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Abstract

Climate change and resource scarcity pose increasingly di�cult challenges for the aviation
industry requiring a reduction in fossil fuel consumption. To address these problems and
increase the e�ciency of aircraft engines, some of their parts are now manufactured in
one piece. For example, a rotor of the compressor stage of an airplane engine consist of a
drum with a large number of blades and is called BluM. These structures are lightweight
and feature low structural damping and high modal density. Their particular dynamic
characteristics require sophisticated solutions for vibration mitigation of these structures.

This is precisely the starting point of this thesis. Based on a digital realization of piezo-
electric shunt circuits, we provide a damping concept that is able to tackle the complex
dynamics of bladed structures and to mitigate their vibrations. To this end, multiple digi-
tal vibration absorbers (DVAs) are used simultaneously. Two new strategies to tune these
DVAs are proposed in the thesis, namely the isolated mode and mean shunt strategies.
These strategies not only take advantage of the fact that multiple absorbers act simul-
taneously on the structure, but they also address the problem of closely-spaced modes.
In order to target multiple families of BluM modes, these strategies are incorporated in
a multi-stage shunt circuit. The concepts are demonstrated experimentally using two
bladed structures with increasing complexity, namely a bladed rail and a BluM. Both
methods exhibit excellent damping performances on multiple groups of modes. In ad-
dition, they prove robust to changes in the host structure which could, e.g., be due to
mistuning. Thanks to their digital realization, DVAs are also easily adjustable.

Finally, this thesis reveals the parallel that exists between resonant piezoelectric shunts
with a negative capacitance and active positive position feedback (PPF) controllers. Based
on this comparison, a new H∞ norm-based tuning rule is found for a PPF controller. It
is demonstrated using both numerical and experimental cantilever beams. To this end,
a method that accounts for the in�uence of modes higher in frequency than the targeted
one is developed.
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Résumé

Le changement climatique et la raréfaction des ressources posent des dé�s de plus en
plus complexes à relever pour l'industrie aéronautique. Un de ces dé�s est la réduction
de la consommation en énergies fossiles. Pour accroître l'e�cacité des moteurs d'avion,
certains de leurs composants sont désormais fabriqués en une seule pièce. Dans le cas des
compresseurs, ces pièces monoblocs sont appelées BluMs et sont constituées d'un tambour
avec un grand nombre d'aubes. Ce type de structures béné�cie d'un allègement signi�-
catif, ce qui conduit à un faible amortissement structurel. De plus, ces pièces monoblocs
présentent une densité modale élevée en raison du nombre important de diamètres nodaux.
Ces caractéristiques dynamiques particulières nécessitent des solutions d'amortissement
sophistiquées.

Cette thèse de doctorat aborde cette problématique. En exploitant le concept d'absorbeur
de vibration digital (DVA), nous proposons une nouvelle technique d'amortissement des
structures aubagées. Deux nouvelles stratégies d'accordage de ces DVA sont développées
dans cette thèse, à savoir la stratégie du mode isolé et la stratégie du shunt moyen. Ces
méthodes tirent non seulement parti du fait que plusieurs absorbeurs agissent simultané-
ment sur la structure, mais elles s'attaquent aussi au problème des modes proches en
fréquence. A�n de cibler plusieurs familles de modes, ces stratégies ont été incorporées
dans un circuit de shunt à plusieurs étages. Les concepts sont testés expérimentalement
sur deux structures aubagées de complexité croissante, à savoir un rail à aubes et un BluM
comme application �nale. Ces méthodes permettent d'obtenir d'excellentes performances
d'amortissement sur plusieurs groupes de modes. Elles s'avèrent également robustes face
à des variations de la structure, dues par exemple à un désaccordage de celle-ci. Il est à
noter que, grâce à leur caractère digital, ces méthodes sont facilement adaptables.

Finalement, nous révélons le parallèle qui existe entre les shunts piézoélectriques réso-
nants avec une capacitance négative et le contrôleur actif à rétroaction positive de posi-
tion (PPF). Sur base de cette comparaison, de nouvelles règles d'accordage basées sur la
norme H∞ sont développées pour le contrôleur PPF. Leur e�cacité est démontrée à la
fois numériquement et expérimentalement sur une poutre encastrée-libre. Dans ce but,
une méthode prenant en compte l'in�uence des modes dont la fréquence est supérieure au
mode ciblé a été mise sur pied au moyen de facteurs de correction.
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Nomenclature

ckl Elastic sti�ness constant [Nm−2]

Dk Electric displacement component [Cm−2]

ekp Piezoelectric constant [Cm−2]

•E At constant electric �eld [Vm−1]

Ep/l Electric �eld component [Vm−1]

•S At constant strain

Sp/l Strain component

•T At constant stress

Tk Stress vector component [Nm−2]

ϵkl Permittivity component [Fm−2]

ωoc Open-circuit resonance frequency

ωsc Short-circuit resonance frequency

K2
c Electromechanical coupling factor (EMCF)

K̂2
c Mean electromechanical coupling factor (MEMCF)

