, Nguyen TM, Gantner A, et al.
592		Respiratory syncytial virus and human metapneumovirus after allogeneic
593		hematopoietic stem cell transplantation: Impact of the immunodeficiency scoring
594		index, viral load, and ribavirin treatment on the outcomes. Transpl Infect Dis.
595		2020 Aug;22(4):e13276. doi: 10.1111/tid.13276.
596	41.	Ljungman P, de la Camara R, Mikulska M, Tridello G, Aguado B, Zahrani MA,
597		et al. COVID-19 and stem cell transplantation; results from an EBMT and GETH
598		multicenter prospective survey. Leukemia. 2021 Oct;35(10):2885-2894. doi:
599		10.1038/s41375-021-01302-5.
600	42.	Tzannou I., Nicholas S., Misra A., Katari U., Orange J., Vera J., et al., Adoptive
601		T-cell therapy to prevent and treat human metapneumovirus (hMPV) infections
602		post hematopoietic stem cell transplant (HSCT) BMT tandem meeting, Biol.
603		Blood Marrow Transplant. (2015) S170.
604	43.	A. Hofmeyr, L. Dunlop, S. Ling, E. Fiakos, M. Maley, Ribavirin treatment for
605		human metapneumovirus and methicillin-resistant Staphylococcus aureus co-
606		infection in adult haematological malignancy, Clin. Microbiol. Infect. 17 (2011)
607		S812.
608	44.	Shahda S., Carlos W.G., Kiel P.J., Khan B.A., Hage C.A., The human
609		metapneumovirus: a case series and review of the literature, Transpl. Infect. Dis.
610		13 (2011) 324–328.
611	45.	Shachor-Meyouhas Y., Ben-Barak A., Kassis I., Treatment with oral ribavirin and
612		IVIG of severe human metapneumovirus pneumonia (HMPV) in immune
613		compromised child, Pediatr. Blood Cancer 57 (2011) 350-351.
614	46.	Hoppe BP, de Jongh E, Griffioen-Keijzer A, Zijlstra-Baalbergen JM, IJzerman
615		EP, and Baboe F. Human metapneumovirus in haematopoietic stem cell
616		transplantation recipients: a case series and review of the diagnostic and
617		therapeutic approach. Neth. J. Med. 2016. 74, 336–341.
618	47.	Pasikhova Y, Hayne J, and Baluch A. Oral Ribavirin for the Treatment of
619		Respiratory Syncytial Virus (RSV) and Human Metapneumovirus (hMPV)
620		Infections in Hematology Patients and Stem Cell Transplant (SCT) Recipients at
621		a Nci-Designated Cancer Center. Biol. Blood Marrow Transplant. 2018. 24: S383.
622		doi: 10.1016/j.bbmt.2017.12.471.
623	48.	Piñana JL, Gómez MD, Montoro J, Lorenzo I, Pérez A, Giménez E, et al.
624		Incidence, risk factors, and outcome of pulmonary invasive fungal disease after
625		respiratory virus infection in allogeneic hematopoietic stem cell transplantation

626	recipients. Transpl Infect Dis. 2019 Oct;21(5):e13158. doi: 10.1111/tid.13158.
627	Epub 2019 Sep 3. PMID: 31402532; PMCID: PMC7169787.

TABLES AND FIGURES

Table 1. Patient and transplant characteristics (n= 428).

