
Highly accurate differentiation of the exponential map
and its tangent operator

Juliano Todesco, Olivier Brüls

October 7, 2023

Department of Aerospace and Mechanical Engineering, University of Liège, Belgium

Abstract

Exponential coordinates are widely used in simulation codes for flexible multibody systems based on a Lie group
approach. The accurate and efficient evaluation of the exponential map, the tangent operator and its higher order
derivatives is crucial. This paper presents a systematic derivation process based on the matrix series expansion of
the exponential map and of the tangent operator. This approach is general as it can be applied to any matrix Lie
group. For the Lie groups SO(3) and SE(3), the closed form expression of these operators can also be established
and is summarized in the paper. It is shown that the closed form of the operators is affected by round-off errors for
small rotation amplitudes, whereas the series form is affected by truncation errors at high rotation amplitudes. The
computational efficiency of the two approaches is also discussed. A switching strategy between the closed form and
the series form is then proposed to obtain an adjustable compromise between accuracy and computational cost.

Keywords: Derivatives, Exponential map, special orthogonal group, special Euclidean group, numerical methods, Lie group
E-mail addresses: Juliano.Todesco@doct.uliege.be (J. Todesco), O.Bruls@uliege.be (O. Brüls).

• Lie group operators for flexible multibody systems are developed

• The exponential map and its derivatives are given in truncated matrix series form

• The ill-conditioning of exponential map derivatives in closed form is analyzed

• Numerical errors and costs are analyzed for the exponential map and derivatives

• A switching strategy between the closed form and the series form is proposed

1 Introduction
Nowadays, Lie group methods are widely used in computational mechanics and, in particular, in multibody dynamics. For
example, they offer a consistent treatment either for rotation variables defined on the special orthogonal group SO(3) or for
roto-translation variables (i.e., rigid transformation variables) defined on the special Euclidean group SE(3). Time and space
discretization methods on Lie group [1–7] are applicable to systems with rigid bodies, kinematic joints, flexible beams, flexible
shells and superelements. The Lie group framework solves a number of numerical difficulties related with the treatment of
singularities of parameterizations. These methods still use a parameterization of the motion but only locally, e.g., to describe the
incremental motion from one time step to the next or to describe relative positions and orientations within a finite element.

An important ingredient of Lie group methods is the algorithm for the computation of the coordinate map and its derivative [3].
The first derivative of the coordinate map is defined at a current point and in a given direction and it can be conveniently
represented by the so-called tangent operator, which is a k × k matrix where k is the intrinsic dimension of the group. Some
advanced numerical formulations also require some higher order directional derivatives and gradients of the tangent operator
and its inverse. These diverse operators are involved in finite element discretization processes [6], in implicit time integration
procedures [5], in sensitivity analysis [8, 9] and in optimization [10, 11].

Actually, several parameterizations can be selected to define the local coordinates involved in Lie group methods [12–16].
Among these possible choices, exponential coordinates are often considered at first because of their many attractive theoretical
properties, which can be attributed to the fact that the exponential map captures the fundamental solution of ordinary differential
equations on Lie groups. For these reasons, this paper focuses on exponential coordinates and the associated maps. The inverse
of the exponential map is the so-called logarithm map.

In the context of matrix Lie groups, the exponential map takes a matrix of the Lie algebra and computes a matrix on the
group based on an infinite matrix series expansion. As pointed out in [17], there is a variety of alternative numerical methods to
compute the exponential map of an arbitrary matrix. The evaluation of the tangent operator turns out to be more complicated
than the exponential map itself, which calls for dedicated algorithms. The complexity further increases for successive derivatives
of the tangent operator and its inverse.

1

This paper thus addresses the efficient and accurate evaluation of the exponential map, the logarithm map and the tangent
operator on matrix Lie groups, such as SO(3) and SE(3), as well as the derivatives of the tangent operator and its inverse.
Methods for calculating these operators can be roughly divided into three classes.

The first class relies on the derivative of the analytic or closed form expression of the exponential map, which is available
for the Lie groups SO(3) and SE(3). For SO(3), the closed form expression of the exponential map is known as the Rodrigues
formula. One issue is that the closed formula suffers from a singularity at the origin. This singularity appears when the rotation
is zero and it implies some ill conditioning of the exponential map and its derivatives in the neighborhood of the origin. To
overcome the singularity, the closed form of the exponential map and its derivatives can be replaced by its limit value when the
rotation amplitude is below a threshold, see [18]. The selection of this threshold has a direct impact on the accuracy, which is
rarely investigated in the literature. Instead of using the limit value, a Taylor series expansion with 3 or 4 terms can also be
exploited [19].

The second class relies on a scalar series formulation, which replaces the trigonometric functions involved in the closed form
for SO(3) and SE(3). These expressions have no singularity issue and do not suffer from ill conditioning at the origin. A family
of scalar power series was proposed in [20] to provide compact expressions for the exponential map. A similar approach was
followed by [21] who proposed a single series family for the calculation of first and second derivatives of the exponential map on
SO(3).

These first two classes require some consequent analytical developments for the formulation of each operator, which may
become cumbersome considering the variety of operators needed in general purpose code for flexible multibody systems. In order
to obtain a more generic formulation of all operators on an arbitrary matrix Lie group, this article studies a third class of methods
which is based on truncated matrix series expansions of the exponential map and of the tangent operator [22, 23]. A similar
strategy was exploited by [24] to evaluate the nth order directional derivatives of the Gibbs coordinate map on SO(3). However,
we did not find any detailed study regarding the matrix series expansion of the derivatives of the exponential map for general
matrix Lie group.

Let us remark that a rotation (resp. a rigid body motion) could alternatively be represented as a unit quaternion (resp. as a
unit dual quaternion) which also belong to a Lie group [25]. Exponential coordinates and the associated maps are also available
on the quaternion group and on the dual quaternion group. Such representations have been successfully exploited, e.g., in [26–28].
However, these groups are non-matricial ones and are therefore not considered in the scope of the present paper.

The paper is organized as follows. We first review the matrix Lie group framework; the exponential map is presented in its
series form and the tangent operator is introduced. Secondly, we develop the derivatives of the tangent operator and its inverse
using truncated matrix series. The formulae are rather compact and valid for any matrix Lie group. The derivation procedure
turns out to be quite systematic. Thirdly, the operators on SO(3) and SE(3) are reviewed. Closed form expressions are presented
for the exponential map, the logarithm map, the tangent operator as well as its derivatives. Fourth, the numerical error and the
computational cost is analyzed for the closed form and the truncated series form. Then, numerical experiments are performed
to investigate the accuracy of these formulae in a wide range of rotation and motion amplitudes. Based on these observations,
a switching strategy between the closed form and the series form on SO(3) and SE(3) is proposed in order to obtain the best
compromise between accuracy and computational cost. Finally, some conclusions are given.

2 Matrix Lie group framework
This section presents the fundamental mathematical concepts that are at the core of this paper. We start with the definitions of a
matrix Lie group and its Lie algebra, then we continue with their adjoint representations and finally we introduce the exponential
map, its tangent operator and its inverse. These concepts, which are well-established in the field, are presented in a rather
compact way. The reader may find further information in textbooks or reference papers such as [25, 29–31].

A group (G, ◦) is a set G of elements q with a group operation ◦ which satisfies the four following axioms:

• Closure: If ∀q1, q2 ∈ G, then q1 ◦ q2 = q3 ∈ G;

• Associativity: q1 ◦ (q2 ◦ q3) = (q1 ◦ q2) ◦ q3;

• Neutral element: There exists an element e ∈ G such that q ◦ e = e ◦ q = q;

• Inverse element: ∀q ∈ G there exists an element q−1 ∈ G such that q ◦ q−1 = q−1 ◦ q = e.

A Lie group is a group G which is a differential manifold and which satisfies the following smoothness requirements for the
group operation and the inverse map:

• Smoothness: The maps (q1, q2) 7→ q1 ◦ q2 and q 7→ q−1 are smooth functions.

In this work, we restrict our considerations to matrix Lie groups for which the elements are invertible n× n matrices Q and
the group operation is the usual matrix product written as Q1Q2 = Q3. As it is also a manifold, a matrix Lie group has an
intrinsic dimension which shall be denoted k and which is generally different from n. The neutral element is (simply) the identity
matrix I. Given an element Y ∈ G, the group operation leads to the definition of the left and right translation maps.

• Left translation map: LY(Q) : G → G, Q 7−→ YQ.

• Right translation map: RY(Q) : G → G, Q 7−→ QY.

2

Let us differentiate these maps to obtain important relations between the tangent spaces of the group. Consider the curve
Q(a) ∈ G parametrized by a scalar variable a ∈ R and an element Y which does not depend on this variable a. Let da(•) denotes
the derivative with respect to a. Then da(Q) belongs to TQG, the tangent space at element Q ∈ G, and we have

da(LY(Q(a))) = da(YQ(a)) = Yda(Q(a)) (1)

da(RY(Q(a))) = da(Q(a)Y) = da(Q(a))Y (2)

which motivates the definition of the differentiable and invertible maps

LY∗ : TQG → TYQG, da(Q(a)) 7→ LY∗ (da(Q(a))) = Yda(Q(a)) (3)

RY∗ : TQG → TQYG, da(Q(a)) 7→ RY∗ (da(Q(a))) = da(Q(a))Y (4)

Eq. (3) (resp. Eq. (4)) defines a diffeomorphism between TYG and TYQG (resp. and TQYG). In the particular case Y = Q−1,
Eqs. (3) and (4) lead to the definition of ãL and ãR

ãL = Q−1da(Q(a)) ⇔ da(Q(a)) = QãL (5)

ãR = da(Q(a))Q−1 ⇔ da(Q(a)) = ãRQ (6)

where ãL, ãR ∈ TIG. The maps LQ−1∗ : TQG → TIG and RQ−1∗ : TQG → TIG are differentiable and invertible maps, which relate
the tangent space at any element Q ∈ G to the tangent space at the identity element I. This tangent space at the identity of a
matrix Lie group is called the Lie algebra, denoted by TIG ≡ g. The Lie algebra has a vector space structure and is isomorphic
to Rk through the invertible linear map:

(̃•) : Rk → g, x 7→ x̃ (7)

Let us advance the study by analyzing the derivatives of the right and left translation maps, which will result in the definition
of the Lie bracket [•, •], of the adjoint representation and its derivative. From Eqs. (5) and (6), we obtain

ãR = QãLQ
−1 (8)

so that QãLQ
−1 ∈ g is an element of the Lie algebra. Following the result of Eq. (8), we can define the adjoint representation

of the Lie group AdQ such that, for any Q ∈ G,

AdQ : g → g, ã 7→ AdQ(ã) = QãQ−1 (9)

AdQ can be interpreted as a linear map in the Lie algebra g, which is called the adjoint map. With a slight abuse of notations,
since Rk is isomorphic to the Lie algebra, the notation AdQ is also used to represent the adjoint map from Rk to Rk, i.e.,

AdQ : Rk → Rk, a 7→ AdQa (10)

In this case, AdQ is interpreted as a k × k matrix and AdQa is the usual matrix–vector product.
Let now Q(a, b) ∈ G be parametrized by two scalar variables a, b ∈ R. Following the results of the derivative of the left

translation map in Eq. (5), the derivatives of Q(a, b) with respect to a and b are respectively given by da(Q) = Qã and db(Q) =

Qb̃, where ã and b̃ belong to the Lie algebra. The commutativity of the cross derivatives is expressed as da(db(Q)) = db(da(Q)),
which implies:

da(Qb̃) = db(Qã) ⇔ Qãb̃+Qda(b̃) = Qb̃ã+Qdb(ã) ⇔ db(ã)− da(b̃) = ãb̃− b̃ã (11)

In general, db(ã)− da(b̃) ̸= 0, i.e., second derivatives on a Lie group do not commute. These results motivate the definition
of the Lie bracket operator (or matrix commutator):

adã(b̃) ≡ [•, •] : g× g → g, ã, b̃ 7→ [ã, b̃] = ãb̃− b̃ã (12)

The Lie bracket satisfies the following axioms [32]:

• Bilinearity: [ax̃+ bỹ, z̃] = a[x̃, z̃] + b[ỹ, z̃] and [z̃, ax̃+ bỹ] = a[z̃, x̃] + b[z̃, ỹ] for all scalars a, b and all elements x̃, ỹ, z̃ ∈ g;

• Skew-symmetry, [x̃, ỹ] = −[ỹ, x̃] for all x̃, ỹ ∈ g. [•, •] is skew symmetric;

• Alternativity, [x̃, x̃] = 0 for all x̃ ∈ g;

• Jacobi identity, [x̃, [ỹ, z̃]] + [ỹ, [z̃, x̃]] + [z̃, [x̃, ỹ]] = 0 for all x̃, ỹ, z̃ ∈ g.

The map adã is the adjoint map or the adjoint representation of the Lie algebra [33]. Although adã(b̃) is equivalent to [ã, b̃],
the alternative “ ad ” notation can be useful. For example, the expression [ã, [ã, [ã, [ã, b̃]]]] can be replaced by the more compact
notation ad4

ã(b̃).
Since the commutator is linear with respect to both arguments, with a slight abuse of notations, the Lie bracket can be

written in terms of vectors in Rk:
adab = db(a)− da(b) (13)

In this case, ada can be interpreted as a k× k matrix and adab is the usual matrix–vector product. For notational convenience,
the “hat” operator (̂•) is introduced as

â ≡ ada (14)

Since the Lie bracket is bilinear, hat is a linear operator which maps a k × 1 vector a into a k × k matrix â. The following
properties can be observed:

3

Figure 1: The exponential map.

• âb = −b̂a;

• The linear map: g× g → Rk×k, adãb̃ → adab. The useful notation g× g → Rk×k, adn
ã b̃ → adn

ab;

• The “check ” (•)

∧

is a linear map such that
âTb = b̌Ta, ∀a,b ∈ Rk, (15)

where the superscript T denotes the transpose matrix.

The exponential operator maps any element of the Lie algebra g to an element of the Lie group G

exp : g → G, x̃ 7→ Q = exp(x̃) (16)

It defines a local diffeomorphism between x̃ ∈ g and Q ∈ G for Q sufficiently close to the identity, as illustrated in 1. The
exponential map is also defined by the infinite series

exp(x̃) =

∞∑
i=0

1

i!
x̃i (17)

where x̃0 is the identity element I and x̃i is the repeated matrix product of x̃ with itself.
Since the Lie algebra is isomorphic to Rk, the exponential map introduces a local parameterization of the Lie group around

the identity I. The exponential map may be seen as a local parameterization in the sense that the argument of the exponential
map belongs to a linear space g while G is a non-linear space. In practice, it means that standard vector calculus applies to the
argument of the exponential map, such as the multiplication by a scalar or the addition of another k-dimensional vector and that
the result of these operations can afterwards be projected onto the group [31].