ω̂oc Mean open-circuit resonance frequency

Cε
p Capacitance of the piezoelectric patch p under constant strain

L Shunt branch inductance

R Shunt branch resistance

s Laplace variable

Cp(s) Dynamic capacitance

Ep(s) Dynamic elastance

Vp Voltage across the electrodes of a transducer p
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qp Charge of piezoelectric transducer p

q̇p Current of piezoelectric transducer p

ZShunt Shunt impedance

YShunt Shunt admittance

VADC Voltage input to a digital unit

VDAC Voltage output of a digital unit

α Piezoelectric voltage division ratio

β Ampli�cation gain

γ Attenuation gain

δc Factor representing the imperfections of the DVA

gc Current source gain of the DVA

Vs Voltage across a shunt branch

qs Charge of a shunt branch

C̃ε
p Equivalent capacitance seen from a speci�c shunt branch

ω̃oc Equivalent open-circuit resonance frequency seen from a speci�c shunt branch

ω̃sc Equivalent short-circuit resonance frequency seen from a speci�c shunt branch

L̃ Network inductance

R̃ Network resistance

R∗ Optimal resistance of a �ctitious shunt branch

L∗ Optimal inductance of a �ctitious shunt branch
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List of Abbreviations

TMD Tuned mass damper
IFF Integral force feedback
PFF Positive position feedback
NC Negative capacitance
DVA Digital vibration absorber
BluM Bladed drum manufactured in one piece
BLISK Bladed disk manufactured in one piece
SDOF Single-degree-of-freedom
MDOF Multiple-degree-of-freedom
EMCF Electromechanical coupling factor
R Resistive
L Inductive
C Capacitive
FRF Frequency response function
OpAmp Operational ampli�er
ADC Analog-to-digital-converter
DAC Digital-to-analog-converter
I/O Input-output
PCB Printed circuit board
ZOH Zero-order hold
LSE Least square error
1B First bending mode
2B Second bending mode
1T First torsional mode
FE Finite element
DOF Degree-of-freedom
MEMCF Mean e�ective electromechanical coupling factor
MIMO Multiple-input multiple-output
LSFD Least-squares frequency-domain
RMS Root mean square
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Introduction

Motivation of this thesis

Our society is faced with a paradigm shift between its desire to travel and the need to
reduce pollution and protect the environment [1]. With 9% of the distribution of car-
bon dioxide emissions generated by the transportation sector worldwide (cf. Figure 1),
there is not only considerable room, but also the need for improvement toward a greener
way of air transport. There exist several directives and initiatives driving the aviation
industry to progress further in the direction of more e�cient and environment-friendly
aircraft designs, e.g., ACARE, Clean Sky 2 or WINGS [3�8]. For example, by 2050, all
�ights departing from Europe must achieve carbon neutrality [6]. Additionally, due to
wars and political con�icts, fossil resources are becoming more scarce or inaccessible. All
these developments call for a reduction of the fuel consumption of aircraft or a shift to
green alternatives. The growth in e�ciency of the current �eet in the aviation sector is
immense and aircraft designs can already be considered as being optimized to a great
extent. However, the new generations of aircraft in the coming decade only are expected
to save the signi�cant amount of 25% of fuel and CO2 [9, 10]. In the mid-term, technical
improvements in engine e�ciency have a supporting role beside an adoption of sustainable
aviation fuels. In the longer term, particularly after 2050, synthetic fuels are estimated
to play the key role [10] to achieve the global requirements.

Global players of the aviation industry commit to progress toward carbon-friendly al-
ternatives. In 2021, Safran and GE Aviation announced their RISE [11] project, aiming
for an open fan rotor that drastically decreases fuel consumption thanks to a higher by-
pass ratio. With several future aircraft models in the pipeline, Airbus has launched the
ZEROe project to develop the world's �rst hydrogen-powered commercial aircraft [12].
The HE-ART [13] project unites di�erent sectors of the aviation industry, i.a. leading en-
gine manufacturers like Rolls Royce and Safran, airframe producers such as ATR, Airbus
and Leonardo, as well as important manufacturers and research institutions. It proposes
a hybridization of the propulsion system by combining an electrical with an ultrae�cient
turboprop thermal engine. A demonstrator is expected to be available by early 2027. The
aforementioned projects are only examples among others and their multitude shows that
there is a great interest and initiative in politics and economy, proving the importance of
CO2 reduction for the future of aviation.

All these recent developments and requirements pose new challenges for the aviation
industry. In the context of the mid-term perspective, the trend strongly goes toward
more lightweight rotor designs. However, these lightweight structures come with several
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Figure 1: Worldwide distribution of carbon dioxide emissions produced by the transportation
sector in 2021 [2].

challenges for engineers. Often, they feature a low structural damping so that larger
vibrations occur, increasing the susceptibility to fatigue which can eventually lead to fail-
ure. Possibly, these large displacements can trigger strongly nonlinear behavior of the
structural components. For all these reasons, it is desirable to avoid the excitation of the
structure at its resonance frequencies, or, if this is not possible, attenuate the resonant
vibrations. Since it is not always feasible to provide rotor designs according to the former
solution, it is also important to address the latter. This problem forms the main thrust
of this thesis. In the following section, the reader will be provided with an overview of
di�erent existing damping approaches.

Approaches to damp structural vibrations

Vibration mitigation is a well-known and ongoing challenge in engineering that can be
tackled by introducing additional damping into the host system. There exist di�erent vi-
bration reduction approaches that can be classi�ed as passive or active. Classical passive
solutions consist, e.g., of damping layers and coatings, often made of viscoelastic material
[14], dashpots or friction dampers [15]. Another popular passive damping solution is the
tuned mass damper (TMD), where an additional mass is connected to the host structure
via dampers and springs [16, 17]. The resonance frequency of the TMD is chosen to
match the resonance frequency of the host structure so as to absorb its vibrations when it
resonates. During the last decades, the use of piezoelectric vibration absorbers in which
an electrical circuit resonates with the host structure has become increasingly popular
[18, 19]. Traditionally, these applications operate according to a passive control law.

