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Abstract

We identify three types of pointwise behaviour in the regularity of the (generalized)
Rosenblatt process. This extends to a non Gaussian setting previous results known
for the (fractional) Brownian motion. On this purpose, fine bounds on the increments
of the Rosenblatt process are needed. Our analysis is essentially based on various
wavelet methods.
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1 Introduction

Precise study of path behaviour, and in particular regularity, of stochastic processes
is a classical research field, initiated in the 1920s by the works of Wiener [47]. It
lies in between probability and (harmonic) analysis and a common strategy is to mix
probabilistic arguments with analytical tools. Pioneer works concerned Brownian motion.
Among them, one can cite Paley and Wiener’s expansion [48] using Fourier series, Lévy’s
representation [30] obtained with some techniques of interpolation theory or, more
recently, Kahane’s expansion [25] in the Schauder basis.

In the last decades, the emergence of wavelet analysis allowed to obtain series
expansions for many stochastic processes. Let ψ : R Ñ R be a smooth function
satisfying the admissibility condition [35]

ż

R

| pψpξq|

|ξ|
dξ ă 8, (1.1)
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where pψ is the Fourier transform of ψ. As such it generates an orthonormal basis of
L2pRq. More precisely, any function f P L2pRq can be decomposed as

f “
ÿ

jPZ

ÿ

kPZ

cj,kψp2
j ¨ ´kq, (1.2)

where

cj,k “ 2j
ż

R

fpxqψp2jx´ kq dx. (1.3)

It is noteworthy that the expansion (1.2) holds true in many function spaces. We refer to
the seminal books [15, 35, 34] for more details and proofs of these facts. Multifractal
analysis has demonstrated the efficiency of wavelet methods to study uniform and
pointwise Hölder regularity of functions both from a theoretical [9, 10, 13, 20, 21, 23]
and a practical point of view [2, 3, 11, 16, 19, 22, 37, 45, 46].

Now, let us consider a probability space pΩ,A,Pq and a real-valued stochastic process
X definitionined on it. If, for all ω P Ω the sample path t ÞÑ Xpt, ωq belongs to L2pRq,
one can apply expansion (1.2) to it. This way, one definitionines a sequence of random
wavelet coefficients pcj,kpωqqj,kPZ. For instance, if X “ BH is the fractional Brownian
motion of Hurst index H P p0, 1q and if ψ is a sufficiently regular wavelet, one has [36, 22]

BH “
ÿ

jPN

ÿ

kPZ

2´Hjξj,kψH`1{2p2
j ¨ ´kq `R, (1.4)

where pRpt, ¨qqtPR` is a process with alsmost surely C8 sample paths, pξj,kqjPN,kPZ is a se-
quence of independent N p0, 1q random variables and ψH`1{2 is a fractional antiderivative
of ψ, see Section 2 for a precise definitioninition.

In [18], Esser and Loosveldt undertook a systematic study of Gaussian wavelet series.
Thanks to (1.4), it applies in particular to the fractional Brownian motion and leads to
the following theorem.

Theorem 1.1. For all H P p0, 1q, there exists an event ΩH of probability 1 satisfying the
following assertions for all ω P ΩH and every non-empty interval I of R.

• For almost every t P I,

0 ă lim sup
sÑt

|BHpt, ωq ´BHps, ωq|

|t´ s|H
a

log log |t´ s|´1
ă `8.

Such points are called ordinary points.

• There exists a dense set of points t P I such that

0 ă lim sup
sÑt

|BHpt, ωq ´BHps, ωq|

|t´ s|H
a

log |t´ s|´1
ă `8.

Such points are called rapid points.

• There exists a dense set of points t P I such that

0 ă lim sup
sÑt

|BHpt, ωq ´BHps, ωq|

|t´ s|H
ă `8.

Such points are called slow points.

Note that Theorem 1.1 extends some well-known results of Kahane concerning the
Brownian motion [25]. The “ordinary”, “rapid” and “slow” terminology is inspired
by them. Let us justify it. From a measure-theoretical point of view, the modulus of
continuity x ÞÑ |x|H

a

log log |x|´1 is the most frequent among the points of sample paths.
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Thus, it is natural to refer it to ordinary. Now, |x|H
a

log log |x|´1 “ op|x|H
a

log |x|´1q

if x Ñ 0` and thus points for which x ÞÑ |x|H
a

log |x|´1 is the pointwise modulus of
continuity are refereed to rapid. On the other side, points for which x ÞÑ |x|H is the
pointwise modulus of continuity are referred to slow because |x|H “ op|x|H

a

log log |x|´1q

if xÑ 0`.
Now, let us turn to the stochastic process we will deal with in this paper. The Rosen-

blatt process appears naturally as a limit of normalized sums of long-range dependent
random variables [17]. Like the fractional Brownian motion, it belongs to the class of
Hermite processes, fractional Brownian motion being of order 1 while Rosenblatt process
is of order 2. Both are selfsimilar stochastic processes with stationary increments and
are characterized by a parameter H, called the Hurst exponent. However, unlike the
fractional Brownian motion, the Rosenblatt process is not Gaussian. Does it make a big
difference regarding ordinary, rapid and slow points? In other words, can Theorem 1.1
be extended to cover the non Gaussian Rosenblatt process?

For the last fifteen years the Rosenblatt process has received a significantly increasing
interest in both theoretical and practical lines of research. Due to its self-similarity, its
applications are numerous across a multitude of fields, including internet traffic [12] and
turbulence [40, 28]. From a statistical point of view, estimating the value of the Hurst
index H is important for practical applications and various estimators exist, see [8, 43].
Also, from a mathematical point of view the Rosenblatt process has received a lot of
interest since its inception in [39]. Its distribution, still not known in explicit form, was
studied first in [1] and more recently in [33] and [44].

In this paper, we even consider a generalization of the Rosenblatt process, as def-
initionined and studied in [32]. It depends on two parameters H1, H2 P p

1
2 , 1q which

are such that H1 ` H2 ą
3
2 . The generalized Rosenblatt process tRH1,H2pt, ¨qutPR` is

definitionined as a double Wiener-Itô integral of a kernel function KH1,H2 with respect
to a given Brownian motion. More precisely, consider a standard two-sided Brownian
motion B, and set

RH1,H2
pt, ¨q “

ż 1

R2

KH1,H2
pt, x1, x2q dBpx1qdBpx2q, (1.5)

where
ş1

R2 denotes integration over R2 excluding the diagonal. The kernel function
in (1.5) is expressed, for all pt, x1, x2q on R` ˆR2, by

KH1,H2pt, x1, x2q “
1

Γ
`

H1 ´
1
2

˘

Γ
`

H2 ´
1
2

˘

ż t

0

ps´ x1q
H1´

3
2

` ps´ x2q
H2´

3
2

` ds,

where Γ stands for the usual Gamma Euler function, and where for px, αq P R2, xα` :“

xα1r0,`8q Note that the (standard) Rosenblatt process is the process tRH,Hpt, ¨qutPR`
for H P p3{4, 1q. The generalized Rosenblatt process tRH1,H2pt, ¨qutPR` is non-Gaussian,
belongs to the second Wiener chaos, and has the following basic properties:

(1) Continuity: the trajectories of the Rosenblatt process RH1,H2
are continuous.

(2) Stationary increments: RH1,H2
has stationary increments; that is, the distribu-

tion of the process tRH1,H2
pt` s, ¨q ´RH1,H2

ps, ¨qutPR` does not depend on s ě 0.

(3) Self-similarity: RH1,H2 is self-similar with exponent H1 ` H2 ´ 1; that is, the
processes tRH1,H2pct, ¨qutPR` and

 

cH1`H2´1RH1,H2
pt, ¨q

(

tPR`
have the same distri-

bution for all c ą 0.

In [6], Ayache and Esmili presented a wavelet-type representation of the generalized
Rosenblatt process, very similar to the one given in [36] for fractional Brownian motion,
except for the use of integrals of two-dimensional wavelet bases. This representation
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is the starting point of this paper. It is one of our key tools to prove the following
Theorem 1.2 which is the main result of this paper.

Theorem 1.2. For all H1, H2 P p
1
2 , 1q such that H1`H2 ą

3
2 , there exists an event ΩH1,H2

of probability 1 satisfying the following assertions for all ω P ΩH1,H2 and every non-empty
interval I of R.

• For almost every t P I,

0 ă lim sup
sÑt

|RH1,H2
pt, ωq ´RH1,H2

ps, ωq|

|t´ s|H1`H2´1 log log |t´ s|´1
ă `8. (1.6)

Such points are called ordinary points.

• There exists a dense set of points t P I such that

0 ă lim sup
sÑt

|RH1,H2
pt, ωq ´RH1,H2

ps, ωq|

|t´ s|H1`H2´1 log |t´ s|´1
ă `8. (1.7)

Such points are called rapid points.

• There exists a dense set of points t P I such that

lim sup
sÑt

|RH1,H2
pt, ωq ´RH1,H2

ps, ωq|

|t´ s|H1`H2´1
ă `8. (1.8)

Such points are called slow points.

Theorem 1.2 shows in particular that slow, ordinary and rapid points are not specific
to Gaussian processes.

Remark 1.3. Let us compare Theorems 1.1 and 1.2. If X denotes both the fractional
Brownian motion or the generalized Rosenblatt process, we see that the asymptotic
behaviour of |Xpt, ωq ´Xps, ωq| is always comparable to a modulus of continuity of the
form |t ´ s|αθp|t ´ s|q, with α corresponding to the self-similarity exponent of X and θ

a potential logarithmic correction. For the ordinary points, θ is an iterated logarithm.
More precisely, for the fractional Brownian motion, we have θp|t´ s|q “

a

log log |t´ s|´1

while, for the generalized Rosenblatt process, θp|t ´ s|q “ log log |t ´ s|´1. The same
feature appears for the rapid points: in the case of the fractional Brownian motion
we have θp|t´ s|q “

a

log |t´ s|´1 and for the generalized Rosenblatt process we have
θp|t ´ s|q “ log |t ´ s|´1. Therefore, the only difference between the corresponding
logarithmic corrections is the square root that is used for the fractional Brownian motion
and not for the generalized Rosenblatt process. It comes from the estimates that can
be done on the tails of the distribution of random variables in various Wiener chaoses,
see Theorems 3.14 and 3.15 below. Concerning the slow points, there is no logarithmic
correction, θ “ 1 in both case. Unfortunately, contrary to the fractional Brownian motion,
we did not manage to show the positiveness of the limit in (1.8). In fact, we would
need to find an almost-sure uniform lower modulus of continuity for the generalized
Rosenblatt process and to be able to judge its optimality, which seems to be a difficult
task. This is discussed in details in Remark 5.1 below.

Our strategy to prove Theorem 1.2 is as follows. First, in Section 3 we derive
upper-bounds for the oscillations |RH1,H2pt, ωq ´RH1,H2ps, ωq| that are sharp enough to
imply the finiteness of the limits (1.6), (1.7) and (1.8). This is done by means of the
wavelet-type expansion given in [6], see Theorem 3.3 below. Then, in Section 4, we
give lower bounds for the so-called wavelet-leaders, see Section 2, of the generalized
Rosenblatt process on a given compactly supported wavelet basis. This will prove the
positiveness of the limits (1.6), (1.7). In particular, we use different bases depending
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on whether we deal with the finiteness of the limits in Theorem 1.2 or with their strict
positiveness. This is very different from [18] where the authors always work with the
same wavelet. The reason is that the expression (3.3) in Theorem 3.3 below is not a
wavelet series: it involves additional quantities. Therefore, standard arguments linking
wavelet coefficients and regularity of the associated functions can no longer be used.

There is a priori no obstacles to extend our results in Section 4 to any Hermite
process. On the contrary, extending the results of Section 3 does not seem obvious at all.
This is because a wavelet-type expansion of arbitrary Hermite process is still missing but
also because our strategy relies on arguments which are specific to the two-dimensional
feature of the Rosenblatt process, see Lemma 2.1 for instance.

Notations used through this paper are rather standard except, maybe, that if s, t are
two real numbers,

ş

rs,ts
stands for

şt

s
if s ď t and ´

şt

s
“

şs

t
otherwise.

2 Some important facts involving wavelets

In this section, we gather all the facts concerning wavelets that we will strongly use
all along this article. First, an immediate but important consequence of the admissibility
condition (1.1) is that, if the wavelet ψ P L1pRq, its first moment always vanishes, i.e.

ż

R

ψpxqdx “ 0. (2.1)

This condition is met for all the wavelets we consider in this paper.
First, while dealing with the upper bounds for the limits in Theorem 1.2, we will use a

wavelet-type expansion of the generalized Rosenblatt process. It is given in [6] by means
of Meyer wavelet: ψ belongs to the Schwartz class SpRq, and its Fourier transform
is compactly supported, see [29]. In particular, for all H P p1{2, 1q, ψH , the fractional

antiderivative xψH of order H ´ 1{2 of ψ is well-definitionined by means of its Fourier
transform as

xψHp0q “ 0 and xψHpξq “ piξq
´pH´ 1

2 q pψpξq, @ ξ ‰ 0. (2.2)

It also belongs to the Schwartz class SpRq, see [4, 6, 41] for instance. Moreover, some
standard facts from distribution theory [41, 4] give us the explicit formula

ψHptq “
1

Γ
`

H ´ 1
2

˘

ż

R

pt´ xq
H´ 3

2
` ψpxq dx.

From (2.2), we see that supppxψHq “ suppp pψq which is the key fact to establish the
following lemma, gathering facts already proved in [6].

Lemma 2.1. Let H1, H2 P p
1
2 , 1q. If pj1, j2, k1, k2q P Z

4 are such that |j1´ j2| ą 1, then the

integral Ik1,k2

j1,j2
:“

ş

R
ψH1

p2j1x ´ k1qψH2
p2j2x ´ k2q dx vanishes. Moreover, for all L ą 0,

there exists a constant CL ą 0 such that for all pj, k1, k2q P Z
3, we have

|Ik1,k2

j`1,j | “

ˇ

ˇ

ˇ

ˇ

2´j
ż

R

e´ipk1´2k2qξ
yψH1

pξqyψH2
p2ξq dξ

ˇ

ˇ

ˇ

ˇ

ď CL
2´j

p3` |k1 ´ 2k2|q
L
, (2.3)

|Ik1,k2

j,j | “

ˇ

ˇ

ˇ

ˇ

2´j
ż

R

e´ipk1´k2qξ
yψH1

pξqyψH2
pξq dξ

ˇ

ˇ

ˇ

ˇ

ď CL
2´j

p3` |k1 ´ k2|q
L

(2.4)

|Ik1,k2

j,j`1| “

ˇ

ˇ

ˇ

ˇ

2´j
ż

R

e´ip2k1´k2qξ
yψH1

p2ξqyψH2
pξq dξ

ˇ

ˇ

ˇ

ˇ

ď CL
2´j

p3` |2k1 ´ k2|q
L
. (2.5)

When dealing with the lower bounds for the limits in Theorem 1.2, we use Daubechies
compactly supported wavelets [14]. Note that, if supppΨq Ď r´N,N s, for a positive
integer N , then, for all pj, kq P N ˆ Z, by an obvious change of variable, the wavelet
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coefficient (1.3) can be written cj,k “
şN

´N
f
`

x`k
2j

˘

Ψpxq dx. But now, using the first
vanishing moment property (2.1) of Ψ, for all t P R, one can write

cj,k “

ż N

´N

ˆ

f

ˆ

x` k

2j

˙

´ f ptq

˙

Ψpxq dx. (2.6)

Since the value of this integral does not depend on t, equality (2.6) somehow means
that one can freely choose t, according to the context in which we use the wavelet
coefficients.