Eq. (5) can be seen as a first order differential equation on the Lie group G. For a given constant vector field ãL ∈ g, which
does not depend on the parameter t ∈ R, the initial value problem

dt(Q) = QãL, Q0 = Q(0) (18)

admits the solution
Q(t) = Q0 exp(tãL) (19)

The exponential map allows one to construct a local parameterization of G about an arbitrary point Q0 ∈ G based on the
formula

Q = Q0 exp(x̃) (20)

This diffeomorphism can be written as a coordinate map Rk → G : x 7→ Q = Q0 exp(x̃).
The derivative of the exponential map can be established as follows. First, the derivative of Eq. (20)

dt(Q) = Q0D exp(x̃) · dt(x̃) (21)

defines a relation between the derivative of the coordinates x and the derivative of the matrix Q. Considering a functional F(y)
and the vectors y and z, the directional derivative of F with respect to y in the direction z is denoted as DyF(y) ·z, the subscript
of D can be omitted. In this expression, D exp(x̃) · dt(x̃) is the directional derivative of the exponential map exp(x̃) in the
direction of dt(x̃). Replacing Eq. (18) in Eq. (20) leads to

dt(Q) = Q0 exp(x̃)ãL (22)

A comparison of Eqs. (21) and (22) leads to a linear relationship between aL and x

ãL = (exp(x̃))−1D exp(x̃) · dt(x̃) (23)

In [30], the left-trivialized differential (tangent) of the exponential map is defined as a function

dexp : g× g → g, x̃, dt(x̃) 7→ dexpx̃ (dt(x̃)) (24)

4

such that
D exp(x̃(t)) · dtx̃(t) = exp(x̃(t))dexp−x̃(t) (dtx̃(t)) (25)

The matrix dexpx̃ is an analytic function of the matrix adx̃ which satisfies dexpx̃ = (exp(adx̃)− I)/ adx̃. The operator dexp−x̃

can be expressed as a power series in the following manner. Since for a scalar y ∈ R

1− e−y

y
= 1− 1

2!
y +

1

3!
y2 − 1

4!
y3 + · · ·+ (−1)i

(1 + i)!
yi + · · ·

similarly one obtains the left-trivialized differential dexp−x̃

dexp−x̃ =
I− exp(− adx̃)

adx̃
=

∞∑
i=0

(−1)i

(1 + i)!
(adx̃)

i (26)

where the property ad−x̃ = − adx̃ has been used.
Next, the derivative of the exponential map can be formulated in terms of vectors in Rk. From Eqs. (23) and (25), we obtain

ãL = dexp−x̃(t)dtx̃(t) so that

ãL =

∞∑
i=0

(−1)i

(1 + i)!
(adx̃)

idt(x̃) (27)

or
ãL = dt(x̃)−

1

2!
[x̃, dt(x̃)] +

1

3!
[x̃, [x̃, dt(x̃)]]−

1

4!
[x̃, [x̃, [x̃, dt(x̃)]]] + · · · (28)

This formula can be expressed as a linear relationship between the vectors aL and dt(x) in Rk as

aL = Idt(x)−
1

2!
x̂dt(x) +

1

3!
x̂2dt(x)−

1

4!
x̂3dt(x) + · · · (29)

which can be rewritten as a matrix–vector multiplication

aL = T(x)dt(x) (30)

where T is the tangent operator of the exponential map given by

T(x) =

∞∑
i=0

(−1)i

(1 + i)!
x̂i (31)

Notice that the tangent operator T(x), Eqs. (31), is the expression of the left-trivialized differential dexp−x̃, Eqs. (26), in terms
of vectors of Rk. The following relationships also hold

dt(x) = T−1(x)aL, (dt(x))
T = aT

LT
−T (x), aT

L = dTt (x)T
T (x) (32)

T−1(x) =

∞∑
i=0

(−1)iBi

i!
x̂i, T−T (x) =

∞∑
i=0

(−1)iBi

i!
(x̂T)i, TT (x) =

∞∑
i=0

(−1)i

(1 + i)!
(x̂T)i (33)

where Bi forms a sequence of rational numbers, called the Bernoulli numbers of the first kind.
The inverse of the exponential map is called the logarithmic map,

log : G → g, Q 7→ x̃ = log(Q) (34)

and is defined such that exp(log(Q)) = Q. The logarithm map is defined for any Q ∈ G. In some cases, the logarithm map
admits the series expansion

log(Q) = −
∞∑
i=1

(I−Q)i

i
(35)

However, this series expansion only converges in some restricted regions of G. If Q is diagonalizable, the convergence is guaranteed
if additionally all eigenvalues λi of Q satisfy |λi − 1| < 1. If these conditions are not satisfied, the logarithm still exists but there
is no guarantee that the series expansion (35) converges and can be used for its evaluation. Two different matrices x̃1, x̃2 ∈ g

with x̃1 ̸= x̃2 may have the same exponential exp(x̃1) = exp(x̃2). For that reason, the property log(exp(x̃)) = x̃ is only valid in
a restricted region of g defined by the condition ∥x̃∥ < log 2 [33].

3 Derivatives
The directional derivatives of the exponential map and of the tangent operator on any matrix Lie group are now developed based
on their series expressions. To the best of our knowledge, the resulting matrix series expressions are novel. This section proposes
a step-by-step derivation of the formulae so that the reader can reproduce our reasoning. The final results that can be used for
a general implementation in a computer code are given in the last 3.3.

5

3.1 Directional derivative of the tangent operator DT(a) · b
The development of the first directional derivative of the tangent operator T(a) in the direction of b, is based on the product
rule and on a recursive formulation. Starting from Eq. (31), we obtain

DT(a) · b =

∞∑
i=0

(−1)i

(1 + i)!
Dâi · b (36)

We know that Dâ · b = b̂ is valid for all matrix Lie groups since (̂•) is a linear operator, see Eq. (14). The variable Dâi · b can
be evaluated recursively using the initialization

Dâ0 · b = DI · b = 0 (37)

and the recursive step

Dâi · b = D(ââi−1) · b
= (Dâ · b)âi−1 + âDâi−1 · b

= b̂âi−1 + âDâi−1 · b︸ ︷︷ ︸
Recursive

(38)

Since Dâ0 · b = 0, the series in Eq. (36) could also start at i = 1 and be written as DT(a) · b =
∑∞

i=1
(−1)i

(1+i)!
Dâi · b.

Similarly, the directional derivative of the inverse operator is obtained as

DT−1(a) · b =

∞∑
i=1

(−1)iBi

i!
Dâi · b (39)

and the derivative of the transposed operator as

DTT (a) · b =

∞∑
i=1

(−1)i

(1 + i)!
D(âT)i · b, DT−T (a) · b =

∞∑
i=1

(−1)iBi

i!
D(âT)i · b (40)

with the recursive expression
D(âT)i · b = b̂T (âT)i−1 + âTD(âT)i−1 · b (41)

The second directional derivative of the tangent operator Da(DT(a) · b) · d is obtained as:

Da(DT(a) · b) · d =

∞∑
i=1

(−1)i

(i+ 1)!
Da(Dâi · b) · d (42)

=

∞∑
i=1

(−1)i

(i+ 1)!
Da(b̂â

i−1 + âDâi−1 · b) · d (43)

=

∞∑
i=1

(−1)i

(i+ 1)!
(b̂Dâi−1 · d+ d̂Dâi−1 · b+ âDa(Dâi−1 · b) · d︸ ︷︷ ︸

Recursive

) (44)

In the above formula, one may observe that the term for i = 1 vanishes and that, in principle, the series could start at i = 2.
Clearly, each differentiation step kills one term in the series. In the next developments, we will keep starting the series of higher
order derivatives at i = 1 and will rely on the convention that D(â)i · b = D(âT)i · b = 0 if i ≤ 0.

In B.1, various derivatives of âi, such as Da(Dâi · b) · d, are provided. Based on this information, the evaluation of the
derivative of T is straightforwardly obtained by summation using Eq. (42).

Similarly, the second directional derivative of the inverse of tangent operator is :

Da(DT−1(a) · b) · d =

∞∑
i=1

(−1)iBi

i!
Da(Dâi · b) · d (45)

and the second directional derivatives of the transposed operator are:

Da(DTT (a) · b) · d =

∞∑
i=1

(−1)i

(i+ 1)!
Da(D(âT)i · b) · d, Da(DT−T (a) · b) · d =

∞∑
i=1

(−1)iBi

i!
Da(D(âT)i · b) · d (46)

Also, the directional derivatives T−1, TT and T−T , are easily evaluated from the derivative of âi provided in B.1.

3.2 Gradient of the tangent operator multiplied by a constant vector ∇a (T(a) c)

The gradient ∇a(T(a) c) is defined as the operator such that ∇a(T(a) c) b = Da(T(a) c) · b. It represents the directional
derivative of the tangent operator when it is multiplied on the right by a constant vector c, with respect to a in the direction b.
Observing that

Da(T(a) c) · b =

∞∑
i=1

(−1)i

(1 + i)!
Da(â

i c) · b (47)

6

forthwith

Da(â
i c) · b = Da(â) · b (âi−1 c) + âDa(â

i−1 c) · b

= b̂(âi−1 c) + âDa(â
i−1 c) · b

= − ̂(âi−1 c)b+ âDa(â
i−1 c) · b (48)

using the property Eq. (14) and isolating b of the Eq. (48), we get

∇a(â
i c) = −(âi−1 c)
∧

+ â∇a(â
i−1 c)︸ ︷︷ ︸

Recursive

(49)

the computation of ∇a(â
i c) can be done recursively with the initialization ∇a(â

0 c) = 0 and the recursive step. we obtain

∇a(T(a) c) =

∞∑
i=1

(−1)i

(1 + i)!
∇a(â

i c) (50)

Similarly,

∇a(T
−1(a) c) =

∞∑
i=1

(−1)iBi

i!
∇a(â

i c) (51)

Noting that ∇a(T
T (a) c)b = Da(T

T (a) c) · b, the same technique applied to the transposed tangent operator gives

Da(T
T (a) c) · b =

∞∑
i=1

(−1)i

(1 + i)!
Da

(
(âT)i c

)
· b (52)

forthwith

Da((â
T)i c) · b = Da(â

T) · b ((âT)i−1 c) + âTDa((â
T)i−1 c) · b

= b̂T ((âT)i−1 c) + âTDa((â
T)i−1 c) · b

= ((âT)i−1 c)

∧

b+ âTDa((â
T)i−1 c) · b (53)

using the property Eq. (15) and isolating b of the Eq. (53), we get

∇a((â
T)i c) = ((âT)i−1 c)

∧

+ âT ∇a((â
T)i−1 c)︸ ︷︷ ︸

Recursive

(54)

Similarly

∇a(T
−T (a) c) =

∞∑
i=1

(−1)iBi

i!
∇a((â

T)i c) (55)

The same technique is valid for higher order gradient of the tangent operator, some of which are provided in the B.1. For
example, the gradient of the derivative of the tangent operator multiplied by a constant vector c is given by:

∇a(DT(a) · b c) =

∞∑
i=1

(−1)i

(1 + i)!
∇a(Dâi · b c), ∇a(DT−1(a) · b c) =

∞∑
i=1

(−1)iBi

i!
∇a(Dâi · b c) (56)

∇a(DTT (a) · b c) =

∞∑
i=1

(−1)i

(1 + i)!
∇a(D(âT)i · b c), ∇a(DT−T (a) · b c) =

∞∑
i=1

(−1)iBi

i!
∇a(D(âT)i · b c) (57)

where ∇a(Dâi · b c) and ∇a(D(âT)i · b c) are provided in the B.1.

3.3 General expression for high order directional derivatives and gradients
The higher order directional derivatives and gradients of the operator T(a) are all expressed in terms of the derivatives and
gradient of âi. The procedure to obtain these terms turns out to be quite systematic and leads to rather compact and easy
to implement expressions, as it can be seen in B.1 in various cases. From these expressions, a general and original formula for
directional derivatives of order n in the direction of vectors bj , j = 1 · · ·n, and gradients of order m of the hat operator multiplied
by constants vector ck, k = 1 · · ·m is obtained as

∇m
((

Dn
((

âi · b1

)
... · bn

)
c1
)
... cm

)
=

n∑
j=1

b̂j∇m
((

Dn−1
((((

âi−1 · b1

)
... · bj−1

)
· bj+1

)
... · bn

)
c1
)
... cm

)
+

m∑
k=2

ĉk∇m−1
((((

Dn
((

âi−1 · b1

)
... · bn

)
c1
)
... ck−1

)
ck+1

)
... cm

)
− (1− δm 0)

(
∇m−1

((
Dn
((

âi−1 · b1

)
... · bn

)
c1
)
... cm−1

)
cm
)∧

+ â∇m
((

Dn
((

âi−1 · b1

)
... · bn

)
c1
)
... cm

)
(58)

7

where δij is the Kronecker delta.
Likewise, the higher order directional derivatives and gradients of the transposed operator TT (a) are obtained as

∇m
((

Dn
((

(âT)i · b1

)
... · bn

)
c1
)
... cm

)
=

n∑
j=1

b̂j

T
∇m

((
Dn−1

((((
(âT)i−1 · b1

)
... · bj−1

)
· bj+1

)
... · bn

)
c1
)
... cm

)
+

m∑
k=2

ĉk
T∇m−1

((((
Dn
((

(âT)i−1 · b1

)
... · bn

)
c1
)
... ck−1

)
ck+1

)
... cm

)
+ (1− δm 0)

(
∇m−1

((
Dn
((

(âT)i−1 · b1

)
... · bn

)
c1
)
... cm−1

)
cm
)∧T

+ (âT)∇m
((

Dn
((

(âT)i−1 · b1

)
... · bn

)
c1
)
... cm

)
(59)

In the B.2, we detail a compact algorithm which implements these two general formulae.

4 The SO(3) and SE(3) matrix Lie groups
The formulae obtained in the previous sections are applicable to the Lie groups SO(3) and SE(3) as special cases. For these Lie
groups, closed form expressions for the exponential map and its tangent operator are available and can also be considered for the
development of the higher order derivatives and gradients. These expressions are detailed below.

4.1 The special orthogonal group SO(3)

The set of finite rotation matrices, i.e.,

SO(3) :−
{
R ∈ R3×3 | RTR = I3×3, det(R) = +1

}
(60)

together with the product of a 3 × 3 real matrix as a composition (group) operation, are a matrix Lie group, which is called
the special orthogonal group [34]. It is a group since it satisfies the four axioms. Firstly, the closure axiom is satisfied because
the composition of two rotation matrices yields a rotation matrix too. Secondly, the matrix product is associative. Thirdly,
the neutral element is the 3 × 3 identity matrix. Finally, the inverse of a rotation matrix R always exists and is simply the
transposed RT , which is also a rotation matrix.