When active control techniques are used, energy is injected into the host system via
a controller. In this way, the control authority over the structure can be enhanced, which
comes at the risk of triggering instabilities of the controlled system. Typically, the struc-
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Figure 2: Schematic representation of an aircraft engine with indication of the position of the
low-presssure compressor bladed drum (BluM). Left: CFM56 turbofan aircraft engine Cutaway
Drawing [29]; right: BluM from Safran Aero Boosters. [30].

tural response is measured via one or more sensors, and, based on the measured signals,
an appropriate control load provided by a controller is applied to the structure through
actuators. Popular active control approaches are direct velocity feedback [20], integral
force feedback (IFF) [21] or positive position feedback (PPF) [22]. Typically applied in
the automotive industry, other candidates can be the skyhook damper [23], or, for high-
precision mechanics, active isolation solutions [24]. As a counterpart to the passive TMD,
there exist active TMDs where the feedback gain and the TMD parameters are subject to
an online optimization process, enhancing the damping performance [25]. An interesting
alternative to analog piezoelectric vibration absorbers is a digital implementation of the
electrical circuit [26]. Additionally, the control authority of piezoelectric shunts can be
enhanced by adding a negative capacitance (NC) [27, 28].

Two of the aforementioned damping solutions, namely the piezoelectric digital vibration
absorber (DVA), with or without an additional NC component, and the PPF controller
are considered in this thesis and will be described in more details later in the manuscript.
Speci�cally, the problem of aircraft engine vibrations is addressed using a DVA. Indeed,
a DVA o�ers a number of advantages, such as considerable versatility, compactness, and
ease of adjustment, which makes it highly attractive for complex damping problems.

Vibration mitigation of aircraft engines

A popular aircraft engine is the turbofan CFM56 presented in Figure 2, comprising high-
and low-pressure compressor stages. The compressors usually consist of bladed assem-
blies that operate at high rotational speeds. One way to reduce the weight of aircraft
engines is to manufacture some of their parts in one piece. Figure 2 gives the example of
a low-pressure compressor rotor called BluM. It consists of a drum to which a multitude of
blades are attached. Realized as a single piece, they do not feature any interface between
the blades and the drum support. There also exist examples of bladed disks manufactured
in a single piece referred to as BLISK. Being part of an aircraft engine, these components
are subject to two types of external forces that are of mechanical or aerodynamical na-
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ture. The former results from a rotor imbalance or mechanical interactions (rotor/stator
contact) whereas the latter is caused by the air�ow entering the fan and going through
the di�erent stages of the engine [31]. In addition, small imperfections in the manufactur-
ing process (the so-called mistuning) disturbing the cyclic symmetry of these structures
can lead to vibration localizations and cause fatigue failures. All these factors justify the
importance of damping these structures in order to guarantee safe operations. In this
context, piezoelectric shunts begin to be considered as a promising damping solution [32].

Contributions of this thesis

Realized in the framework of the WALInnov Maveric project [33], this thesis can be seen
as the continuation of Ghislain Raze's work [30]. The objective is to bring the DVA to
the next level by applying it to real bladed structures. To this end, multiple DVAs are
used simultaneously to mitigate the structural vibrations of bladed assemblies featuring
complex multimodal dynamics. In order to address this challenge, di�erent shunt tun-
ing approaches are integrated into a new strategy with the aim to provide a solution for
broadband vibration mitigation of industrial structures.

The manuscript is organized as follows. Chapter 1 presents the concept of a DVA and the
practical realizations used in the experimental campaigns of this thesis. In its �rst part,
Chapter 2 outlines the dynamical characteristics of bladed structures and the challenges
they pose for shunt tuning. In the second part of this chapter, strategies that address these
challenges are proposed. Chapters 3 and 4 present the results of the experimental appli-
cation of these strategies, including detailed technical information on the implementation
of a DVA. Chapter 3 is concerned with a bladed rail structure, which features a much
smaller dimensionality than a BluM structure and serves as an intermediate demonstrator
for a proof of concept. Chapter 4 studies an industrial BluM structure provided by Safran
Aero Boosters. The BluM was already studied experimentally in Bilal Mokrani's work
[32] where it was connected to analog shunt circuits. In this thesis, the emphasis is on
a digital realization and takes advantage of the great versatility and adaptability of DVAs.

In the second part of this thesis, we provide new shunt tuning rules based on the H∞
norm when a NC is connected in series in order to increase shunt performance. These
tuning rules are derived in Chapter 5 based on a single-degree-of-freedom (SDOF) ap-
proximation. By comparing the resonant shunt controller with a NC to a PPF controller,
the H∞ tuning rules can be translated to the active control case in Chapter 6. To extend
the applicability to the multimodal case, a procedure that accounts for the in�uence of
higher-order modes during the tuning process is also developed.