Characteristics	Whole cohort (n=428)	Not treated* (n=393)	Treated with ribavirin* (n=35)	P Value*
Age at allo-HCT (years), median (range)				
• < 16 years, n (%)	27 (6.3)	24 (6.1)	3 (8.6)	0.5
• ≥16-year, n (%)	400 (93.5)	368 (93.6)	32 (91.4)	
Missing	1 (0.2)	1 (0.3)	0 (0.0)	
Male, n (%)	247 (57.7)	227 (57.8)	20 (57.1)	0.9
Baseline disease, n (%)			· · · ·	
AL/MDS/MPN	284 (66.4)	259 (65.9)	25 (71.4)	1
Chronic myeloid leukemia	20 (4.7)	19 (4.8)	1 (2.9)	
Lymphoid disorders	73 (17.1)	68 (17.3)	5 (14.3)	
Plasma cell disorders	23 (5.4)	21 (5.3)	2 (5.7)	
Others	28 (6.5)	26 (6.6)	2 (5.7)	
Disease status at transplant, n (%)			· · · · · · · · · · · · · · · · · · ·	
• CR	248 (57.9)	229 (58.3)	19 (54.3)	0.9
• PR	36 (8.4)	33 (8.4)	3 (8.6)	
• Active disease at transplant	103 (24.1)	94 (23.9)	9 (25.7)	
Missing	41 (9.6)	37 (9.4)	4 (11.4)	
Prior Autologous-HSCT, n (%)				
• Yes	62 (14.4)	60 (15.2)	2 (5.7)	0.2
Missing	11 (11.3)	8 (8.9)	3 (42.9)	
Period of transplant, n (%)				
• 2019	18 (4.2)	16 (4.1)	2 (5.7)	0.4
• 2017-2018	106 (24.8)	94 (23.9)	12 (34.3)	
• 2015-2016	101 (23.6)	94 (23.9)	7 (20.0)	
• 2013-2014	54 (12.6)	48 (12.2)	6 (17.1)	
• Before 2013	148 (34.6)	140 (35.6)	8 (22.9)	
Missing	1 (0.2)	1 (0.3)	0 (0.0)	
Conditioning regimen, n (%)				
• RIC	221 (51.6)	204 (51.9)	17 (48.6)	0.9
• MAC	190 (44.4)	176 (44.8)	14 (40.0)	
Missing data	17 (4.0)	13 (3.3)	4 (11.4)	
Type of donor, n (%)			. ,	
HLA-identical sibling	144 (33.6)	134 (34.1)	10 (28.6)	0.9
Unrelated	188 (43.9)	170 (43.3)	18 (51.4)	0.5
Unrelated umbilical cord blood	23 (5.4)	21 (5.3)	2 (5.7)	
 Onrelated unblical cord blood Haploidentical family 	23 (3.4)	26 (6.6)	1 (2.9)	
	43 (10.0)	40 (10.2)	3 (8.6)	
	3 (0.7)			
Missing PB stem cell source, n (%)	3 (0.7)	2 (0.5)	1 (2.9)	
	336 (78 5)	311 (70 1)	25 (71 4)	0.2
• PB	336 (78.5)	311 (79.1)	25 (71.4)	0.2

missing	4 (0.9)	4 (1.0)	0 (0.0)	
HLA fully-matched, n (%)	262 (61.2)	248 (63.1)	14 (40.0)	0.7
missing	56 (13.1)	40 (10.2)	16 (45.7)	
ATG as a part of conditioning regimen, n (%)				
• Yes	86 (20.1)	75 (19.1)	11 (31.4)	0.06
Missing	9 (2.1)	7 (1.8)	2 (5.7)	
GvHD prophylaxis, n (%)				
Tacrolimus and sirolimus	33 (7.7)	32 (8.1)	1 (2.9)	0.4
Tacrolimus or CsA+MTX	166 (38.8)	155 (39.4)	11 (31.4)	
Post-Cy	67 (15.7)	62 (15.8)	5 (14.3)	
• CsA+PDN and Others	144 (33.6)	129 (32.8)	15 (42.9)	
Missing	18 (4.2)	15 (3.8)	3 (8.6)	
Number hMPV episodes, n (%)				
• 1	419 (97.9)	384 (97.7)	35 (100.0)	1
• >1	9 (2.1)	9 (2.3)	0	
Median time from allo-HCT to 1 st hMPV	373.5,	382,	183,	0.01
episode, days (range)	(-7 – 4766)	(-7-4766)	(9 – 1798)	0.01
Time from allo-HCT to 1 st hMPV episode				
(category)				
• until day +180	141 (32.9)	124 (31.6)	17 (48.6)	0.1
• 181 – 1 year	70 (16.4)	64 (16.3)	6 (17.1)	
● 1 – 2 years	99 (23.1)	92 (23.4)	7 (20.0)	
• after 2 years	118 (27.6)	113 (28.8)	5 (14.3)	
Death, n (%)	145 (33.9)	128 (32.6)	17 (48.6)	
Median time from hMPV to death, days	231,	254,	32,	
(range)	(0 - 2883)	(0 - 2883)	(2 - 454)	
Median F/U after last episode of hMPV, years (95% CI)	3.53, (3.22 – 3.96)	3.69, (3.17 – 4.1)	3.32 (2.78 – 3.78)	

Abbreviations: allo-HSCT, allogeneic hematopoietic stem cell transplantation; AL, acute leukemia; MDS,
myelodysplastic syndrome; MPN, myeloproliferative neoplasm; CR, complete remission; PR, partial
remission; HSCT, hematopoietic stem cell transplantation; RIC, reduced intensity conditioning; MAC,
myeloablative conditioning; PB, peripheral blood; HLA, human leucocyte antigen system; ATG, antithymocyte globulin; GvHD, graft versus host disease; Sir, sirolimus; Tac, tacrolimus; CsA, cyclosporine A;
MTX, methotrexate; Post-Cy, post-transplant cyclophosphamide; PDN, prednisone; hMPV, human
metapneumovirus; SCT, stem cell transplantation; F/U, follow-up; CI, confidence interval.

