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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• PLS vs. MCR-ALS for ciprofloxacin 
quantitation by FT-NIR in various cases. 

• In the same matrix, both methods 
demonstrated good quantitation with 
low errors. 

• PLS struggled with varying matrix 
compositions, while MCR-ALS excelled. 

• PLS showed errors in quantitating cip
rofloxacin with new excipients. 

• MCR-ALS achieved accurate quantita
tion across all samples.  
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A B S T R A C T   

This study aims to quantify ciprofloxacin in commercial tablets with varying excipient compositions using 
Fourier Transform Near-Infrared Spectroscopy (FT-NIR) and chemometric models: Partial Least Squares (PLS) 
and Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). 

Matrix variation, arising from differences in excipient compositions among the tablets, can impact quantifi
cation accuracy. We discuss this phenomenon, emphasizing potential issues introduced by varying certain ex
cipients and its importance in reliable ciprofloxacin quantification. 

We evaluated the performance of PLS and MCR-ALS models independently on two sets of tablets, each con
taining the same drug substance but different excipients. The statistical results revealed promising results with 
PLS prediction error of 0.38% w/w of the first set and 0.47% w/w of the second set, while MCR-ALS achieved 
prediction errors of 0.67% w/w of the first set and 1.76% w/w of the second set. 

To address the challenge of matrix variation, we developed single models for PLS and MCR-ALS using a dataset 
combining both first and second sets. The PLS single model demonstrated a prediction error of 4.3% w/w and a 
relative error of 6.41% w/w, while the MCR-ALS single model showed a prediction error of 1.88% w/w and a 
relative error of 1.29% w/w. 
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We then assessed the performance of the single PLS and MCR-ALS models developed based on the combination 
of the first and the second set in quantifying ciprofloxacin in various commercial tablet brands containing new 
excipients. The PLS model achieved a prediction error ranging between 6.2% w/w and 8.39% w/w, with relative 
errors varied between 8.53% w/w and 12.82% w/w. On the other hand, the MCR-ALS model had a prediction 
error between 1.11% w/w and 2.66% w/w, and the relative errors ranging from 0.8% to 1.74% w/w.   

1. Introduction 

The Association of chemometric techniques to spectroscopic 
methods has shown its efficiency in the pharmaceutical applications [1]. 
These applications vary according to the purpose whether quantitative, 
qualitative, or unveiling the degradation process of the active pharma
ceutical ingredient (API) and reveal its multiple solid-state transitions 
[2,3]. Vibrational spectroscopy techniques are characterized by several 
advantages such as non-destructivity, simplicity and rapidity of use such 
as near infrared spectroscopy [4–6]. However, several challenges limit 
vibrational spectroscopy techniques to be applied as in case of the 
presence of high overlapped absorption spectra [7]. The application of 
multivariate calibration methods, based on the mathematical elabora
tion of a high number of variables, can allow to overcome the spectral 
overlap of API or excipients and permit their rapid qualitative and 
quantitative analysis [8]. Furthermore, the chemometric tools agree 
with the requirements of the green analytical chemistry. This area 
concerns the role of the analyst in developing laboratory practices more 
environmentally friendly, by minimizing the use of chemicals, energy 
use, waste and recycle. 

Among of chemometric approaches that are used with vibrational 
spectroscopy for API quantitation in a mixture are PLS regression and 
MCR-ALS [9,10]. Each of these two approaches works in a different way, 
PLS regression aims to correlate spectral information with a dependent 
variable such as pharmaceutical tablet content [11]. Thus, a model is 
built to predict the property of interest from new sample spectra. MCR is 
a curve resolution method that decomposes the data matrix into its pure 
response profiles and their relative concentrations. MCR works in an 
iterative way (Alternating Least Squares–ALS) to achieve the best data 
decomposition. The ALS algorithm allows for several types of constraints 
(e.g. non-negativity in concentration/ spectral profile, correlation) to 
improve and reach chemical reasonable MCR solutions [12]. 