The manuscript concludes with a discussion of the results obtained in the course of this
work and an evaluation of them within the scienti�c context. Future directions and ex-
tensions of our research are �nally outlined.
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Chapter 1

A piezoelectric digital vibration

absorber

1.1 Introduction

Piezoelectric vibration absorbers, �rst introduced by Forward [18] in 1979, have been
an attractive damping solution for engineering structures over decades. They rely on
the ability of piezoelectric materials to convert mechanical energy into electrical energy
that is then dissipated in a suitably-designed circuit. Their working concept as well as
practical realizations are the subject of this chapter. It is organized as follows. The �rst
part is intended to serve as a reminder of the fundamentals of piezoelectric shunt damping
and common circuit designs. Next, the concept of a digital realization of these absorbers
is introduced and discussed. This digital implementation and application to complex
engineering structures is one of the key elements of this thesis. A design of a DVA is
presented and its working principle outlined. This design forms the basis for the practical
applications presented in Chapters 3 and 4. Furthermore, advantages and disadvantages
of digital implementations are discussed. In particular, the discretization process of a
continuous measured signal that needs to be performed to make it comply with a digital
unit is a potential source of instabilities, since it modi�es the controller function. This
chapter concludes by proposing a discretization method that accounts for these changes.

1.2 Piezoeletric structures

1.2.1 Linear piezoelectric materials

In 1880, Jacques and Pierre Curie discovered the property of piezoelectric materials to
convert mechanical energy into electrical energy and vice versa. These materials have
a crystalline structure with localized charge separations, also known as electric dipoles,
which are normally balanced neutrally if not subjected to force. However, if the structure
is mechanically loaded, these dipoles arrange themselves in such a way that an external
electric �eld is created: the direct piezoelectric e�ect occurs. This e�ect is schematized
in Figure 1.1. One can see that the polarization of the external electric �eld is inverted
depending on whether a tension or a compression is applied to the material.
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1.2: Piezoeletric structures

Figure 1.1: The direct piezoelectric e�ect: (a) piezoelectric material; electrical charge genera-
tion under (b) tension and (c) compression under the material polarization P [34].

The piezoelectric e�ect is a reversible process so that applying an electrical charge to
the material, results in the creation of a mechanical strain [34].

In a �rst step, we recall the constitutive equations of linear piezoelectric materials. A
complete derivation of these can, e.g., be found in [19, 35]. Based on the �rst law of
thermodynamics, they read [35]

T3 = cE33S3 − e33E3

D3 = e33S3 + ϵS33E3 . (1.1)

Here, for simplicity, the so-called '3' direction is considered directly. It corresponds to the
poling direction, assuming isotropic material behavior in the other two directions [19]. T3

and S3 are components of the stress and strain vector, respectively, whereas D3 is a com-
ponent of the electric displacement �eld. E3 corresponds to the electric �eld component
and cE33 is an elastic sti�ness constant. ϵS33 represents the permittivity at constant strain.
The piezoelectric constant e33 couples the mechanical and the electrical equations.

We consider the piezoelectric rod displayed in Figure 1.2 as an example for a piezo-
electric material. The '3' direction corresponds to the x direction. In order to look at the
electrical energy that is produced over the structure, we integrate Equation (1.1) over its
volume Al (cf. Figure 1.2). Finally, to obtain an expression for the force fp acting on
the transducer, we divide by the distance l between the two electrodes. We introduce the
following expressions

fp = T3A, x = S3l, Vp = −E3l, qp = D3A, (1.2)

kp,sc =
AcE33
l

, γp =
Ae33
l

, CS
p =

AϵS33
l

. (1.3)

Here, Vp is the voltage across the transducer electrodes and qp the charge �owing trough
them. x can be interpreted as the stroke of the transducer. The constants kp,sc, γp and CS

p

are characteristics of the piezoelectric material such as its sti�ness (with short-circuited
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Figure 1.2: Presentation of a piezoelectric element.
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(b) The transducer acts as an ideal voltage source.

Figure 1.3: SDOF piezoelectric system.

electrodes), the piezoelectric coupling coe�cient and the piezoelectric capacitance at con-
stant strain, respectively [30]. γp characterizes how much energy is transformed between
the piezoelectric transducer and the mechanical system [19] so that an interaction between
the electrical and mechanical dynamics takes place. In literature related to piezoelectric
shunts, the piezoelectric capacitance CS

p is also often referred to as Cε
p . For convenience,

this expression will be used in this thesis from now on. Inserting Equations (1.2) and
(1.3) in Equation (1.1) yields

fp = kp,scx+ γpVp (1.4)

qp = γpx− Cε
pVp . (1.5)

1.2.2 The electro-mechanical system

In a next step, we regard the piezoelectric transducer bonded to a structure, here, an
SDOF system consisting of a mass m and a spring of sti�ness k and being excited by
an external force f . The spring and the transducer are both in parallel connected to the
ground (cf. Figure 1.3). We regard two ways of modeling the electromechanical system,
also referred to as piezoelectric structure, in the following:

(i) The transducer acts as an ideal current source as displayed in Figure 1.3a;

(ii) the transducer acts as an ideal voltage source as displayed in Figure 1.3b.
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(b) Thévenin's equivalent impedance.

Figure 1.4: Electrical representations of the piezoelectric structures presented in Figure 1.3

Considering case (i), the governing equations for the electromechanical system in the
Laplace domain read {

(ms2 + ksc)x+ γpVp = f

γpx− Cε
pVp = qp .