The group SO(3) is a matrix Lie group since the product and the inverse of a matrix are smooth operations. At any point
R on the manifold SO(3), the tangent space is noted TRSO(3). The Lie algebra so(3) is defined as

so(3) :−
{
x̃ω ∈ R3×3 | x̃ω + x̃ω

T = 03×3

}
(61)

so(3) can be identified with R3 since the three non-trivial components of a skew-symmetric matrix x̃ω can be collected in a vector
xω with the following expressions

x̃ω =

 0 −xω3 xω2

xω3 0 −xω1

−xω2 xω1 0

 , xω =

xω1

xω2

xω3

 (62)

In this way, the tilde operator (̃•) maps a vector xω ∈ R3 into a skew-symmetric matrix x̃ω ∈ so(3). We also have the relationship
between the tilde operator and the cross product between the vectors a,b ∈ R3: a × b = ãb. For SO(3), the hat operator (̂•)
defined in Eq. (14) coincides with the tilde operator (̃•). Therefore, the check operator (•)

∧

, defined in Eq. (15), is equivalent to

(̃•)
T

in this case.
From Eq. (5), the derivative of an element of SO(3) can be represented as

da(R) = Rx̃ω (63)

where da(R) : SO(3) → TRSO(3).
The closed form of the exponential map can be obtained by exploiting the property x̂ω = x̃ω (which only holds for SO(3))

and the property of skew-symmetric 3 × 3 matrices x̃3
ω = −∥xω∥2x̃ω. In this last expression, ∥xω∥ =

√
x2
ω1 + x2

ω2 + x2
ω3 is the

Euclidean norm. Applying these properties to Eq. (17), we obtain:

expSO(3)(x̃ω) = I+ x̃ω +
x̃ω

2

2!
− ∥xω∥2x̃ω

3!
− ∥xω∥2x̃ω

2

4!
+

∥xω∥4x̃ω

5!
+

∥xω∥4x̃ω
2

6!
− ∥xω∥6x̃ω

7!
− ∥xω∥6x̃ω

2

8!
+ · · · (64)

One can then consider the Taylor’s series of sin(θ) and cos(θ) (see [35], chapter 2.3.3)

sin(θ) = θ − θ3

3!
+

θ5

5!
− θ7

7!
+

θ9

9!
− θ11

11!
+

θ13

13!
− · · · , cos(θ) = 1− θ2

2!
+

θ4

4!
− θ6

6!
+

θ8

8!
− θ10

10!
+

θ12

12!
− · · · (65)

In Eq. (64), assuming ∥xω∥ ≠ 0, one can multiply some terms by ∥xω∥/∥xω∥ and other terms by ∥xω∥2/∥xω∥2

expSO(3)(x̃ω) =I+

(
∥xω∥ −

∥xω∥3

3!
+

∥xω∥5

5!
− ∥xω∥7

7!
− · · ·

)
x̃ω

∥xω∥
+

(
1− 1 +

∥xω∥2

2!
− ∥xω∥4

4!
+

∥xω∥6

6!
+ · · ·

)
x̃ω

2

∥xω∥2

=I+
sin(∥xω∥)

∥xω∥
x̃ω +

1− cos(∥xω∥)
∥xω∥2

x̃ω
2 (66)

8

This new expression of the exponential map has a singularity when ∥xω∥ = 0. This formula, commonly referred to as Ro-
drigues’formula, gives an efficient method for computing expSO(3)(xω). The inverse deduction of the serial formula from the
Rodrigues formula was presented in [36, 37]. One can also observe that expSO(3) is not injective. Indeed, let a∗ = (1+2kπ/∥a∥)a,
for all integer k, we have expSO(3)(ã

∗) = expSO(3)(ã).
The expression of the Rodrigues formula can be adjusted by defining auxiliary quantities:

α(xω) =
sin(∥xω∥)

∥xω∥
, β(xω) = 2

1− cos(∥xω∥)
∥xω∥2

, γ(xω) =
∥xω∥
2

cot(
∥xω∥
2

) (67)

Notice that α(0) = β(0) = γ(0) = 1. The closed form of exponential map on SO(3) is then given by

expSO(3)(xω) =

{
I+ α(xω)x̃ω +

β(xω)
2 x̃ω

2 if ∥xω∥ ⩾ ϵ,

I otherwise
(68)

where ϵ is a numerical parameter whose value should be chosen small enough. This parameter defines the switch point between
the two equations in the numerical implementation of the exponential map. A more comprehensive analysis will be made later
about the influence of this parameter.

The closed form of the logarithm map on SO(3) is given by

logSO(3)(R) = x̃ω =

{
θ

2 sin(θ)
(R−RT) if R ̸= I3×3,

0 if R = I3×3

(69)

where θ is the angle of rotation [29]. This angle can be calculated in two ways. Firstly, it can be evaluated as θ acos =

acos(0.5 (trace(R) − 1)), where the trace(•) function is defined to be the sum of elements on the main diagonal. Secondly, it
can be evaluated as θ asin = asin(∥vect(R)∥), where vect(•) denotes the vectorial part of a matrix, i.e., vect(R) = 0.5 [(R32 −
R23) (R13 −R31) (R21 −R12)]

T . It is important to note that when R is close to the identity I, θ asin gives a better accuracy than
θ acos. This is because the derivative of the cosine is zero when the angle is zero, which induces a singularity in the acos function.
For this reason, it is recommended to first calculate θ acos and use this value when the angle is greater than a certain tolerance
(1×10−7), otherwise the angle should be recalculated using θ asin. Alternatively, a more straightforward solution can be achieved
by: θatan2 = atan2(∥vect(R)∥, 0.5(trace(R)− 1)). A slightly different formula to calculate logSO(3) is presented in [25], chapter
4.4.1.

The closed form of the tangent operator on SO(3) is obtained from Eq. (31) and the property (C.1), following a similar
approach as for the exponential map (Eq. (66)):

TSO(3)(xω) =

 I− β(xω)
2 x̃ω +

1− α(xω)

∥xω∥2
x̃ω

2 if ∥xω∥ ⩾ ϵ,

I otherwise
(70)

The directional derivative of the tangent operator can then be evaluated from:

DTSO(3)(xω) · xu =
∂TSO(3)(xω1, xω2, xω3)

∂xω1
xu1 +

∂TSO(3)(xω1, xω2, xω3)

∂xω2
xu2 +

∂TSO(3)(xω1, xω2, xω3)

∂xω3
xu3 (71)

where ∂
∂xω1

is the partial derivative with respect to the variable xω1, xu = [xu1 xu2 xu3]
T is a column vector and TSO(3)(xω1, xω2, xω3)

is the closed form (first line of Eq. (70)). Unfortunately, such derivatives in closed form inherit from the singularity at the origin.
Again a threshold ϵ should be considered and the formula for the derivative should be replaced by its limit value if the rotation
amplitude is below ϵ [18]. The first directional derivative SO(3) is obtained as:

DTSO(3)(xω) · xu =

 −β
2 x̃u − (α− β) (xT

ωxu)

∥xω∥2
x̃ω + 1− α

∥xω∥2
⌈xω,xu⌉+ (β ∥xω∥2 + 6(α− 1)) (xT

ωxu)

2 ∥xω∥4
x̃ω

2 if ∥xω∥ ⩾ ϵ,

−1
2 x̃u otherwise

(72)

The evaluation of the gradient yields

∇xω (TSO(3)(xω)c) =

 +
β
2 c̃− (α− β)

∥xω∥2
x̃ω (cxT

ω) +
1− α
∥xω∥2

⌊xω, c⌋+ (β ∥xω∥2 + 6(α− 1))

2 ∥xω∥4
x̃ω

2 (cxT
ω) if ∥xω∥ ⩾ ϵ,

1
2 c̃ otherwise

(73)

with α = α(xω) and β = β(xω) from Eq. (67), ⌈xω,xu⌉ = x̃ωx̃u + x̃ux̃ω and ⌊xω,xu⌋ = x̃ux̃ω − 2x̃ωx̃u.
A few higher order directional derivatives and gradients of the tangent operator on SO(3) are further presented in A.1. One

observes that the complexity of the formulae increases significantly at each differentiation step.

4.2 The special Euclidean group SE(3)

The set of Euclidean transformations (or rigid transformations) can be represented as the set of 4 × 4 transformations matrices:

SE(3) :−

{
H = H(R,x) =

[
R x

01×3 1

]
: R ∈ SO(3), x ∈ R3

}
(74)

9

In such a 4 × 4 matrix, x represents a translation and R represents a rotation. SE(3) is a group since, firstly the composition
of two elements yields an element of the group, which reads as follows H1H2 = H(R1,x1)H(R2,x2) = H(R1R2,x1 + R1x2).
Secondly, the matrix product is associative. Thirdly, the neutral element is the 4 × 4 identity matrix, I4×4. Finally, the inverse
element of H, denoted by H−1, is given by H−1 = H(RT ,−RTx). Also, SE(3) is a matrix Lie group since the product and the
inverse of a matrix are smooth operations.

The Lie algebra se(3) is the tangent space of 4 × 4 matrices and is isomorphic to R6.

se(3) :−

{
h̃ = V(h̃ω,hu) =

[
h̃ω hu

01×3 0

]
: h =

[
hu

hω

]
∈ R6, h̃ω ∈ so(3), hu ∈ R3

}
(75)

The adjoint representation as defined in Eq. (10) is

AdH h =

[
R x̃R

03×3 R

]
h (76)

For SE(3), the hat operator (̂•), defined by Eq. (14), and the check operator (•)

∧

, defined by Eq. (15), are given by:

ĥ =

[
h̃ω h̃u

03×3 h̃ω

]
, h

∧

=

[
03×3 −h̃u

−h̃u −h̃ω

]
(77)

Notice that, for all h ∈ R6, h

∧T
= −h

∧

.
The closed form expression of the exponential map on SE(3) can be obtained using a similar approach as for SO(3). The

powers of h̃ ∈ se(3) satisfy the property
h̃4 = −∥hω∥2h̃2 (78)

which can be combined with Eq. (17) to obtain:

expSE(3)(h̃) = I+ h̃+

(
1

2!

∥hω∥2

∥hω∥2
− 1

4!

∥hω∥4

∥hω∥2
+

1

6!

∥hω∥6

∥hω∥2
− · · ·

)
h̃2 +

(
1

3!

∥hω∥3

∥hω∥3
− 1

5!

∥hω∥5

∥hω∥3
+

1

7!

∥hω∥7

∥hω∥3
− · · ·

)
h̃3 (79)

= I+ h̃+
1

∥hω∥2
(1− cos(∥hω∥)) h̃2 +

1

∥hω∥3
(∥hω∥ − sin(∥hω∥)) h̃3 (80)

Using the auxiliary quantities α(∥hω∥) and β(∥hω∥), we get the closed form:

expSE(3)(h̃) = I+ h̃+
1

2
βh̃2 +

(
1− α

∥hω∥2

)
h̃3 (81)

This expression can be developed as

expSE(3)(h) =

[
I3×3 03×1

01×3 1

]
+

[
h̃ω hu

01×3 1

]
+

1

2
β

[
h̃ω

2
h̃ωhu

01×3 1

]
+

(
1− α

∥hω∥2

)[
h̃ω

3
h̃ω

2
hu

01×3 1

]
(82)

=

[
I3×3 + h̃ω + 1

2
βh̃ω

2
− h̃ω + αh̃ω (I3×3 +

1
2
βh̃ω + ((1− α/∥hω∥2)h̃ω

2
)hu

01×3 1

]
(83)

where I3×3+αh̃ω+
1
2
βh̃ω

2
is equal to expSE(3)(h̃ω) and I3×3+

1
2
βh̃ω+((1−α)/∥hω∥2)h̃ω

2
is equal to the transpose of TSO(3)(hω)

in Eq. (70). Finally, the closed form of the exponential map on SE(3) is obtained as:

expSE(3)(h̃) =

[
expSO(3)(h̃ω) TT

SO(3)(hω)hu

01×3 1

]
(84)

Similarly, the closed form of the logarithm map on SE(3) is given by

logSE(3)(H(R,hu)) = h̃ =

[
logSO(3)(R) T−T

SO(3)(hω)hu

01×3 0

]
(85)

in which the variable hω is calculated using h̃ω = logSO(3)(R). A slightly different formula to calculated logSE(3) is presented
in [25] chapter 4.4.2.

The closed form of the tangent operator on SE(3) is obtained from Eq. (31) and C.2, using a similar approach as for the
exponential map (Eq. (80)):

TSE(3)(h) =

[
TSO(3)(hω) DTSO(3)(hω) · hu

03×3 TSO(3)(hω)

]
(86)

The first directional derivative of the tangent operator and the gradient of the tangent operator multiplied by a constant vector
k on SE(3) are obtained as:

DTSE(3)(h) · y =

[
DTSO(3)(hω) · yω Dh

(
DTSO(3)(hω) · hu

)
· y

03×3 DTSO(3)(hω) · yω

]
(87)

∇h

(
TSE(3)(h)k

)
=

[
∇hω

(
TSO(3)(hω)kω

)
∇hω

(
TSO(3)(hω)ku

)
+∇hω

(
DTSO(3)(hω) · hu kω

)
03×3 ∇hω

(
TSO(3)(hω)kω

)]
(88)

10

where y = [yT
u yT

ω]
T and k = [kT

u kT
ω]

T . A few higher order directional derivatives and gradients of the tangent operator on SE(3)

are further presented in A.2.
The above operators on SE(3) could alternatively be formulated using dual number representations and the principle of

transference. Indeed, this principle states that all mathematical formulae for rotations can be extended to rigid body motions by
replacing real variables by their dual counterparts. This idea was for example exploited in [38, 39].

5 Influence of numerical errors
Let us analyze the numerical errors resulting from the sequence in which the aforementioned mathematical operations are
performed and stored in the computer’s memory. These errors have mainly two sources, the round-off and the truncation errors,
which are discussed below.

5.1 Round-off error of the closed form computation
In the floating-point representation of a real number x±M × 2e, the mantissa M and the exponent e are represented in binary
format using a limited number of bits. For example, the double-precision floating-point format (float64) relies on 53 bits for the
mantissa, which limits the machine precision to 2−53 = 1.11× 10−16, 11 bits for the exponent and 1 bit for the sign.

In order to illustrate the influence of round-off errors in our context, let us consider the evaluation of the trigonometric
expression f(θ) = (1− cos θ), which appears in the exponential map, when θ approaches 0. On the one hand, if the closed form
expression is used, the cosine is first evaluated and then the subtraction is performed and the result will be noted fclosed(θ).
The exact (reference) value of f is found by manipulating the series with an infinite number of terms which leads to fref (θ) =

θ2/2!− θ4/4! + · · · . For a practical evaluation, this series should be truncated to k terms, however, k can be chosen so that the
omitted terms are maintained in the order of the machine precision of 10−16. The relative and absolute errors is then evaluated
as

ErrorRelclosed =

∣∣∣∣fclosed − fref
fref

∣∣∣∣ , ErrorAbsclosed = |fclosed − fref | (89)

2a shows the relative and absolute errors of fclosed(θ). Let us first analyze the error when θ is close to zero. When evaluating
fclosed, we first evaluate cos θ = 1 − θ2/2! + θ4/4! + · · · . For θ less than 10−8, the second term of the series θ2/2! is below the
machine precision so that, due to round-off errors, the result in float64 format will be 1. Then the subtraction (1 − cos θ) will
give fclosed = 0. Therefore, due to the round-off error, fclosed is affected by a relative error of order 100 = 1. If the value of θ is
progressively increased from 10−8 to 100, the problem is transferred to the next term of the series and the relative error decreases
with order 2 from 100 to 10−16.

The same analysis can be done for the function β(θ) = 2(1 − cos θ)/θ2. 2b shows the relative and absolute errors of the
closed form of β(θ). The functions α(θ) and γ(θ) do not suffer from the same problem, however, the problem appears at the
level of the successive derivatives of the tangent operator. For example, the operators Dα(xω) · xu =

(
1−α(xω)

∥xω∥2 − β(xω)
2

)
xT
ωxu

and Dxωγ(xω) · xu =
(

γ(xω)(1−γ(xω))

∥xω∥2 − 1
4

)
xT
ωxu respectively involve the functions (1− α(θ)) = (1− sin(θ)/θ) and (1− γ(θ)) =

(1 − (θ/2) cot(θ/2)) that exhibit the same kind of numerical problem. The analysis of the relative error of β(θ) is illustrative
of the behavior of the relative error observed in the closed form evaluation of the exponential map, the tangent operator, its
derivatives and its gradients on SO(3) and SE(3). Let us also mention that alternative expressions of the functions β(θ) and
γ(θ) can be found in the literature [22], for which round-off errors would have a different influence. In this paper, the analysis is
limited to the particular expressions given in Eq. (67).

One possible strategy to avoid these difficulties is to enumerate the set of problematic trigonometric functions which are
involved in these operators and to replace them by their series expansion. This approach was followed by Ritto-Corrêa and
Camotim [21] for a limited number of operators on SO(3). The generalization to all operators on SO(3) and SE(3) was not
performed by these authors. Another approach, studied here, is to implement directly all operators in the form of truncated
matricial series.