For the same API, the pharmaceutical product can be manufactured 
by many pharmaceutical companies; thus, the excipients used can vary 
in the different formulations [13,14]. Even though the target analyte to 
be analyzed with spectroscopic techniques is the same, the developed 
model for a specific formulation may be used only for the quantitative 
purpose of samples with the same composition. This constraint is due to 
the analysis by spectroscopic techniques usually applied on the whole 
matrix and the chemometric processing is applied in the spectral data 
[15,16]. 

This work focused on performing two distinct chemometric ap
proaches. MCR-ALS with correlation constraint and PLS regression for 
the quantitative analysis of ciprofloxacin in different tablets. These 
samples composed of three sets. The first and second sets are a ternary 
mixture with different excipients. The third set was composed of 
different brands of ciprofloxacin pharmaceutical products, that were 
manufactured by different pharmaceutical companies. To test the ability 
of chemometric approaches to carry out the quantitation of ciprofloxa
cin in a sample with different excipients, both of first and second sets 
were merged and single models were developed by each chemometric 
approach. Both PLS and MCR-ALS models that are developed based on 
the merged sets, were used to quantitate ciprofloxacin in different 
brands of pharmaceutical products in a third set. 

2. Material and methods 

2.1. Sample preparation 

Two sets of 16 mixtures were prepared based on a mixture design, 
each set consist of a quaternary mixture. Both of sets composed with the 
same target drug substance of ciprofloxacin (TCI-Chemicals, Belgium), 
but with different excipients. Microcrystalline cellulose (Sigma-Aldrich, 
Belgium) and monohydrate lactose (Sigma-Aldrich, Belgium) are ex
cipients of the first set, whereas povidone (Sigma-Aldrich, Belgium) and 
starch (Sigma-Aldrich, Belgium) are the main excipients of the second 
set. while stearate of magnesium (TCI-Chemicals, Belgium) is the com
mon excipient of both sets as it is shown in Table 1. Each compound was 
varied at five levels depend on the ratio of ciprofloxacin that is existed in 
the pharmaceutical formulations: ciprofloxacin varied in the range 
55–75% (w/w), while all excipients varied between 10 and 30% (w/w) 
range except content of magnesium stearate was kept unchanged at 5% 
(w/w). all mixtures range with total weight of 200 mg. 

Each mixture was weighted and then were mixed using pestle and 
mortar to ensure the homogeneity. Each sample was pressed in a Specac 
hydraulic press under 5 ton/cm2 for 1 min to form a ciprofloxacin tablet 
with a diameter of 10 mm. 

Besides of two sets, a set of ciprofloxacin commercial tablets, that 
contain 500 mg of ciprofloxacin, consists of three brands of pharma
ceutical samples. These samples were acquired from local drugstore. 
Each brand has different excipient as illustrated in Table 2. Each com
mercial tablet of ciprofloxacin was grinded and homogenized using the 
pestle and mortar. A weight of 200 mg of the homogenized powder was 
transferred to form a tablet with 10 mm of diameter using Specac hy
draulic press. 

2.2. Instrumentation 

The samples were analyzed with a Fourier transform near infrared 
multipurpose analyzer spectrophotometer (MPA, Bruker Optics, Bill
erica, MA, USA). The spectra were collected with the Opus software V6.5 
(Bruker Optics). Each spectrum was the average of 32 scans and the 
resolution was set at 8 cm− 1 over the spectral range from 12,500 to 

Table 1A 
Amount of ciprofloxacin in first set.   

Ciprofloxacin % w/w MCC % w/w Lactose 
% w/w 

Mg st 
% w/w 

1 75% 10% 10% 5% 
2 75% 10% 10% 5% 
3 65% 10% 20% 5% 
4 66% 19% 10% 5% 
5 70% 15% 10% 5% 
6 66% 11% 17% 6% 
7 60% 25% 10% 5% 
8 60% 10% 25% 5% 
9 55% 25% 15% 5% 
10 55% 15% 25% 5% 
11 55% 30% 10% 5% 
12 55% 10% 30% 5% 
13 60% 18% 17% 5% 
14 60% 17% 18% 5% 
15 70% 12% 13% 5% 
16 70% 13% 12% 5% 

*MCC: microcrystalline cellulose, Mg st: magnesium stearate. 
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4000 cm− 1. (Fig. 1). 