Since Ψ is compactly supported, Ψp2j ¨ ´kq is localized around the dyadic interval
λj,k :“

“

k
2j ,

k`1
2j

˘

and it is therefore common to index wavelets with these intervals. For
simplicity, we sometimes omit any references to the indices j and k for such intervals by
writing λ “ λj,k, and k “ spλq. Then Ψλ stands for the translated and dilated wavelet
Ψp2j ¨´kq, where k “ spλq and 2´j is the side length of the dyadic interval λ. Similarly, cλ
is the quantity cj,k. The notation Λj stands for the set of dyadic intervals λ of R with side
length 2´j . The unique dyadic interval from Λj containing the point t0 P R is denoted
λjpt0q. The set of dyadic intervals is Λ :“ YjPNΛj . Two dyadic intervals λ and λ1 are
adjacent if there exist j P N such that λ, λ1 P Λj and distpλ, λ1q “ 0. The set of dyadic
intervals adjacent to λ is denoted by 3λ. In this setting, one definitionines the wavelet
leader [21] of a function at t0 and of scale j by

djpt0q “ max
λP3λjpt0q

sup
λ1Ďλ

|c1λ|. (2.7)

Note that the dependence on t0 only comes from the dyadic intervals involved in (2.7).
Then, if supppΨq Ď r´N,N s, from (2.6), with t “ t0, one can write

djpt0q ď 2N sup
sPpt0´2´jpN`2q,t0`2´jpN`2qq

|fpsq ´ fpt0q|}ψ}L8 . (2.8)

When we study stochastic processes, the wavelet leaders are random variables
djpt, ωq. Inequality (2.8) with some easy computations implies that in order to obtain
the positiveness of the limit (1.6), it suffices to show that for all ω P ΩH1,H2

and all open
intervals I Ď R`, for almost every t P I,

0 ă lim sup
jÑ`8

djpt, ωq

2´jpH1`H2´1q logpjq
. (2.9)

Similarly, to prove the positiveness of the limit (1.7), we just have to show that for all
ω P ΩH1,H2

and all open intervals I Ď R`, there exists a dense set of points t P I such
that

0 ă lim sup
jÑ`8

djpt, ωq

2´jpH1`H2´1qj
. (2.10)

Remark 2.2. Let us mention that wavelet leaders can not be used to prove the finiteness
of the limits in Theorem 1.2 because they do not precisely characterize the pointwise
regularity, see for instance [27, 31] for more details.

3 Upper bounds for oscillations

Starting from now and until the end of the paper, we fix H1, H2 P p
1
2 , 1q such that

H1 `H2 ą
3
2 . In this section, we show the finiteness of the limits (1.6), (1.7) and (1.8).

Concerning the rapid points, we will in fact show a stronger result, obtaining an almost
sure uniform modulus of continuity for the generalized Rosenblatt process.

We use a wavelet-type expansion of the generalized Rosenblatt process. It relies on
the following random variables.
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Definition 3.1. For all pj1, j2, k1, k2q P Z
4, let εk1,k2

j1,j2
be the random variable defined by

2
j1`j2

2

ş1

R2 ψp2
j1x1 ´ k1qψp2

j2x2 ´ k2q dBpx1qdBpx2q.

Remark 3.2. For all pj1, j2, k1, k2q P Z
4, we have ([6, Proposition 2.3])

εk1,k2

j1,j2
“

ˆ

2
j1
2

ż

R

ψp2j1x´ k1qdBpxq

˙ˆ

2
j2
2

ż

R

ψp2j2x´ k2qdBpxq

˙

(3.1)

for j1 ‰ j2 or k1 ‰ k2, and

εk1,k1

j1,j1
“

ˆ

2
j1
2

ż

R

ψp2j1x´ k1qdBpxq

˙2

´ 1 (3.2)

for j1 “ j2 and k1 “ k2. Using the fact that p2j{2ψp2j ¨´kqqpj,kqPZ2 forms an orthonormal ba-
sis of L2pRq, and elementary properties of Wiener integral, we know that p2j{2

ş

R
ψp2jx´

kq dBpxqqpj,kqPZ2 is a family of iid N p0, 1q random variables. So the random variables

εk1,k2

j1,j2
and ε

k11,k
1
2

j11,j
1
2

are independent as long as tpj1, k1q, pj2, k2qu X tpj
1
1, k

1
1q, pj

1
2, k

1
2qu “ ∅.

The following theorem, proved in [6], gives the wavelet-type expansion we use in this
section.

Theorem 3.3. Let ψ be the Meyer wavelet and I be any compact interval of R`. Almost
surely, the random series

ÿ

pj1,j2,k1,k2qPZ4

2j1p1´H1q`j2p1´H2qεk1,k2

j1,j2

ż t

0

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx (3.3)

converges uniformly to RH1,H2
on the interval I.

Remark 3.4. Any open interval in R can be written as a countable union of dyadic
intervals pλj,kqjPN,kPZ. Then, to prove Theorem 1.2, it is sufficient to show that, for all
j P N, k P Z, there exist an event Ωj,k of probability 1 such that, for all ω P Ωj,k, almost
every t P λj,k is ordinary and there exist tr P λj,k which is rapid and ts P λj,k which is
slow. For notational simplicity, we will only do the proofs in full details for λ0,0 “ r0, 1q.
In fact, after dilatation and translation, our proofs hold true for any arbitrary dyadic
interval.

3.1 Rapid points

Let us first focus on rapid points. we prove that x ÞÑ |x|H1`H2´1 log |x|´1 is almost
surely a uniform modulus of continuity for RH1,H2 .

Proposition 3.5. There exists an event Ωrap of probability 1 such that for all ω P Ωrap

there exists CRpωq ą 0 such that, for all t, s P p0, 1q, we have

|RH1,H2
pt, ωq ´RH1,H2

ps, ωq| ď CRpωq|t´ s|
H1`H2´1 log |t´ s|´1. (3.4)

Let us set, for all s, t P p0, 1q and pj1, j2, k1, k2q P Z
4,

Ik1,k2

j1,j2
rt, ss “

ż

rt,ss

ψH1p2
j1x´ k1qψH2p2

j2x´ k2q dx.

All along this section, if s, t P p0, 1q are given, n always refers to the unique positive
integer such that 2´n´1 ă |t´ s| ď 2´n. Our proof consists in writing

|RH1,H2
pt, ¨qq ´RH1,H2

ps, ¨q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pj1,j2,k1,k2qPZ4

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(3.5)

and splitting the sum in the right-hand side into subsums determined according to the
position of j1 and j2 with respect to n. To bound from above some of these subsums the
following lemma is key.
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Lemma 3.6. [6, Lemma 2.4.] There exist an event Ω˚ of probability 1 and a positive
random variable C1 with finite moment of any order, such that, for all ω P Ω˚ and for
each pj1, j2, k1, k2q P Z

4,

|εk1,k2

j1,j2
pωq| ď C1pωq

a

logp3` |j1| ` |k1|q
a

logp3` |j2| ` |k2|q. (3.6)

In view of Lemma 3.6, we set Lk1,k2

j1,j2
“

a

logp3` |j1| ` |k1|q
a

logp3` |j2| ` |k2|q. As a
first step, Lemmata 3.7 to 3.12 are devoted to bound some deterministic series whose
general term is 2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
|Ik1,k2

j1,j2
rt, ss|.

This first lemma will be useful to bound the subsums in the right-hand side of (3.5)
for j1 ă n and j2 ă n.

Lemma 3.7. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q,
we have

ÿ

j1ăn

ÿ

j2ăn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2

ˇ

ˇ

ˇ
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ
ď C|t´ s|H1`H2´1 log |t´ s|´1.

Proof. Let us start by considering, for all pj1, j2q P Z2, the series

Rj1,j2 : t ÞÑ
ÿ

pk1,k2qPZ2

Lk1,k2

j1,j2

ż t

0

|ψH1
p2j1x´ k1qψH2

p2j2x´ k2q| dx and

R1j1,j2 : t ÞÑ
ÿ

pk1,k2qPZ2

Lk1,k2

j1,j2
|ψH1p2

j1t´ k1qψH2p2
j2t´ k2q|.

The fast decay of the fractional antiderivatives of ψ allows us to write, for all H P tH1, H2u

and for all x P R
|ψHpxq| ď Cp1` |x|q´4. (3.7)

Moreover, according to [6, Lemma 4.2] for all L ą 1 there exists C ą 0 such that, for all
j P Z and x P R

ÿ

kPZ

a

logp3` |j| ` kq

p3` |2jx´ k|qL
ď C

a

logp3` |j| ` 2j |x|q. (3.8)

Therefore, if K is any compact set of R`, if M “ supK , for all t P K, we have

|Rj1,j2ptq| ď C

ż t

0

a

logp3` |j1| ` 2j1 |x|q
a

logp3` |j2| ` 2j2 |x|q dx

ď CM
a

logp3` |j1| ` 2j1Mq
a

logp3` |j2| ` 2j2Mq.

The same arguments can be applied to R1j1,j2 , which means that both series converge
uniformly on any compact set of R`. From this, we can use mean value theorem: for all
pj1, j2q P Z

2 there is ξpj1, j2q P rs, ts such that

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2

ˇ

ˇ

ˇ
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ď |t´ s|
ÿ

pk1,k2qPZ2

Lk1,k2

j1,j2
|ψH1

p2j1ξ ´ k1qψH2
p2j2ξ ´ k2q|. (3.9)

Now, we use the fast decay of the fractional antiderivatives of ψ (3.7) and inequality (3.8)
to bound (3.9) from above: for all j1, j2 ă n,

ÿ

pk1,k2qPZ2

Lk1,k2

j1,j2
|ψH1

p2j1ξ ´ k1qψH2
p2j2ξ ´ k2q|
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ď C

˜

ÿ

k1PZ

a

logp3` |j1| ` |k1|q

p3` |2j1ξ ´ k1|q
4

¸˜

ÿ

k2PZ

a

logp3` |j2| ` |k2|q

p3` |2j2ξ ´ k2|q
4

¸

ď C
a

logp3` |j1| ` 2j1 |ξ|q
a

logp3` |j2| ` 2j2 |ξ|q

ď C
a

logp3` |j1| ` 2j1q
a

logp3` |j2| ` 2j2q,

as ξ P p0, 1q. Let us then remark that

ÿ

j1ăn

2j1p1´H1q
a

logp3` |j1| ` 2j1q

“
ÿ

j1ď0

2j1p1´H1q
a

logp3` |j1| ` 2j1q `
n´1
ÿ

j1“0

2j1p1´H1q
a

logp3` |j1| ` 2j1q

ď C `
n´1
ÿ

j1“0

2j1p1´H1q
a

logp3` |j1| ` 2j1q ď C2np1´H1q
?
n, (3.10)

as 1´H1 ą 0. The same can be applied to the sum over j2 and we finally get

ÿ

j1ăn

ÿ

j2ăn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2

ˇ

ˇ

ˇ
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ď C|t´ s|
ÿ

j1ăn

ÿ

j2ăn

2j1p1´H1q2j2p1´H2q
a

logp3` |j1| ` 2j1q
a

logp3` |j2| ` 2j2q

ď C|t´ s|2np2´H1´H2qn ď C|t´ s|H1`H2´1 log |t´ s|´1.

Lemmata 3.10 and 3.11 will help finding an upper bound for the subsums in the
right-hand side of (3.5) with j1 ă n ď j2 or j2 ă n ď j1 as well as the ones where
n ď j1 ď j2 and n ď j2 ď j1. Let us define the following partition of Z, which determines
the relative positions of rk22´j2 , pk2 ` 1q2´j2q and rs, ts.

Definition 3.8. For all j2 P N, we set

Zăj2pt, sq “ tk2 P Z : k22´j2 ă mintt, suu,

Ząj2pt, sq “ tk2 P Z : k22´j2 ą maxtt, suu,

and Zj2rt, ss “ ZzpZ
ă
j2pt, sq YZ

ą
j2pt, sqq.

Remark 3.9. Note that we have #Zj2rt, ss ď 2j2´n ` 1.

Let us also observe that for all a, b ą 0,

logp3` a` bq ď logp3` aq logp3` bq. (3.11)

Lemma 3.10. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
and j1 ď j2, the quantities

ÿ

k1PZ

ÿ

k2PZ
ă
j2
pt,sq

Lk1,k2

j1,j2

ˇ

ˇ

ˇ
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ
(3.12)

ÿ

k1PZ

ÿ

k2PZ
ą
j2
pt,sq

Lk1,k2

j1,j2

ˇ

ˇ

ˇ
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ
(3.13)

are bounded from above by C
a

logp3` |j1| ` 2j1q
a

logp3` |j2| ` 2j2q2´j2 .
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Proof. Let us bound (3.12), the proof for (3.13) being similar. From the fast decay of the
fractional antiderivatives of ψ (3.7), inequalities (3.8) and (3.11) for j1 ď j2, we have

(3.12) ď C

ż

rs,ts

˜

ÿ

k1PZ

a

logp3` |j1| ` |k1|q

p3` |2j1x´ k1|q
4

¸

¨

˝

ÿ

k2PZ
ă
j2
pt,sq

a

logp3` |j2| ` |k2|q

p3` |2j2x´ k2|q
4

˛

‚dx

ď C
a

logp3` |j1| ` 2j1q
a

logp3` |j2| ` 2j2q
ż

rs,ts

ÿ

k2PZ
ă
j2
pt,sq

a

logp3` |2j2x´ k2|q

p3` |2j2x´ k2|q
4

dx.

For all x P rs, ts the mapping y ÞÑ 2` 2j2x´ 2j2 mints, tu ` yq´3 is decreasing and thus

ż

rs,ts

ÿ

k2PZ
ă
j2
pt,sq

a

logp3` |2j2x´ k2|q

p3` |2j2x´ k2|q
4

dx

ď

ż

rs,ts

ÿ

k2PZ
ă
j2
pt,sq

dx

p3` 2j2x´ k2q
3

ď

ż

rs,ts

`8
ÿ

m“0

dx

p3` 2j2x´ 2j2 mints, tu `mq3

ď

ż

rs,ts

ż `8

0

dxdy

p2` 2j2x´ 2j2 mints, tu ` yq3
ď C2´j2 . (3.14)

This bound leads to (3.12) ď C
a

logp3` |j1| ` 2j1q
a

logp3` |j2| ` 2j2q2´j2 .

Lemma 3.11. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
and j1 ď j2, the quantities

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

Lk1,k2

j1,j2

ˇ

ˇ

ˇ

ˇ

ˇ

ż mints,tu

´8

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

Lk1,k2

j1,j2

ˇ

ˇ

ˇ

ˇ

ˇ

ż `8

maxts,tu

ψH1p2
j1x´ k1qψH2p2

j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

are bounded from above by C
a

logp3` |j1| ` 2j2q
a

logp3` |j2| ` 2j2q2´j2 .

Proof. Let us assume that s ď t, the argument for t ă s being similar. As j2 ě j1, we
have, by inequality (3.8),

ż s

´8

˜

ÿ

k1PZ

a

logp3` |j1| ` |k1|q

p3` |2j1x´ k1|q
4

¸

¨

˝

ÿ

k2PZj2 rt,ss

a

logp3` |j2| ` |k2|q

p3` |2j2x´ k2|q
4

˛

‚dx

ď CL

ż s

´8

a

logp3` |j1| ` 2j1 |x|q

¨

˝

ÿ

k2PZj2 rt,ss

a

logp3` |j2| ` |k2|q

p3` |2j2x´ k2|q
4

˛

‚dx

ď CL

ż s

´8

a

logp3` |j1| ` 2j2 |x|q

¨

˝

ÿ

k2PZj2 rt,ss

a

logp3` |j2| ` |k2|q

p3` |2j2x´ k2|q
4

˛

‚dx.

For all k2 P Zj2rt, ss, |k2| ď 2j2 , we have, using (3.11),

logp3` |j1| ` 2j2 |x|q ď logp3` |j1| ` 2j2q logp3` |2j2x´ k2|q and
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logp3` |j2| ` |k2|q ď logp3` j2 ` 2j2q logp3` |2j2x´ k2|q.

Thus, it only remains us to deal with
ż s

´8

ÿ

k2PZj2 rt,ss

dx

p3` |2j2x´ k2|q
3
.

But, for all x ď s and k2 P Zj2rt, ss, |2
j2x ´ k2| “ k2 ´ 2j2x and then, using the same

method as in (3.14), we get
ż s

´8

ÿ

k2PZj2 rt,ss

dx

p3` k2 ´ 2j2xq3
ď C2´j2 (3.15)

which finally leads to

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

Lk1,k2

j1,j2

ˇ

ˇ

ˇ

ˇ

ż s

´8

ψH1p2
j1x´ k1qψH2p2

j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ď C
a

logp3` |j1| ` 2j2q
a

logp3` j2 ` 2j2q2´j2 . (3.16)

We get in the same way,

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

Lk1,k2

j1,j2

ˇ

ˇ

ˇ

ˇ

ż `8

t

ψH1p2
j1x´ k1qψH2p2

j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ď C
a

logp3` |j1| ` 2j2q
a

logp3` j2 ` 2j2q2´j2 .

Next Lemma will be used to bound the subsums of (3.5) with j1 ă n ď j2 or j2 ă n ď

j1.