638

639 **Table 2.** Clinical and biological characteristics of hMPV infection episodes (n= 438) in allo-

640 HCT recipients according to upper or lower respiratory tract involvement.

	Only URTD (n =264)	Possible LRTD (n =131)	Proven LRTD (n=43)	P value
Transplant characteristics				
Age				
• <16 years	17 (6.4)	9 (6.9)	1 (2.3)	0.6
• ≥16 years	247 (93.6)	121 (92.4)	42 (97.7)	
Missing	0 (0.0)	1 (0.8)	0 (0.0)	
ATG as part of conditioning, n (%)				
• No	203 (76.9)	107 (81.7)	32 (74.4)	0.4
• Yes	57 (21.6)	18 (13.7)	11 (25.6)	
Missing	4 (1.5)	6 (4.6)	0 (0.0)	
GvHD prophylaxis, n (%)				
Tacrolimus and sirolimus	27 (10.2)	4 (3.1)	4 (9.3)	0.1

• Tacrolimus or CsA+MTX	105 (39.8)	47 (35.9)	16 (37.2)	
Post-Cy	43 (16.3)	23 (17.6)	5 (11.6)	
Others	77 (29.2)	50 (38.2)	18 (41.9)	
Missing	12 (4.5)	7 (5.3)	0 (0.0)	
HLA mismatch, n (%)				
Matched	166 (62.9)	75 (57.3)	27 (62.8)	0.6
Mismatch	73 (27.7)	33 (25.2)	8 (18.6)	
Missing	25 (9.5)	23 (17.6)	8 (18.6)	
Type of donor, n (%)				
HLA-identical sibling	87 (33.0)	41 (31.3)	17 (39.5)	0.5
Unrelated	121 (45.8)	53 (40.5)	18 (41.9)	
 Unrelated umbilical cord blood 	11 (4.2)	9 (6.9)	3 (7.0)	
Haplo-identical family	13 (4.9)	13 (9.9)	1 (2.3)	
• Other	31 (11.7)	13 (9.9)	4 (9.3)	
Missing	1 (0.4)	2 (1.5)	0 (0.0)	
Immunodeficiency Scoring Index, n (%) ‡				
$ANC < 0.5 \times 10^{9}/L$	9 (3.4)	14 (10.7)	6 (14.0)	0.001
Missing data	15 (5.7)	4 (3.1)	2 (4.7)	
ALC< 0.2×10^{9} /L	11 (4.2)	21 (16.0)	9 (20.9)	<0.000
Missing data	21 (8.0)	8 (6.1)	4 (9.3)	
	47.4,	52.3,	53.3,	0.02
Age at hMPV (years), median (range)	0.7 - 74.0	0.7 – 73.9	15.8 - 66.5	0.02
Age \geq 40 years	179 (67.8)	95 (72.5)	35 (81.4)	0.09
Missing data	1 (0.4)	0 (0.0)	0 (0.0)	
Myeloablative conditioning regimen				
MAC	122 (46.2)	59 (45.0)	13 (31.0)	0.2
RIC	132 (50.0)	64 (48.9)	30 (69.8)	
Missing data	10 (3.8)	8 (6.1)	0 (0.0)	
GvHD (acute or chronic)	98 (37.1)	55 (42.0)	24 (55.8)	0.04
Missing data	<i>y</i> (<i>s i i i j i i j i i j i j i j i j i j i j j j j j j j j j j</i>	55 (12:0)	21 (33.0)	0.01
Corticosteroids	91 (34.5)	68 (51.9)	21 (48.8)	0.001
Missing data	2 (0.8)	1 (0.8)	0 (0.0)	0.001
Recent or pre-engraftment allo-HSCT	14 (5.3)	20 (15.3)	9 (20.9)	< 0.000
			, (,	1
ISI, n (%)	155 (50 7)	70 (52 4)	20 (45 5)	0.000
• Low risk (0-2)	155 (58.7)	70 (53.4)	20 (45.5)	0.003
• Moderate risk (3-6)	84 (31.8)	39 (29.8)	15 (34.9)	
• High risk (7-12)	6 (2.3)	16 (12.2)	4 (9.3)	
Missing data Other characteristics ‡	19 (7.2)	6 (4.6)	4 (9.3)	
On IS, n (%)	162 (61.4)	89 (67.9)	34 (79.1)	0.03
$ALC < 0.1 \times 10^{9}/L, n (\%)$	6 (2.3)	12 (9.2)	5 (11.6)	0.03
				< 0.001
ALC < 0.5 × 10 ⁹ /L, n (%)	33 (12.5)	47 (35.9)	22 (51.2)	1
ALC < 1×10^{9} /L, n (%)	81 (30.7)	74 (56.5)	29 (67.4)	<0.000 1
Missing	21 (8.0)	8 (6.1)	4 (9.3)	
RVI characteristics and clinical consequences				
Ribavirin therapy, n (%)	8 (3.0)	18 (13.7)	10 (23.3)	<0.000 1
Co-infections, n (%)	63 (23.9)	41 (31.3)	28 (65.1)	<0.000 1
Hospital admission, n (%)	33 (12.5)	71 (54.2)	26 (60.5)	<0.000

