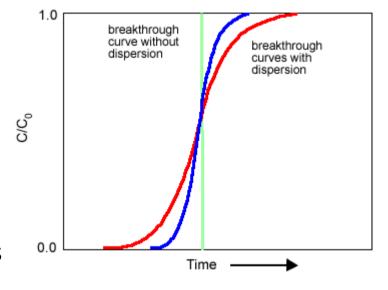
M. C. Almazán-Almazán¹, A. Léonard², J. López-Garzón¹, J. Abdullah³, <u>P. Marchot²</u>, S. Blacher²

- ¹ Department of Inorganic Chemistry, University of Granada, Spain
- ² Laboratory of Chemical Engineering, University of Liège, Belgium
- ³ Centre for Computed Tomography and Industrial Imaging, Malaysian Nuclear Agency, Kajang, Malaysia

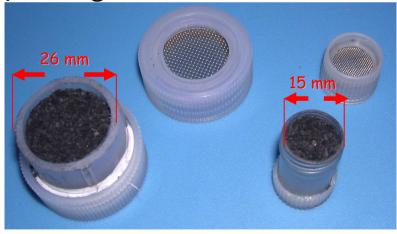
Introduction

Catalyst support



Importance of packing structure

- Adsorption of pollutants within carbon filters characterized by a breakthrough curve
- Sharp adsorption front: more efficient removal process
- Shape of the breakthrough curve depends on two main factors
 - Texture of the adsorbent at the nanometric scale
 - Macroscopic transport in the bed
- Impact of the packing structure on the gas transport
 - Maldistribution
 - Impact of tube-to-particle diameter ratio
 - ...
- Importance of 'in-situ' characterisation of the packing structure
- Microtomography = powerful tool for non destructive packing investigation


Materials and methods

Activated carbon filters

- Plastic canisters
 - Length: 33 mm
 - Diameter: 15 and 26 mm
 - → influence of tube-to-particle diameter ratio
- Polydispersed commercial granular activated carbon
 - Chemviron Carbon BPL
 - 2 and 7 depending on the filter diameter

X-ray microtomograph

Skyscan-1074 X-ray scanner

Source: 40 kV-1 mA

Detector: 768 x 576 pixels

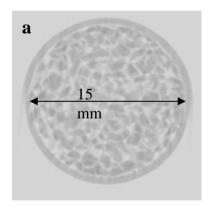
8-bit camera

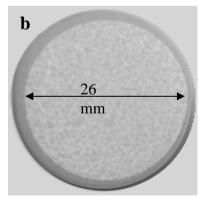
• Pixel size: 41 µm

Rotation step: 0.9°

Acquisition time: ≈ 10 minutes

Cone-beam filtered backprojection reconstruction





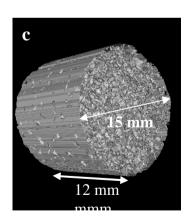


Image analysis

- 3D image processing
 - Image filtering
 - Segmentation between carbon grains and voids
- Quantitative measurements
 - Void fraction
 - Void size distribution using opening size granulometry
 - Radial void profiles

Results

Void fraction

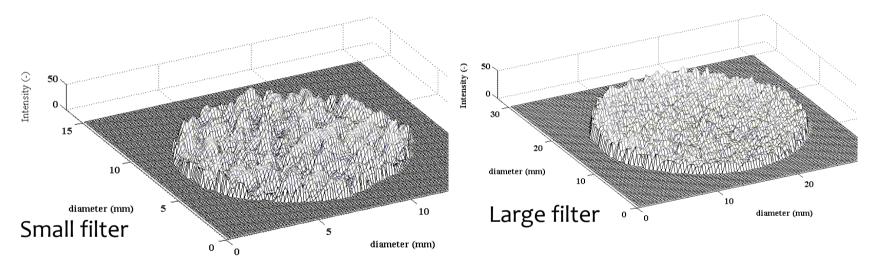
Comparison between results obtained from image analysis and physical measurements

$$\delta_p = 1 - \frac{M}{\rho \cdot V}$$

 δ_p = void fraction (-) M = weight of carbon in the filter (kg)

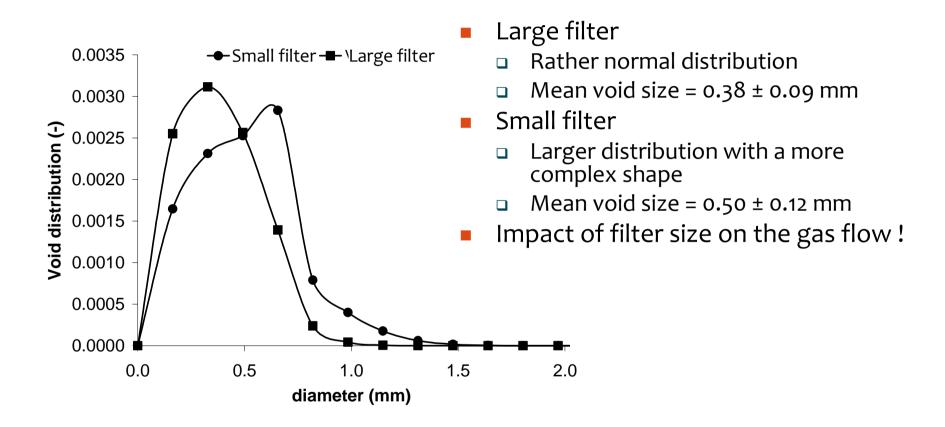
V = volume of the packed bed (m³)