Lemma 3.12. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q,
the quantities

Răěnrt, ss :“
ÿ

j1ăn

ÿ

j2ěn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
|Ik1,k2

j1,j2
rt, ss|

Rěănrt, ss :“
ÿ

j1ěn

ÿ

j2ăn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
|Ik1,k2

j1,j2
rt, ss|

are bounded from above by C|t´ s|H1`H2´1 log |t´ s|´1.

Proof. As Răěnrt, ss and Rěănrt, ss can clearly be treated symmetrically, we restrict our
attention to Răěnrt, ss. One sees that

ÿ

j1ăn

ÿ

j2ěn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss

“
ÿ

j1ăn

ÿ

j2ěn

ÿ

k1PZ

ÿ

k2PZ
ă
j2
pt,sq

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss (3.17)

`
ÿ

j1ăn

ÿ

j2ěn

ÿ

k1PZ

ÿ

k2PZ
ą
j2
pt,sq

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss (3.18)

`
ÿ

j1ăn

ÿ

j2ěn

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss. (3.19)

For (3.17), we use Lemma 3.10 to get

|(3.17)| ď C
ÿ

j1ăn

2j1p1´H1q
a

logp3` |j1| ` 2j1q
ÿ

j2ěn

2´j2H2
a

logp3` |j2| ` 2j2q.
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The sum over over j1 is bounded just as in (3.10) while, for the sum over j2, we have
ÿ

j2ěn

2´j2H2
a

logp3` |j2| ` 2j2q ď
ÿ

j2ěn

2´j2H2
a

logp3` 2j2`1q

ď C2´nH2
?
n. (3.20)

We bound (3.18) in exactly the same way.
For (3.19), let us again assume s ď t, then we write

Ik1,k2

j1,j2
rt, ss “

ż

R

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx

´

ż s

´8

ψH1p2
j1x´ k1qψH2p2

j2x´ k2q dx

´

ż `8

t

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx. (3.21)

Since j1 ă n and j2 ě n, recalling Lemma 2.1, the sum

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

Lk1,k2

j1,j2

ż

R

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx,

vanishes except maybe when pj1, j2q “ pn ´ 1, nq. In this case, note that #Znrt, ss ď 2

and, for all k2 P Znrt, ss, |k2| ď 2n . Then, by Lemma 2.1 and inequality (3.8), we get

ÿ

k1PZ

ÿ

k2PZnrt,ss

Lk1,k2

n´1,n

ˇ

ˇ

ˇ
Ik1,k2

n´1,n

ˇ

ˇ

ˇ

ď C2´n
ÿ

k1PZ

ÿ

k2PZnrt,ss

a

logp3` n´ 1` |k1|q
a

logp3` n` |k2|

p3` |2k1 ´ k2|q
4

ď C2´n
ÿ

k2PZnrt,ss

c

logp3` n´ 1` |
k2

2
|q
a

logp3` n` |k2|q

ď C2´nn

Now, using Lemma 3.11, we also get
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ăn

ÿ

j2ěn

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2

ż s

´8

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

j1ăn

ÿ

j2ěn

2j1p1´H1q2´j2H2
a

logp3` |j1| ` 2j2q
a

logp3` |j2| ` 2j2q

ď
ÿ

j1ă0

ÿ

j2ěn

2j1p1´H1q2´j2H2
a

logp3` |j1|q logp3` 2j2`1q

`

n´1
ÿ

j1“0

ÿ

j2ěn

2j1p1´H1q2´j2H2
a

logp3` 2j2`1q
a

logp3` 2j2`1q

ď C2np1´H1´H2qn (3.22)

The series
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ăn

ÿ

j2ěn

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2

ż s

´8

ψH1p2
j1x´ k1qψH2p2

j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

is bounded in exactly the same way and the conclusion follows.
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It remains us to bound the subsums of (3.5) with j1 ě n and j2 ě n. For this, let us
define some random variables associated with dyadic intervals.

Definition 3.13. If λ is a dyadic interval of scale n, we define, for all j ě n, the
indexation sets

S0
j pλq :“ tpkp1q,Kp1q, kp2q,Kp2qq P Z4 :

kp1q

2j
,
Kp1q

2j
,
kp2q

2j
,
Kp2q

2j
P λu,

S1
j pλq :“ tpkp1q,Kp1q, kp2q,Kp2qq P Z4 :

kp1q

2j`1
,
Kp1q

2j`1
,
kp2q

2j
,
Kp2q

2j
P λu,

S2
j pλq :“ tpkp1q,Kp1q, kp2q,Kp2qq P Z4 :

kp1q

2j
,
Kp1q

2j
,
kp2q

2j`1
,
Kp2q

2j`1
P λu

and consider the random variables, for pkp1q,Kp1q, kp2q,Kp2qq P S0
j pλq,

0

j

ÿkp2q,Kp2q

kp1q,Kp1q
:“

ÿ

kp1qďk1ďKp1q

ÿ

kp2qďk2ďKp2q

εk1,k2

j,j Ik1,k2

j,j (3.23)

, for pkp1q,Kp1q, kp2q,Kp2qq P S1
j pλq,

1

j

ÿkp2q,Kp2q

kp1q,Kp1q
:“

ÿ

kp1qďk1ďKp1q

ÿ

kp2qďk2ďKp2q

εk1,k2

j`1,jI
k1,k2

j`1,j (3.24)

and, for pkp1q,Kp1q, kp2q,Kp2qq P S2
j pλq,

2

j

ÿkp2q,Kp2q

kp1q,Kp1q
:“

ÿ

kp1qďk1ďKp1q

ÿ

kp2qďk2ďKp2q

εk1,k2

j,j`1I
k1,k2

j,j`1. (3.25)

The idea behind the definition of these random variables is, as |t´ s| ď 2´n, s P 3λnptq

and thus any sum of the form
ÿ

k1PZjrt,ss

ÿ

k2PZ`rt,ss

εk1,k2

j,` Ik1,k2

j,` (3.26)

for ` P tj, j ` 1u can be written as the sum of random variables (3.23), (3.24) or (3.25)
for some pkp1q,Kp1q, kp2q,Kp2qq belonging to at most two S`jpλq p` P t0, 1, 2u) with λ P λnptq.
Indeed,

• if t and s both belong to λnptq then we only need to rewrite (3.26) in the form (3.23),
(3.24) or (3.25) for pkp1q,Kp1q, kp2q,Kp2qq P S`jpλnptqq;

• if s P λ with λ P 3λnptqzλnptq then we need to consider a first sum indexed by a
quadruple of S`jpλnptqq and a second indexed by a quadruple of S`jpλq.

The reason why we decide to put λ instead of 3λ in the definition of the sets S`jpλq is
that if, for all n P N and for all λ P Λn and j ě n, we define the random variable

Ξjpλq “ max
`Pt0,1,2u

sup
pkp1q,Kp1q,kp2q,Kp2qqPS`jpλqq

ˇ

ˇ

ˇ

ˇ

`

j

ÿkp2q,Kp2q

kp1q,Kp1q

ˇ

ˇ

ˇ

ˇ

›

›

›

›

`

j

ÿkp2q,Kp2q

kp1q,Kp1q

›

›

›

›

L2pΩq

, (3.27)

we want Ξjpλq to be independent of Ξjpλ
1q as long as λ X λ1 “ ∅. Moreover, from

the definitions of the random variables (3.24), (3.23) and (3.25), the remarks below
Theorem 3.3 and the explicit expressions (2.3), (2.4) and (2.5), the law of Ξjpλq does not
depend on λ P Λn but only on j ´ n.
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

Let us remind the reader that the first order Wiener chaos (with respect to Brownian
motion B) is the closed linear subspace of L2pΩq consisting of random variables of
type

ş

R
fpxq dBpxq, for f P L2pRq. The second order Wiener chaos is the closed linear

subspace of L2pΩq consisting of random variables of type
ş1

R2 fpx, yq dBpxqdBpyq, for
f P L2pR2q. Fractional Brownian motion belongs to first order Wiener chaos while the
(generalized) Rosenblatt process belongs to the second order Wiener chaos. The key
results to estimate the random variables Ξj are [24, Theorem 6.7 and Theorem 6.12]
that we recall here.

Theorem 3.14. There exists a strictly positive universal deterministic constant
‹

C such
that, for every random variable X belonging to the second order Wiener chaos and for

each real number y ě 2, one has Pp|X| ě y}X}L2pΩqq ď expp´
‹

Cyq.

Theorem 3.15. If X is a random variable belonging to the second order Wiener chaos,
there exist a, b, y0 ą 0 such that, for all y ě y0, one has expp´ayq ď Pp|X| ě yq ď

expp´byq.

Remark 3.16. As stated in [24], the constants a, b in Theorem 3.15 are not universal
and depend on the law of X. Note that b can be recovered from Theorem 3.14 and thus
is universal on the unit sphere in L2pΩq.

Lemma 3.17. There exists a deterministic constant C ą 0 such that, for all n P N,
λ P Λn, j ě n, ` P t0, 1, 2u and pkp1q,Kp1q, kp2q,Kp2qq P S`jpλq, we have

›

›

›

›

`

j

ÿkp2q,Kp2q

kp1q,Kp1q

›

›

›

›

L2pΩq

ď C2
´j´n

2 .

Proof. Following an idea from [6, Lemma 2.21], we write

›

›

›

›

`

j

ÿkp2q,Kp2q

kp1q,Kp1q

›

›

›

›

L2pΩq

ď
ÿ

RPtă,ą,“u

›

›

›

›

›

›

`

j

ÿkp2q,Kp2q

kp1q,Kp1q

R

›

›

›

›

›

›

L2pΩq

where
`

j

ÿkp2q,Kp2q

kp1q,Kp1qR
is the subsum of (3.24), (3.23) or (3.25) in which k1Rk2. By doing so,

we make sure that two random variables εk1,k2

j1,j2
and ε

k11,k
1
2

j11,j
1
2

appearing in this subsum are

uncorrelated except when pk1, k2q “ pk
1
1, k

1
2q. Then from Lemma 2.1, we have for ` “ 0

(the argument being the same for ` “ 1 or ` “ 2), for all R P tă,ą,“u,

›

›

›

›

›

›

`

j

ÿkp2q,Kp2q

kp1q,Kp1q

R

›

›

›

›

›

›

2

L2pΩq

“
ÿ

kp1qďk1ďKp1q

ÿ

kp2qďk2ďKp2q,k1Rk2

Erpεk1,k2

j,j q2spIk1,k2

j,j q2

ď
ÿ

kp1qďk1ďKp1q

ÿ

k2PZ

2´2j

p3` |k1 ´ k2|q
8
.

Since #tk1 P Z : kp1q ď k1 ď Kp1qu ď 2j´n, we conclude that

›

›

›

›

`

j

ÿkp2q,Kp2q

kp1q,Kp1q

›

›

›

›

L2pΩq

ď C2
´j´n

2 . (3.28)

Lemma 3.18. There exist an event rΩ of probability 1 and a positive random variable C2

with finite moment of any order such that, on rΩ

@n P N, @λ Ď r0, 1s, λ P Λn, @j ě n, Ξjpλq ď C2 pj ´ n` 1qn. (3.29)
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

Proof. Let us take θ ą 0 and consider, for all n P N the event

An :“ t@λ Ď r0, 1s, λ P Λn, @j ě n, Ξjpλq ď θpj ´ n` 1qnu .

If Acn stands for the complementary set of An in Ω, we have, of course,

PpAcnq “ PpDλ Ď r0, 1s, λ P Λn : Dj ě n s. t. Ξjpλq ě θpj ´ n` 1qnq.

But, for all λ Ď r0, 1s, λ P Λn, j ě n, ` P t0, 1, 2u and pkp1q,Kp1q, kp2q,Kp2qq P S`jpλq we have,
by Theorem 3.14, if θ ě 2,

P

¨

˚

˚

˚

˝

ˇ

ˇ

ˇ

ˇ

`

j

ÿkp2q,Kp2q

kp1q,Kp1q

ˇ

ˇ

ˇ

ˇ

›

›

›

›

`

j

ÿkp2q,Kp2q

kp1q,Kp1q

›

›

›

›

L2pΩq

ě θpj ´ n` 1qn

˛

‹

‹

‹

‚

ď expp´
‹

Cθpj ´ n` 1qnq.

As, for all j ě n, #S`jpλq ď 24pj´nq and #tλ Ď r0, 1s : λ P Λnu “ 2n, we get

PpAcnq ď C2n
ÿ

jěn

24pj´nq expp´
‹

Cθpj ´ n` 1qnq

ď C2n expp´
‹

Cθnq
ÿ

jěn

24pj´nq expp´
‹

Cθpj ´ nqq

for a deterministic constant C ą 0. Therefore, if we take θ ą 4 logp2q{
‹

C, the conclusion
follows from the Borel-Cantelli Lemma.

Lemma 3.19. Let Ω˚ and rΩ be the events of probability 1 given by Lemmata 3.6 and 3.18
respectively. There exists a positive random variable C3 with finite moment of any order
such that, on Ω˚ X rΩ, for all t, s P p0, 1q the random variable

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ąn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(3.30)

is bounded from above by C3|t´ s|
H1`H2´1 log |t´ s|´1.

Proof. We start by splitting the sums in (3.30) in two parts:

ÿ

j1ěn

ÿ

j2ěj1

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss and

ÿ

j2ěn

ÿ

j1ąj2

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss. (3.31)

We only focus on the first sums, as the argument is symmetric in j1 and j2. As in
Lemma 3.12 we write

ÿ

j1ěn

ÿ

j2ěj1

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss

“
ÿ

j1ěn

ÿ

j2ěj1

ÿ

k1PZ

ÿ

k2PZ
ă
j2
pt,sq

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss (3.32)

`
ÿ

j1ěn

ÿ

j2ěj1

ÿ

k1PZ

ÿ

k2PZ
ą
j2
pt,sq

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss (3.33)
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

`
ÿ

j1ěn

ÿ

j2ěj1

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss. (3.34)

To bound (3.32), we use inequality (3.6) and Lemma 3.10 to get

|(3.32)| ď CC1

ÿ

j1ěn

ÿ

j2ěj1

2j1p1´H1q2´j2H2
a

logp3` |j1| ` 2j1q
a

logp3` |j2| ` 2j2q

ď CC1

ÿ

j1ěn

2j1p1´H1´H2q
a

j1 ď CC12np1´H1´H2qn,

by applying twice inequality (3.20). The sum (3.33) is bounded in exactly the same way.
To bound (3.34), we use once again the equality (3.21). First we have, by inequal-

ity (3.6) and Lemma 3.11,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ěj1

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2

ż s

´8

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CC1

ÿ

j1ěn

ÿ

j2ěj1

2j1p1´H1q2´j2H2
a

logp3` |j1| ` 2j2q
a

logp3` |j2| ` 2j2q

ď CC12np1´H1´H2qn. (3.35)

We bound
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ěj1

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2

ż `8

t

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

in the same way.
It only remains to find an estimate for

ÿ

j1ěn

ÿ

j2ěj1

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2

and thus, recalling Lemma 2.1, we reduce the problem to first bound, for j ě n and
` P tj, j ` 1u, the sums

ÿ

k1PZ
ă
j pt,sq

ÿ

k2PZ`rt,ss

εk1,k2

j,` Ik1,k2

j,` , (3.36)

ÿ

k1PZ
ą
j pt,sq

ÿ

k2PZ`rt,ss

εk1,k2

j,` Ik1,k2

j,` , (3.37)

ÿ

k1PZjrt,ss

ÿ

k2PZ`rt,ss

εk1,k2

j,` Ik1,k2

j,` (3.38)

on Ω˚ X rΩ. Let us consider (3.36) with ` “ j, the argument for ` “ j ` 1 and (3.37) being
similar. Using again Lemmata 2.1 and 3.6, we have on Ω˚ X rΩ, since for all k2 P Zjrt, ss,
|k2| ď 2j , for j ě n,

|(3.36)| ď CC1

ÿ

k1PZ
ă
j pt,sq

ÿ

k2PZjrt,ss

2´j

p3` |k1 ´ k2|q
4

a

logp3` j ` |k1|q
a

logp3` j ` |k2|q

ď CC1

ÿ

k1PZ
ă
j pt,sq

ÿ

k2PZjrt,ss

2´j
?
j

p3` k2 ´ k1q
4

a

logp3` j ` |k1|q

ď CC1

ÿ

k1PZ
ă
j pt,sq

`8
ÿ

m“0

2´j
?
j

p3` 2j mints, tu `m´ k1q
4

a

logp3` j ` |k1|q
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

ď CC1

ÿ

k1PZ
ă
j pt,sq

2´j
a

j

ż `8

0

dy

p2` 2j mints, tu ` y ´ k1q
4

a

logp3` j ` |k1|q

ď CC12´j
a

j
ÿ

k1PZ
ă
j pt,sq

a

logp3` j ` |k1|q

p2` 2j mints, tu ´ k1q
3

ď CC12´j
a

j
a

logp3` j ` 2j mints, tuq ď CC12´jj. (3.39)

It follows that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jěn

2jp2´H1´H2q

j`1
ÿ

`“j

ÿ

k1PZ
ă
j pt,sq

ÿ

k2PZ`rt,ss

εk1,k2

j,` Ik1,k2

j,`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CC12np1´H1´H2qn

and, similarly,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jěn

2jp2´H1´H2q

j`1
ÿ

`“j

ÿ

k1PZ
ą
j pt,sq

ÿ

k2PZ`rt,ss

εk1,k2

j,` Ik1,k2

j,`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CC12np1´H1´H2qn.