Missing data	1 (0.4)	3 (2.3)	0 (0.0)	
ICU admission, n (%)	4 (1.5)	22 (16.8)	10 (23.3)	<0.000 1
Fever during hMPV, n (%)	105 (39.8)	89 (67.9)	33 (76.7)	<0.000 1
Missing data	8 (3.0)	5 (3.8)	2 (4.7)	
Prior BOS, n (%)	24 (9.1)	13 (9.9)	5 (11.6)	0.6
Missing data	1 (0.4)	0 (0.0)	0 (0.0)	
Oxygen support, n (%)	4 (1.5)	57 (43.5)	24 (55.8)	<0.000 1
Missing data	5 (1.9)	0 (0.0)	1 (2.3)	
Median time of dx after HSCT infusion, days (range)	422, (-7 – 4766)	305, (-7 - 4584)	237, (-2 – 2086)	0.03
Day + 30 overall mortality rate, n (%)	4 (2%)	16 (12%)	9 (21%)	<0.000 1
Day + 90 overall mortality rate, n (%)	10 (4%)	25 (19%)	16 (37%)	<0.000
Median time to death, days (95% CI)	385 (0-2483)	151 (3 – 2883)	39 (2 - 982)	
Median time to death, years (95% CI)	1.05 (0.0-6.80)	0.41 (0.008 - 7.89)	0.11 (0.005 – 2.69)	

641 Abbreviations. URTD, upper respiratory tract disease; LRTD, lower respiratory tract disease; ATG, anti-642 thymocyte globulin; GvHD, graft-versus-host disease; Sir, sirolimus; Tac, tacrolimus; CsA, cyclosporine 643 A; MTX, methotrexate; Post-Cy, post-transplant cyclophosphamide; HLA, human leukocyte antigen; ; 644 ANC, absolute neutrophil count; ALC, absolute lymphocyte count; hMPV, human metapneumovirus; 645 MAC, myeloablative conditioning, RIC, reduced intensity conditioning; ISI, immunodeficiency scoring 646 index; RVI, respiratory virus infection; IS, immunosuppressants; Allo-HSCT, allogeneic hematopoietic 647 stem cell transplantation; ICU, intensive care unit; BOS, bronchiolitis obliterans syndrome; dx, diagnostic; 648 SC, stem cells.

649 ‡ All variables were captured at the time of hMPV diagnosis.

650

651 **Table 3.** Multivariate analyses for different outcomes.

Outcome	Variables	OR/HR (95% C.I.)	P value
Hospital admission (n=361) ^Ω variables used for multivariate analysis:		Log. Regr. (OR)	
GVHD prophylaxis, Age \geq 40 years,	Active GvHD at the time of RVI	2.65 (1.57-4.48)	0.0003
Active GvHD at the time RVI, Co-infection,	$ALC < 0.5 \times 10^{9}/L$	1.83 (1.06-3.18)	0.03
$\label{eq:lasses} \begin{split} ALC &< 0.5 \times 10^9 / L \\ ANC &< 0.5 \times 10^9 / L \end{split}$	Corticosteroids \geq 30mg/d	2.37 (1.16-4.87)	0.02
BOS Corticosteroids $\geq 30 \text{mg/d}$			
Oxygen support (n=350) ^Ω variables used for multivariate analysis:		Log. Regr. (OR)	
GVHD prophylaxis On IS	$ALC < 0.5 \times 10^{9}/L$	4.52 (2.38-8.59)	< 0.0001
ANC $< 0.5 \times 10^{9}$ /L ALC $< 0.5 \times 10^{9}$ /L ¥	Age \geq 40 years	3.19 (1.42-7.16)	0.005
ALC< $0.2 \times 10^9/L $ ¥ ALC< $1 \times 10^9/L $ ¥ Age ≥ 40 years	Active GvHD at the time RVI	3.51 (1.83-6.73)	0.0002