 ρ = carbon bulk density (kg/m³)

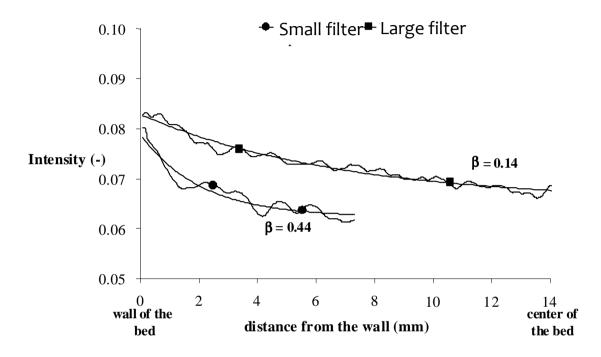

	Image analysis	Physical measurement
Small filter	0.35	0.32
Large filter	0.30	0.26

Void size distribution

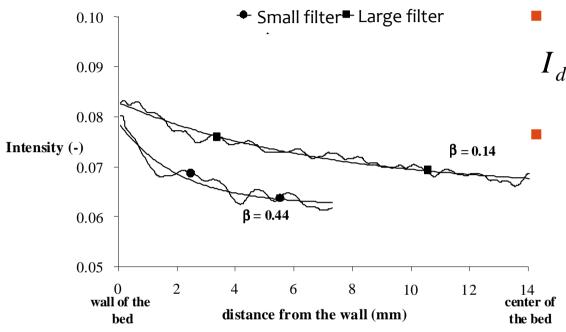
- Grey level intensity distribution within a cross section
 - Valleys = carbon grains (low grey levels)
 - Peaks = interstitial voids (high grey levels)



Smoother patterns for the large filter


Void size distribution

Radial profiles



- Decrease of grey level intensity from the wall to the center
 - Wall effect: carbon concentration higher in the center
 - □ Higher porosity at the wall → channelling effect
- Oscillatory behaviour at a smaller scale
 - Damped oscillations supposed to reach a constant value at high tube to particle diameter ratios

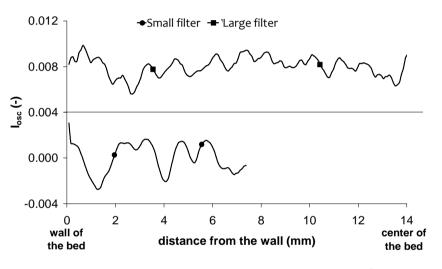
Radial profiles

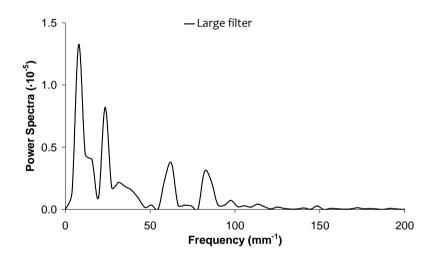
Fit with a monotonic exponential

$$I_{decay}(r,\mu) = A(\mu) + B(\mu)e^{(-\beta r)}$$

Larger decay constant for the small filter: $\beta = 0.44$

- Less uniform distribution
- Larger carbon gradient concentration from the wall to the center





Radial profiles

- Analysis of the oscillating behaviourFit with a monotonic exponential
 - Substraction of fitted radial profiles from measured ones

$$I_{osc}(r) = I(r) - I_{decay}(r)$$

- No clear periodic behaviour for the small filter → uneven packing
- Periodic behaviour for the large filter → power spectra
 - Main peak at a frequency of 7.12 mm⁻¹
 - □ Characteristic length = $0.8 \text{ mm} \rightarrow \text{diameter of carbon grain}$
 - Packing 'layer by layer' in the filter

Conclusions

Conclusions

- X-ray microtomography coupled to image analysis= powerful tool to characterise the 3D structure of activated carbon beds
- Total void fraction in agreement with physical measurements
- Results in agreement with well-known packing beds features
 - Influence of tube-to-particle ratio
 - The larger this ratio, the more uniform the void size distribution
 - Important wall effects for small ratios

Perspectives

- Determination of tortuosity and connectivity
- Setting up relations between packing microstructure and motion of adsorbate concentration front in the bed → in situ follow up X-ray microtomography
- Use of 3D images to simulate the filter operation by the lattice Boltzmann methodology
 - First step = simulation of gas flow
 - Second step = coupling between gas flow pattern and adsorption

Acknowledgements

- M.C.A.A. acknowledges financial support of MEC and FCYT as a postdoctoral contract.
- A. Léonard is grateful to the Fund for Scientific Research (FRS-FNRS, Belgium) for a Research Associate Position.