The bound for (3.38) is obtained using (3.29) and (3.28) which lead to
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jěn

2jp2´H1´H2q

j`1
ÿ

`“j

ÿ

k1PZjrt,ss

ÿ

k2PZ`rt,ss

εk1,k2

j,` Ik1,k2

j,`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CC2

ÿ

jěn

2jp
3
2´H1´H2q2´

n
2 pj ´ n` 1qn

ď CC22np
3
2´H1´H2q2´

n
2 n

“ CC22np1´H1´H2qn,

as 3
2 ă H1 `H2.
Putting all of these together we get that (3.30) is bounded from above by

C maxtC1, C2u|t´ s|
H1`H2´1 log |t´ s|´1

on Ω˚ X rΩ.

We now prove the main result of this subsection.

Proof of Proposition 3.5. Let us consider ω in the event Ω˚ X rΩ of probability 1, where
Ω˚ and rΩ are given by Lemmata 3.6 and 3.18 respectively.

If t, s P p0, 1q, we write

|RH1,H2
pt, ωq ´RH1,H2

ps, ωq|

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ăn

ÿ

j2ăn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
pωqIk1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ăn

ÿ

j2ěn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
pωqIk1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ăn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
pωqIk1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ěn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
pωqIk1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
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The first sum is bounded from above by Lemmata 3.6 and 3.7, the second and the third
one are bounded from above by Lemmata 3.6 and 3.12 and the last one is bounded from
above by Lemma 3.19.

Remark 3.20. Starting from now and until the end of this section, one can focus on the
process

$

&

%

R1H1,H2
ptq “

`8
ÿ

j1“0

`8
ÿ

j2“0

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
r0, ¨s

,

.

-

because almost surely, it is the most irregular part of RH1,H2 . Indeed, using different
estimates obtained in this subsection, one can see that, almost surely, there exists a
constant C ą 0 such that, for all s, t P p0, 1q,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ă0

ÿ

j2ă0

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|t´ s|,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ă0

ÿ

j2ą0

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|t´ s|´H2 log |t´ s|´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ą0

ÿ

j2ă0

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|t´ s|´H1 log |t´ s|´1

and we conclude because H1 `H2 ´ 1 ă mintH1, H2u ă 1.

3.2 Ordinary points

Let us now focus on the almost sure finiteness of the limit (1.7) for almost every
point. The main idea behind our method is that wavelets which contribute the most in
|RH1,H2

pt, ¨q ´ RH1,H2
ps, ¨q| are the ones with associated dyadic intervals “close” to the

interval rt, ss. Thus, we aim at proving the following Proposition.

Proposition 3.21. There exists an event Ωord of probability 1 such that for all ω P Ωord,
for almost every t P p0, 1q,

lim sup
sÑt

|RH1,H2
pt, ωq ´RH1,H2

ps, ωq|

|t´ s|H1`H2´1 log log |t´ s|´1
ă `8.

As in [18], for all j P N, we denote by kjptq the unique integer such that t P
rkjptq2

´j , pkjptq ` 1q2´jq. In other words, kjptq “ spλjptqq. If t P p0, 1q is fixed, apply-

ing Lemma 3.6 to the sequence of random variables pξ
k11,k

1
2

j1,j2
qpj1,j2,k11,k

1
2qPZ

4 defined by

ξ
k11,k

1
2

j1,j2
“ ε

k11`kj1ptq,k
1
2`kj2ptq

j1,j2

we deduce the existence of Ω˚t , an event of probability 1, and Ct,1, a positive ran-
dom variable with finite moment of any order, such that, for all ω P Ω˚t and for each
pj1, j2, k1, k2q P Z

4, one has

|εk1,k2

j1,j2
pωq| ď Ct,1pωq

b

logp3` |j1| ` |k1 ´ kj1ptq|q
b

logp3` |j2| ` |k2 ´ kj2ptq|q. (3.40)

In view of this fact, let us set, for t P p0, 1q and pj1, j2, k1, k2q P N
2 ˆZ2

Lk1,k2

j1,j2
ptq “

b

logp3` j1 ` |k1 ´ kj1ptq|q
b

logp3` j2 ` |k2 ´ kj2ptq|q.
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

In what follows, we show how to modify Lemmata 3.7 to 3.19 from the previous subsec-
tion, using Lk1,k2

j1,j2
ptq instead of Lk1,k2

j1,j2
. Before all, we need the following Lemma which is

inspired by results from [18] that can be extended in our case.

Lemma 3.22. For all L ą 2 there exists a constant CL ą 0 such that, for all n P N and
t, s P p0, 1q such that 2´n´1 ă |t´ s| ď 2´n, for all x P rs, ts

1. For all 0 ď j ă n

ÿ

kPZ

a

logp3` j ` |k ´ kjptq|

p3` |2jx´ k|qL
ď CL

a

logp3` jq.

2. For all j ě n

ÿ

kPZ

a

logp3` j ` |k ´ kjptq|

p3` |2jx´ k|qL
ď CL

a

j ´ n` 1
a

logp3` jq.

Proof. For all j P N, k P Z and x P rs, ts, observe that

|k ´ kjptq| ď |k ´ 2jx| ` |2jx´ 2jt| ` |2jt´ kjptq| ď |k ´ 2jx| ` 2j´n ` 1. (3.41)

If 0 ď j ă n, then it follows from (3.41) that |k ´ kjptq| ď |2jx´ k| ` 2 which allow us
to write, thanks to inequality (3.11),

a

logp3` j ` |k ´ kjptq|

p3` |2jx´ k|q
ď
a

logp3` jq

a

logp5` |2jx´ k|q

|2jx´ k| ` 3

ď C
a

logp3` jq.

where C :“ supxě0

ˆ?
logp5`xq

x`3

˙

and we conclude using the boundedness of the function

ξ ÞÑ
ÿ

kPZ

1

p1` |ξ ´ k|qM
(3.42)

for all M ą 1.

Now, if j ě n, from (3.41) we get |k ´ kjptq| ď |2jx´ k| ` 2j´n`1 and thus, again by
inequality (3.11),

a

logp3` j ` |k ´ kjptq|

p3` |2jx´ k|q
ď
a

logp3` 2j´n`1q
a

logp3` jq

a

logp3` |2jx´ k|q

|2jx´ k| ` 3

ď C 1
a

j ´ n` 1
a

logp3` jq.

where C 1 :“
?

3 supxě0

ˆ?
logp3`xq

x`3

˙

and the conclusion comes again from the bounded-

ness of the function in (3.42) for all M ą 1

Lemma 3.23. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
we have

ÿ

0ďj1ăn

ÿ

0ďj2ăn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
ptq

ˇ

ˇ

ˇ
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ď C|t´ s|H1`H2´1 log log |t´ s|´1.
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

Proof. If ξ P rs, ts, we get from the fast decay of the fractional antiderivatives of ψ (3.7)
and inequality (3.40), for 0 ď j1, j2 ă n,

ÿ

pk1,k2qPZ2

Lk1,k2

j1,j2
ptq|ψH1

p2j1ξ ´ k1qψH2
p2j2ξ ´ k2q|

ď CC1

˜

ÿ

k1PZ

a

logp3` j1 ` |k1 ´ kj1ptq|q

p3` |2j1ξ ´ k1|q
4

¸˜

ÿ

k2PZ

a

logp3` j2 ` |k2 ´ kj2ptq|q

p3` |2j2ξ ´ k2|q
4

¸

.

These last two sums are bounded by the first point of Lemma 3.22. Using

n´1
ÿ

j1“0

2j1p1´H1q
a

logp3` j1q ď C2np1´H1q
a

logpnq (3.43)

instead of (3.10), we conclude, just as in Lemma 3.7, that the desired inequality holds.

Lemma 3.24. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
and 0 ď j1 ă n ď j2, the quantities

ÿ

k1PZ

ÿ

k2PZ
ă
j2
pt,sq

Lk1,k2

j1,j2
ptq

ˇ

ˇ

ˇ
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ
(3.44)

ÿ

k1PZ

ÿ

k2PZ
ą
j2
pt,sq

Lk1,k2

j1,j2
ptq

ˇ

ˇ

ˇ
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ
(3.45)

are bounded from above by C
?
j2 ´ n` 1

a

logp3` j1q
a

logp3` j2q2
´j2 .

Proof. Let us prove the bound for (3.44), the argument for (3.45) being similar. We have,
by the first part of Lemma 3.22, for 0 ď j1 ă n ď j2,

(3.44) ď C
a

logp3` j1q

ż

rs,ts

ÿ

k2PZ
ă
j2
pt,sq

a

logp3` j2 ` |k2 ´ kj2ptq|q

p3` |2j2x´ k2|q
4

dx

and, as for all k2 P Z
ă
j2
pt, sq and x P rs, ts we have

|k2 ´ kj2ptq| ď |2
j2x´ k2| ` |kj2ptq ´ 2j2x| ď |2j2x´ k2| ` 2j2´n ` 1

and, by inequality (3.11),
b

logp3` j2 ` |k2 ´ kj2ptq|q ď C
a

j2 ´ n` 1
a

logp3` j2q
a

logp3` |2j2x´ k2|q

it just remains us to use the bound (3.14) to write

(3.44) ď C
a

j2 ´ n` 1
a

logp3` j1q
a

logp3` j2q2
´j2 . (3.46)

Lemma 3.25. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
and 0 ď j1 ă n ď j2, the quantities

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

Lk1,k2

j1,j2
ptq

ˇ

ˇ

ˇ

ˇ

ˇ

ż mints,tu

´8

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

(3.47)

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

Lk1,k2

j1,j2
ptq

ˇ

ˇ

ˇ

ˇ

ˇ

ż `8

maxts,tu

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

(3.48)

are bounded from above by C
a

logp3` j1q
a

logp3` j2q
?
j2 ´ n` 12´j2 .
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

Proof. Again we assume s ď t. First, using the fast decay of the fractional antiderivatives
of ψ (3.7), (3.47) is bounded from above by

ż s

´8

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

a

logp3` j1 ` |k1 ´ kj1ptq|q

p3` |2j1x´ k1|q
4

a

logp3` j2 ` |k2 ´ kj2ptq|q

p3` |2j2x´ k2|q
4

dx. (3.49)

Observe that, for all k1 P Z, k2 P Zj2rt, ss and x P p´8, ss, we have, as j1 ă n ď j2,

|2j1x´ kj1ptq| ď |2
j1x´ 2j1´j2k2| ` |2

j1´j2k2 ´ 2j1t| ` |2j1t´ kj1ptq|

ď |2j2x´ k2| ` 2

and therefore |k1 ´ kj1ptq| ď |2
j1x´ k1| ` |2

j2x´ k2| ` 2 while |k2 ´ kj2ptq| ď |k2 ´ 2j2t| `

|2j2t´ kj2ptq| ď 2j2´n` 1. It allows to write, thanks to inequality (3.11), the boundedness
of the function (3.42) and inequality (3.15)

|(3.49)| ď C
a

logp3` j1q
a

logp3` j2q
a

j2 ´ n` 1

ż s

´8

ÿ

k2PZj2 rt,ss

dx

p3` |2j2x´ k2|q
3

ď C
a

logp3` j1q
a

logp3` j2q
a

j2 ´ n` 12´j2 .

We bound the second sums in the same way.

Lemma 3.26. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q,
the quantities

ÿ

0ďj1ăn

ÿ

j2ěn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
ptq|Ik1,k2

j1,j2
rt, ss|

ÿ

j1ěn

ÿ

0ďj2ăn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qLk1,k2

j1,j2
ptq|Ik1,k2

j1,j2
rt, ss|

are bounded from above by C|t´ s|H1`H2´1 log log |t´ s|´1.

Proof. The proof is exactly the same as the one of Lemma 3.12 except that we use
Lemmata 3.24 and 3.25 instead of Lemmata 3.10 and 3.11 respectively and that we
conclude using again (3.43) instead of (3.10) and

`8
ÿ

j2“n

2´j2H2
a

j2 ´ n` 1
a

logp3` j2q ď C 12´nH2
a

logpnq (3.50)

instead of (3.20).

Lemma 3.27. There exists a deterministic constant C ą 0 such that, for all t, s P
p0, 1q and n ď j1 ď j2, the quantities (3.44) and (3.45) are bounded from above by
C
?
j2 ´ n` 1

?
j1 ´ n` 1

a

logp3` j1q
a

logp3` j2q2
´j2 .

Proof. The proof is exactly the same as for Lemma 3.24 except that, here, we use the
second part of Lemma 3.22 instead of the first one.

Lemma 3.28. There exists a deterministic constant C ą 0 such that, for all t, s P
p0, 1q and n ď j1 ď j2 the quantities (3.47) and (3.48) are bounded from above by
C
?
j1 ´ n` 1

?
j2 ´ n` 1

a

logp3` j1q
a

logp3` j2q2
´j2 .

Proof. The proof is exactly the same as for Lemma 3.25 except that, here, we use the
second part of Lemma 3.22 instead of the first one.
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

Just as we did for the rapid points, it remains us to bound the random variables Ξjpλq.
Here, we don’t want anymore to show the existence of an uniform modulus but only a
pointwise modulus of continuity at a fixed point of interest t. Therefore, we just have to
bound, for all n P N the random variables Ξjpλq for j ě n and λ P 3λnptq. We thus have
the following result.

Lemma 3.29. For all t P p0, 1q, there exist an event ĂΩt of probability 1 and a positive
random variable Ct,2 with finite moment of any order such that, on ĂΩt,

@n P N, @λ P 3λnptq, @j ě n, Ξjpλq ď Ct,2 pj ´ n` 1q logpnq. (3.51)

Proof. If t P p0, 1q is fixed and θ ą 0, let us define the event

Anptq “ t@λ P 3λnptq @j ě n, Ξjpλq ď θpj ´ n` 1q logpnqu.

Similarly to Lemma 3.18, we get

PpAnptq
cq ď C

ÿ

jěn

24pj´nq expp´
‹

Cθpj ´ n` 1q logpnqq

ď C expp´
‹

Cθ logpnqq
ÿ

jěn

24pj´nq expp´
‹

Cθpj ´ nqq,

for a determistic constant C ą 0. Therefore, if we take again θ ą 4 logp2q{
‹

C then
Borel-Cantelli Lemma implies the existence of an event ĂΩt of probability 1 and Ct,2 a

positive random variable of finite moment of any order such that, on ĂΩt, assertion (3.51)
holds.

Lemma 3.30. If t P p0, 1q, let Ω˚t be the event of probability 1 where inequality (3.40)
holds and ĂΩt be the event of probability 1 given by Lemma 3.29. There exists a positive
random variable Ct,3 with finite moment of any order such that, on Ω˚t X ĂΩt, for all
s P p0, 1q the random variable

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ąn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
Ik1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(3.52)

is bounded from above by Ct,3|t´ s|H1`H2´1 log |t´ s|´1.

Proof. Again, we use the split (3.31) and we only do the details for the first sum. We
deal with the series (3.32) and (3.33) in the same way that in Lemma 3.19 but using
inequality (3.40) and Lemmata 3.27 and 3.28 and finally inequality (3.50).