(1.6)

s is the Laplace variable and ksc is the sti�ness of the electromechanical structure when
the electrodes of the transducer are in short-circuit (Vp = 0), so that ksc = kp,sc + k.
One can see that the interaction between the electrical and the mechanical variables is
represented by the coupling coe�cient γp. Considering the second line of Equation (1.6)
that represents the electrical part and building its derivative, we obtain

qps = γpxs− Cε
pVps . (1.7)

Recalling Kirchho�'s current law, we notice that the transducer is modeled like an ideal
current source in parallel with the piezoelectric capacitance Cε

p . This presentation of the
electrical part of a piezoelectric structure is Norton's equivalent circuit [36] as illustrated
in Figure 1.4a. We derive the short-circuit resonance frequency of the system

ωsc =

√
ksc
m

. (1.8)

The open-circuit (qp = 0) sti�ness of the structure is

koc = ksc +
γ2
p

Cε
p

. (1.9)

Using Equations (1.6) and (1.9), the equations of motion for case (ii) are{
(ms2 + koc)x− θpqp = f

θpx− Cε
pqp = Vp,

(1.10)

with
θp =

γp
Cε

p

. (1.11)

In the same manner as Norton's admittance, the respective electrical representation of
this system can be found as Thévenin's equivalent circuit [37] (see Figure 1.4b). The
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1.2: Piezoeletric structures

open-circuit resonance frequency of this system is then de�ned as

ωoc =

√
koc
m

. (1.12)

The short- and open-circuit resonance frequencies can be used for the evaluation of the
electromechanical coupling which is a key quantity for the control authority over the
structure for piezoelectric shunt damping. It can be expressed by the dimensionless elec-
tromechanical coupling factor (EMCF) Kc, relating the modal strain energies when the
transducer is in short- and in open-circuit [38]:

K2
c =

ω2
oc − ω2

sc

ω2
sc

. (1.13)

Hence, this factor depends on the properties of the host system through γp (or θp) and
Cε

p . Another representation of the coupling factor is its normalization with ωoc, de�ning
the second power of the EMCF as

α2 =
ω2
oc − ω2

sc

ω2
oc

=
K2

c

1 +K2
c

. (1.14)

1.2.3 Dynamic capacitance

In control theory, the relation between an input signal and the output signal of a system
without feedback, also called plant transfer function, is of importance for the design of the
controller. For the electromechanical system displayed in Figure 1.3, not only the proper-
ties of the SDOF structure itself but also its interaction with the piezoelectric transducer
through the coupling coe�cients impact this transfer function. The plant transfer func-
tion of a piezoelectric system, usually named dynamic capacitance, provides us with all
necessary parameters to properly tune the shunt parameters. We recall Equation (1.6)
and assume that the system is unforced (f = 0) [39]. Setting the piezoelectric charge and
voltage into relation, we obtain the expression of the dynamic capacitance for the SDOF
case [30]

qp
Vp

= −Cε
p

(
1

Cε
p

γ2
p

ms2 + ksc
+ 1

)
= −Cε

p

(
ω2
oc − ω2

sc

s2 + ω2
sc

+ 1

)
= −Cε

p

s2 + ω2
oc

s2 + ω2
sc

= Cp(s) .

(1.15)
In the static case, the dynamic capacitance reads

Cp,static = Cp(s = 0) = Cε
p

ω2
oc

ω2
sc

= Cε
p(1 +K2

c ) . (1.16)

We have a closer look at this dynamic capacitance function in the SDOF case by means
of the representation in Figure 1.5. The static value Cp,static is greater than Cε

p which is
also referred to as the electrically blocked capacitance of the undeformed rod [40]. This
blocked capacitance occurs at high frequencies where, in the absence of mechanical mo-
tions, the energy is stored only in electrical form. The pole of the dynamic capacitance
function is the open-circuit frequency ωoc while ωsc corresponds to its zero. The better
the electromechanical coupling, the greater the distance between these two frequencies
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Figure 1.5: Example for a dynamic capacitance function of a piezoelectric structure in the
SDOF case.

(cf. Equation (1.13)). Naturally, the EMCF of piezoelectric structures is limited and
usually small, de�ning the limits of the control authority.

The reciprocal of Equation (1.15) yields the so-called dynamic elastance

Vp

qp
=

1

Cp(s)
= − 1

Cε
p

s2 + ω2
sc

s2 + ω2
oc

= Ep(s) . (1.17)

Both transfer functions (Equations (1.15) and (1.17)) can serve as a basis to design a
piezoelectric shunt controller for vibration attenuation of the host structure. They can
be obtained easily from electrical measurements that only require the excitation of the
structure via the piezoelectric transducer, acting both as an actuator and sensor.

1.3 Piezoelectric shunt damping

An electrical circuit connected to the piezoelectric host structure can be used to attenuate
unwanted vibrations by dissipating the mechanical energy of the structure's motions after
it has been converted to electrical energy. One refers to a shunt circuit whose transfer
function is the electrical shunt impedance ZShunt (or admittance YShunt) as depicted in
Figure 1.6. The idea was �rst introduced by Forward in 1979 [41]. Ideally, a shunt circuit
is designed in a way that it dissipates the electrical energy at the frequency at which
undesired vibrations of the host structure appear. Common circuits are of either resistive
(R shunt) or resistive-inductive (RL shunt) nature consisting of electrical elements such
as resistors or inductors, possibly in combinations with capacitors. While a resistor can
be considered as the electrical equivalent of a mechanical dashpot, adding an inductor
may be seen as connecting an electrical mass to the structure. A piezoelectric RL shunt
circuit is therefore often compared to a TMD [19].
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Figure 1.6: An SDOF piezoelectric system connected to a shunt impedance ZShunt.