The exponential map on SO(3) (Eq. (66)) involves β(xω) multiplied by x̃ω
2; hence, the slope of its relative error is expected

to be equal to the slope of the relative error on the function β reduced by two. The tangent operator on SO(3) (Eq. (70)) involves
β(xω) multiplied by x̃ω; hence, the slope of its relative error is expected to be equal to the slope of the relative error on the
function β reduced by one. The first derivative or gradient of the tangent operator (Eqs. (72) or (73)) involves β(xω) without
any multiplication by x̃ω; hence, the slope of its relative error is expected to be equal to the slope of the relative error of the
function β. Considering the successive derivatives or gradients of the tangent operator, at each differentiation step, an additional
division by ∥xω∥ is performed which increases by one the slope of the relative error, i.e., the effect of round-off errors is amplified
at each differentiation step.

The exponential map on SE(3) group (Eq. (81)) also involves β(hω) multiplied by h̃2; hence, the slope of its relative error
is equal to the slope of the relative error of the function β reduced by two. The influence of the round-off errors on the tangent
operator on SE(3) and its derivative/gradient follows the same behavior as described for SO(3). In the results section, we will
perform numerical tests to confirm this behavior of the relative error for SO(3) and SE(3).

Based on the above analysis and on the numerical results shown below, we propose the following error estimate which captures
the influence of round-off errors in the closed form expressions:

Errorclosed(∥x∥, s) = c1

(
∥x∥
π

)s

(90)

11

-24 -16 -8 0
-32

-24

-16

-8

0

ErrorAbs
closed

ErrorRel
closed

(a) (1− cos(θ))

-16 -12 -8 -4 0

-16

-12

-8

-4

0

ErrorAbs
closed

ErrorRel
closed

(b) β = 2(1− cos(θ))/θ2

Figure 2: Relative and absolute errors of two analytical expressions.

-15 -10 -5 0

-15

-10

-5

0

1

-1
Limit
Closed
Solution

(a) Tangent operator T.

-15 -10 -5 0

-15

-10

-5

0

1

-2

Limit
Closed
Solution

(b) First derivative DT.

-15 -10 -5 0

-15

-10

-5

0

1

-3

Limit
Closed
Solution

(c) Second derivative DDT.

Figure 3: Errors on the tangent operator and its derivatives using the closed form (dashed line), the limit value (solid
green line) and the combined solution with the best threshold determined according to the proposed procedure (red
line).

where ∥x∥ is ∥xω∥ for SO(3) or ∥h∥ for SE(3), and c1 = 1.2× 10−17 for the float64 format. The value of the parameter s is 0 for
the exponential map, s = −1 for the tangent operator, and s = −1− d for the derivative/gradient of the tangent operator where
d is the number of differentiations of the tangent operator. For example, s = −2 for DT and ∇T, s = −3 for DDT, ∇DT,
D∇T and ∇∇T, and so forth.

When implementing the closed form expression, a threshold on ∥x∥ should be selected to switch between the closed form and
its limit value at the origin. The best choice of this threshold can be made based on the above formula for the relative error. Let
us evaluate the accuracy of the limit value. As it boils down to a zero-order truncation of the series expansion, the error estimate
for the limit value takes the form c2 ∥x∥. In our numerical experiments, we observe that c2 = 1 provides a good approximation of
the error for the tangent operator and its derivatives. Then, the optimal threshold ϵ for the variable ∥x∥ is evaluated by solving

c1
(ϵ

π

)s
= c2 ϵ (91)

For the tangent operator (s = −1), we obtain ϵ = 10−8.21. For the first order derivative or gradient (s = −2), the threshold
is ϵ = 10−5.30. For derivatives from order 2 to 6, the thresholds are 10−3.86, 10−2.98, 10−2.40, 10−1.99 and 10−1.68, respectively.
For all cases, the maximum value of the relative error is equal to c2 ϵ. We thus expect rather high inaccuracies for higher order
derivatives. For example, 3a, 3b and 3c show the tangent operator T, its first derivative DT and its second derivative DDT,
respectively. Any other choice of threshold value would imply a greater relative error.

For the exponential map (s = 0), the closed form is not affected by round-off errors in the same way. We observe that the
relative errors remain at the level of machine precision for ∥x∥ ≥ 10−16. Since the limit value of the exponential map is below
machine precision when ∥x∥ ≤ 10−16, the threshold is selected as ϵ = 10−16.

5.2 Truncation error of the series computation
In order to evaluate a series with an infinite number of terms, the calculation should usually be approximated by truncation to a
finite number of terms. The difference between the approximate solution and the exact solution is called the truncation error, and
this error has the order of the first omitted term. Considering truncated series expansions limited to N terms, the exponential

12

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Solution
tol 1e-08

(a) Tolerance of 10−8.

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Solution
tol 1e-13

(b) Tolerance of 10−13.

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Solution
tol 1e-15

(c) Tolerance of 10−15.

Figure 4: Evolution of the relative truncation error on DT as a function ∥x∥ when the series is truncated to N =

N2(tol, ∥x∥).

map, exp(x̃) (Eq. (17)), the tangent operator T(x) (Eq. (31)) and its derivative DT(x) (Eq. (36)) are:

exp(x̃) =

N−1∑
i=0

1

i!
x̃i +O

(
∥x∥N

N !

)
(92)

T(x) =

N−1∑
i=0

(−1)i

(1 + i)!
x̂i +O

(
∥x∥N

(1 +N)!

)
(93)

DT(x) · y =

N∑
i=1

(−1)i

(1 + i)!

(
ŷx̂i−1 + x̂Dx̂i−1 · y

)
+ ∥y∥ O

(
n1(N) ∥x∥N

(2 +N)!

)
(94)

Dd((T(x) · y1)... · yd) =

N+d−1∑
i=d

(−1)i

(1 + i)!
Dd((x̂i · y1)... · yd) + ∥y1∥∥y2∥...∥yd∥ O

(
nd(N) ∥x∥N

(1 + d+N)!

)
(95)

where nd(N) is the number of terms recursively involved in the evaluation of the expression Dd((x̂N · y1)... · yd). A closer look
reveals that nd(N) = (d+N)!/N ! so that an error estimate for the tangent operator and its derivatives can be formulated as

Errordseries(∥x∥, N) =
c3 (N + d)!

N ! (N + d+ 1)!
∥x∥N =

c3
N ! (N + d+ 1)

∥x∥N (96)

where the constant c3 should be fixed in an appropriate manner. For the exponential map, the error estimate is slightly different:

Errorseries(∥x∥, N) =
c4
N !

∥x∥N (97)

where the value of the constant c4 is still to be chosen. In order to simplify the procedure, we propose to use the same error
estimator given in Eq. (97) not only for the exponential map but also for the tangent operator and its derivative. Observing that
∥x∥N/(N ! (N + d + 1)) ≤ ∥x∥N/N !, the error estimate Errorseries(∥x∥, N) can be made less sharp than Errordseries(∥x∥, N)

provided a suitable choice of c4, i.e., this simplified error estimate can always be made more conservative. In this error estimate,
the numerator ∥x∥N reflects the convergence of the error with a slope defined by N and the denominator N ! induces a downward
shift of the curve when N increases. According to Eq. (92), the value c4 = 1 appears as a reasonable choice for the constant c4,
which will be confirmed by numerical experiments. A criterion on the truncation error can then be obtained by comparing this
error estimate with a user-defined tolerance tol

Errorseries(∥x∥, N) ≤ tol (98)

Based on this criterion, the series can be evaluated according to three different options. In the first and simplest option, a
fixed number of terms N = N1(tol) is chosen to reach a given tolerance for the whole range of values of ∥x∥ from 0 to π. More
precisely, N1(tol) computes the lowest integer such that the criterion in Eq. (98) is satisfied for all ∥x∥ in [0, π[. For the tight
tolerance tol = 2.7× 10−16, a number of N = 28 terms should be kept in the series.

In the second option, the number N = N2(tol, ∥x∥) is defined as the minimum integer such that the error estimate is below
tol for a given ∥x∥. More precisely, N2(tol, ∥x∥) computes the lowest integer such that the criterion in Eq. (98) is satisfied. To
reduce the computational cost, it is recommended to precompute the function N2 before the simulation. For a chosen tolerance,
a look-up table is thus established which provides the values of N2 as a function of ∥x∥. 4a, 4b and reffig: Error D method 2 tol
15 show in solid red lines the errors of the derivative of the tangent operator using this approach with tolerances of 10−8, 10−13

and 10−15, respectively. The other color lines represent the error estimates for N varying from 1 to 29. Compared to option 1, a
much lower number of terms is needed to satisfy the tolerance using option 2, i.e., N2(tol, ∥x∥) ≤ N1(tol).

In the third option, a simplified expression of the function N2 is proposed N3(tol, ∥x∥) ≃ N2(tol, ∥x∥). Firstly, the criterion
in Eq. (98) is reformulated as N log10(∥x∥) − log10(N !) ≤ log10(tol). Then, the logarithm of the factorial log10(N !) is replaced
by the linearized form a1N − a0, leading to a0 − log10(tol) ≤ N (a1 − log10(∥x∥)). In order to satisfy this criterion, the function
N3 is then formulated as

N3(tol, ∥x∥) = ceil

(
a0 − log10(tol)

a1 − log10(∥x∥)

)
(99)

13

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Solution
tol 1e-08

(a) Tolerance of 10−8.

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Solution
tol 1e-13

(b) Tolerance of 10−13.

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Solution
tol 1e-15

(c) Tolerance of 10−15.

Figure 5: Evolution of the relative truncation error on DT as a function of ∥x∥ when the series is truncated to
N = N3(tol, ∥x∥).)

-16 -14 -12 -10 -8 -6 -4 -2 0

-16

-14

-12

-10

-8

-6

-4

-2

0

1 2 3 4 5

-1 -2 -3 -4-5

N=1
N=2
N=3
N=4
N=5
s=-1
s=-2
s=-3
s=-4
s=-5

Log-log Slope

-1 -0.5 0 log10() 1

-16

-14

-12

-10

-8

-6

-4

-2

0

-1

-2

-3

-4

-5

-1

-2

-3

-4

-5

1

1011
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Figure 6: Estimates of the relative error for the tangent operator, its derivatives and gradients for the closed from
(dashed lines) and for the truncated series with N terms (solid lines).

where the coefficients are selected as a0 = 4.5 and a1 = 1.1. The function N3(tol, ∥x∥) allows us to calculate N at a lower
computational cost than in the second option. 5a, 5b, 5c show the errors on the truncated series using this third option. As the
simplified equation is only an approximation, N3(tol, ∥x∥) is sometimes larger than N2(tol, ∥x∥) by one term, which indicates
that the approximation is conservative but that the computational cost of the resulting series is only slightly increased compared
to option 2. This computational cost of the series is always much smaller compared to option 1 because N3(tol, ∥x∥) ≤ N1(tol).

6 shows the error estimate of the closed form defined by Eq. (90) and the error estimate of the series form with N terms.
The graph on the left shows five dashed lines representing the error estimate of the closed form with negative slopes s = −1− d

and five solid lines representing the error estimate of the truncated series with N terms with positive slopes N . The graph on
the right is a zoom including the error estimate of the truncated series with up to 29 terms. In the results section, numerical
tests will be performed to compare these theoretical error estimates to the errors observed in numerical experiments for both the
closed form and the series form.

6 Computational cost
In order to assess the efficiency of the formulations, the execution time and the number of floating-point operations (FLOP)
will be compared in the result section. The execution time cost allows one to estimate the computational cost of a particular
case. The number of FLOP provides an indication of the evolution of the computational cost with the key parameters of the
method. However, we should keep in mind that those performance indicators are only indicative because the performance of a
numerical method is also affected by factors such as the mathematical expression’s coding, the chosen programming language,
the software library, and the computer hardware being utilized. For the series form, these indicators are evaluated for a recursive
implementation of the expressions.

The number of FLOP can also be estimated from the expressions of the operators in the code. The results are presented in
1. For the series form implemented in a recursive manner, a general expression can be obtained for any matrix Lie group. In
this case, the number of FLOP depends on five parameters: N is the number of terms kept in the series, n is the size of the (̃•)
matrix, zn is the number of zero elements of the (̃•) matrix, k is the size of the (̂•) matrix and zk is the number of zero elements
of the (̂•) matrix. For example, n = zn = k = zk = 3 on SO(3) and n = 4, zn = 4, k = 6 and zk = 18 on SE(3). We consider
that (2k3 − 2zkk− k2) FLOP are needed for a sparse matrix–matrix product, (k2 − zk) FLOP are needed for the sum of matrices
and for the scalar matrix multiplication, and 3 FLOP are needed to calculate the factorial and change the sign. Furthermore,
the table presents the number of FLOP for the closed form both for SO(3) and SE(3), according to their implementation in our

14

Table 1: Number of FLOP needed for the evaluation of the series and closed forms.

Operator FLOP: series form FLOP: closed form
Matrix Lie groups SO(3) SE (3) SO(3) SE (3)

exp(ã)
(
(2n3 − 2znn− n2) + 2(n2 − zn) + 3

)
N 42N 107N 109 220

T(a)
(
(2k3 − 2zkk − k2) + 2(k2 − zk) + 3

)
N 42N 219N 112 389

DT(a) · b
(
3(2k3 − 2zkk − k2) + 3(k2 − zk) + 3

)
N 102N 597N 293 1140

∇(T(a) c)
(
3(2k3 − 2zkk − k2) + 4(k2 − zk) + 3

)
N 108N 615N 398 1766

Da(DT(a) · b) · d
(
8(2k3 − 2zkk − k2) + 6(k2 − zk) + 3

)
N 255N 1551N 755 3127

∇a(DT(a) · b c)
(
8(2k3 − 2zkk − k2) + 8(k2 − zk) + 3

)
N 267N 11587N 1167 5729

Da(Da(DT(a) · b) · d) · e
(
20(2k3 − 2zkk − k2) + 14(k2 − zk) + 3

)
N 627N 1941

∇a(Da(DT(a) · b) · d c)
(
19(2k3 − 2zkk − k2) + 17(k2 − zk) + 3

)
N 618N 3184

MATLAB code. This evaluation is based on the code for counting the floating point operations shared by Qian on the MATLAB
Central File Exchange. This code was also used to verify the number of FLOP of the series form. One observes very different
numbers of FLOP for the closed forms on SO(3) and SE(3).

7 Results
The numerical experiments aim at comparing the series form with respect to the closed form of the SO(3) and the SE(3) groups
in terms of numerical accuracy and computational cost for the exponential map, the tangent operator and their derivatives. The
relative error of the series and closed forms is evaluated as a function of the rotation amplitude. The reference solution is obtained
using the series form with enough terms to obtain convergence. It is worth noting that the errors depend on the norm ∥xω∥
which represents the rotation amplitude, but not on each individual components of the vector xω.

The results were obtained using the following input vectors: xu = [1, 1, 1]T , yω = [1, 1, 1]T , zω = [1, 1, 1]T , c = [1, 1, 1]T ,
y = [1, 1, 1, 1, 1, 1]T , z = [1, 1, 1, 1, 1, 1]T and k = [1, 1, 1, 1, 1, 1]T . In our experience, the norm and the direction of these vectors
have a limited influence on the accuracy, as long as they differ from the null vector. In contrast, the norm of the vector xω has
a direct influence on the accuracy.