For (3.34), first, by Lemma 3.28 and inequality (3.40), we have, on Ω˚t XĂΩt
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ěj1

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2

ż s

´8

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CCt,1
ÿ

j1ěn

ÿ

j2ěj1

2j1p1´H1q2´j2H2
a

j1 ´ n` 1
a

j2 ´ n` 1
a

logp3` j1q
a

logp3` j2q

ď CC12np1´H1´H2q logpnq. (3.53)

We bound
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ěj1

ÿ

k1PZ

ÿ

k2PZj2 rt,ss

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2

ż s

´8

ψH1
p2j1x´ k1qψH2

p2j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

on Ω˚t XĂΩt exactly in the same way.
To finish the proof, again, we have to bound (3.36), (3.37) and (3.38) for ` P tj, j ` 1u

(with j ě n) on Ω˚t XĂΩt. For (3.36), in the case ` “ j, one can note that, for all k2 P Zjrt, ss,
|k2 ´ kjptq| ď 2j´n ` 1 and, for all k1 P Z

ă
j pt, sq, |k1 ´ kjptq| ď |2

j mintt, su ´ k1| ` 2j´n ` 1.

Using the same tricks as in (3.39), we get, on Ω˚t XĂΩt

|(3.36)| ď CCt,1pj ´ n` 1q logp3` jq2´j
ÿ

k1PZ
ă
j pt,sq

1

p2` |2j mints, tu ´ k1|q
3

ď Cpj ´ n` 1q logp3` jq2´j .

The bounds for (3.37) and in the case ` “ j ` 1 are obtained in the same way. Finally to
bound (3.38), we use (3.51) and (3.28) and get on Ω˚t XĂΩt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jěn

2jp2´H1´H2q

j`1
ÿ

`“j

ÿ

k1PZjrt,ss

ÿ

k2PZ`rt,ss

εk1,k2

j,` Ik1,k2

j,`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CCt,2
ÿ

jěn

2jp
3
2´H1´H2q2´

n
2 pj ´ n` 1q logpnq

ď CCt,22np1´H1´H2q logpnq.

We conclude that (3.52) is bounded from above by C maxtCt,1, Ct,2u|t´ s|
H1`H2´1 log |t´

s|´1 on Ω˚t XĂΩt.

We can now prove Proposition 3.21.

Proof of Proposition 3.21. Let us fix t P p0, 1q and consider ω P Ω˚t XĂΩt. For all s P p0, 1q,
we write1

|R1H1,H2
pt, ωq ´R1H1,H2

ps, ωq|

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ďj1ăn

ÿ

0ďj2ăn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
pωqIk1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ďj1ăn

ÿ

j2ěn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
pωqIk1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

0ďj2ăn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
pωqIk1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ěn

ÿ

pk1,k2qPZ2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
pωqIk1,k2

j1,j2
rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

We bound from above the first sum by inequality (3.40) and Lemma 3.23, the second and
the third sums by inequality (3.40) and Lemma 3.26 and the last sum by Lemma 3.30.

Using inequalities (3.50) and (3.53) and Remark 3.20, one can finally write that for
all t P p0, 1q, for all ω in the event of probability 1 Ω˚t XĂΩt

lim sup
sÑt

|RH1,H2pt, ωq ´RH1,H2ps, ωq|

|t´ s|H1`H2´1 log log |t´ s|´1
ă `8

and we conclude by Fubini Theorem.

1We recall that R1H1,H2
is defined in Remark 3.20.
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Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

3.3 Slow points

In this section, we aim at showing that the generalized Rosenblatt process admits
slow points: we prove the following Proposition.

Proposition 3.31. There exists an event Ωslo of probability 1 such that for all ω P Ωslo

there exist t P p0, 1q such that

lim sup
sÑt

|RH1,H2
pt, ωq ´RH1,H2

ps, ωq|

|t´ s|H1`H2´1
ă `8. (3.54)

In [25], Kahane described a procedure to insure the existence of slow points for the
Brownian motion. This procedure was then generalized in [18] to fit for any arbitrary
fractional Brownian motion. It consists in showing that for any m ą 0, almost surely,
there exist µ ą 0 and t P p0, 1q such that, if one sets

Λ0
j ptq “ tλ P Λj : |spλptqq ´ spλq| ď 1u (3.55)

and, for all 1 ď l

Λljptq “ tλ P Λj , : 2mpl´1q ă |spλptqq ´ spλq| ď 2mlu, (3.56)

then, for all λ P Λljptq we have

|ελ| ď 2lµ, (3.57)

where ελ is the random variable 2
j
2

ş

R
ψλpxq dBpxq. In this procedure, if µ P N, for all

j, l P N0 and λ P Λj , λ Ď r0, 1s, we define

Λj,lpλq “ tλ
1 P Λj , : |spλq ´ spλ1q| ď 2mlu

and the random set

Sµj,l “ tλ
1 P Λj , : 2lµ ă |ελ1 | ď 2l`1µu.

Finally we consider the random set

Iµj “ tλ P Λj , λ Ď r0, 1s : @l P N0, Λj,lpλq X S
µ
j,l “ ∅u,

and show that almost surely, there exists µ P N such that

Sµlow “
č

jPN0

ď

λPIµj

λ ‰ ∅

which is equivalent to the fact that, for any J

Sµlow,J “
č

jďJ

ď

λPIµj

λ ‰ ∅

as pSµlow,JqJ is a decreasing sequence of compact sets. To do so, let us denote by 2Sµlow,J

the sets of dyadic intervals of scale J ` 1 obtained by cutting in two the remaining
intervals2 in Sµlow,J and remark that Sµlow,J`1 is obtained from 2Sµlow,J by removing the
dyadic intervals λ such that ΛJ`1,lpλq X S

µ
J`1,l ‰ ∅ for a l P N0. But now, if ξ „ N p0, 1q,

we set, for all such a l

plpµq “ Pp2
lµ ă |ξ| ď 2l`1µq.

2The interval rk2´j , pk ` 1q2´js is cut into rp2kq2´pj`1q, p2k ` 1q2´pj`1qs and rp2k ` 1q2´pj`1q, p2k `
2q2´pj`1qs.
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and note that, if N is the number of intervals of Sµlow,J , counting the number of intervals
in 2Sµlow,J X SµJ`1,l is a binomial random variable of parameter 2N and plpµq and this
number is thus bounded by

2Npplpµq ` pl ` 1q
a

plpµqp1´ plpµqqq

on an event of probability 1´ pl` 1q´2N´1. Therefore, to pass from Sµlow,J to Sµlow,J`1 we
remove at most

2N
`8
ÿ

l“0

p2ml`1 ` 1qpplpµq ` pl ` 1q
a

plpµqp1´ plpµqqq

intervals with probability greater than 1´N´1. But if µ is large enough, as plpµq is of

order e´p2
lµq2

2lµ
, one can make sure that this last term is bounded by N

2 . So, if Nµ
J is the

random variable counting the number of subintervals of Sµlow,J , we have

PpNµ
J`1 ě

3

2
Nµ
J |N

µ
J “ Nq ě 1´N´1

which leads to the recursive formula

PpNµ
J`1 ě p

3

2
qJ`1q ě p1´ p

2

3
qJqPpNµ

J ě p
3

2
qJq, @J P N0,

see [18, Lemma 3.6 and Theorem 3.7.]. Finally, we deduce

P
`

ď

µ

č

JPN0

pNµ
J ě 1q

˘

“ 1. (3.58)

Moreover, we can show that, in this case, Sµlow X p0, 1q ‰ ∅. If α ą 0, applying this
procedure with 1

m ă α gives us that any point t P Sµlow X p0, 1q is a slow point of the
fractional Brownian motion of exponent α.

From formulas (3.1) and (3.2), we see that this procedure is also useful to bound the
random variables appearing in the expansion (3.3) of the generalized Rosenblatt process.
But, from the proofs of Propositions 3.5 and 3.21 we know that this is not sufficient and
we also need to give a bound for the random variables Ξjpλq, for λ P 3λnptq, n P N and
j ě n. Such dyadic intervals are precisely the ones in the set Λn,0pλnptqq and this fact
forces us to consider the following modification of the procedure. For all j P N, if l ‰ 0,
the sets Sµj,l remain untouched as well as its associated probability plpµq while for l “ 0

we set
Sµj,0 “ tλ

1 P Λj , λ
1 Ď r0, 1s : Dj1 ě j Ξj1pλ

1q ą pj1 ´ j ` 1qµu,

with associated probability (which only depends on µ)

p0pµq “ PpDj
1 ě j Ξj1pλq ą pj

1 ´ j ` 1qµq.

As Ξj1pλ1q is independent of Ξj1pλ2q as long as λ1 X λ2 “ ∅, for all J P N, if N is again
the number of dyadic intervals of Sµlow,J , the number of such intervals in 2Sµlow,J X S

µ
J`1,0

is still a binomial random variable of parameter 2N and p0pµq. Therefore If µ is large
enough, using Theorems 3.14 and 3.15, one can still affirm

2N
`8
ÿ

l“0

p2ml`1 ` 1qpplpµq ` pl ` 1q
a

plpµqp1´ plpµqqq ď
N

2

and the end of the procedure is saved: equality (3.58) still holds. Now, if t P Sµlow X p0, 1q

we know that
@n P N, @λ P 3λnptq ,@j ě n ,Ξjpλq ď pj ´ n` 1qµ. (3.59)
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Let us remark that, as for all λ P Λn, |ε2
λ| ď 2Ξnpλq ` 1, we still have, in this case, for all

λ P 3λnptq, |ελ| ď Cµ, for a deterministic constant C ą 0.
Starting from now we take m such that 1{m ă mintH1, H2u and 2{m ă 1´H1 ´H2.
In order to use notations (3.55) and (3.56), here after λ1 (resp. λ2) will always stand

for the dyadic interval rk12´j1 , pk1 ` 1q2´j1q (resp. rk22´j2 , pk2 ` 1q2´j2q) and ψλ1
(resp.

ψλ2
) will be the associated antiderivative of wavelet ψH1

p2j1 ¨ ´k1q (resp. ψH2
p2j2 ¨ ´k2q)

and Iλ1,λ2
rt, ss will stand for Ik1,k2

j1,j2
rt, ss. Finally, ελ1,λ2

will stand for εk1,k2

j1,j2
. If t P p0, 1q, let

pyλptqqλΛ be the sequence defined by

yλptq “ 2l if λ P Λljptq.

Note that, if we apply the preceding procedure, we find Ωslo an event of probability 1

such that, for all ω P Ωslo, there exists µ for which Sµlow X p0, 1q ‰ ∅. Then, if t belong to
this set, we have, thanks to inequality (3.57) and equalities (3.1) and (3.2)

|ελ1,λ2
pωq| ď Cµ2yλ1

ptqyλ2
ptq, (3.60)

for a deterministic constant C ą 0. Again, we need to adapt the Lemmata from previous
sections with this alternative upper bound.

Lemma 3.32. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
we have

ÿ

0ďj1ăn

ÿ

0ďj2ăn

ÿ

λ1PΛj1 ,λ2PΛj2

2j1p1´H1q2j2p1´H2qyλ1
ptqyλ2

ptq |Iλ1,λ2
rt, ss|

ď C|t´ s|H1`H2´1.

Proof. If ξ P rs, ts and λ P λljptq, for 0 ď j ă n and l ě 1,

|2jξ ´ spλq| ě |spλptqq ´ spλq| ´ 2 ą 2mpl´1q ´ 2

and so, using the fast decay of the fractional antiderivatives of ψ (3.7) and the definition
of pyλqλPΛ, we get for 0 ď j1, j2 ă n

ÿ

λ1PΛj1 ,λ2PΛj2

yλ1
ptqyλ2

ptq|ψλ1
pξqψλ2

pξq|

“
ÿ

pl1,l2qPN2
0

ÿ

λ1Λ
l1
j1
ptq

ÿ

λ2Λ
l2
j2
ptq

yλ1ptqyλ2ptq|ψλ1pξqψλ2pξq|

ď C
ÿ

pl1,l2qPN0

ÿ

λ1Λ
l1
j1
ptq

ÿ

λ2Λ
l2
j2
ptq

2l1`l2

p3` |2j1ξ ´ k1|q
4p3` |2j2ξ ´ k2|q

4

ď C
ÿ

pl1,l2qPN0

ÿ

λ1Λ
l1
j1
ptq

ÿ

λ2Λ
l2
j2
ptq

2l1`l22´mpl1`l2q

p3` |2j1ξ ´ k1|q
3p3` |2j2ξ ´ k2|q

3

ď C
ÿ

k1PZ

1

p3` |2j1ξ ´ k1|q
3

ÿ

k2PZ

1

p3` |2j2ξ ´ k2|q
3
ď C. (3.61)

It leads, just as in Lemmata 3.7 and 3.23, to the desired estimate.

In what follows, we use these notations instead of the one given in Definition 3.8:

Λăj2pt, sq “ tλ2 P Λj2 : spλ2q P Z
ă
j2pt, squ,

Λąj2pt, sq “ tλ2 P Λj2 : spλ2q P Z
ą
j2pt, squ,

Λj2rt, ss “ tλ2 P Λj2 : spλ2q P Zj2rt, ssu.
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Lemma 3.33. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
and 0 ď j1 ă n ď j2, the quantities

ÿ

λ1PΛj1

ÿ

λ2PΛ
ă
j2
pt,sq

yλ1
ptqyλ2

ptq |Iλ1,λ2
rt, ss| (3.62)

ÿ

λ1PΛj1

ÿ

λ2PΛ
ą
j2
pt,sq

yλ1ptqyλ2ptq |Iλ1,λ2rt, ss| (3.63)

are bounded by C2
1
m pj2´nq2´j2 .

Proof. Again, we prove the bound for (3.62), the reasoning for (3.63) being similar. Let
us remark that, if j2 ě n x P rs, ts and λj2pxq P Λlj2ptq then, the construction and the
definition of pyλptqqλPΛ gives that

• l ď 1
m pj2 ´ nq, as |s´ t| ď 2´n,

• if λ P Λl2j2pxq then |yλ| ď 2l22l`1µ while, by definition, if l2 ě 1

3` |2j2x´ spλq| ě 2` 2mpl2´1q.

Therefore, if we set Dl
j2
ptq “

Ť

λPΛlj2
ptq λ, we have

(3.62) ď
ÿ

λ1PΛj1

ÿ

λ2PΛ
ă
j2
pt,sq

yλ1
ptqyλ2

ptq

ż

rs,ts

|ψλ1
pxqψλ2

pxq| dx

ď
ÿ

0ďlď 1
m pj2´nq

ÿ

λ1PΛj1

ÿ

λ2PΛ
ă
j2
pt,sq

yλ1
ptqyλ2

ptq

ż

Dlj2
ptq

|ψλ1
pxqψλ2

pxq| dx.

(3.64)

But, for all x P Dl
j2

, using the same method as in (3.61), but splitting the sums according

to the set Λl1j1pxq and Λl2j2pxq on which yλ1
ptqyλ2

ptq ď 2l`l1`l2`1 we get

ÿ

λ1PΛj1

ÿ

λ2PΛ
ă
j2
pt,sq

|ελ1,λ2
||ψλ1

pxqψλ2
pxq|

ď C2l`1
ÿ

λ1PΛj1

1

p3` |2j1x´ k1|q
3

ÿ

λ2PΛ
ă
j2
pt,sq

1

p3` |2j2x´ k2|q
3

ď C2l`1
ÿ

λ2PΛ
ă
j2
pt,sq

1

p3` |2j2x´ k2|q
3
.

(3.65)

Finally, using the techniques in (3.14), we get (3.62) ď C2
1
m pj2´nq2´j2 .