1.3.1 Passivity

Moheimani and Fleming [42] stated that a shunt impedance is considered passive only if
it does not introduce any additional energy into the system, reading∫ ∞

0

Vp(t) · q̇p(t)dt ≥ 0, (1.18)

with Vp(t) corresponding to the voltage and q̇p(t) to the current in Figure 1.6. In a linear
system, the passivity condition of the impedance ZShunt(jω) reads [43]

ℜ(Vp(iω) · q̇∗p(jω)) ≥ 0, (1.19)

with q̇∗p(jω)) being the complex conjugate of q̇p(jω)). Alternatively, we can write

ℜ(ZShunt(jω)) ≥ 0 ∀ω . (1.20)

ℜ de�nes the real part of a function whereas j denotes the unit imaginary number j =√
−1. If the passive criterion given in Equations (1.18) to (1.20) is respected and the shunt

transfer function positive-real, the system can be regarded as unconditionally stable [42]
which signi�cantly facilitates the practical application. Commonly, piezoelectric shunts
only consist of electrical elements such as capacitors, resistors and inductors so they could
be considered as passive damping solutions. However, some authors may disagree with
this classi�cation, since the required inductance values for shunts are often large and
cannot always be realized using only analog components without a power supply [44]. In
the context of this work we will hold to the above classic de�nition of passivity given that
the theoretical control law according to which the shunt works remains passive. This is
in line with de�nitions given, e.g., in [30, 42]. In shunt damping, passive applications are
considered to be simple, low priced and easy to apply [27]. Furthermore, in contrast to
active control approaches, a passive control does not run the risk of becoming unstable in
the event of a disturbance.
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1.3: Piezoelectric shunt damping

1.3.2 Designing the shunt circuit

Over decades, various ideas for the design of a piezoelectric shunt impedance and the
tuning of its parameters have been proposed. This section provides the reader with an
overview of the most commonly-used approaches and details of the ones that build the
basis for the developments in this work. It does not claim completeness with regard to
all existing and common tuning approaches.

1.3.2.1 Resistive shunts

Electrical energy might be dissipated by connecting a resistor R to the electrodes of a
piezoelectric transducer [19, 41, 45]. The shunt impedance then reads

ZShunt,R(s) = R . (1.21)

Recalling Ohm's law
V = ZI, (1.22)

with I corresponding to the electrical current q̇ and Z being an arbitrary electrical
impedance, Equation (1.10) then becomes{

(ms2 + koc)x− θpqp = f

Rqps+
1
Cε

p
qp − θpx = 0 .

(1.23)

Inserting the second line of Equation (1.23) into the �rst yields the receptance function
of the shunted system:

x

f
=

[
ms2 + koc −

θ2

Rs+ 1
Cε

p

]−1

. (1.24)

This receptance function can then, e.g., be minimized to �nd an optimal value for the free
parameter R. Hagood et al. chose this parameter based on a pole-placement technique
presented in [19]. Thomas et al. based their parameter optimization on a so-called �xed
point [45]. Under a variation of the parameter R, this point is identical for each resulting
frequency response function (FRF). By making this point the maximum of the receptance
function, they derived an optimal value for R in a resistive shunt function [45]:

Ropt,resistive =
1

Cε
pωsc

√
1 + K2

c

2

. (1.25)

1.3.2.2 Resistive-inductive shunts

The impedance of an RL shunt is

ZShunt,RL = Ls+R . (1.26)

We consider a series shunt so that inserting ZShunt,RL into Equation (1.10) yields{
(ms2 + koc)x− θpqp = f

Lqps
2 +Rqps+

1
Cε

p
qp − θpx = 0 .

(1.27)
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The receptance function of the shunted system is

x

f
=

[
ms2 + koc −

θ2p
Ls2 +Rs+ 1

Cε
p

]−1

. (1.28)

We de�ne the electrical resonance frequency

ωe =

√
1

Cε
pL

. (1.29)

Ideally, in a properly-tuned shunt case, this frequency should be close to the targeted
resonance frequency of the host system, causing the shunt circuit to resonate and dissi-
pate electrical energy e�ectively via the resistor. As a result of the additional inductance,
this receptance function has now two resonance peaks as well as two intersection points,
also called �xed points. Depending on the choice of the parameter L, these �xed points
might be of di�erent amplitudes. One way to choose L is to aim for their peak values to
be equal so that the resonance frequency of the uncontrolled system is centered between
them. Figure 1.7a illustrates these two intersections of the di�erent FRFs resulting from
the di�erent RL shunt-controlled systems. The yellow graph belongs to the case where
L is chosen in a way that the �xed-points are of equal amplitude while the parameter
R is set to zero. Once L is de�ned, the "optimal" damping might be chosen in di�erent
ways: Hagood and Flotow set R in a way that the amplitude at the electrical resonance
frequency ωe coincides with the amplitude of the two �xed points, resulting in a relatively
�at receptance function [19]. Yamada et al. de�ned the optimal value for R by setting
the two �xed points as maxima of the receptance function [46]. However, since this is not
exactly feasible, they speci�ed an optimal R value for each maximum separately to then
use their the root mean-square (RMS) as the �nal optimal value. Following the same
spirit, Thomas et al. re�ned their approach by �nding an optimal value for R using a
Taylor series expansion [45]. Their tuning rules are applied to an SDOF system example
in Figure 1.7. It can be seen that, when the RL shunt is properly tuned, the �xed points
are a good approximation of the receptance resonance peaks but that they do not coin-
cide exactly with them. Moreover, both for [19] and [45], there remains a slight imbalance
between the two resonant peaks and they do not feature an exact same amplitude value
(cf. Figure 1.7).