Active GvHD at the time RVI			
	Co-infection Y/N	2,42(1,20,4,52)	0.01
Periengraftment	Co-infection 1/N	2.42 (1.29-4.52)	0.01
Allo-HSCT ≤ 6 months			
Corticosteroids vs No			
Prior BOS	CsA+PDN or Others vs tacrolimus	2.30 (1.19-4.44)	0.01
Co-infection			
post-Cy vs tacrolimus			
LRTD (n=365) ^Ω			
		Log. Regr. (OR)	
variables used for multivariate analysis:			0
GVHD prophylaxis	ALC		0.0003§
ALC	• $\leq 0.2 \times 10^{9}$ /L, vs ≥ 0.5	5.00 (2.08-12.00)	0.0003
On IS	, vs		0.0005
ANC < 0.5 × 109/L	• $0.2-0.5 \times 10^9/L$, vs ≥ 0.5	1.94 (1.11-3.38)	0.02
Active GvHD at the time RVI			
Periengraftment			0.0001
Allo-HSCT \leq 12 months or Allo-HSCT \leq 6	Corticosteroids \geq 30mg/d	4.06 (2.08-7.91)	< 0.0001
months			
LRTD NRM 30-day mortality $(n=155)^{\Omega}$			
		Cox Regr (HR)	
variables used for multivariate analysis:			
GVHD prophylaxis			
$ALC < 0.5 \times 10^9 / L \&$			
ALC< 0.2×10^{9} /L &			
ALC< 1×10^{9} /L &	$ALC < 0.2 \times 10^{9}/L$	4.45 (1.83-10.87)	0.001
Periengraftment		1.15 (1.05 10.07)	0.001
Allo-HSCT \leq 6 months or Allo-HSCT \leq			
100 days			
Corticosteroids* vs No			

652 Abbreviations: C.I., confidence interval; OR, odds ratio; HR, hazard ratio; Log. Regr, logistic regression

model; Cox Regr, cox regression model; GvHD, graft-versus-host disease; IS, immunosuppressants;

ANC, absolute neutrophil count; ALC, absolute lymphocyte count; BOS, bronchiolitis obliterans

655 syndrome; RVI, respiratory virus infection; Y, yes; N, no; LRTD, lower respiratory tract disease.

656 [§] overall comparison.

657 Ω number of patients with complete data on all the variables included in the MVA

658 ¥ We only include in the final multivariate analysis ALC <0.5 x 10^{9} /mL.

659 & We only include in the final multivariate analysis ALC $<0.2 \times 10^9$ /mL.

Table 4. Co-infection characteristics according to upper or lower respiratory tract involvement.

Co-infections	All HMPV cases (n=438)	HMPV URTD (n =264)	HMPV LRTD (n =174)
CARV co-infections, n			
• HCoV	21	10	11
• EvRh	36	20	16
• RSV	18	10	8
• HPiV	19	10	9
• ADV	9	6	3
• HiV	25	13	12
• HBoV	3	3	0

Bacterial co-infection, n

⁶⁶⁰

• Pseudomonas spp	6	1	5
Streptococcus pneumoniae	2	2	0
• Haemophilus influenza	2	0	2
• E. coli	3	0	3
• Stenotrophomonas maltophilia	1	0	1
• Staphylococcus aureus	1	0	1
• Enterococcus spp	3	0	3
• Others*	5	0	5
Fungal co-infection, n			
• Probable invasive fungal infection	19	4	15
• Proven invasive fungal infection	6	0	6
• Median time from hMPV to IFI, days	11	45	9
(range)	(0-82)	(7 - 79)	(0 - 82)
Aspergillosis spp	18	0	18
Candidemia spp	2	0	2
Pneumocystis jiroveci	4	0	4
Mucormycosis	1	0	1

Abbreviations, URTD, upper respiratory tract disease; LRTD, lower respiratory tract disease; CARV,
cummunity acquired respiratory virus; HCoV, human coronavirus; EvRh, Enterovirus/rhinovirus; RSV,
respiratory syncytial virus; HPiV, human parainfluenza virus; ADV, adenovirus; HiV, human influenza
virus, HBoV, human bocavirus; IFI, invasive fungal infection.

* Haemophilus parahaemolyticus, 1; Streptococcus alpha haemolytic, 1; Bordetella sp, 1; Coagulase negative Staphylococcus, 1; Lactobacillus rhamnosus + Enterococcus, 1.

669

670 **Table 5.** Characteristics of hMPV infection episodes according to ribavirin treatment.