Lemma 3.34. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
and 0 ď j1 ă n ď j2, the quantities

ÿ

λ1PΛj1

ÿ

λ2PΛj2 rt,ss

yλ1ptqyλ2ptq

ˇ

ˇ

ˇ

ˇ

ˇ

ż mints,tu

´8

ψH1p2
j1x´ k1qψH2p2

j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

(3.66)

ÿ

λ1PΛj1

ÿ

λ2PΛj2 rt,ss

yλ1ptqyλ2ptq

ˇ

ˇ

ˇ

ˇ

ˇ

ż `8

maxts,tu

ψH1p2
j1x´ k1qψH2p2

j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

(3.67)

are bounded by C2
1
m pj2´nq2´j2 .
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Proof. Again, we assume s ď t. If x P p´8, ss is such that λj1pxq P Λlj1psq, we have, for

all λ1 P Λl1j1pxq and λ2 P Λj2rt, ss X Λl2j2psq (with j1 ă n ď j2q,

yλ1ptqyλ2ptq

p3` |2j1x´ k1|q
4p3` |2j2x´ k2|q

4
ď C

2
1
m pj2´nq`l`l1`l2`1µ2

p3` |2j1x´ k1|q
4p3` |2j2x´ k2|q

5

ď C
2

1
m pj2´nq`l`1

p3` |2j1x´ k1|q
3p3` |2j2x´ k2|q

4

ď C
2

1
m pj2´nq

p3` |2j1x´ k1|q
3p3` |2j2x´ k2|q

3

(3.68)

because 3 ` |2j2x ´ k2| “ 3 ` k2 ´ 2j2x ě 2 ` 2j1ps ´ xq ě 2mpl´1q. Thus we get,
using the fast decay of the fractional antiderivatives of the wavelet before splitting
the integral over p´8, ss into the integral over the sets p´8, ssXDl

j1
psq, in the same way

as in (3.64), using (3.68) and finally the boundedness of the function (3.42) for M “ 3

and inequality (3.15)

ÿ

λ1PΛj1

ÿ

λ2PΛj2 rt,ss

ż s

´8

|ψλ1pxqψλ2pxq| dx

ď C2
1
m pj2´nq

ż s

´8

ÿ

λ1PΛj1

ÿ

λ2PΛj2 rt,ss

dx

p3` |2j1x´ k1|q
3p3` |2j2x´ k2|q

3

ď C2
1
m pj2´nq

ż s

´8

ÿ

λ2PΛj2 rt,ss

dx

p3` |2j2x´ k2|q
3
ď C2

1
m pj2´nq2´j2 .

In the same way we get

ÿ

λ1PΛj1

ÿ

λ2PΛj2 rt,ss

yλ1ptqyλ2ptq

ˇ

ˇ

ˇ

ˇ

ˇ

ż `8

maxtt,su

ψH1p2
j1x´ k1qψH2p2

j2x´ k2q dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď C2´j2 .

Lemma 3.35. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q,
the quantities

ÿ

0ďj1ăn

ÿ

j2ěn

ÿ

λ1PΛj1 ,λ2PΛj2

2j1p1´H1q2j2p1´H2qyλ1ptqyλ2ptq|Iλ1,λ2rt, ss|

ÿ

j1ěn

ÿ

0ďj2ăn

ÿ

λ1PΛj1 ,λ2PΛj2

2j1p1´H1q2j2p1´H2qyλ1
ptqyλ2

ptq|Iλ1,λ2
rt, ss|

are bounded by C|t´ s|H1`H2´1.

Proof. The proof is exactly the same as the one of Lemma 3.12 excepted that we use
Lemmata 3.33 and 3.34 instead of Lemmata 3.10 and 3.11 respectively. It leads on one
side us to consider the sums

n´1
ÿ

j1“0

2j1p1´H1q

`8
ÿ

j2“n

2
1
m pj2´nq2´j2H2 ` 2np1´H1´H2q

which are bounded by C2np1´H1´H2q ď C|t´ s|H1`H2´1, because 1
m ă H2. On the other

side, if we write Iλ1,λ2 for Ik1,k2

j1,j2
in Lemma 2.1, we have, from it,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

λ1PΛn´1

ÿ

λ2PΛnrt,ss

yλ1
ptqyλ2

ptqIλ1,λ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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ď C2´n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

l1“0

ÿ

λ1PΛ
l1
n´1ptq

ÿ

λ2PΛnrt,ss

2l1

p3` |2k1 ´ k2|q
4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C2´n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

λ1PΛn´1

ÿ

λ2PΛnrt,ss

1

p3` |2k1 ´ k2|q
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C2´n. (3.69)

Lemma 3.36. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
and n ď j1 ď j2 the quantities (3.62) and (3.63) are bounded by C2

1
m pj1´nq2

1
m pj2´nq2´j2 .

Proof. The proof is essentially the same as for Lemma 3.33 excepted that, now, as
n ď j1 ď j2, we remark that if x P Dl

j2
ptq for a 0 ď l ď 1

m pj2 ´ nq then x P Dl1

j1
ptq for a

0 ď l1 ď 1
m pj1 ´ nq.

Lemma 3.37. There exists a deterministic constant C ą 0 such that, for all t, s P p0, 1q
and n ď j1 ď j2 the quantities (3.66) and (3.67) are bounded by C2

1
m pj1´nq2

1
m pj2´nq2´j2 .

Proof. The proof is essentially the same as for Lemma 3.34 and the only modification is
the same as in the proof of Lemma 3.36.

This time, the bound for the random variables Ξjpλq are already considered in
the construction and we can directly go to the proof of the main Proposition of this
subsection.

Proof of Proposition 3.31. If we apply the procedure with m such that 1{mămintH1, H2u

and 2{m ă 1´H1 ´H2, we find an event Ωslo of probability 1 such that, for all ω P Ωslo,
there is µ P N for which Sµlow X p0, 1q ‰ ∅. Then, if ω P Ωslo and t P Sµlowpωq X p0, 1q and
s P p0, 1q, we write

|R1H1,H2
pt, ωq ´R1H1,H2

ps, ωq|

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ďj1ăn

ÿ

0ďj2ăn

ÿ

λ1PΛj1 ,λ2PΛj2

2j1p1´H1q2j2p1´H2qελ1,λ2
pωqIλ1,λ2

rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ďj1ăn

ÿ

j2ěn

ÿ

λ1PΛj1 ,λ2PΛj2

2j1p1´H1q2j2p1´H2qελ1,λ2
pωqIλ1,λ2

rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

0ďj2ăn

ÿ

λ1PΛj1 ,λ2PΛj2

2j1p1´H1q2j2p1´H2qεk1,k2

j1,j2
pωqIλ1,λ2

rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1ěn

ÿ

j2ěn

ÿ

λ1PΛj1 ,λ2PΛj2

2j1p1´H1q2j2p1´H2qελ1,λ2
pωqIλ1,λ2

rt, ss

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

(3.70)

As inequality (3.60) holds, we use Lemma 3.32 to bound the first sum, and Lemma 3.35
to bound the second and the third one. For the last sum, from inequality (3.60) and Lem-
mata 3.36 and 3.37, it just remains us to find bound for the random variables (3.36), (3.37)
and (3.38)with ` P tj, j ` 1u on Ωslo. For (3.36) with ` “ j, we have, as in (3.69) and
then (3.39)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

λ1PΛ
ă
j pt,sq

ÿ

λ2PΛjrt,ss

ελ1,λ2
pωqIλ1,λ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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ď C2´j2
2
m pj´nqµ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

λ1PΛ
ă
j pt,sq

ÿ

λ2PΛjrt,ss

1

p3` |2k1 ´ k2|q
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C2´j2
2
m pj´nqµ2.

The same bound holds when we consider the sums over λ1 P Λąj pt, sq or λ2 P Λj`1rt, ss,
i.e. for (3.36) and (3.37). Finally the construction and especially (3.59) insures us that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

λ1PΛjrt,ss

ÿ

λ2PΛjrt,ss

ελ1,λ2
pωqIλ1,λ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cpj ´ n` 1q2
´j´n

2 µ.

Therefore, the last term in (3.70) is bounded from above by

Cµ2

˜

ÿ

j1ěn

2j1p1´H1q2
1
m pj1´nq

ÿ

j2ěj1

2´j2H22
1
m pj2´nq `

ÿ

jěn

2jp
3
2´H1´H2qpj ´ n` 1q2´

n
2

¸

ď Cµ2

˜

ÿ

j1ěn

2j1p1´H1´H2q2
2
m pj1´nq ` 2np

3
2´H1´H2q2´

n
2

¸

ď Cµ22np1´H1´H2q ď Cµ2|t´ s|H1`H2´1

and thus inequality (3.54) holds.

4 Lower bounds for wavelet leaders

In this section, we show that the limits (1.6) and (1.7) are strictly positive. In [7], the
authors used the independence of the increments of the Brownian motion to bound from
below its wavelet leaders. But, for the (generalized) Rosenblatt process this nice feature
is not met anymore. Nevertheless, following an idea by Ayache in a closely related
but different context3 [5], we decompose the wavelet coefficients of the generalized
Rosenblatt process in two parts. We gain some independence properties in the first part
while the second is, in some sense, negligible compared to the first, see Proposition 4.6
below. All along this section, C stands for a deterministic constant whose value may
change from a line to another but does not depend on any relevant quantities, and in
order to ease notations we set

CH1,H2
:“

1

Γ
`

H1 ´
1
2

˘

Γ
`

H2 ´
1
2

˘

and for s, x1, x2 P R

fH1,H2ps, x1, x2q “ ps´ x1q
H1´3{2
` ps´ x2q

H2´3{2
`

Let Ψ be a wavelet with compact support included in r´N,N s. Using formula (2.6) at
t “ k{2j , the wavelet coefficient cj,k of the generalized Rosenblatt process is given by

cj,k “

ż N

´N

„

RH1,H2

ˆ

x` k

2j

˙

´RH1,H2

ˆ

k

2j

˙

Ψpxqdx

“ cH1,H2

ż N

´N

Ψpxq

ż 1

R2

ż
x`k

2j

k

2j

fH1,H2ps, x1, x2q ds dBpx1q dBpx2q dx

“ cH1,H2

ż 1

R2

ż N

´N

Ψpxq

ż
x`k

2j

k

2j

fH1,H2
ps, x1, x2q ds dx dBpx1q dBpx2q

3In [5], Ayache does not consider wavelets at all but directly work on Wiener-Itô integrals.
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“ cH1,H2

ż 1

A

ż N

´N

Ψpxq

ż
x`k

2j

k

2j

fH1,H2
ps, x1, x2q ds dx dBpx1q dBpx2q

where A :“
‰

´8, k`N2j

‰2
, because, as long as x P r´N,N s and s P rk2´J , pk ` Nq2´js,

fps, x1, x2q vanishes for all x1, x2 outside of A.

Definition 4.1. Given an integer M ě 0, cj,k can be written as cj,k “Ącj,k
M
`}cj,k

M where

Ącj,k
M
“ cH1,H2

ż 1

λMj,k

ż N

´N

Ψpxq

ż
x`k

2j

k

2j

fH1,H2
ps, x1, x2q ds dx dBpx1q dBpx2q (4.1)

with

λMj,k :“



k ´NM

2j
,
k `N

2j

2

and

}cj,k
M
“ cH1,H2

ż 1

AzλMj,k

ż N

´N

Ψpxq

ż
x`k

2j

k

2j

fH1,H2
ps, x1, x2q ds dx dBpx1q dBpx2q.

Remark 4.2. Let us highlight the fact that using time change of variable for Wiener-Itô
integrals [38, Theorem 8.5.7], for all j, k, we have that Ącj,k

M is equal in law to the random
variable

cH1,H2
2´jpH1`H2´1q

ż 1

IM

ż N

´N

ψpxq

ż x

0

fH1,H2
ps, x1, x2q dsdx dBpx1qdBpx2q

with IM “ p´MN,N s2, while }cj,k
M is equal in law to the random variable

cH1,H2
2´jpH1`H2´1q

ż 1

I1M

ż N

´N

ψpxq

ż x

0

fH1,H2
ps, x1, x2q dsdx dBpx1qdBpx2q

with I 1M “ p´8, N s2zp´MN,N s2.

Definition 4.3. For all pj, kq P NˆZ and M P N we define the random variables

Ąεj,k
M

:“
Ącj,k

M

2´jpH1`H2´1q
and }εj,k

M
:“

}cj,k
M

2´jpH1`H2´1q
.

Remark 4.4. Note that Ąεj,k
M and Ćεj1,k1

M are independent when

λMj,k X λ
M
j1,k1 “ ∅. (4.2)

Indeed, if pfjqj is a sequence of real-valued step functions on R2ztpx, xq : x P Ru

which converge to the integrand with respect to dBpx1qdBpx2q in (4.1) then the integral
ş1

R2 fjpx1, x2q dBpx1qdBpx2q is a polynomial function of a finite number of increments

Bpt2q ´ Bpt1q of the Brownian motion for some t1, t2 P λMj,k. Thus Ąεj,k
M is measurable

with respect to the σ-algebra generated by these increments

σMj,k :“ σ
`

tBpt2q ´Bpt1q : t1, t2 P λ
M
j,ku

˘

.

Using the independence of the increments of the Brownian motion, one concludes that
σMj,k and σMj1,k1 are independent as long as condition (4.2) is met and so the same holds

for Ąεj,k
M and Ąεj,k1

M . Moreover, Ćεj1,k1

M
, . . . ,Čεjn,kn

M are independent when the following
condition is satisfied

λMji,ki X λ
M
jl,kl

“ ∅ for all 1 ď i ă l ď n. (4.3)
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This leads to defining the following condition.

Definition 4.5. Let n ě 2. We say λj1,k1
, . . . , λjn,kn satisfy condition pCM q if (4.3) is

satisfied.

From Remark 4.2, we know that pĄεj,k
M
qj,k is a family of identically distributed second

order Wiener chaos random variables. Moreover, Ćεj1,k1

M
, . . . ,Čεjn,kn

M are independent
as long as λj1,k1

, . . . , λjn,kn satisfies pCM q.
Our aim now is to provide a lower bound (independent of M ) for the tail behaviour of

the random variables Ąεj,k
M . To this end, we start by proving the following lemma.

Lemma 4.6. There exist three strictly positive deterministic constants CΨ,H1,H2
,

C 1Ψ,H1,H2
and C˚Ψ,H1,H2

such that for all pj, kq P NˆZ and M ě 2 one has

CΨ,H1,H22´jpH1`H2´1q ď

∥∥∥Ącj,kM∥∥∥
L2pΩq

ď C 1Ψ,H1,H2
2´jpH1`H2´1q∥∥∥}cj,kM∥∥∥

L2pΩq
ď C˚Ψ,H1,H2

2´jpH1`H2´1qMmaxtH1,H2u´1

Proof. Let us assume, w.l.o.g. that H1 ě H2. We define the functions

Φ1 : px1, x2q ÞÑ

ż N

´N

Ψpxq

ż x

0

fH1,H2ps, x1, x2qds dx,

Φ2 : px1, x2q ÞÑ

ż N

´N

Ψpxq

ż x

0

fH1,H2
ps, x2, x1qds dx,

and the symmetric function4 Φ “ 1
2 pΦ1 ` Φ2q. By Remark 4.2 we have, using the “Wiener

isometry” 5 [42, Section 5],∥∥∥Ącj,kM∥∥∥
L2pΩq

“
?

2cH1,H2
2´jpH1`H2´1q }Φ}L2pIM q

and thus it suffices to take CΨ,H1,H2 :“
?

2cH1,H2
}Φ}L2pr´N,Ns2q and C 1Ψ,H1,H2

:“
?

2cH1,H2

}Φ}L2pp´8,Ns2q. Now, still using Remark 4.2 and “Wiener isometry” we have∥∥∥}cj,kM∥∥∥
L2pΩq

“
?

2cH1,H2
2´jpH1`H2´1q }Φ}L2pI1M q

ď
?

2cH1,H2
2´jpH1`H2´1q }Φ1}L2pI1M q

.

Also as

I 1M “ p´8, N s2zp´MN,N s2 Ă Rˆ p´8,´MN s
ď

p´8,´MN s ˆR,

we write

}Φ1}
2
L2pI1M q

“

ż

I1M

ˇ

ˇ

ˇ

ˇ

ˇ

ż N

´N

Ψpxq

ż x

0

ps´ x1q
H1´

3
2

` ps´ x2q
H2´

3
2

` ds dx

ˇ

ˇ

ˇ

ˇ

ˇ

2

dx1 dx2

ď

ż

I1M

˜

ż N

´N

|Ψpxq|

ż

r0,xs

ps´ x1q
H1´

3
2

` ps´ x2q
H2´

3
2

` ds dx

¸2

dx1 dx2

ď

ż

R

ż ´MN

´8

˜

ż N

´N

|Ψpxq|

ż

r0,xs

ps´ x1q
H1´

3
2

` ps´ x2q
H2´

3
2

` ds dx

¸2

dx1 dx2

4The function Φ is in the fact the symmetrization of Φ1.
5For f a symmetric function in L2pR2q, and I2pfq the second order Wiener-Itô integral of f , one has

EpI2pfqq2 “ 2!||f ||L2pR2q.
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`

ż

R

ż ´MN

´8

˜

ż N

´N

|Ψpxq|

ż

r0,xs

ps´ x1q
H1´

3
2

` ps´ x2q
H2´

3
2

` ds dx

¸2

dx2 dx1.