In their work, Soltani et al. found optimal tuning rules that are not based on the �xed
points [47]. They presented a closed-form mathematical expression for the amplitude of
the two equal receptance peaks. This exact solution has then been subject to a minimiza-
tion based on the H∞ norm resulting in an expression for optimal RL shunt parameters
[47, 48]. First, the parameter

r =

√
64− 16K2

c − 26K4
c −K2

c

8
(1.30)

is introduced. With the help of this parameter, we can express the optimal values for the
shunt inductance

Lopt,resistive−inductive =
4K2

c + 4

(3K2
c − 4r + 8)(ω2

ocC
ε
p)

(1.31)
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(a) Overview on the �rst mode.
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(b) Zoom view.

Figure 1.7: FRFs of an SDOF example. Uncontrolled ( ); controlled by an RL shunt tuned
according to Hagood and Flotow ( ) [19], Thomas et al. ( ) [45] and Soltani et al. ( ) [47]
(maximum peak amplitude in ( )). ( ) corresponds to last case with R = 0.

and the optimal shunt resistance

Ropt,resistive−inductive =
2
√
2(K2

c + 1)[27K4
c +K2

c (80− 48r)− 64(r − 1)]

(ωocCε
p)(5K

2
c + 8)

√
3K2

c − 4r + 8
. (1.32)

The tuning rules presented in [47] build the basis for the developments of this work and
have been applied to various shunt damping cases. Using these optimal parameters in the
shunt circuit, exact equal peaks can be achieved as shown in Figure 1.7b. In Figure 1.8a,
the FRF of a system controlled by an RL shunt designed according to the rules presented
in Equations (1.30) - (1.32) is now compared to that of an SDOF system with an R shunt
(cf. Equation (1.25)). A signi�cantly greater amplitude reduction can be expected with
an RL shunt, owing to the presence of two damped resonant peaks instead of one to which
the remaining mechanical energy can be divided. However, as depicted in Figure 1.8b,
the shunt performance is sensitive to variations of the shunt parameters, particularly to
variations of L. A small change of 5% of the inductance value can already cause a strong
imbalance of the two resonance peaks and a detuning of the shunt. From a practical point
of view, this means that great care must be taken to measure and identify the host system
parameters, namely ωoc, ωsc, and Cε

p .

1.4 Piezoelectric digital vibration absorbers

Although the use of piezoelectric RL shunt circuits represents an interesting damping
solution, there exist limitations in the practical application. Recalling Equation (1.29)
and considering the fact that capacitance values of piezoelectric patches are usually of the
order of a few tens of nanofarad (nF) we see that high inductance values are needed to
target low frequencies. These can easily exceed one Henry (H). Commercially available
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Figure 1.8: FRFs of an SDOF example. Uncontrolled ( ); controlled by an R shunt tuned
according to [45] ( ); controlled by an RL shunt tuned according to [47] with L = Lopt ( ),
L = 0.95Lopt ( ), L = 0.975Lopt ( ), L = 1.025Lopt ( ) and L = 0.95Lopt ( ).
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Figure 1.9: Feedback formulation of a (a) shunt impedance, or (b) shunt admittance acting on
a piezoelectric structure.

inductors rarely meet these requirements so that other solutions such as in-house designs
[49, 50] need to be considered. However, if toroidal inductors are used, they are accompa-
nied by practical di�culties such as winding resistances and capacitances, a temperature
dependence and bulky dimensions [51]. An alternative is a synthetic inductor built from a
gyrator and a capacitor [51�53]. Usually, these synthetic inductor elements are smaller in
size but the gyrator consists of operational ampli�ers (OpAmps) that need to be powered.
In general, using analog electrical elements, the electrical shunt circuits can often become
considerably large and cumbersome, particularly when multiple modes are targeted. In
addition, values of analog components cannot be altered easily.