	All hMPV cases (N=438)	Not treated (N=402)	Treated with ribavirin (N=36)	P value*
Number of Episodes, n (%)				0.8
• 1	428 (97.7)	393 (97.8)	35 (97.2)	
• 2	9 (2.1)	9 (2.2)	0 (0.0)	
• 3	1 (0.2)	0 (0.0)	1 (2.8)	
Only URTD, n (%)				< 0.0001
• Yes	264 (60.3)	256 (63.7)	8 (22.2)	
LRTD, n (%)				
• Possible	131 (29.9)	113 (28.1)	18 (50.0)	0.2
• Proven	43 (9.8)	33 (8.2)	10 (27.8)	0.2
Fever, n (%)				0.8
• Yes	227 (51.8)	209 (52.0)	18 (50.0)	
• Missing	15 (3.4)	11 (2.7)	4 (11.1)	
CRP in mg/dL, median (min-max)	20, 0 - 452	18, 0 – 452	44, 1 – 368	0.1
ISI (Low/Mod/High), n (%)				0.09
• Low	245 (55.9)	226 (56.2)	19 (52.8)	
• Moderate	138 (31.5)	130 (32.3)	8 (22.2)	
• High	26 (5.9)	19 (4.7)	7 (19.4)	
• Missing	29 (6.6)	27 (6.7)	2 (5.6)	

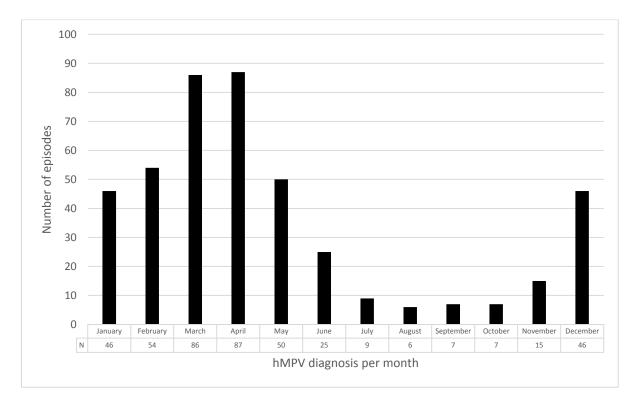
Hospitalization, n (%)				0.02
• Yes	130 (29.7)	113 (28.1)	17 (47.2)	
• Missing	4 (0.9)	4 (1.0)	0 (0.0)	
URTD RV co-infection, n (%)	106 (24.2)	93 (23.1)	13 (36.1)	0.09
LRTD co-infection, n (%)				
• Viral-Fungal	14 (3.2)	11 (2.7)	3 (8.3)	
• Viral-Bacterial	5 (1.1)	4 (1.0)	1 (2.8)	
• Viral-viral-bacterial	4 (0.9)	3 (0.7)	1 (2.8)	
• Viral-bacterial-fungal	1 (0.2)	1 (0.2)	0 (0.0)	
• Viral-viral	5 (1.1)	5 (1.1)	0 (0.0)	
• Viral-viral-fungal	1 (0.2)	0 (0.0)	1 (2.8)	
RSV co-infection	18 (4.1)	9 (2.2)	9 (25.0)	< 0.0001
HPIV co-infection	19 (4.3)	2 (5.6)	17 (4.2)	0.7
Oxygen support, n (%)				< 0.0001
• Yes	85 (19.4)	68 (16.9)	17 (47.2)	
• Missing	6 (1.4)	6 (1.5)	0 (0.0)	
ICU, n (%)	36 (8.2)	27 (6.7)	9 (25.0)	0.0004
On IS, n (%)	285 (65.1)	252 (62.7)	33 (91.7)	0.002
ALC< 0.1 × 109/L, n (%)	23 (5.3)	17 (4.2)	6 (16.7)	0.004
ALC< 0.2 × 109/L, n (%)	41 (9.4)	31 (7.7)	10 (27.8)	0.0003
ALC < 0.5 × 109/L, n (%)	102 (23.3)	84 (20.9)	18 (50.0)	0.0002
ALC < 1 × 109/L, n (%)	184 (42.0)	160 (39.8)	24 (66.7)	0.003
Corticosteroids	180 (41.1)	164 (40.8)	16 (44.4)	0.7
• Missing	3 (0.7)	3 (0.7)	0 (0.0)	
Periengraftment*	43 (9.8)	33 (8.2)	10 (27.8)	0.0005
Allo-HSCT ≤ 100 days	90 (20.5)	79 (19.7)	11 (30.6)	0.1
Allo-HSCT \leq 6 months	142 (32.4)	125 (31.1)	17 (47.2)	0.03
Allo-HSCT \leq 12 months	214 (48.9)	191 (47.5)	23 (63.9)	0.05
Allo-HSCT \leq 24 months	317 (72.4)	286 (71.1)	31 (86.1)	0.06
Day + 30 overall mortality, n (%)	29 (6.6)	21 (5.2)	8 (22.2)	0.0002
Day + 90 overall mortality, n (%)	51 (11.6)	39 (9.7)	12 (33.3)	< 0.0001

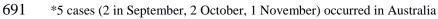
671 672 673 674 Abbreviations: URTD, upper respiratory tract disease; LRTD, lower respiratory tract disease; CRP, C-reactive protein; ISI, immunodeficiency score index; RSV, respiratory syncytial virus; HPiV, human parainfluenza virus; IS, immunosuppressants; ALC, absolute lymphocyte count; Allo-HSCT, allogeneic

hematopoietic stem cell transplantation.