7.1 Analysis of operators on the special orthogonal group SO(3)

7a and 7b show the relative error of the exponential map and the tangent operator with respect to ∥xω∥ for the series form
with N terms and the closed form on SO(3). For the series form, N is varying from 1 to 10. For the closed form, according
to the developments in 5.1, the threshold to switch to the limit value is fixed at ∥xω∥ = 10−16 for the exponential map and
∥xω∥ ≤ 10−8.3 for the tangent operator. 6 has been placed in the background to permit a comparison with the theoretical error
estimates established in 5. Overall, we observe that for both the exponential map and the tangent operator, the numerical results
agree with the theoretical values.

The CPU time is shown in blue in the left axis of 7c and 7d and the number of FLOP is shown in orange in the right axis.
For the series form, both indicators increase with the number of terms N .

For the exponential map, these figures show that the closed form provide very accurate results at low computational cost for
any rotation amplitude. In contrast, the series form is less competitive. Let us also mention that the truncation error of the series
form may imply that the resulting matrix does not exactly satisfy the expected orthonormality property. The truncated series
may not provide a matrix which is not exactly on SO(3), which may induce additional numerical difficulties in the simulation
code. For these reasons, the closed form should be recommended for the evaluation of the exponential map on SO(3).

For the tangent operator, the error of the closed form is larger and shows a maximum value of the order of 10−8.3. The closed
form may only be used if one is ready to accept such error amplitudes. If a more accurate solution is needed, it can be obtained
using the truncated series expansion with an appropriate number of terms.

8a, 8b and 8c show the relative error of the first, second and third derivatives with respect to ∥xω∥. 8d, 8e and 8f show the
relative error of the gradients ∇(TSO(3)(xω)c), ∇xω (DTSO(3)(xω) ·xu c) and ∇xω (Dxω (DTSO(3)(xω) ·xu) ·yω c). Again, for the
series form N is varying from 1 to 10 and the theoretical error estimates of 6 are placed in the background. Overall, a good
agreement is observed between the theoretical error estimates and the numerical results. This analysis confirms that, for the
closed form, the numerical errors at small rotation amplitudes become more and more influential for higher order derivatives and
gradients.

9a–9f show the CPU time cost and the FLOP of the derivatives and gradients of the tangent operator on SO(3). For the
series form, the CPU time cost follows a very similar trend as the FLOP number. For the closed form, the evolution of the FLOP
and CPU time are still correlated but they do not follow precisely the same trend, which can be attributed to various additional
factors that may affect the CPU time.

15

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Series
Closed

(a) expSO(3)(x̃ω)

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(b) TSO(3)(xω)

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2000

4000

6000

8000

10000

F
LO

P

Series
Closed

CPU

Series
Closed

FLOP

(c) expSO(3)(x̃ω)

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2000

4000

6000

8000

10000

F
LO

P

(d) TSO(3)(xω)

Figure 7: Accuracy and computational cost of the exponential map and its tangent operator on SO(3). (a) and (b):
Relative errors. (c) and (d): CPU times and FLOP.

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Series
Closed

(a) DTSO(3)(xω) · xu

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(b) Dxω (DTSO(3)(xω) · xu) · yω

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(c) Dxω (Dxω (DTSO(3)(xω) · xu) ·
yω) · zω

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(d) ∇(TSO(3)(xω) c)

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(e) ∇xω (DTSO(3)(xω) · xu c)

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(f) ∇xω (Dxω (DTSO(3)(xω) · xu) ·
yω c)

Figure 8: Accuracy of the derivatives and gradients of the tangent operator on SO(3).

16

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2000

4000

6000

8000

10000

F
LO

P

Series
Closed

CPU

Series
Closed

FLOP

(a) DTSO(3)(xω) · xu

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2000

4000

6000

8000

10000

F
LO

P

(b) Dxω (DTSO(3)(xω) · xu) · yω

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2000

4000

6000

8000

10000

F
LO

P

(c) Dxω (Dxω (DTSO(3)(xω) · xu) ·
yω) · zω

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2000

4000

6000

8000

10000

F
LO

P

(d) ∇(TSO(3)(xω) c)

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2000

4000

6000

8000

10000

F
LO

P

(e) ∇xω (DTSO(3)(xω) · xu c)

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2000

4000

6000

8000

10000

F
LO

P

(f) ∇xω (Dxω (DTSO(3)(xω) · xu) ·
yω c)

Figure 9: CPU time and number of FLOP of the derivatives and gradients of the tangent operator on SO(3).

7.2 Analysis of operators on the special Euclidean group SE (3)

10a–10f show the relative error of the exponential map, the tangent operator, its derivatives and its gradients on SE(3). The
theoretical error estimates of 6 (5) are again plotted in the background. Overall, we observe that the numerical results are in
agreement with the theoretical error estimates. The errors on the SE(3) operators exhibit a similar behavior as for the SO(3)

operators.
11a to 11f show the CPU time and number of FLOP of the exponential map, the tangent operator, its derivatives and its

gradients on SE(3). As on SO(3), the CPU time and the number of FLOP follow a similar trend for the series form. For the
closed form, a lower correlation is observed. Generally, even though the CPU time of the exponential map for the closed form
is lower than for the series form, it grows faster with the differentiation level. This means that the series form becomes more
attractive than the closed form for the evaluation of higher order derivatives and gradients.

8 Strategic solution to calculate SO(3) and SE (3) with constraints on tol-
erance

After the analysis of the accuracy and computational cost, we propose a strategic solution to calculate derivatives of SO(3) and
SE(3). The method exploits both the closed form and the series form, with a switching criterion based on a threshold on the
rotation amplitude ∥x∥. This threshold is determined based on a chosen tolerance on the accuracy, i.e., the threshold is obtained
by solving Eq. (90) for ∥Errorclosed∥ equal to the chosen tolerance. For values of ∥x∥ above the threshold, the closed form is
used and for values below the threshold, the series form is used. The number of terms N of the series form can be calculated
through either Eq. (97) or Eq. (99), as discussed in 5.2.

12a illustrates the evaluation of the first derivative of the tangent operator in order to reach a chosen tolerance (tol = 10−13)
based on the theoretical error estimates. In this case, the threshold on the rotation amplitude to switch between the closed form
and the series form is defined by log10(∥x∥) = −1.5. 12b and 12c show the errors observed on the derivative of the tangent
operator on SO(3) and SE(3) using the strategic solution. These figures illustrate how the compromise between computational
cost and accuracy is established based on a chosen tolerance.

9 Logarithm and inverse tangent operator
In this section, the analysis is extended to the logarithm, log(Q), the inverse tangent operator, T−1(x), and its derivatives.

The logarithm map can be expressed both in closed form and series form. However, the series form does not always converge.
Let us refer to the convergence criterion mentioned at the end of 2. On SO(3), since a rotation matrix R is diagonalizable, the
convergence is thus guaranteed if its eigenvalues λi satisfy |λi − 1| < 1. One can verify that this condition can be expressed in
terms of the rotation amplitude as ∥xω∥ < π/3.

We propose to check the accuracy of the logarithm map by verifying the error on the condition exp(log(Q)) = Q. In that
expression, the exponential map is evaluated accurately either using the closed form or the series expansion with 100 terms. The
errors for the logarithm map on SO(3) and SE(3) are presented in 13a and 13b, respectively. The series form is evaluated with
100 terms, which induces a significant computational cost in comparison to the closed form calculation. It can be observed that,

17

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Series
Closed

(a) expSE(3)(x̃)

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(b) DTSE(3)(x) · y

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(c) Dx(DTSE(3)(x) · y) · z

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(d) TSE(3)(x)

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(e) ∇(TSE(3)(x) c)

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(f) ∇x(DTSE(3)(x) · y k)

Figure 10: Accuracy of the exponential map, tangent operator, its derivatives and its gradients on SE (3).

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2

4

6

F
LO

P

104

Series
Closed

CPU

Series
Closed

FLOP

(a) expSE(3)(x̃)

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2

4

6

F
LO

P

104

(b) DTSE(3)(x) · y

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2

4

6

F
LO

P

104

(c) Dx(DTSE(3)(x) · y) · z

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2

4

6

F
LO

P

104

(d) TSE(3)(x)

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2

4

6

F
LO

P

104

(e) ∇(TSE(3)(x) c)

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2

4

6

F
LO

P

104

(f) ∇x(DTSE(3)(x) · y k)

Figure 11: CPU time and number of FLOP of the exponential map, tangent operator, its derivatives and its gradients
on SE (3).

-15 -10 -5 0

-15

-10

-5

0

Solution
tol 1e-13

(a) DT

-15 -10 -5 0

-15

-10

-5

0

Series
Closed
tol 1e-13
Solution

(b) DTSO(3)(xω) · xu

-15 -10 -5 0

-15

-10

-5

0

Series
Closed
tol 1e-13
Solution

(c) DTSE(3)(x) · y

Figure 12: The error of the directional derivative of the tangent operator as a function of ∥x∥. (a) Theoretical error
estimates, (b) error on SO(3) and (c) error on SE (3). The red line is the strategic solution, the blue line is the closed
form and the black line is the series form with N varying from 1 up to 7. The results of 6 are partially plotted in the
background.

18

-15 -10 -5 0

-15

-10

-5

0

-1 -0.5 0log10()1

-15

-10

-5

0

Closed form
Series form, N=100

(a) R(xω)− expSO(3)(logSO(3)(R(xω)))

-15 -10 -5 0

-15

-10

-5

0

-1 -0.5 0log10()1

-15

-10

-5

0

(b) H(x)− expSE(3)(logSE(3)(H(x)))

Figure 13: Error of the logarithm map on SO(3) and SE (3).

-15 -10 -5 0

-15

-10

-5

0

1 2 3

Series
Closed

(a) logSO(3)(∥xω∥)

-15 -10 -5 0

-15

-10

-5

0

1 2 3

(b) logSE(3)(∥xω∥)

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2000

4000

6000

8000

10000

F
LO

P

Series
Closed

CPU

Series
Closed

FLOP

(c) logSO(3)(∥xω∥)

1 5 10 15 20 25

N terms

0

0.5

1

1.5

2

C
P

U
 ti

m
e

co
st

(s
)

10-4

0

2

4

6

F
LO

P

104

(d) logSE(3)(∥xω∥)

Figure 14: Accuracy and computational cost of the logarithm on SO(3) and SE (3). (a), (b): Relative errors. (c), (d):
CPU times and FLOP.

for both Lie groups SO(3) and SE(3), the series form is only applicable for amplitudes ∥xω∥ < π/3, as expected, while the closed
form can be used in the wider range [0, π[.

In the interval [0, π/3[, the series form can be considered as a reference solution provided that a sufficient number of terms
is kept. 14a and 14b show the influence of the number of terms N on the relative error of the logarithm map measured with
respect to this reference solution. The evolution of the error for ∥xω∥ approaching π/3 is irrelevant because the reference solution
becomes invalid. 14c anf 14d show the CPU time cost and the FLOP of the logarithm map. In both cases, the closed form is
more efficient. Based on the results of our analysis, it can be concluded that the closed form is more efficient and offers higher
precision in a wider range compared to the series form for the evaluation of the logarithm map.

Let us consider the evaluation of the inverse tangent operator (Eq. (33)) and its derivatives (Eq. (39)). Following a similar
analysis as in 5.2, an error estimate of the series truncated to N terms is given by

Errorseries;T−1(∥x∥, d,N) =
c5 Bd+N∥x∥N

N !
(100)

where the constant c5 can be chosen equal to 10. On the basis of this error estimate, we can follow the same three options as
developed in 5.2. The first option for reaching a given tolerance is by selecting a fixed number of N = N1(tol) that covers the
entire range of x from 0 to π. To achieve a tight tolerance tol = 2.7× 10−16, it is recommended to keep a total of N = 52 terms
in the series. For the second option, N is obtained by solving Eq. (100) to find N = N2,T−1(tol, ∥x∥, d). This number is defined
as the minimum integer such that the error estimate is below the tol for a given ∥x∥. For the third option, a simplified expression
is proposed for the solution of Eq. (100). The simplification is based on a linearization of the term N !/Bd+N ≃ a1N − a0 − b1d.
We obtain

N3;T−1(tol, ∥x∥) = ceil
(
a0 + b1d− log10(tol)

a1 − log10(∥x∥)

)
+ 1 (101)

with a1 = 0.8, a0 = 0.53, and b1 = 1.

19

10 Conclusion
This paper presents and analyzes closed forms and series forms of various Lie group operators which are needed for the simulation
of flexible multibody systems. In particular, the algorithms for the exponential map, the tangent operator and its derivatives on
SO(3) and SE(3) are investigated. The analysis reveals that both closed forms and series forms can be combined to guarantee
the numerical accuracy and the computational efficiency of the code.

The closed form, which is quite popular in the literature, relies on an analytic expression of the exponential map and of the
tangent operator but it suffers from a singularity at the origin. Consequently, the evaluation is affected by increasing round-off
errors when the rotation amplitude decreases. In a practical implementation, the analytical formula should be replaced by its
limit value if the rotation or motion amplitude is below a given threshold. In this way, an accurate evaluation of the exponential
map is obtained in the whole range of amplitudes with relative errors of the order of 10−16. Regarding the tangent operator,
for the particular closed form studied in this paper, the relative error exhibits a maximum value of 10−8.3 at the threshold.
Two difficulties then appear when differentiating the tangent operator. Firstly, the analytical expressions become particularly
complex, making their implementation in a code rather tedious. Secondly, the influence of the round-off errors for low amplitudes
increases significantly at each differentiation step.

The series form relies on a truncated series expansion of the exponential map and tangent operator and does not suffer from
any singularity. Furthermore, exploiting the Lie group theory, the same general expressions can be obtained for any matrix Lie
group such as SO(3) and SE(3). Also, a unique recursive formula can be obtained for the evaluation of the high order derivatives
and gradients of the tangent operator, its transpose, its inverse and its inverse transpose. This formula is one original contribution
of the paper. Its implementation in a code is thereby much simpler than for the closed form. However, the result of the series form
is affected by truncation errors whose influence increases with the rotation or motion amplitude. A criterion has been proposed
to evaluate the number of terms to be kept in order to reach a given tolerance at a given rotation amplitude. This means that
highly accurate expressions can be obtained even for large rotation amplitudes, but at a high computational cost.

An analysis of the number of FLOP and CPU time reveals that the closed form of the exponential map is generally less
expensive than the series form. However, the computational cost of the two methods increases with the differentiation level due
to the increased complexity of the operations in the code. Depending on the differentiated operator under study, the series form
is often cheaper than the closed form if truncated to a small number of terms, but more expensive otherwise. In addition, the
relation between the number of FLOP and the CPU time is rather complex and potentially influenced by many external factors.
Generally, the cost of the operators remains in a similar range for the closed form and the series form.

Based on this analysis, we recommend to use the closed form for the evaluation of the exponential map as it provides a
highly accurate expression for a low computational cost. The tangent operator may also be reasonably evaluated using the closed
form if the tolerance on the numerical error is larger than 10−8.3. If a tighter tolerance is needed, then it will be necessary to
switch to the series expansion whenever the condition in Eq. (90)(tol ≤ c1π/∥x∥) is not fulfilled. Regarding the derivatives of the
tangent operator, the strategy may depend on the availability of the closed form in the code. If the closed form is available, then
the strategic solution which combines the series form and the closed form can be considered. Otherwise, the series form with a
number of terms evaluated using Eq. (97) or Eq. (99) can always reach a desired accuracy.