Let us deal with the first term in the last sum, the second one can be treated similarly by
permuting the roles of H1 and H2 as well as x1 and x2. As the function y ÞÑ yH1´3{2 is
decreasing, one gets

ż

R

ż ´MN

´8

˜

ż N

´N

|Ψpxq|

ż

r0,xs

ps´ x1q
H1´

3
2

` ps´ x2q
H2´

3
2

` ds dx

¸2

dx1 dx2

ď

˜

ż ´MN

´8

p´N ´ x1q
2H1´3 dx1

¸

ˆ

ż

R

˜

ż N

´N

|Ψpxq|

ˇ

ˇ

ˇ

ˇ

ˇ

ż

r0,xs

ps´ x2q
H2´3{2
` ds

ˇ

ˇ

ˇ

ˇ

ˇ

dx

¸2

dx2.

Concerning the first integral, we have, as M ě 2

ż ´NM

´8

p´N ´ x1q
2H1´3

dx1 “
1

2´ 2H1
pNM ´Nq

2H1´2
`

“
1

2´ 2H1
N2H1´2pM ´ 1q2H1´2

ď c ¨M2H1´2

while, using again the “Wiener isometry”,

ż

R

˜

ż N

´N

|Ψpxq|

ˇ

ˇ

ˇ

ˇ

ˇ

ż

r0,xs

ps´ x2q
H2´3{2
`

ˇ

ˇ

ˇ

ˇ

ˇ

dx

¸2

dx2

ď 2N ‖Ψ‖8 sup
xPr´N,Ns

ż

R

ˇ

ˇ

ˇ

ˇ

ˇ

ż

r0,xs

ps´ x2q
H2´3{2
` ds

ˇ

ˇ

ˇ

ˇ

ˇ

2

dx2

“ 2N ‖Ψ‖8 sup
xPr´N,Ns

E
”

|BH2
pxq ´BH2

p0q|
2
ı

ď 2N ‖Ψ‖8 sup
xPr´N,Ns

CH2
p|x|q

2H2 ď c,

where BH2
denotes the fractional Brownian motion with parameter H2. As a result, there

exists a positive constant C˚Ψ,H1,H2
such that, as we suppose H1 ě H2, one has∥∥∥}cj,kM∥∥∥

L2pΩq
ď C˚Ψ,H1,H2

2´jpH1`H2´1qMH1´1.

Proposition 4.7. Let M P N and y P R`. If M and y are large enough, then the exists a
deterministic constant c2 ą 0 (independent of M ) such that

P
´

|Ąεj,k
M
| ą y

¯

ě exp p´c2yq (4.4)

for all pj, kq P NˆZ

Proof. Fix y P R`, large enough. By Lemma 4.6, one can remark that as M Ñ `8,
pĄεj,k

M
qM converges in L2pΩq to the random variable

εj,k :“
cj,k

2´jpH1`H2´1q

with, for all M P N,
εj,k ´Ąεj,k

M
“}εj,k

M
.
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By Theorem 3.15, there exists a constant c1 ą 0 such that, for all λ P Λ and y sufficiently
large

P p|εj,k| ě yq ě exp p´c1yq.

Then, for all M P N, we have, for all such λ and y

P
´

|Ąεj,kM | ě y
¯

ě P
´

t|Ąεj,kM | ě yu X t|}εj,k
M
| ď yu

¯

ě P
´

t|εj,k|´ |}εj,kM | ě yu X t|}εj,k
M
| ď yu

¯

ě P
´

t|εj,k| ě 2yu X t|}εj,k
M
| ď yu

¯

ě P p|εj,k| ě 2yq ´ P
´

p|}εj,k
M
| ą y

¯

.

Using Lemma 4.6 and Theorem 3.14 one has

P
´

|}εj,k
M
| ą y

¯

ď P

ˆ

p|}cj,k
M
| ą y

∥∥∥}cj,kM∥∥∥
L2pΩq

pC˚Ψ,H1,H2
q´1M1´maxtH1,H2u

˙

ď expp´
‹

CpC˚Ψ,H1,H2
q´1M1´maxtH1,H2uyq.

Thus, if M is large enough, one has, as 1´maxtH1, H2u ą 0,

expp´
‹

CpC˚Ψ,H1,H2
q´1M1´maxtH1,H2uyq ď

1

2
exp p´2c1yq

which gives that, for all large enough y, one gets

P
´

|Ąεj,k
M
| ą y

¯

ě exp p´c2yq

with c2 :“ 2c1. In the sequel, we will implicitly always consider such large enough M .

In the following two subsections, Lemmata 4.9 and 4.12 follow the lines of Lemmata
3.6 and 3.8 in [7] respectively, with some subtle modifications as the authors in [7] deal
with N p0, 1q random variables while, here, we focus on random variables in the second
order Wiener chaos that depend on the parameter M . For the sake of completeness and
clarity, we write the proofs in full details.

4.1 Ordinary points

In this section our aim is to prove the following proposition.

Proposition 4.8. There exists Ω˚1 Ă Ω with probability 1 such that for all ω P Ω˚1 and
Lebesgue almost every t P p0, 1q one has

lim sup
jÑ`8

djpt, ωq

2´jpH1`H2´1q log j
ą 0. (4.5)

To this end, as a first step, let us state the following lemma concerning the random
variable rελ

M . If λ “ λj,k is a dyadic interval and m P N, Sλ,m “ Sj,k,m stands for the
finite set of cardinality 2m whose elements are the dyadic intervals of scale j`m included
in λj,k, formally speaking Sj,k,m :“ tλ P Λj`m : λ Ă λj,ku.

Lemma 4.9. There is a deterministic constant C ą 0 such that the following holds: for
all M P N and for all t P p0, 1q, there exists Ωt,1 Ă Ω with probability 1 such that for all
ω P Ωt,1 there are infinitely many j P N such that

max
λ1 P Sλ,tlog2pNMqu`2

λ P 3λjptq

ˇ

ˇ

ˇ
Ăελ1

M
pωq

ˇ

ˇ

ˇ
ě C log j.
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Proof. Let us fix t P p0, 1q and j P N. For any λ P Sj,kjptq,m, there exists a unique
decreasing finite sequence pInq0ďnďm of decreasing dyadic intervals in the sense of
inclusion such that I0 “ λj,kjptq, Im “ λ and In P Sj,kjptq,n. Then, define the sequence
pTnq1ďnďm of unique dyadic intervals such that In´1 “ InYTn. Note that for all 1 ď n ď m,
Tn P 3In. Moreover, as pInq0ďnďm is decreasing, pTnq1ďnďm are pairwisely disjoint.
Furthermore, for every n P t1, ...,mu, there exist T 1n “ λjn,kn P STn,tlog2 NMu`2 such

that

ˆ

kn ´NM

2jn
,
kn `N

2jn

˙

Ă Tn. As a consequence, the associated random variables
´

ĄεT 1n
M
¯

1ďnďm
are independent as the dyadic intervals pT 1nq1ďnďm satisfies condition

pCM q in Definition 4.5. Next, for a constant C ą 0 to be chosen later, we set

Ej,mptq “
"

ω P Ω : max
1ďnďm

ˇ

ˇ

ˇ
ĄεT 1n

M
ˇ

ˇ

ˇ
ě C logp2mq

*

.

Note that, as the random variables
´

ĄεT 1n
M
¯

1ďnďm
are independent,

P pEj,mptqq “ 1´
m
ź

n“1

P
´
ˇ

ˇ

ˇ
ĄεT 1n

M
ˇ

ˇ

ˇ
ă C logp2mq

¯

Recalling (4.4), and the fact that logp1 ´ xq ď ´x if x P p0, 1q, one gets, for m is large
enough,

P pEj,mptqq ě 1´ p1´ expp´Cc2 logp2mqqm

“ 1´

˜

1´

ˆ

1

2m

˙Cc2
¸m

ě 1´ exp

ˆ

m

p2mqCc2

˙

“ 1´ exp

ˆ

m1´Cc2

2Cc2

˙

.

Finally, choosing C such that 0 ă Cc2 ă 1, one obtain that
ř

pPNP pE2p,2pptqq “ `8.
Knowing that the events E2p,2pptq are independent for all p P N, one concludes using
Borel-Cantelli Lemma that

P

ˆ

lim sup
mÑ`8

E2m,2mptq

˙

“ 1

It follows that for a fixed t P R, almost surely, there are infinitely many j P N such that

max
λ1 P Sλ,tlog2 NMu`2

λ P 3λjptq

ˇ

ˇ

ˇ
Ăελ1

M
pωq

ˇ

ˇ

ˇ
ě C log j.

Concerning the “non-independent part” of the wavelet coefficients, one can state the
following Lemma.

Lemma 4.10. There is a deterministic constant C 1 ą 0 such that, for all M P N and for
all t P p0, 1q, there exists Ωt,2 Ă Ω with probability 1 such that for all ω P Ωt,2 there exists
J P N such that, for all j ě J ,

max
λ1 P Sλ,tlog2pNMqu`2

λ P 3λjptq

ˇ

ˇ

ˇ
|ελ1

M
pωq

ˇ

ˇ

ˇ
ď C 1MmaxtH1,H2u´1 log j.
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Proof. Let us fix t P p0, 1q. For any C 1 ą 0, for all j sufficiently large and λ P 3λjptq, we
have, by Theorem 3.14,

P
´

Dλ1 P Sλ,tlog2 NMu`2 :
ˇ

ˇ

ˇ
|ελ1

M
ˇ

ˇ

ˇ
ě C 1MmaxtH1,H2u´1 log j

¯

ď
ÿ

λ1PSλ,tlog2 NMu`2

P
´ˇ

ˇ

ˇ
|ελ1

M
q

ˇ

ˇ

ˇ
ě C 1MmaxtH1,H2u´1 log j

¯

ď
ÿ

λ1PSλ,tlog2 NMu`2

P
´
ˇ

ˇ

ˇ
|ελ1

M
ˇ

ˇ

ˇ
ě C 1pC˚Ψ,H1,H2

q´1}|ελ1
M
}L2pΩq log j

¯

ď 4NM expp´
‹

CC 1pC˚Ψ,H1,H2
q´1 log jq

Thus, for C 1 ą C˚Ψ,H1,H2
{
‹

C, the conclusion follows by Borel-Cantelli Lemma.

Proof of Proposition 4.8. The constant C and C 1 of Lemmata 4.9 and 4.10 being deter-
ministic and independent of M , on can choose M large enough such that

C ´ C 1MmaxtH1,H2u´1 ą 0.

Let us fix t P p0, 1q and consider ω P Ωt,1 X Ωt,2, where the events, of probability 1, Ωt,1
and Ωt,2 are given by the same Lemmata. For all J P N, by Lemma 4.9, there exist j ě J

and λ1pjq Ď 3λjptq of scale j1 “ j ` tlogNM u` 2 such that
ˇ

ˇ

ˇ
Ćcλ1pjq

M
pωq

ˇ

ˇ

ˇ
ě C2´j

1
pH1`H2´1q log j.

If J is large enough, we also have, for all such j ě J , by Lemma 4.10,
ˇ

ˇ

ˇ
~cλ1pjq

M
pωq

ˇ

ˇ

ˇ
ď C 1MmaxtH1,H2u´12´j

1
pH1`H2´1q log j.

From this we deduce that

djpt, ωq ě
ˇ

ˇcλ1pjqpωq
ˇ

ˇ

ě

ˇ

ˇ

ˇ
Ćcλ1pjq

M
pωq

ˇ

ˇ

ˇ
´

ˇ

ˇ

ˇ
~cλ1pjq

M
pωq

ˇ

ˇ

ˇ

ě2´j
1
pH1`H2´1q log j

´

C ´ C 1MmaxtH1,H2u´1
¯

ě2´jpH1`H2´1qp4NMq1´H1´H2 log j
´

C ´ C 1MmaxtH1,H2u´1
¯

Therefore, (4.5) holds true for all t P p0, 1q and ω P Ωt,1 X Ωt,2. The conclusion follows
then from Fubini Theorem.

4.2 Rapid points

In this section our aim is to prove the following proposition.

Proposition 4.11. There exists Ω˚2 Ă Ω with probability 1 such that, for all ω P Ω˚2 , there
exist t P p0, 1q such that

lim sup
jÑ`8

djpt, ωq

2´jpH1`H2´1qj
ą 0. (4.6)

As in the previous subsection, we start by working with the random variables rελ
M .

Lemma 4.12. There exists a deterministic constant C ą 0 such that for all M there is
Ω2 Ă Ω with probability 1 such that for all ω P Ω2 there exist t P p0, 1q such that

lim sup
jÑ`8

ˇ

ˇ

ˇ
Ćελjptq

M
pωq

ˇ

ˇ

ˇ

j
ě C. (4.7)
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Proof. Let us fix a P p0, 1q and C ą 0 to be chosen later on. For every pj, lq P N ˆ
 

0, . . . , t2jp1´aqu´ 1
(

, we set

SMj,l “
 

lt2aj{p2NMqu, . . . , pl ` 1qt2aj{p2NMqu´ 1
(

and consider the event

EMj,l “

#

ω P Ω : max
kPSMj,l

ˇ

ˇ

ˇ
Čεj,2kNM

M
pωq

ˇ

ˇ

ˇ
ě Cj

+

Let j0 be the smallest integer such that t2aj{p2NMqu ě 1. If we assume that

Ω˚2 “
ď

Jěj0

č

jěJ

č

lPt0,...,t2jp1´aqu´1u

EMj,l (4.8)

is an event of probability 1 and we consider ω P Ω˚2 . For every j ě j0, denote by

GMj pωq :“
´

k P t0, . . . , 2j ´ 1u :
ˇ

ˇ

ˇ
Ąεj,k

M
pωq

ˇ

ˇ

ˇ
ě Cj

¯

. (4.9)

Moreover, for every n ě j0, one considers

OMn pωq :“
ď

jěn

UMj pωq, where UMj pωq :“
ď

kPGMj pωq

ˆ

k

2j
,
k ` 1

2j

˙

. (4.10)

If one proves that OMn pωq is dense in p0, 1q, then by Baire’s theorem the set Xněj0O
M
n pωq

is non-empty and let t be an element of this set. Then for every n ě j0, there is j ě n

such that
ˇ

ˇ

ˇ
Ćελjptq

M
pωq

ˇ

ˇ

ˇ
ě Cj, and so desired statement (4.7) is true.

We still have to prove two points:

1. OMn pωq is dense in p0, 1q.

2. Ω˚2 is an event of probability 1.

Indeed, starting with statement 1, consider t P p0, 1q, j ě j0 and k such that λjptq “ λj,k.
Then, we have two cases:

Case 1: There is l P t0, . . . , t2jp1´aqu´ 1u such that

k P
 

lt2aju, . . . , pl ` 1qt2aju´ 1
(

Using (4.8) and (4.9), there is k1 P tlt2aj{p2NMqu, . . . , pl ` 1qt2aj{p2NMqu´ 1u such

that 2k1NM P Gjpωq. Then, by (4.10),

ˆ

2NMk1

2j
,

2NMk1 ` 1

2j

˙

Ă OMn pωq. which is

at distance at most 2´j
`

t2aju` 2NM t2aj{p2NMqu
˘

from t. Finally, we get that t is
at a distance at most 22jpa´1q of UMj pωq.

Case 2: k P tt2jp1´aqut2jau, . . . , 2j ´ 1u. Again by (4.8) and (4.9), there is k1 P SMj,l
such that 2k1NM P GMj pωq, and similarly, we get that t is at a distance at most

c2jpa´1q of UMj pωq, for some constant c ą 0 depending only on N , M and a.