675

676 Table 6. Propensity score analysis.


⁶⁷⁷


Variables used for propensity score matching	Propensity score matched			
Characteristics	Whole cohort (n=66)	Not treated (n=33)	Treated with ribavirin (n=33)	
ALC < 0.5 × 109/L, n (%)	31 (47)	15/31 (48)	16/31 (52)	
ISI (High), n (%)	13 (20)	7/13 (54)	6/13 (46)	
Allo-HSCT ≤ 180 days	33 (50)	17/33 (52)	16/33 (48)	
Oxygen support	32 (48)	16/32 (50)	16/32 (50)	
Hospitalization, n (%)	31 (47)	16/31 (52)	15/31 (48)	
ICU, n (%)	13 (20)	5/13 (38)	8/13 (62)	

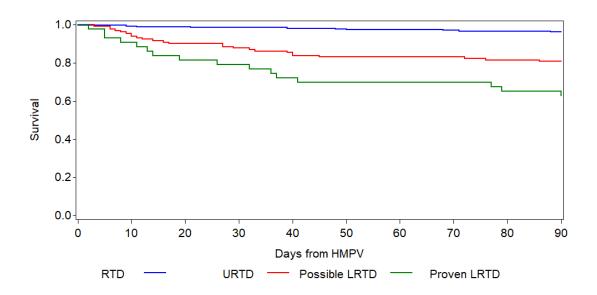
Survival outcome	Propensity score ma	679	
	Not treated (n=33)	Treated with ribavirin (n=33)	6 8 0 value 681
Day + 30 overall mortality, n (%)	15.2 (5.4-29.5)	21.2 (9.2-36.5)	0.5
Day + 90 overall mortality, n (%)	18.2 (7.2-33.1)	33.3 (17.9-49.6)	6862.2

Abbreviations: ALC, absolute lymphocyte count; LRTD, lower respiratory tract disease; ISI,
 immunodeficiency score index; Allo-HSCT, allogeneic hematopoietic stem cell transplantation; URTD,
 upper respiratory tract disease; ICU, intensive care unit.

- 686
- 687 Figure 1. Seasonality of human metapneumovirus infections in recipients of allogeneic
- 688 hematopoietic stem cell transplant. (From January to December*)
- 689

692

690


693

694

Figure 2. 90-day overall survival from hMPV detection according to URTD and possible

696 or proven LRTD.

678

Group	Episodes	Death	90-day OS (95% C.I.)	р
URTD	264	10	96.2 (93.0 - 97.9)	<0.0001
Possible LRTD	131	25	80.8 (72.9 - 86.6)	
Proven LRTD	43	16	62.8 (46.6 - 75.3)	

Upper and/or lower respiratory tract infection caused by human

metapneumovirus after allogeneic hematopoietic stem cell

transplantation

Jose Luis Piñana¹, Gloria Tridello², Aliénor Xhaard³, Lotus Wendel⁴, Juan Montoro⁵, Lourdes Vazquez⁶, Inmaculada Heras⁷, Per Ljungman⁸, Malgorzata Mikulska⁹, Urpu Salmenniemi¹⁰, Ariadna Perez¹, Nicolaus Kröger¹¹, J.J. Cornelissen¹², Elisa Sala¹³, Rodrigo Martino¹⁴, Claire Geurten¹⁵, Jenny Byrne¹⁶, Johan Maertens¹⁷, Tessa Kerre¹⁸, Murray Martin¹⁹, Maria Jesús Pascual²⁰, Moshe Yeshurun²¹, Jürgen Finke²², Andreas H. Groll²³, Peter J. Shaw²⁴, Nicole Blijlevens²⁵, William Arcese²⁶, Arnold Ganser²⁷, Maria Suarez-Lledo²⁸, Mohsen Alzahrani²⁹, Goda Choi³⁰, Edouard Forcade³¹, Annalisa Paviglianiti³², Carlos Solano^{1,43}, Jacek Wachowiak³³, Tsila Zuckerman³⁴, Peter Bader³⁵, Johannes Clausen³⁶, Jiri Mayer³⁷, Wilfried Schroyens³⁸, Elisabetta Metafuni³⁹, Nina Knelange⁴, Dina Averbuch⁴⁰, Rafael de la Camara^{41,42}.