A similar analysis can be made for the series form and the closed form of the logarithm map and the inverse of the tangent
operator. For the logarithm map, the convergence of the series is restricted to rotation amplitudes in the interval [0, π/3[rad.
In addition, a high number of terms is needed to reach convergence, which implies a high computational cost. In contrast, the
closed form provides an accurate solution in the whole rotation range, [0, π[, with relative errors of the order of 10−16. Therefore,
it is recommended to compute the logarithm map according to the closed form as it provides a highly accurate expression for
a low computational cost. The recommendation regarding the inverse tangent operator and its derivatives is similar to the
recommendation made for the tangent operator and its inverse, even though the error estimate takes a different expression.

This work provides the basis for the accurate linearization of the equations of motion of a flexible multibody system, e.g., for
the linearization of a geometrically exact finite element formulation on Lie group. This accurate linearization may improve the
convergence of the Newton iterations in implicit time integration schemes. It is also essential for the sensitivity analysis and the
gradient-based optimization of flexible multibody systems.

Acknowledgment: This work has received financial support from the EI-OPT and ORFI projects funded by the Walloon
Region (Pôle Skywin) and from the Robotix Academy project funded by the Interreg Greater Region program, which are
gratefully acknowledged. It has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No 860124. The present paper only reflects the author’s view. The European
Commission and its Research Executive Agency (REA) are not responsible for any use that may be made of the information it
contains.

A Derivatives of the tangent operator in closed form

A.1 Closed form of tangent operator on SO(3):
Let us anticipate here the expression of some directional derivatives of terms which shall appear in the tangent operator:

20

Dxω∥xω∥ · xu = 1
∥xω∥x

T
ωxu Dxω

1
∥xω∥ · xu = − 1

∥xω∥3 x
T
ωxu Dxω

1
∥xω∥2 · xu = − 2

∥xω∥4 x
T
ωxu

Dxω
1

∥xω∥4 · xu = − 4
∥xω∥6 x

T
ωxu Dxω

1
∥xω∥6 · xu = − 6

∥xω∥8 x
T
ωxu Dxω

1
∥xω∥8 · xu = − 8

∥xω∥10 x
T
ωxu

Dxω∥xω∥2 · xu = 2xT
ωxu Dxω∥xω∥3 · xu = 3∥xω∥xT

ωxu Dxω∥xω∥4 · xu = 4∥xω∥2xT
ωxu

Dxω x̃ω · xu = x̃u Dxω x̃ω
2 · xu = x̃ωx̃u + x̃ux̃ω = ⌈xω,xu⌉ Dxω⌈xω,xu⌉ · yω = ⌈yω,xu⌉

∇xω (x̃ω c) = −c̃ ∇xω (x̃ω
2 c) = c̃ x̃ω − 2x̃ω c̃ = ⌊xω, c ⌋ Dxω⌊xω, c ⌋ · yω = ⌊yω, c ⌋

where xω = [xω1 xω2 xω3]
T , xu = [xu1 xu2 xu3]

T , yω = [yω1 yω2 yω3]
T , zω = [zω1 zω2 zω3]

T , c = [c1 c2 c3]
T and ∥xω∥ =√

x2
ω1 + x2

ω2 + x2
ω3.

The directional derivative of the auxiliary quantities is given by:

α(xω) =
sin(∥xω∥)

∥xω∥
, Dxωα(xω) · xu =

(
1− α(xω)

∥xω∥2
− β(xω)

2

)
xT
ωxu (102)

β(xω) = 2
1− cos(∥xω∥)

∥xω∥2
, Dxωβ(xω) · xu =

2

∥xω∥2
(α(xω)− β(xω))x

T
ωxu (103)

γ(xω) =
∥xω∥
2

cot(
∥xω∥
2

), Dxωγ(xω) · xu =

(
γ(xω)(1− γ(xω))

∥xω∥2
− 1

4

)
xT
ωxu (104)

Dxωα(xω)
2 · xu = 2α(xω)Dxωα(xω) · xu, Dxωα(xω)

3 · xu = 3α(xω)
2 Dxωα(xω) · xu (105)

The tangent operator and its transpose on SO(3):

TSO(3)(xω) = I3×3“− ”
β(xω)

2
x̃ω +

1− α(xω)

∥xω∥2
x̃ω

2 and TT
SO(3)(xω) = I3×3“ + ”

β(xω)

2
x̃ω +

1− α(xω)

∥xω∥2
x̃ω

2 (106)

only differ by the sign of one term, (“ − ” / “ + ”). For the sake of conciseness, only the derivatives of the operator will be
presented. The sign change is indicated in the derivatives of the tangent operator by the symbols ± and ∓, where the upper
sign is the sign of the operator, TSO(3)(xω), and the lower sign is the sign of the transpose, TT

SO(3)(xω). The auxiliary quantities
α(xω), β(xω) and γ(xω) will be presented hereafter respectively by α, β and γ.

DxωTSO(3)(xω) · xu = ∓β

2
x̃u ∓ (α− β) (xT

ωxu)

∥xω∥2
x̃ω +

1− α

∥xω∥2
⌈xω,xu⌉+

(β ∥xω∥2 − 6(1− α)) (xT
ωxu)

2 ∥xω∥4
x̃ω

2 (107)

Dxω (DxωTSO(3)(xω) · xu) · yω = ∓ (α− β)

∥xω∥2
(
(xT

ωxu) ỹω + (xT
uyω) x̃ω + (xT

ωyω) x̃u

)
∓ (8β − β ∥xω∥2 − 10α+ 2) (xT

ωxu) (x
T
ωyω)

2 ∥xω∥4
x̃ω +

(1− α)

∥xω∥2
⌈yω,xu⌉

+
(β ∥xω∥2 + 6 (α− 1))

2 ∥xω∥4
(
(xT

uyω) x̃ω
2 + (xT

ωxu) ⌈xω,yω⌉+ (xT
ωyω) ⌈xω,xu⌉

)
− (30 (α− 1) + (7β − 2α) ∥xω∥2)(xT

ωxu) (x
T
ωyω)

2 ∥xω∥6
x̃ω

2 (108)

Dxω (Dxω (DxωTSO(3)(xω) · xu) · yω) · zω = ∓ (α− β)

∥xω∥2
(
(xT

uyω) z̃ω + (xT
u zω) ỹω + (yT

ωzω) x̃u

)
∓ (66 (α− 1)− 48 (β − 1)− 2α ∥xω∥2 + 9β ∥xω∥2)(xT

ωxu) (x
T
ωyω) (x

T
ωzω)

2 ∥xω∥6
x̃ω

∓ (10 (1− α)− β ∥xω∥2 − 8 (1− β))

2 ∥xω∥4

(
(xT

ωxu) (x
T
ωyω) z̃ω + (xT

ωxu) (x
T
ωzω) ỹω + (xT

ωyω) (x
T
ωzω) x̃u

+
(
(yT

ωxu) (x
T
ωzω) + (xT

u zω) (x
T
ωyω) + (xT

ωxu) (y
T
ωzω)

)
x̃ω

)

+
(210 (α− 1)− 24α ∥xω∥2 + 57β ∥xω∥2 − β ∥xω∥4 + 2 ∥xω∥2)(xT

ωxu) (x
T
ωyω) (x

T
ωzω)

2 ∥xω∥8
x̃ω

2

− (30 (α− 1)− 2α ∥xω∥2 + 7β ∥xω∥2)
2 ∥xω∥6

((
(xT

u zω) (x
T
ωyω) + (xT

ωxu) (y
T
ωzω) + (yT

ωxu) (x
T
ωzω)

)
x̃ω

2

+ (xT
ωxu) (x

T
ωyω) ⌈xω, zω⌉+ (xT

ωxu) (x
T
ωzω) ⌈xω,yω⌉+ (xT

ωyω) (x
T
ωzω) ⌈xω,xu⌉

)

+
(β ∥xω∥2 + 6 (α− 1))

2 ∥xω∥4

(
(xT

ωxu) ⌈yω, zω⌉+ (xT
ωzω) ⌈xu,yω⌉+ (xT

ωyω) ⌈xu, zω⌉+ (xT
u zω) ⌈xω,yω⌉

+ (yT
ωxu) ⌈xω, zω⌉+ (yT

ωzω) ⌈xω,xu⌉

)
(109)

The gradient of the tangent operator on SO(3) when multiplied by a constant vector is obtained from the directional derivative

21

after some manipulations.

Dxω (TSO(3)(xω)c) · b =Dxω

(
I3×3 c∓ β

2
x̃ω c+

1− α

∥xω∥2
x̃ω

2 c

)
· b

=∓ β

2
b̃ c∓ (α− β)

∥xω∥2
x̃ω c(xT

ωb) +
1− α

∥xω∥2
(b̃ x̃ω c+ x̃ω b̃ c) +

β ∥xω∥2 + 6(α− 1)

2 ∥xω∥4
x̃ω

2 c(xT
ωb)

=

(
±β

2
c̃∓ (α− β)

∥xω∥2
x̃ω (cxT

ω) +
1− α

∥xω∥2
⌊xω, c⌋+

β ∥xω∥2 + 6(α− 1)

2 ∥xω∥4
x̃ω

2 (cxT
ω)

)
b (110)

Making use of the properties b̃ c = −c̃ b and (̃x̃ωc) = x̃ω c̃−c̃ x̃ω = [x̃ω, c̃] on SO(3), then (b̃ x̃ω c+x̃ω b̃ c) = (c̃ x̃ω−2x̃ω c̃)b =

⌊xω, c⌋b. We get the gradient since Dxω (TSO(3)(xω)c) · b = ∇xω

(
TSO(3)(xω) c

)
b.

∇xω

(
TSO(3)(xω) c

)
= ±β

2
c̃∓ (α− β)

∥xω∥2
x̃ω (cxT

ω) +
1− α

∥xω∥2
⌊xω, c⌋+

β ∥xω∥2 + 6(α− 1)

2 ∥xω∥4
x̃ω

2 (cxT
ω) (111)

∇xω

(
DxωTSO(3)(xω) · xu c

)
= ∓ (α− β)

∥xω∥2
(
x̃ω (cxT

u)− (xT
ωxu) c̃+ x̃u (cxT

ω)
)

∓ 8β − β ∥xω∥2 − 10α+ 2

2 ∥xω∥4
x̃ω (cxT

ω) (xux
T
ω)−

30 (α− 1)− 2α ∥xω∥2 + 7β ∥xω∥2

2 ∥xω∥6
x̃ω

2 (cxT
ω)(xux

T
ω)

− (α− 1)

∥xω∥2
⌊xu, c⌋+

β ∥xω∥2 + 6 (α− 1)

2 ∥xω∥4
(
x̃ω

2(cxT
u) + ⌈xω,xu⌉ (cxT

ω) + (xT
ωxu) ⌊xω, c⌋

)
(112)

∇xω

(
Dxω (DxωTSO(3)(xω) · xu) · yω c

)
= ∓ (β − α)

∥xω∥2
(
(yT

ωxu) c̃− ỹω (cxT
u)− x̃u (cyT

ω)
)

∓
(
66α− 2α ∥xω∥2 − 48β + 9β ∥xω∥2 − 18

)
(xT

ωxu) (x
T
ωyω)

2 ∥xω∥6
x̃ω (cxT

ω)

∓
(
8β − β ∥xω∥2 − 10α+ 2

)
2 ∥xω∥4

(
(xT

ωxu)ỹω (cxT
ω) + (xT

ωyω) x̃u(cx
T
ω) + (xT

ωyω)x̃ω (cxT
u)

+ (xT
ωxu)x̃ω (cyT

ω) + (yT
ω xu)x̃ω (cxT

ω)− (xT
ωxu) (x

T
ωyω) c̃

)
+

(β∥xω∥2 + 6(α− 1))

2∥xω∥4

(
⌈xω,yω⌉(cxT

u)

+ ⌈xω,xu⌉(cyT
ω) + ⌈xu,yω⌉(cxT

ω) + (yT
ωxu)⌊xω, c⌋+ (xT

ωxu)⌊yω, c⌋+ (xT
ωyω)⌊xu, c⌋

)

−
(
30α− 2α ∥xω∥2 + 7β ∥xω∥2 − 30

)
2 ∥xω∥6

(
(xT

ωxu)x̃ω
2 (cyT

ω) + (xT
ωyω)x̃ω

2 (cxT
u)

+ (yT
ωxu)x̃ω

2 (cxT
ω) + (xT

ωxu)⌈xω,yω⌉ (cxT
ω) + (xT

ωyω)⌈xω,xu⌉ (cxT
ω) + (xT

ωxu)(x
T
ωyω)⌊xω, c⌋

)

+

(
210α− 24α ∥xω∥2 + 57β ∥xω∥2 − β ∥xω∥4 + 2 ∥xω∥2 − 210

)
(xT

ωxu)(x
T
ωyω)

2 ∥xω∥8
x̃ω

2 (cxT
ω) (113)

Notice that when xω is a zero vector, one has

TSO(3)(0) = I3×3 ∥xω∥ < 10−8.00 (114)

DxωTSO(3)(0) · xu = ∓1

2
x̃u ∥xω∥ < 10−5.30 (115)

Dxω (DxωTSO(3)(0) · xu) · yω = +
1

6
⌈yω,xu⌉ ∥xω∥ < 10−3.86 (116)

Dxω (Dxω (DxωTSO(3)(0) · xu) · yω) · zω = ± 1

12

(
(xT

uyω)z̃ω + (xT
u zω)ỹω + (yT

ωzω)x̃u

)
∥xω∥ < 10−2.98 (117)

∇xω (TSO(3)(0) c) = ±1

2
c̃ ∥xω∥ < 10−5.20 (118)

∇xω (DxωTSO(3)(0) · xu c) =
1

6
⌊xu, c⌋ ∥xω∥ < 10−3.78 (119)

∇xω (Dxω (DxωTSO(3)(0) · xu) · yω c) = ∓ 1

12

(
(yT

ωxu) c̃− ỹω (cxT
u)− x̃u (cyT

ω)
)

∥xω∥ < 10−2.88 (120)

where ∥xω∥ < ϵ is the best threshold.
The inverse of the tangent operator and its transpose on SO(3):

T−1
SO(3)(xω) = I3×3“ + ”

1

2
x̃ω +

(1− γ)

∥xω∥2
x̃ω

2, T−T
SO(3)(xω) = I3×3“− ”

1

2
x̃ω +

(1− γ)

∥xω∥2
x̃ω

2 (121)

only differ by the sign of one term, (“ + ” / “ − ”). For the sake of conciseness, only the derivatives of the inverse operator will

22

be presented.