Finally, in both cases t is at a distance at most c2jpa´1q, and so the density follows.
Now for statement 2, in order to prove that Ω˚2 has a probability 1, it is enough to

prove that

P

¨

˚

˝

C

¨

˚

˝

č

lPt0,...,t2jp1´aqu´1u

EMj,l

˛

‹

‚

˛

‹

‚

(4.11)
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is the general term of a convergent series, then the result follows by Borel-Cantelli
Lemma. Note that the variables Čεj,2NMk

M
pωq, k P SMj,l and l P t0, . . . , t2jp1´aqu´ 1u, are

independent because for every k ‰ k1, |2NMk ´ 2NMk1| ě 2NM and so λMj,2MNk X

λMj,2MNk1 “ ∅. Consequently, one has

P

¨

˚

˝

C

¨

˚

˝

č

lPt0,...,t2jp1´aqu´1u

EMj,l

˛

‹

‚

˛

‹

‚

“1´ P

¨

˚

˝

č

lPt0,...,t2jp1´aqu´1u

C
`

EMj,l
˘

˛

‹

‚

“1´
ź

lPt0,...,t2jp1´aqu´1u

¨

˝1´
ź

kPSMj,l

P
´
ˇ

ˇ

ˇ
Čεj,2NMk

M
pωq

ˇ

ˇ

ˇ
ă Cj

¯

˛

‚

“1´
´

1´ p1´ P p|ε| ě Cjqq
t2aj{p2NMqu

¯t2jp1´aqu

ď1´ exp
´

2jp1´aq logp1´ pjq
¯

(4.12)

where ε is a random variable belonging to the Wiener chaos of order 2 distributed

according to the p rελqλPΛ and pj “ p1´ P p|ε| ě Cjqq
t2aj{p2NMqu. Remark that pj is a

positive term that tends to 0 as j Ñ `8. Indeed, using the fact that logp1´ xq ď ´x if
x P p0, 1q together with (4.4), there exist J P N such that for all j ě J ,

0 ď pj ďp1´ exp p´C c2 jqq
t2aj{p2NMqu

ď exp

ˆ

´

Z

2aj

2NM

^

exp p´C c2 jq

˙

ď exp
`

´C 1 exp plog 2ajq exp p´C c2 jq
˘

ď exp
`

´C 1 exp jpa log 2´ C c2q
˘

(4.13)

where C 1 depends only on N , M and a and c2 is the constant given in (4.4). It is enough to
choose C such that a log 2´ C c2 ą 0 to deduce that and so pj Ñ 0 as j Ñ `8. Similarly,
one can get for all j ě J

0 ď 2jp1´aqpj ď exp
`

´C 1 exp jplog 2´ C c2q
˘

which indeed shows that 2jp1´aqpj tends to 0 as j Ñ `8. Now, using the fact that
logp1´xq “ ´x` opxq and exp pxq “ 1`x` opxq as xÑ 0, together with (4.12) we obtain
that for all δ ą 0

P

¨

˚

˝

C

¨

˚

˝

č

lPt0,...,t2jp1´aqu´1u

EMj,l

˛

‹

‚

˛

‹

‚

ď 2jp1´aq pδppj ` δpjq ` pj ` δpjq

for j large enough. Using the upper bound in (4.13), one can finally conclude that (4.11)
is indeed the general term of a convergent series.

Concerning the random variable qελ
M , one can give an almost sure upper bound.

Lemma 4.13. There exists a deterministic constant C 1 ą 0 such that for all M there is
Ω12 Ă Ω with probability 1 such that for all ω P Ω12 there exist J P N such that, for all
j ě J , for all λ P Λj , λ Ď r0, 1s,

ˇ

ˇ

ˇ
qελ
M
pωq

ˇ

ˇ

ˇ
ď C 1MmaxtH1,H2u´1j
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Proof. If C 1 ą 0, for all j sufficiently large, we have, by Theorem 3.14

P
´

Dλ P Λj , λ Ď r0, 1s :
ˇ

ˇ

ˇ
qελ
M
pωq

ˇ

ˇ

ˇ
ě C 1MmaxtH1,H2u´1j

¯

ď
ÿ

λPΛj λĎr0,1s

P
´
ˇ

ˇ

ˇ
qελ
M
pωq

ˇ

ˇ

ˇ
ě C 1MmaxtH1,H2u´1j

¯

ď 2j expp´
‹

CC 1pC˚Ψ,H1,H2
q´1jq

and thus, if C 1 ą logp2qC˚Ψ,H1,H2
{
‹

C, the conclusion follows by Borel-Cantelli Lemma.

Proof of Proposition 4.11. Again, one can choose M large enough such that

C ´ C 1MmaxtH1,H2u´1 ą 0,

where C and C 1 are the constant given by Lemmata 4.12 and 4.13 respectively. Let us
consider ω P Ω˚2 :“ Ω2 X Ω12 where the events, of probability 1, Ω2 and Ω12 are giving by
the same Lemmata. We use the same notations as in them. First there exist t P p0, 1q
such that for all J P N there exist j ě n such that

ˇ

ˇ

ˇ
Ćcλjptq

M
pωq

ˇ

ˇ

ˇ
ě C j2´jpH1`H2´1q. (4.14)

Moreover, if J is large enough, for all such j we also have

ˇ

ˇ

ˇ
~cλjptq

M
pωq

ˇ

ˇ

ˇ
ď C 1MmaxtH1,H2u´12´jpH1`H2´1qj. (4.15)

In this case, as in 4.8 we have that for all J great enough, there is j ě J such that

djpt, ωq ě 2´jpH1`H2´1qj
´

C ´ C 1MmaxtH1,H2u´1
¯

and so one can conclude that (4.6) holds true for all ω P Ω˚2 .

5 Proof of the main theorem

Theorem 1.2 is then a straightforward consequence of Propositions 3.5, 3.21, 3.31, 4.8
and 4.11.

Proof of Theorem 1.2. If λ is a dyadic interval, taking into account Remark 3.4, let us
denote by Ωλ the event obtained by taking the intersection of all the events of probability
1 induced by Propositions 3.5, 3.21, 3.31, 4.8 and 4.11. Then ΩR “

Ş

λ Ωλ is also an
event of probability 1, as it is a countable intersection of events of probability 1.

If we consider ω P ΩR, for all dyadic interval λ, first, from Proposition 3.5, for all t P λ

lim sup
sÑt

|RH1,H2
pt, ωq ´RH1,H2

ps, ωq|

|t´ s|H1`H2´1 log |t´ s|´1
ă `8 (5.1)

while, for almost every to P λ, from Propositions 3.21 and 4.8,

0 ă lim sup
sÑto

|RH1,H2
pto, ωq ´RH1,H2

ps, ωq|

|to ´ s|H1`H2´1 log log |to ´ s|´1
ă `8.

Nevertheless, from Proposition 4.11 we also know that there exists tr P λ such that

0 ă lim sup
sÑtr

|RH1,H2ptr, ωq ´RH1,H2ps, ωq|

|tr ´ s|H1`H2´1 log |tr ´ s|´1
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which, combined with (5.1), gives that, for all such a tr,

0 ă lim sup
sÑtr

|RH1,H2
ptr, ωq ´RH1,H2

ps, ωq|

|tr ´ s|H1`H2´1 log |tr ´ s|´1
ă `8.

Moreover, from Proposition 3.31, we also know that one can find tσ P λ such that

lim sup
sÑtσ

|RH1,H2
ptσ, ωq ´RH1,H2

ps, ωq|

|tσ ´ s|H1`H2´1
ă `8.

Thus, we have shown that, on ΩR, for all dyadic interval λ, almost every points in λ
are ordinary while there exist rapid and slow points in λ. Now, if I is a non-empty interval
of R, writing the interior of I as a countable union of dyadic intervals, we show that, on
ΩR, almost every points in λ are ordinary. Finally, if U is an open set with I X U ‰ ∅,
there is a dyadic interval λ Ď I X U . Thus, on ΩR, I X U contains rapid and slow points
and the density of these points in I is proved.

Remark 5.1. Unfortunately, our method does not allow us to affirm the positiveness of
the limit (1.8), at the opposite of limits (1.6) and (1.7). Indeed, as for almost every ω P Ω

lim sup
sÑt

|RH1,H2
pt, ωq ´RH1,H2

ps, ωq|

|t´ s|H1`H2´1

is finite for some t, we would need to show its positiveness for all t and thus the
positiveness of the limit

lim sup
jÑ`8

djpt, ωq

2´jpH1`H2´1q
(5.2)

for all t.
Concerning the random variables p rελ

M
qλ, one can obtain a positive result6. Indeed,

from [24, Theorem 6.9 and Remark 6.10] we know that there exists an universal deter-
ministic constant γ P r0, 1q such that, for each random variable X in the Wiener chaos of
order 2

P

ˆ

|X| ď
1

2
‖X‖L2pΩq

˙

ď γ.

As 0 ď γ ă 1, of course, one can find `0 P N such that

γ`0 ă 2´1. (5.3)

Let us go back to the construction starting the proof of Lemma 4.9. If the dyadic
interval λj,k and m P N are fixed and S P Sj,k,m we define the sequences of dyadic
intervals pInq0ďnďm and pTnq1ďnďm in the same way: I0 “ λj,k, Im “ S and, for all
1 ď n ď m, In´1 “ In Y Tn. Now, for any 1 ď n ď m, there are `0 dyadic intervals
pT `n “ λ

j
p`q
n ,k

p`q
n
q1ď`ď`0 in STn,tlog2p`0NMqu`2 such that, for all 1 ď ` ď `0

˜

k
p`q
n ´NM

2j
p`q
n

,
k
p`q
n `N

2j
p`q
n

¸

Ď Tn

and, if ` ‰ `1, T `n X T `
1

n “ ∅. Therefore, the dyadic intervals pT `nq1ďnďm,1ď`ď`0 satisfy
condition pCM q in Definition 4.5. From this, for all S P Sj,k,m we define the Bernouilli
random variable

Bj,k,mpSq “
ź

1ďnďm,1ď`ď`0

1t|Ćε
T`n

M |ă2´1CΨ,H1,H2
u

6This result is again a generalization of [7, Lemma 3.3.] where most of the modifications comes from the
fact that we are working in the Wiener chaos of order 2.
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for which, by Proposition 4.6, we have, using the independence of the random variables
pĄεT `n

M
q1ďnďm,1ď`ď`0 , ErBj,k,mpSqs ď γm`0 . Therefore, if we define the random variable

Gj,k,m “
ÿ

SPSj,k,m

Bj,k,mpSq

then ErGj,k,ms ď p2γ`0qm and it follows from inequality (5.3) and Fatou Lemma that

E

„

lim inf
mÑ`8

Gj,k,m


“ 0.

As a consequence, Ω1 “
Ş

jPN,0ďkă2jtω : lim infmÑ`8 Gj,k,mpωq “ 0u is an event of
probability 1.

Now if ω P Ω1 and t P p0, 1q, we take j P N and k “ kjptq and since, for all m, Gj,kjptq,m
has values in t0, . . . , 2mu we conclude that there are infinitely many m for which, for every
S P Sj,kjptq,m, Bj,k,mpSq “ 0. Considering such a m and S “ λj`mptq then we first remark
that, for all 1 ď n ď m, In “ λj`nptq and thus Tn P 3λj`nptq. Now, as Bj,k,mpλj`mptqq “ 0,
one can find 1 ď n ď m and 1 ď ` ď `0 such that

|ĄεT `n
M
pωq| ě 2´1CΨ,H1,H2

.

Thus we have showed that, for all ω P Ω1 and t P p0, 1q there exist infinitely many j1 P N
such that

max
λ1 P Sλ,tlog2p`0NMqu`2

λ P 3λj1ptq

ˇ

ˇ

ˇ
Ăελ1

M
pωq

ˇ

ˇ

ˇ
ě 2´1CΨ,H1,H2

.

To pass to the wavelet leaders, in the spirit of Propositions 4.8 and 4.11, we would need
to get from Borel-Cantelli Lemma an upper bound of

max
λ1 P Sλ,tlog2p`0NMqu`2

λ P 3λj1ptq

ˇ

ˇ

ˇ
|ελ1

M
pωq

ˇ

ˇ

ˇ

for all j sufficiently large on an event of probability 1 which does not depend on t. Then,
as

P

¨

˚

˚

˚

˚

˝

Dλ P Λj , λ Ď r0, 1s : max
λ2 P Sλ1,tlog2p`0NMqu`2

λ1 P 3λ

ˇ

ˇ

ˇ
|ελ1

M
pωq

ˇ

ˇ

ˇ
ě C 1MmaxtH1,H2u´1j

˛

‹

‹

‹

‹

‚

ď 2j4`0NM expp´
‹

CC 1pC˚Ψ,H1,H2
q´1jq,

if C 1 ą logp2qC˚Ψ,H1,H2
{
‹

C this probability is the general term of some convergent series
and in this case one can affirm the existence of an event Ω11 of probability 1 such that,
for all ω P Ω11 there exist J P N such that, for all j ě J , for all λ P Λj , λ Ď r0, 1s,

max
λ2 P Sλ1,tlog2p`0NMqu`2

λ1 P 3λ

ˇ

ˇ

ˇ
|ελ1

M
pωq

ˇ

ˇ

ˇ
ď C 1MmaxtH1,H2u´1j.

It seems to be the sharper upper bound that we can hope to find with our constraints
and the fact that we don’t have any independence property to take advantage of when
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dealing with the random variables qελ
M . This is insufficient to consider properly limit (5.2).

Nevertheless, if, instead of working with an uniform constant M we make it depends on

the scale j by setting Mj “ p4C
1C´1

Ψ,H1,H2
jq

1
1´maxtH1,H2u , where C 1 ą logp2qC˚Ψ,H1,H2

{
‹

C is
the same constant as in Lemma 4.13,

λ
Mj

j,k :“



k ´NMj

2j
,
k `N

2j

2

,

Ącj,k
Mj “ cH1,H2

ż 1

λ
Mj
j,k

ż N

´N

Ψpxq

ż
x`k

2j

k

2j

fH1,H2
ps, x1, x2q ds dx dBpx1q dBpx2q

and
}cj,k

Mj “ cj,k ´Ącj,k
Mj

then Proposition 4.6 stills holds if we replace M by Mj with j sufficiently large and, by
directly adapting what precedes one can find on event Ω˚1 of probability 1 such that, for
all ω P Ω˚1 and t P p0, 1q there exist infinitely many j P N such that7

max
λ1 P Sλ,tlog2p`0NMjqu`2

λ P 3λjptq

ˇ

ˇ

ˇ
Ăελ1

Mj pωq
ˇ

ˇ

ˇ
ě 2´1CΨ,H1,H2 .

while there exist J P N such that, for all j ě J , for all λ P Λj , λ Ď r0, 1s,

max
λ2 P Sλ1,tlog2p`0NMjqu`2

λ1 P 3λ

ˇ

ˇ

ˇ
|ελ1

Mj pωq
ˇ

ˇ

ˇ
ď C 1pMjq

maxtH1,H2u´1j

ď 4´1CΨ,H1,H2
.

As a consequence, as in Proposition 4.8, for all J P N there exist j ě J with

djpt, ωq ě 2´jpH1`H2´1qp4C 1C´1
Ψ,H1,H2

jq
1´H1´H2

1´maxtH1,H2u p4`0Nq
1´H1´H24´1CΨ,H1,H2

which allows to state that, for all t P p0, 1q and ω P Ω1,

lim sup
jÑ`8

djpt, ωq

2´jpH1`H2´1qj
1´H1´H2

1´maxtH1,H2u

ą 0

and thus, for all ω P Ω1 and for all t P p0, 1q,

lim sup
sÑt

|RH1,H2pt, ωq ´RH1,H2ps, ωq|

|t´ s|H1`H2´1plog |t´ s|´1q
1´H1´H2

1´maxtH1,H2u

ą 0.

In particular, we find an almost sure uniform lower modulus of continuity for the
generalized Rosenblatt process, similar to the one established in [26] for the Rosenblatt
process. However, we are not able to judge the optimality of this modulus, which seems
to be a difficult problem, as already stated in [5, Remark 1.2].

An interesting corollary of Remark 5.1 and Proposition 3.5 is the fact that, almost
surely, the pointwise Hölder exponent of the generalized Rosenblatt process is every-
where H1 `H2 ´ 1 and, in particular, it is nowhere differentiable.

Similarly, one can also take pMj “ p4C
1C´1

Ψ,H1,H2
logpjq

1
1´maxtH1,H2u qj , where C 1 is this

time the same constant that in Lemma 4.10 and show, precisely like in this Lemma,

7The random variables Ăελ1
Mj and |ελ1

Mj are defined in an obvious way.
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that there exists a deterministic constant C 1 ą 0 such that, for all t P p0, 1q there exists
Ωt,2 Ă Ω with probability 1 such that for all ω P Ωt,2 there exist J P N such that, for all
j ě J ,

max
λ1 P Sλ,tlog2p`0NMjqu`2

λ P 3λjptq

ˇ

ˇ

ˇ
|ελ1

Mj pωq
ˇ

ˇ

ˇ
ď 4´1CΨ,H1,H2 .

and conclude in the same way that there exists an event of probability 1 such that, for
all ω in this event and for almost every t P p0, 1q

lim sup
sÑt

|RH1,H2pt, ωq ´RH1,H2ps, ωq|

|t´ s|H1`H2´1plog log |t´ s|´1q
1´H1´H2

1´maxtH1,H2u

ą 0
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