On behalf of the Infectious Diseases Working Party of the European Society for Blood and Marrow Transplantation and Infectious Complications Subcommittee of the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group (GETH-TC)

- Hematology Department, Hospital Clinico Universitario de Valencia, Spain.
 Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Spain.
- 2. Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, Université Paris-Diderot, Paris, France.
- 4. EBMT Leiden Study Unit, Leiden, The Netherlands.
- Hematology división, Hospital universitario y politécnico La Fe, Valencia, Spain.
- 6. Hematology Department, Hospital Clinico Universitario de Salamanca, Spain.
- 7. Hematology Department, Hospital Morales Meseguer, Murcia, Spain.
- 8. Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital

Huddinge and Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.

- Division of Infectious Diseases, University of Genoa (DISSAL) and IRCCS Ospedale Policlinico San Martino, Genova Italy.
- Hematology Department, HUCH Comprehensive Cancer Center, Helsinki, Finland.
- Department for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf/Germany.
- 12. Hematology Department, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.
- Hematology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain.
- 15. Hematology Department, Birmingham Children`s Hospital, Birmingham, United Kingdom and Centre Hospitalier Universitaire de Liege, Belgique.
- Hematology Department, Nottingham University, Nottingham, United Kingdom.
- 17. Hematology Department, University Hospital Gasthuisberg, Leuven, Belgium.
- 18. Hematology Department, Ghent University Hospital, Gent, Belgium.
- Hematology Department, Leicester Royal Infirmary, Leicester, United Kingdom.
- 20. Hematology Department, Hospital Regional de Málaga, Malaga, Spain.
- 21. Institution of Hematology, Rabin medical Center, Petach-Tikva, Israel and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
- 22. University of Freiburg, Freiburg, Germany.
- 23. Infectious Disease Research Program, Department of Pediatric Hemtology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital, Muenster, Germany.
- 24. The Children's Hospital at Westmead, Sydney, Australia.
- 25. Nijmegen Medical Centre, Nijmegen, Netherlands.
- 26. Tor Vergata University of Rome, Rome, Italy.
- 27. Hannover Medical School, Hannover, Germany.
- 28. Hematology Department, Hospital Clinic, Barcelona, Spain.

- Department of Oncology, King Abdulaziz Medical City, Ministry of National Guard – Health Affaris, Riyadh, Saudi Arabia.
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
- Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, F-33000, Bordeaux, France.
- 32. Institut Català de Oncología Hospital Duran i Reynals, Barcelona, Spain.
- Department of Pediatric Oncology, Hematology and HSCT, University of Medical Sciences, Poznan, Poland.
- 34. Rambam Medical Center, Haifa, Israel.
- 35. Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Pediatrics and Adolescent Medicine, University Hospital, Goethe University, Frankfurt, Germany.
- Department of Internal Medicine I, Ordensklinikum Linz Elisabethinen, Johannes Kepler University, Linz, Austria
- 37. Masaryk University Hospital Brno, Brno, Czech Rep.
- 38. Antwerp University Hospital (UZA), Antwerp Edegem, Belgium.
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS. Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e EmatologiaGemelli IRCCS, Roma, Italy.
- 40. Faculty of Medicine, Hebrew University of Jerusalem; Hadassah Medical Center, Jerusalem, Israel.
- 41. Hematology Department, Hospital de la Princesa, Madrid, Spain.
- 42. Hematology Department, Hospital Universitario Sanitas La Zarzuela, Madrid, Spain.
- 43. Department of Medicine. University of Valencia, Spain.

Short Title: hMPV infection after allo-HSCT.

Brief summary: hMPV infection after allo-HSCT frequently involves the lower respiratory tract (40%). Pulmonary involvement was associated with substantial all-cause

mortality rate (14%) at day 30 after hMPV detection, particularly in those with lymphopenia.

Abstract word count: 284

Total word count: 3176

Key Words: human metapneumovirus, paramyxovirus, community-acquired respiratory virus, human Coronavirus, SARS-CoV-2, allogeneic hematopoietic stem cell transplantation, immunocompromised, upper and lower respiratory tract disease, immunodeficiency score index, multiplex PCR assay.

Financial disclosure statement

The authors report no potential conflicts of interest

Correspondence:

MD. Jose Luis Piñana Division of Clinical Hematology Hospital Clínico Universitario de Valencia Avda Blasco Ibañez, 17, 46010, Valencia, Spain Phone: +34 963862625 Fax: +34 963987820 E-mail: jlpinana@gmail.com