DxωT
−1
SO(3)(xω) · xu = ±1

2
x̃u +

1− γ

∥xω∥2
⌈xω,xu⌉+

(1/β + γ − 2)(xT
ωxu)

∥xω∥4
x̃ω

2 (122)

Dxω

(
DxωT

−1
SO(3)(xω) · xu

)
· yω =

(
(γ + 2)(γ − 1)

∥xω∥4
+

1

4∥xω∥2

)
(xT

ωyω)⌈xω,xu⌉+
1− γ

∥xω∥2
⌈yω,xu⌉

+
γ + 1/β − 2

∥xω∥4
(
(xT

u yω)x̃ω
2 + (xT

ωxu)⌈xω,yω⌉
)
− (4γ2 + 12γ + ∥xω∥2 − 32 + 8(β + α)/β2)(xT

ωxu)(x
T
ωyω)

4∥xω∥6
x̃ω

2 (123)

Dxω (Dxω (DxωT
−1
SO(3)(xω) · xu) · yω · zω = +

(γ + 1/β − 2)

∥xω∥4
(
(xT

ωxu) ⌈yω, zω⌉+ (yT
ωxu) ⌈xω, zω⌉+ (xT

u zω) ⌈xω,yω⌉
)

+

(
4 γ2 + 4 γ + ∥xω∥2 − 8

)
4 ∥xω∥4

(
(xT

ωyω) ⌈xu, zω⌉+ (xT
ωzω) ⌈yω,xu⌉+ (yT

ωzω) ⌈xω,xu⌉
)

−
(
4 γ2 + 12 γ − 32 + ∥xω∥2 + 8(α+ β)/β2

)
4 ∥xω∥6

(
(xT

ωyω) (x
T
u zω) + (xT

ωxu) (y
T
ωzω) + (yT

ωxu) (x
T
ωzω)

)
x̃ω

2

+

((
8 γ3 + 28 γ2 + 2 γ ∥xω∥2 + 60 γ − 192 + 7 ∥xω∥2 + (32 + 4 ∥xω∥2)/β + (40α− 8)/β2 + 32α2/β3

)
4 ∥xω∥8

(xT
ωxu) (x

T
ωyω) (x

T
ωzω) x̃ω

2

)
−
(
8 γ3 + 12 γ2 + 2 γ ∥xω∥2 + 12 γ + 3 ∥xω∥2 − 32

)
4 ∥xω∥6

(
(xT

ωxu) (x
T
ωyω) ⌈xω, zω⌉

+ (xT
ωxu) (x

T
ωzω) ⌈xω,yω⌉+ (xT

ωyω) (x
T
ωzω) ⌈xω,xu⌉

)
(124)

∇xω

(
T−1

SO(3)(xω) c
)
= ∓1

2
c̃+

1− γ

∥xω∥2
⌊xω, c⌋+

(
(γ − 1)(γ + 2) + ∥xω∥2/4

)
∥xω∥4

x̃ω
2 (cxT

ω) (125)

∇xω

(
DxωT

−1
SO(3)(xω) · xu c

)
= +

(1− γ)

∥xω∥2
⌊xu, c⌋+

(2γ + 1)(4γ(1− γ)− ∥xω∥2) + 2∥xω∥2

4∥xω∥6
c̃2(cxT

ω)(xuw
T
ω)

+
4(γ + 2) (γ − 1) + ∥xω∥2

4∥xω∥4
(
⌊xω, c⌋ (xux

T
ω) + (xT

ωxu)⌊xω, c⌋+ c̃2(cxT
u)−

4

∥xω∥2
x̃ω

2(cxT
ω)(xux

T
ω)
)

(126)

∇xω

(
Dxω (DxωT

−1
SO(3)(xω) · xu) · yω c

)
= +

24 (γ + 1/β − 2)

∥xω∥8
(xT

ωxu)(x
T
ωyω) x̃ω

2 (cxT
ω)

+
(γ + 1/β − 2)

∥xω∥4
(
(xT

ωxu) ⌊yω, c⌋+ (yT
ωxu) ⌊xω, c⌋+ ⌈xω,yω⌉ (cxT

u)
)

−
(
8 γ3 + 12 γ2 + 2 γ ∥xω∥2 + 12 γ + 3 ∥xω∥2 − 32

)
4 ∥xω∥6

⌈xω,xu⌉ (xT
ωyω) (cx

T
ω)

+

(
4 γ2 + 4 γ + ∥xω∥2 − 8

)
4 ∥xω∥4

(
⌈yω,xu⌉ (cxT

ω) + ⌈xω,xu⌉ (cyT
ω) + (xT

ωyω) ⌊xu, c⌋
)

+

((
β3
(
8 γ3 + 28 γ2 + 2 γ ∥xω∥2 − 36 γ + 7 ∥xω∥2

)
+ β2

(
4 ∥xω∥2 − 64

)
+ β (40α− 8) + 32α2

)
4β3 ∥xω∥8

(xT
ωxu) (x

T
ωyω)x̃ω

2 (cxT
ω)

)
− 4 γ2 + 12 γ + ∥xω∥2 − 32 + 8(β + α)/β2

4∥xω∥6

(
(xT

ωxu) (x
T
ωyω) ⌊xω, c⌋

+ (xT
ωxu) ⌈xω,yω⌉ (cxT

ω) + x̃ω
2
(
(xT

ωyω) (cx
T
u) + (xT

ωxu) (cy
T
ω) + (yT

ωxu) (cx
T
ω)
))

(127)

Notice that when the xω is a zero vector, one has

T−1
SO(3)(0) = I3×3 ∥xω∥ < 10−16.0 (128)

DxωT
−1
SO(3)(0) · xu = ±1

2
x̃u ∥xω∥ < 10−3.84 (129)

Dxω (DxωT
−1
SO(3)(0) · xu) · yω =

1

12
⌈yω,xu⌉ ∥xω∥ < 10−2.32 (130)

Dxω (Dxω (DxωT
−1
SO(3)(0) · xu) · yω) · zω = 03×3 ∥xω∥ < 10−1.67 (131)

∇xω (T
−1
SO(3)(0) c) = ∓1

2
c̃ ∥xω∥ < 10−7.61 (132)

∇xω (DxωT
−1
SO(3)(0) · xu c) =

1

12
⌊xu, c⌋ ∥xω∥ < 10−3.36 (133)

∇xω (Dxω (DxωT
−1
SO(3)(0) · xu) · yω c) = 03×3 ∥xω∥ < 10−1.63 (134)

where ∥xω∥ < ϵ is the best threshold.

23

A.2 Closed form of tangent operator on SE(3) :
The tangent operator and its inverse on SE(3) :

TSE(3)(x) =

[
TSO(3)(xω) DxωTSO(3)(xω) · xu

03×3 TSO(3)(xω)

]
and T−1

SE(3)(x) =

[
T−1

SO(3)(xω) DxωT
−1
SO(3)(xω) · xu

03×3 T−1
SO(3)(xω)

]
(135)

have the same matrix structure, differing only that the tangent operators on SO(3) are the inverse ones in the second case. For
the sake of conciseness, only the derivatives of the operator will be presented. The vectors are x = [xT

u xT
ω]

T , y = [yT
u yT

ω]
T ,

z = [xT
u zTω]

T and c = [cTu cTω]
T .

DxTSE(3)(x) · y =

[
DxωTSO(3)(xω) · yω Dx

(
DxωTSO(3)(xω) · xu

)
· y

03×3 DxωTSO(3)(xω) · yω

]
(136)

Dx(DxTSE(3)(x) · y) · z =

[
Dxω

(
DxωTSO(3)(xω) · yω

)
· zω Dx

(
Dx

(
DxωTSO(3)(xω) · xu

)
· y
)
· z

03×3 Dxω

(
DxωTSO(3)(xω) · yω

)
· zω

]
(137)

where Dx(DxωTSO(3)(xω) · xu) · y and Dx

(
Dx

(
DxωTSO(3)(xω) · xu

)
· y
)
· z are explicitly given by:

Dx(DxωTSO(3)(xω) · xu) · y =Dxω (DxωTSO(3)(xω) · xu) · yω +Dxu(DxωTSO(3)(xω) · xu) · yu

=Dxω (DxωTSO(3)(xω) · xu) · yω +DxωTSO(3)(xω) · yu (138)

Dx

(
Dx

(
DxωTSO(3)(xω) · xu

)
· y
)
· z =Dxω (Dxω (DxωTSO(3)(xω) · xu) · yω) · zω +Dxω (DxωTSO(3)(xω) · yu) · zω

+Dxω (DxωTSO(3)(xω) · yω) · zu (139)

where the expression DxωTSO(3)(xω) ·yu is equal to the expression DxωTSO(3)(xω) ·xu (Eq. (107)) provided that xu is replaced
by yu. Similarly, Dxω (DxωTSO(3)(xω) · yu) · zω and Dxω (DxωTSO(3)(xω) · yω) · zu is equal to Dxω (DxωTSO(3)(xω) · xu) · yw

(Eq. (108)) with appropriate replacements.
Higher order directional derivatives of the tangent operator in SE(3) follow the same logic as the derivatives above. The

gradient of the tangent operator on SE(3) when multiplied by a constant vector is obtained from the directional derivative after
some manipulations.

Dx

(
TSE(3)(x) c

)
· b =Dx

([
TSO(3)(xω) DxωTSO(3)(xω) · xu

03×3 TSO(3)(xω)

][
cu
cω

])
·

[
bu

bω

]

=

[
Dx

(
TSO(3)(xω) cu

)
· b+Dx

(
DxωTSO(3)(xω) · xu cω

)
· b

Dx

(
TSO(3)(xω) cω

)
· b

]

=

[
Dxω

(
TSO(3)(xω) cu

)
· bω +Dxω

(
DxωTSO(3)(xω) · xu cω

)
· bω +Dxu

(
DxωTSO(3)(xω) · xu cω

)
· bu

Dxω

(
TSO(3)(xω) cω

)
· bω

]

=

[
∇xω

(
TSO(3)(xω) cu

)
bω +∇xω

(
DxωTSO(3)(xω) · xu cω

)
bω +∇xω

(
TSO(3)(xω) cω

)
bu

∇xω

(
TSO(3)(xω) cω

)
bω

]
(140)

Manipulating Eq.(140), we can write it as a matrix product

Dx

(
TSE(3)(x) c

)
· b =

[
∇xω

(
TSO(3)(xω) cω

)
∇xω

(
TSO(3)(xω) cu

)
+∇xω

(
DxωTSO(3)(xω) · xu cω

)
03×3 ∇xω

(
TSO(3)(xω) cω

)] [
bu

bω

]
=∇x(TSE(3)(x) c) b (141)

We obtain the gradient from Eq.(141). In the same way, other gradients can be obtained.

∇x(TSE(3)(x) c) =

[
∇xω

(
TSO(3)(xω) cω

)
∇xω

(
TSO(3)(xω) cu

)
+∇xω

(
DxωTSO(3)(xω) · xu cω

)
03×3 ∇xω

(
TSO(3)(xω) cω

)]
(142)

∇x(DxTSE(3)(x) · y c) =

[
∇xω

(
DxωTSO(3)(xω) · yω cω

)
∗

03×3 ∇xω

(
DxωTSO(3)(xω) · yω cω

)] (143)

where ∗ ≡ ∇xω

(
DxωTSO(3)(xω) · yu cω

)
+∇xω

(
DxωTSO(3)(xω) · yω cu

)
+∇xω

(
Dxω

(
DxωTSO(3)(xω) · xu

)
· yω cω

)
.

The tangent operator transposed and its inverse on SE(3) :

TT
SE(3)(x) =

[
TT

SO(3)(xω) 03×3

DxωT
T
SO(3)(xω) · xu TT

SO(3)(xω)

]
, T−T

SE(3)(x) =

[
T−T

SO(3)(xω) 03×3

DxωT
−T
SO(3)(xω) · xu T−T

SO(3)(xω)

]
(144)

have the same matrix structure, differing only that the transposed tangent operators on SO(3) , TT
SO(3), are the inverse ones in

24

the second case, T−T
SO(3). For the sake of conciseness, only the derivatives of the transposed operator will be presented.

DxT
T
SE(3)(x) · y =

[
DxωT

T
SO(3)(xω) · yω 03×3

Dx

(
DxωT

T
SO(3)(xω) · xu

)
· y DxωT

T
SO(3)(xω) · yω

]
(145)

Dx(DxT
T
SE(3)(x) · y) · z =

[
Dxω

(
DxωT

T
SO(3)(xω) · yω

)
· zω 03×3

Dx

(
Dx

(
DxωT

T
SO(3)(xω) · xu

)
· y
)
· z Dxω

(
DxωT

T
SO(3)(xω) · yω

)
· zω

]
(146)

∇x(T
T
SE(3)(x) c) =

[
03×3 ∇xω

(
TT

SO(3)(xω) cu
)

∇xω

(
TT

SO(3)(xω) cu
)

∇xω

(
TT

SO(3)(xω) cω
)
+∇xω

(
DxωT

T
SO(3)(xω) · xu cu

)] (147)

∇x(DxT
T
SE(3)(x) · y c) =

[
03×3 ∇xω

(
DxωT

T
SO(3)(xω) · yω cu

)
∇xω

(
DxωT

T
SO(3)(xω) · yω cu

)
∗∗

]
(148)

where ∗∗ ≡ ∇xω

(
DxωT

T
SO(3)(xω) · yu cu

)
+∇xω

(
DxωT

T
SO(3)(xω) · yω cω

)
+∇xω

(
Dxω

(
DxωT

T
SO(3)(xω) · xu

)
· yω cu

)
.

B Derivatives of the tangent operator in series form

B.1 Derivatives of the hat operator (̂•)
Let us consider the linear operator “hat”, â, introduced in Section 2. The directional derivative of the matrix product âi = ââ · · · â︸ ︷︷ ︸

i times
in the direction b is defined as a linear application in b.

Directional derivatives only:

Daâ
i · b = b̂âi−1 + âDaâ

i−1 · b (149)

Da(Daâ
i · b) · d = b̂Daâ

i−1 · d+ d̂Daâ
i−1 · b+ âDa(Daâ

i−1 · b) · d (150)

Da(Da(Da(â
i · b) · d) · e = b̂Da(Daâ

i−1 · d) · e+ d̂Da(Daâ
i−1 · b) · e+ êDa(Daâ

i−1 · b) · d
+ âDa(Da(Daâ

i−1 · b) · d) · e (151)

Gradient only:

∇a(â
i c) = −(âi−1 c)

∧

+ â∇a(â
i−1 c) (152)

∇a(∇a(â
i c) k) = k̂∇a(â

i−1 c)− (∇a(â
i−1 c) k)
∧

+ â∇a(∇a(â
i−1 c) k) (153)

∇a(∇a(∇a(â
i c) k) q) = k̂∇a(∇a(â

i−1 c) q) + q̂∇a(∇a(â
i−1 c) k)− (∇a(∇a(â

i−1 c) k) q)
∧

+ â∇a(∇a(∇a(â
i−1 c) k) q) (154)

Second order gradient and directional derivative:

∇a(Daâ
i · b c) = b̂∇a(â

i−1 c)− (Daâ
i−1 · b c)
∧

+ â∇a(Daâ
i−1 · b c) (155)

∇b(Daâ
i · b c) = ∇a(â

i c) (156)

Dc(∇a(â
i c)) · b = ∇a(â

i b) (157)

∇c(∇a(â
i c) k) = Daâ

i · k (158)

Third order gradient and directional derivative:

∇a(Da(Daâ
i · b) · d c) = b̂∇a(Daâ

i−1 · d c) + d̂∇a(Daâ
i−1 · b c)

− (Da(Daâ
i−1 · b) · d c)
∧

+ â∇a(Da(Daâ
i−1 · b) · d c) (159)

∇b(Da(Daâ
i · b) · d c) = ∇a(Daâ

i · d c) (160)

∇a(Db(Daâ
i · b) · d c) = ∇a(Daâ

i · d c) (161)

∇d(Da(Daâ
i · b) · d c) = ∇a(Daâ

i · b c) (162)

∇d(Db(Daâ
i · b) · d c) = ∇a(â

i c) (163)

∇a(∇a(Daâ
i · b c) k) = b̂∇a(∇a(â

i−1 c) k) + k̂∇a(Daâ
i−1 · b c)

− (∇a(Daâ
i−1 · b c) k)
∧

+ â∇a(∇a(Daâ
i−1 · b c) k) (164)

∇b(∇a(Daâ
i · b c) k) = ∇a(∇a(â

i c) k) (165)

∇c(∇a(Daâ
i · b c) k) = Da(Daâ

i · b) · k (166)