2.3. Data analysis and software 

Before applying whether PLS or MCR-ALS, preprocessing of the 
spectra was the first step to be carried out on the NIR spectra. The aim of 
this initial step is to reduce the instrumental and physical artefacts, such 
as noise and light scattering, that are not related to the chemical 
behavior of the analyzed mixtures. The performance of different pre
processing techniques, including 1st and 2nd derivatives, Standard 
Normale variate (SNV) and multiplicative Signal Correction (MSC), 
were investigated individually and in combination. Among of the pre
processing techniques, SNV and 1st derivative proved to be the most 
efficient in correcting the NIR spectra, based on the lowest predictive 
error obtained of PLS regression and MCR-ALS models. Fig. 2 demon
strate the original spectral data, providing a basis for comparison with 
the preprocessed spectra in Fig. 3. The latter figure offers a direct visual 
comparison between the raw and preprocessed spectra using different 
techniques: SNV and 1st derivative. 

Each of two datasets was split into a calibration and validation sets 
using Kennard-stone algorithm. The same calibration and test set were 
used to develop models of PLS regression and MCR-ALS. 

To carry out the quantitation of ciprofloxacin using MCR-ALS, sin
gular value decomposition (SVD) was the first step used to determine the 
number of components based on the differences between eigenvalues 
and prior knowledge about one or more compound that exist in the 
mixture. Then, the initial estimation was carried out using the purest 
variable approach to estimate the spectral profile of each compound (ST) 
and their profile concentration (ciprofloxacin and excipients for each 
set). To acquire chemically and physically meaningful solutions of both 
C and ST, the optimization was carried out by iterative ALS procedure. 
This procedure includes several constraints that were applied on the 
developed MCR-models to minimize the impact of rotational ambiguity 
problem and thus obtain a unique solution. In this sense, the constraint 
of non-negativity was used only on the concentration profile, whereas 
the same constraint was not applied to the spectral profile since the 
spectra were preprocessed. The correlation constraint, with the objec
tive of performing quantitative analysis, was also used. By the applica
tion of this last constraint, it was possible to predict the concentration 
values in unknown samples as the concentration of a specific compo
nent, in this case, it was ciprofloxacin that was correlated with its 
reference concentration value. In this sense, a MCR calibration model is 
developed and used to predict the concentration of component of 
ciprofloxacin. 

Both of MCR-ALS and PLS models were evaluated using root mean 

Table 1B 
Amount of ciprofloxacin in the second set.   

Ciprofloxacin % w/w Povidone% w/w Starch 
% w/w 

Mg st 
% w/w 

1 75% 10% 10% 5% 
2 75% 10% 10% 5% 
3 65% 10% 20% 5% 
4 66% 19% 10% 5% 
5 70% 15% 10% 5% 
6 66% 11% 17% 6% 
7 60% 25% 10% 5% 
8 60% 10% 25% 5% 
9 55% 25% 15% 5% 
10 55% 15% 25% 5% 
11 55% 30% 10% 5% 
12 55% 10% 30% 5% 
13 60% 18% 17% 5% 
14 60% 17% 18% 5% 
15 70% 12% 13% 5% 
16 70% 13% 12% 5%  

Table 2 
Different commercial tablets.   

Name of 
pharmaceutical 
product 

Number 
of 
tablets 

manufacturer Excipients 

Brand- 
I 

Spectrum- 500 5 tablets Cooper 
pharma 

Croscarmellose; 
microcrystalline 
cellulose; 
Povidone; 
magnesium 
stearate; Colloidal 
silica 

Brand- 
II 

ciproxine-500 mg 5 tablets BAYER Sodium starch 
glycolate; 
povidone; 
microcrystalline 
cellulose; 
magnesium 
stearate 

Brand- 
III 

Fleocip-250 mg 5 tablets Sothema microcrystalline 
cellulose; 
povidone; 
magnesium 
stearate; Corn 
starch  

Fig. 1. Composition spectra of each set. (a): set-1; (B): set-2.  
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square error of prediction (RMSEP), determination coefficient (Rp
2) and 

relative percentage error in concentration (RE). RMSEP were calculated 
according to the following equations: 

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ci − ĉi)
2

n

√

(1)  

RE(%) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1(ci − ĉi)

2

∑n
i=1c2

i

√

× 100 (2)  

where, n is the number of samples, ci is the experimental measurement 
for prediction samples, and ĉi is the obtained value that correspond to 
validation. 