∇c(∇b(Daâ
i · b c) k) = Daâ

i · k (167)

25

Fourth order gradient and directional derivative:

∇a(Da(Da(Daâ
i · b) · d) · e c) = b̂∇a(Da(Daâ

i−1 · d) · e c) + d̂∇a(Da(Daâ
i−1 · b) · e c) + ê∇a(Da(Daâ

i−1 · b) · d c)

− (Da(Da(Daâ
i−1 · b) · d) · e c)
∧

+ â∇a(Da(Da(Daâ
i−1 · b) · d) · e c) (168)

∇a(∇a(Da(Daâ
i · b) · d c) k) = b̂∇a(∇a(Daâ

i−1 · d c) k) + d̂∇a(∇a(Daâ
i−1 · b c) k) + k̂∇a(Da(Daâ

i−1 · b) · d c)

− (∇a(Da(Daâ
i−1 · b) · d c) k)
∧

+ â∇a(∇a(Da(Daâ
i−1 · b) · d c) k) (169)

∇a(∇a(∇a(Daâ
i · b c) k) q) = b̂∇a(∇a(∇aâ

i−1 · d c) k) q) + k̂∇a(∇a(Daâ
i−1 · b c) q) + q̂∇a(∇a(Daâ

i−1 · b c) k)

− (∇a(∇a(Daâ
i−1 · b c) k) q)
∧

+ â∇a(∇a(∇a(Daâ
i−1 · b c) k) q) (170)

∇b(Da(Da(Daâ
i · b) · d) · e c) = ∇a(Da(Daâ

i · d) · e c) (171)

∇d(Da(Da(Daâ
i · b) · d) · e c) = ∇a(Da(Daâ

i · b) · e c) (172)

∇a(Db(Da(Daâ
i · b) · d) · e c) = ∇a(Da(Daâ

i · d) · e c) (173)

∇d(Db(Da(Daâ
i · b) · d) · e c) = ∇a(Daâ

i · e c) (174)

∇b(∇a(Da(Daâ
i · b) · d c) k) = ∇a(∇a(Daâ

i · d c) k) (175)

∇d(∇a(Da(Daâ
i · b) · d c) k) = ∇a(∇a(Daâ

i · d c) k) (176)

∇c(∇a(Da(Daâ
i · b) · d c) k) = Da(Da(Daâ

i · b) · d) · k) (177)

∇d(∇b(Da(Daâ
i · b) · d c) k) = ∇a(∇a(â

i c) k) (178)

∇b(∇a(∇a(Daâ
i · b c) k) q) = ∇a(∇a(∇a(â

i c) k) q) (179)

∇c(∇b(∇a(Daâ
i · b c) k) q) = ∇a(∇a(â

i k) q) (180)

∇k(∇c(∇b(Daâ
i · b c) k) q) = ∇a(â

i q) (181)

Let us note certain properties of the directional derivative. The commutativity of the derivative of the “hat” operator (̂•) takes
the form Da(Daâ

i·b)·d = Da(Daâ
i·d)·b. The linearity of the derivative with respect to b results in, e.g. Db(Daâ

i·b)·d = Daâ
i·d.

Also due to the linearity of b, a second derivative with respect to b is equal to zero Db(Db(Daâ
i · b) · d) · e = 0.

B.2 Algorithm
In the following, we detail an algorithm for computing the series-form with N terms of both the tangent operator T(a) and the n

order of directional derivative in the direction of the column vectors b1,b2, . . .bn and m order of the gradient of tangent operator
multiplied by the column vectors c1, c2, . . . , cm, ∇m((Dn((T(a) ·b1)... ·bn)c1)...cm). It is worth noting that this tangent operator
of the exponential map is valid in any matrix Lie group. The inputs are: a is a k-by-1 column vector. b = [bn . . . b2 b1] is a
k-by-n matrix. c = [cm . . . c2 c1] is a k-by-m matrix. N > 1 is the truncation number (5.2). zn is the length of the (̂•) matrix of
the group. @CheckT function is the check operator transposed function. If opInvers == 1, the algorithm computes the inverse
of the tangent operator, otherwise opInvers == 0. If opTransp == 1, the algorithm computes the transposed of the tangent
operator and, in this case, @Hat function is the hat operator transposed function, otherwise (opTransp == 0) @Hat function is
the hat operator function.

26

Algorithm [GDT] = Gradient_Derivative_Tangent_Operator(a,b, c, N,@Hat,@CheckT, zk, opTransp, opInvers)
bc := [b, c]

nm := columnSize(bc)
GDT := zerosMatrix(zk, zk)
GDa := zerosMatrix(zk, zk, 2nm)

GDa(:, :, 1) := identityMatrix(zk, zk)
fact := 1

N0 := 1

if nm == 0

N0 := 0

end if
mi := 0

if columnSize(c) > 1

mi := columnSize(c)− 1

end if
for i = N0 to N + nm− 1 do

for e = nm to 1 do
forf =

(
nm
e

)
to 1 do

v := subSet(nm, e, f)

n := 0

m := 0

for g = 1 to e do
if v(g) <= columnSize(b) +mi do

n += 1

else
m += 1

end if
end for
idx := 1 + sumPower2(nm− v)

GDa(:, :, idx) := Hat(a) ∗GDa(:, :, idx)

for j = 1 to n and n+ 2 to n+m do
idx2 := 1 + sumPower2(nm− v([1:j − 1, j + 1:e]))

GDa(:, :, idx) += Hat(bc(:,v(j)) ∗GDa(:, :, idx2)

end do
if m > 0 do

idx2 := 1 + sumPower2(nm− v([1:n, n+ 2:e]))

if opTransp == 1 do
GDa(:, :, idx) += CheckT(GDa(:, :, idx2) ∗ bc(:,v(n+ 1)))

else
GDa(:, :, idx) −= Hat(GDa(:, :, idx2) ∗ bc(:,v(n+ 1)))

end if

end if

end for

end for

GDa(:, :, 1) := Hat(a) ∗GDa(:, :, 1)

if opInvers == 1 do
GDT += (−1)i ∗GDa(:, :, end) ∗B(i)/fact

fact := fact ∗ (i+ 1)

else
fact := fact ∗ (i+ 1)

GDT += (−1)i ∗GDa(:, :, end)/fact
end if

end for

return GDT

where columnSize(•) function evaluates the column size of the input. The zerosMatrix(i, j, k) function creates an i-by-j-by-k
array of zeros. The identityMatrix(i) function creates an i-by-i identity matrix. The subSet(n, e, f) generates a vector containing
the f subset of {1, 2, . . . , n} with e terms, for example, all distinct combinations (subsets) of the set {1, 2, 3}, n = 3, including the
empty set are {{}; {1}; {2}; {3}; {2, 3}; {1, 3}; {1, 2}; {1, 2, 3}}, combinations with two terms e = 2 are {{1, 2}; {1, 3}; {2, 3}}, the
first combination in this case f = 1 is {1, 2}, the second f = 2 is {1, 3} and the third f = 3 is {2, 3} (e.g. the matlab’s nchoosek
function). The sumPower2(z) function computes the sum of the powers of two of each element of the array z as the exponent.
The binomial distribution

(
n
k

)
= n!

k!(n−k)!
. The B(i) is a sequence of rational numbers, called the Bernoulli numbers of the first

kind. It can be calculated using the recursive algorithm: (i + 1)B(i) = −
∑i−1

k=0

(
i+1
k

)
B(k) where B(0) = 1. We emphasize that

27

for the computational cost study performed in 7, specifically optimized implementations for each derivative were used.

C Properties:

C.1 SO(3) group

x̂ω
i =

{
(−1)

i+3
2 ∥xω∥i−1x̂ω if i is odd,

(−1)
i+2
2 ∥xω∥i−2x̂ω

2 otherwise.
(182)

x̂ω
3 = −∥xω∥2x̂ω (183)

x̂ω
4 = −∥xω∥2x̂ω

2 (184)

C.2 SE (3) group

x̂i =

(−1)

i+3
2 ∥xω∥i−1x̂ + (−1)

i+3
2 (i− 1)∥xω∥i−3(xT

ωxu)

[
0 x̃ω

0 0

]
if i is odd,

(−1)
i+2
2 ∥xω∥i−2x̂ 2 + (−1)

i+2
2 (i− 2)∥xω∥i−4(xT

ωxu)

[
0 x̃ω

2

0 0

]
otherwise.

(185)

x̂3 = −∥xω∥2x̂ − 2(xT
ωxu)

[
0 x̃ω

0 0

]
(186)

x̂4 = −∥xω∥2x̂2 − 2(xT
ωxu)

[
0 x̃ω

2

0 0

]
(187)

References
[1] Hans Munthe-Kaas. Runge-Kutta methods on Lie groups. BIT Numerical Mathematics, 38(1):92–111, 1998.

[2] Marco Borri, Carlo Luigi Bottasso, and Lorenzo Trainelli. Integration of elastic multibody systems by invariant conserv-
ing/dissipating algorithms. i. Formulation. Computer Methods in Applied Mechanics and Engineering, 190(29–30):3669–3699,
2001.

[3] Elena Celledoni and Brynjulf Owren. Lie group methods for rigid body dynamics and time integration on manifolds.
Computer Methods in Applied Mechanics and Engineering, 192(3–4):421–438, 2003.

[4] Olivier Brüls and Alberto Cardona. On the use of Lie group time integrators in multibody dynamics. ASME Journal of
Computational and Nonlinear Dynamics, 5(3), 2010.

[5] Olivier Brüls, Alberto Cardona, and Martin Arnold. Lie group generalized-α time integration of constrained flexible multi-
body systems. Mechanism and Machine Theory, 48:121–137, 2012.

[6] Valentin Sonneville, Alberto Cardona, and O Brüls. Geometrically exact beam finite element formulated on the special
Euclidean group SE(3). Computer Methods in Applied Mechanics and Engineering, 268:451–474, 01 2014.

[7] Bruno A Roccia, Alejandro Cosimo, Sergio Preidikman, and Olivier Brüls. Numerical models for the static analysis of
cable structures used in airborne wind turbines. In International Symposium on Multibody Systems and Mechatronics, pages
140–147. Springer, 2020.

[8] Olivier Brüls and Peter Eberhard. Sensitivity analysis for dynamic mechanical systems with finite rotations. International
Journal for Numerical Methods in Engineering, 74(13):1897–1927, 2008.

[9] Valentin Sonneville and Olivier Brüls. Sensitivity analysis for multibody systems formulated on a Lie group. Multibody
System Dynamics, 31(1):47–67, 2014.

[10] Arthur Lismonde, Valentin Sonneville, and Olivier Brüls. A geometric optimization method for the trajectory planning of
flexible manipulators. Multibody System Dynamics, 47:347–362, 2019.

[11] Emmanuel Tromme, Alexander Held, Pierre Duysinx, and Olivier Brüls. System-based approaches for structural optimization
of flexible mechanisms. Archives of Computational Methods in Engineering, 25(3):817–844, 2018.

[12] John Stuelpnagel. On the parametrization of the three-dimensional rotation group. SIAM review, 6(4):422–430, 1964.

[13] A Cardona. An integrated approach to mechanism analysis. PhD thesis, Faculté des Sciences Appliquées Université de Liège,
1989.

28

[14] Olivier Andre Bauchau and Lorenzo Trainelli. The vectorial parameterization of rotation. Nonlinear Dynamics, 32(1):71–92,
2003.

[15] Olivier Andre Bauchau. Flexible Multibody Dynamics, vol. 176. Springer, 2011.

[16] Andreas Müller. Screw and Lie group theory in multibody kinematics: Motion representation and recursive kinematics of
tree-topology systems. Multibody System Dynamics, 43(1):37–70, 2018.

[17] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later.
SIAM review, 45(1):3–49, 2003.

[18] Alberto Cardona and Michel Géradin. A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods
Eng., 26(11):2403–2438, 1988.

[19] Jili Rong, Zhipei Wu, Cheng Liu, and Olivier Brüls. Geometrically exact thin-walled beam including warping formulated
on the special euclidean group SE(3). Computer Methods in Applied Mechanics and Engineering, 369, 2020.

[20] Felix Pfister. Bernoulli numbers and rotational kinematics. ASME J. Appl. Mech., 65(3):758–763, 1998.

[21] Manuel Ritto-Corrêa and Dinar Camotim. On the differentiation of the rodrigues formula and its significance for the
vector-like parameterization of Reissner-Simo beam theory. International Journal for Numerical Methods in Engineering,
55(9):1005–1032, 2002.

[22] Andreas Müller. Review of the exponential and cayley map on SE(3) as relevant for Lie group integration of the generalized
Poisson equation and flexible multibody systems. Proc. R. Soc. A, 477(2253), 2021.

[23] Eduardo Alberto de Souza Neto. The exact derivative of the exponential of an unsymmetric tensor. Comput. Methods Appl.
Mech. Eng., 190(18–19):2377–2383, 2001.

[24] Mayank Chadha and Michael Douglas Todd. On the derivatives of curvature of framed space curve and their time-updating
scheme. Applied Mathematics Letters, 99, 2020.

[25] J.M. Selig. Geometric Fundamentals of Robotics, Monographs in Computer Science. Springer, 2005.

[26] Michel Géradin and Alberto Cardona. Kinematics and dynamics of rigid and flexible mechanisms using finite elements and
quaternion algebra. Computational Mechanics, 4:115–135, 1988.

[27] Eva Zupan, Miran Saje, and Dejan Zupan. The quaternion-based three-dimensional beam theory. Computer Methods in
Applied Mechanics and Engineering, 198(49):3944–3956, 2009.

[28] Thomas Leitz, Rodrigo Takuro Sato Martín de Almagro, and Sigrid Leyendecker. Multisymplectic Galerkin Lie group
variational integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation-no shear locking.
Computer Methods in Applied Mechanics and Engineering, 374, 2021.

[29] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathematical Introduction To Robotic Manipulation. CRC Press,
first ed. edition, 1994.

[30] Arieh Iserles, Hans Z. Munthe-Kaas, Syvert Paul Nørsett, and Antonella Zanna. Lie-group methods. Acta numerica,
9:215–365, 2000.

[31] Valentin Sonneville, Alberto Cardona, and Olivier Brüls. Geometric interpretation of a non-linear beam finite element on
the Lie group SE(3). Archive of Mechanical Engineering, 61(2):305–329, 2014.

[32] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms
for Ordinary Differential Equations. Springer, 2006.

[33] Brian C. Hall. Lie Groups, Lie Algebras, and Representations an Elementary Introduction. Graduate Texts in Mathematics,
222. Springer International Publishing, 2nd ed. 2015. edition, 2015.

[34] Valentin Sonneville. A geometric local frame approach for flexible multibody systems. PhD thesis, Université de Liège, Liège,
Belgique, 2015.

[35] Jorge Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. Springer-Verlag, 2003.

[36] John H. Argyris and Sp. Symeonidis. Nonlinear finite element analysis of elastic systems under nonconservative loading-
natural formulation. part i. Quasistatic problems. Computer Methods in Applied Mechanics and Engineering, 26(1):75–123,
1981.

[37] John Argyris. An excursion into large rotations. Comput. Methods Appl. Mech. Eng., 32(1–3):85–155, 1982.

[38] Daniel Condurache and Adrian Burlacu. Dual tensors based solutions for rigid body motion parameterization. Mechanism
and Machine Theory, 74:390–412, 2014.

[39] Olivier Andre Bauchau and Valentin Sonneville. Formulation of shell elements based on the motion formalism. Applied
Mechanics, 2(4):1009–1036, 2021.

29