The PLS modelling was performed using the PLS Toolbox V8.2.1 
(Eigenvector Research INC, USA) running on Matlab version R2018b 
(MathWorks, USA) while the MCR-ALS modeling was performed trough 
an interface graphical user [17]. 

3. Results and discussion 

3.1. NIR spectra of each set components 

Fig. 1 shows the raw NIR spectra of compounds that form tablets of 
each set, where spectral feature of all compounds including the target 
analyte are identifiable. Whereas Fig. 1A and Fig. 1B shows spectra of 
each compound of the first and second set respectively, Fig. 2 represents 
NIR spectra of ciprofloxacin in mixtures. Regarding NIR spectra of cip
rofloxacin in each mixture in Fig. 2A and Fig. 2B, it can be seen that the 

profile of NIR mixture spectra of the first set is different from the second 
one. Although the NIR spectra was recorded from 12,500 to 4000 cm− 1, 
the quantitative analysis whether by PLS or MCR-ALS was limited to 
9792 cm− 1-7360 cm− 1 in order to remove the high absorbance that were 
noticed at the end of spectra of some excipients of microcrystalline 
cellulose and starch that lead to a noisy region that have an impact on 
the developed model if it has been included. Then the preprocessed 
techniques were applied on the selected region as it is shown in Fig. 3. 

3.2. Quantitative analysis of ciprofloxacin 

Ciprofloxacin is the target analyte that was used in this study for 
quantitation, where two cases were considered as illustrated in Fig. 4. 
Regarding to the first case, the quantitative analysis was carried out on 
each set independently to evaluate the quantitation by PLS and MCR- 
ALS without considering matrix effect. Whereas the second case, the 
quantitation by PLS and MCR-ALS on the merged set based on gathering 
the first and second set was performed considering the matrix effect. The 
developed models in the second case were applied and tested on 
different brands of ciprofloxacin commercial tablets. 

3.2.1. Quantitative analysis without considering matrix effect (first case) 
The concentration of ciprofloxacin was performed in mixtures of 

each set independently using two different multivariate regression 
techniques PLS and MCR-ALS, applied to the NIR spectra. While the 
optimal latent variables of PLS, which used to develop the model, was 
obtained based on a leave-one-out cross validation, the model of MCR 
was based on the ALS optimization that includes constraints of non- 

Fig. 2. Mixture spectra of each set. (a): set-1; (B): set-2.  

Fig. 3. Preprocessed mixture spectra. (A): set-1; (B): set-2.  
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negativity and correlation. The last cited constraint is responsible on 
performing the quantitative analysis by MCR. Regarding to Fig. 5A and 
Fig. 5C which shows the four loadings obtained by PLS in first and 
second set respectively, the first loading represents clearly the obtained 
preprocessed spectrum of ciprofloxacin. Whereas Fig. 5B and Fig. 5D 
correspond to spectra profiles obtained by MCR-ALS, which the main 
curve obtained by MCR was recognized to be the preprocessed spectrum 
of ciprofloxacin in both sets. 

Fig. 6 shows the reference vs predicted concentration values plot for 
the developed models that shows clearly well distribution of predicted 
values around the line whether for PLS or MCR- ALS in both sets. 

These obtained results are summarized in the Table 3. According to 
these results, both MCR-ALS and PLS models are able to predict the 
concentration values of unknown samples in the same matrix. However, 
in this case of quantifying ciprofloxacin in each set independently, PLS 
has lower RMSEP and RE compared to MCR-ALS. 

3.2.2. Quantitative analysis of ciprofloxacin considering matrix effect 
(second case) 

A single model of PLS and MCR-ALS was developed on a merged set 
of both first and second sets, where the matrix effect was caused by 
variation in excipients from one mixture to another. The PLS regression 
model was developed based on six latent variables determined by cross 
validation of leave-one-out, while for MCR-ALS, six principal compo
nents were determined based on singular value decomposition (SVD). 

Table 3 summarizes the obtained results for validation of the merged 
set using PLS and MCR-ALS. It is observed that the PLS model developed 
on the merged set exhibits higher RMSEP and RE values compared to the 
PLS models developed on each set independently in section 3.2.1. On the 
other hand, the MCR-ALS models demonstrate consistently low errors 
for both the merged set and each set individually, indicating the model’s 
robustness in handling variation in matrix composition. These results 
highlight the impact of matrix composition variation on the predictive 
accuracy of PLS models and underscore the ability of MCR-ALS to handle 
spectral differences arising from excipients not present in the merged 

Fig. 4. Schematic representation of each situation.  

Fig. 5. Loadings (PLS) and recovered spectra (MCR-ALS). (A and C): loadings and recovered spectra of set-1; (C and D): loadings (PLS) and recovered spectra (MCR- 
ALS) of set-2. 
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set. 

3.2.3. Quantitative analysis of ciprofloxacin in different brands of 
pharmaceutical products 

The PLS and MCR-ALS models developed on the merged set, were 
employed to predict the ciprofloxacin content in commercial tablets 
from different manufacturers, each containing different excipients not 
included in the merged set. 

Table 4 presents the performance of PLS and MCR-ALS for the 
commercial samples. The results indicate that the variation in matrix 
composition of commercial tablets leads to increased error in the PLS 
model. Specifically, the commercial tablets of Spectrum 500 mg show 
the highest relative error (RE) and prediction error (RMSEP) compared 

to other brands due to the presence of excipients (croscarmellose and 
colloidal silica) not found in the samples of the merged set. In contrast, 
the MCR-ALS model shows consistently low errors for all brands, 
regardless of the excipients’ composition, validating its ability to handle 
spectral differences arising from the absence or presence of excipients in 
the pharmaceutical products. 

4. Conclusion 

A comparison between PLS and MCR-ALS were investigated to 
quantify ciprofloxacin using FT-NIR in different cases. Initially, quan
titation was evaluated in the same matrix, followed by assessment in a 
varied matrix composition and finally in different brands of pharma
ceutical products manufactured by different pharmaceutical companies. 

In the first case, the obtained results demonstrated the ability of both 
chemometric tools to quantify ciprofloxacin in the same matrix with low 
errors, showcasing their first order advantage. However, In case of 
quantitation of ciprofloxacin in a dataset with varying matrix compo
sitions. PLS model exhibited limitations, resulting in increased errors 
compared to the first case. On the other hand, the MCR-ALS model 
maintained low error even when the matrix composition was changed 
from one sample to another. This highlighted the MCR-ALS’s ability to 
deal with matrix effects and predict the content of ciprofloxacin in 
different matrix composition, thanks to its second-order advantage. 

Finally, the quantitation of ciprofloxacin in different brands of 

Fig. 6. Plots of reference values vs predicted values for PLS and MCR for set-1 (A and B) and set-2 (C and D).  

Table 3 
Results of PLS and MCR-ALS models for each set and merged set.   

PLS MCR-ALS  

LV R2p % RMSEP RE % PCs R2p % RMSEP RE% 

Set-1 4 99.7 0.38 0.54 4 99.27 0.67 1.15 
Set-2 4 99.79 0.47 0.68 4 94.59 1.76 1.98 
Merged set 6 85.55 4.3 6.41 6 95.39 1.88 1.29  

Table 4 
Results of the application of PLS and MCR-ALS models on the commercial 
tablets.   

Name of pharmaceutical 
product 

PLS MCR-ALS   

RE % RMSEP RE 
% 

RMSEP 

Brand- I Spectrum- 500 12.82 8.39 2.66 1.74 
Brand- II ciproxine-500 mg 9.78 6.38 2.54 1.65 
Brand- 

III 
Flocip-250 mg 8.53 6.20 1.11 0.80  
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commercial tablets revealed that the error of the PLS model kept arising 
especially in samples with new excipients. Conversely, the MCR-ALS 
enabled the accurate quantitation of ciprofloxacin in all commercial 
samples, regardless of the pharmaceutical sample’s composition, thanks 
to its ability to resolve the spectra of mixture components. 
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