A shunt impedance ZShunt (or admittance YShunt) acting on a piezoelectric structure can
be seen as a feedback [54] as it is displayed in Figure 1.9. In the case of a shunt impedance,
the piezoelectric transducer is sensing a current Ip to then act on the structure via a volt-
age Vp. The shunt transfer function de�nes the relation between a measured output and
the imposed input and it thus functions as a controller. We build the open-loop by means
of the current measured by the piezoelectric transducer and the voltage de�ned by this
controller function. Thus, the plant is de�ned as the transfer function between these two
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signals, when the external forcing f is set to zero. By looking at the problem from a
control engineering point of view, it seems natural that the realization of the controller
is not necessarily limited to an analog realization of an electrical circuit. Addressing the
aforementioned problems that analog shunt circuits often pose, Fleming et al. proposed
to synthesize not only the inductive part digitally but the entire shunt impedance [26].
This so-called synthetic impedance is a two-terminal device that is imposing any desired
relation between the voltage Vp and the current Ip by simulating it in real time in a digital
signal processing unit. A digital implementation of the shunt transfer function o�ers the
user the possibility to emulate even sophisticated circuits and the shunt parameters can
be easily adjusted to mistuning or changes in the host system. Synthetic impedances have
already proven useful in various works. In [55], a multimodal shunt impedance was imple-
mented digitally as a feedback controller. Giorgio et al. exploited a synthetic impedance
for the realization of electrical networks to attenuate modes of mechanical structures by
connecting multiple piezoelectric transducers to the network [56, 57]. Rosi et al. aimed for
the attenuation of sound radiation of thin plates, also using a variety of patches together
[58, 59]. Matten et al. implemented an R shunt on a plate structure with a synthetic
impedance and discussed the technological constraints that may appear with a discretized
shunt transfer function [60]. In [61], digital piezoelectric shunt controllers were used to
create band gaps on a beam structure in order to damp their structural vibrations. In
[62], Dal Bo et al. emulated multimodal shunt circuits in a digital controller that were
optimized to consist of few elements. In order to mitigate the vibrations of nonlinear
structures, Raze et al. synthesized a nonlinear shunt circuit and emphasized the ben-
e�ts of �exibility using digital controllers [63]. In [30], the use of a piezoelectric DVA
was discussed for di�erent circuit designs and experimentally demonstrated on a beam
structure. Using multiple DVAs on the same beam and aiming to target multiple modes
simultaneously, Raze et al. realized electrical shunt networks exhibiting similar resonance
frequencies as the host structures [64] and piezoelectric shunts tuned with a sequential pro-
cedure [65]. In this thesis, piezoelectric DVAs are exploited to operate on more complex
mechanical structures. In the following sections, we will present their working principle
and discuss their practical realization.

1.4.1 Working principle

As illustrated in Figure 1.10, a DVA consists of an analog board and a digital unit.
The piezoelectric patch, acting both as a sensor and actuator, sends a voltage Vp to the
DVA when activated by the vibrations of the host structure. This voltage signal is then
received by the analog board of the DVA. In order to comply with the voltage limits of
the digital unit and to avoid saturation of the OpAmps, the voltage signal needs to be
scaled down, here by a factor αDV A (cf. Figure 1.11). The signal can then be converted
via an analog-to-digital-converter (ADC) and the desired input-output (I/O) relation is
set in the digital unit. In this work, a dSPACE MicroLabBox [66] served as the digital
unit and a piezoelectric shunt admittance YShunt was imposed as the desired I/O. This
function can be freely chosen and easily changed which represents a main advantage of
a digital implementation. In addition, a controller gain g is added here to ensure that
the DVA correctly emulates the desired shunt admittance. The signal is then sent from
the digital unit to the analog board via a digital-to-analog-converter (DAC). Before the
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Figure 1.10: Schematic representation of a DVA acting on a structure via piezoelectric patches.
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Figure 1.11: Schematic representation of the main operation steps of the DVA.

voltage is sent back to the transducer, it is multiplied by the current source gain gc so
that a current (q̇p) is sent to the piezoelectric patch and acts on the host structure. The
I/O relation in the Laplace domain can then be expressed as:

Ip(s) = gαDV AgcYShunt(s)Vp(s) . (1.33)

Since the desired relation is Ip(s)/Vp(s) = YShunt(s), we deduce

g =
1

gcαDV A

. (1.34)

1.4.2 Practical DVA realizations used in this work

In this work, experimental campaigns using DVAs were conducted on two bladed struc-
tures to damp their structural vibrations. The DVA design used in this context is pre-
sented in the following. It was based on Howland's current source [67] and schematized
in Figure 1.12. High piezoelectric voltages are reduced by the factor αDV A by means of
the resistors Rp,1 and Rp,2:

αDV A =
Rp,2

Rp,1 +Rp,2

. (1.35)

The input and output voltages of OpAmp1, given by

VADC = αDV AVp , (1.36)
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Figure 1.12: Circuit diagram of the DVA.

are identical and are fed to the ADC. We introduce an ampli�cation gain

β = 1 +
R4

R3

(1.37)

and an attenuation gain

γ =
R1

R1 +R2

. (1.38)

Based on the ideal OpAmp assumption [67], we can demonstrate that the injected current
is a function of the DAC voltage as well as the load voltage given by the following relations:

q̇p =
β(1− γ)

Rs

VDAC +
(αDV Aβγ − 1)(Rp,1 +Rp,2)−Rs

Rs(Rp,1 +Rp,2)
Vp = gcVDAC + δcVp . (1.39)

Ideally, δc should be zero so that the current is only driven by VDAC . Hence, the resistances
are chosen to closely approach δc = 0 but it is generally not possible to ful�ll this condition
exactly. Section 1.5 will discuss how this imperfection can be accounted for.

1.4.3 Practical applications of the DVA on bladed structures

The above presented DVA design is applied in this thesis for the damping attenuation of
two bladed structures, namely of a bladed rail and a BluM. Both structures exhibit multi-
ple piezoelectric patches, each of which was connected to a DVA mimicking a shunt circuit.
The design allows for a current-driven control via each piezoelectric transducer, even if
they have a common electrode which distinguishes them from those in e.g. Fleming's
work [68]. An interaction between the DVAs, when multiple of them are used simulta-
neously, can be prevented by the fact that their current is injected via the electrode of
the transducer that is not connected to a mutual ground. Five DVAs were realized on
breadboards for the experimental setup with a bladed rail. The prototype of one of these
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Figure 1.13: DVA prototype used in the experimental campaign on a bladed rail structure.

Resistor Resistance [Ω] Resistance [Ω]
(bladed rail setup) (BluM setup)

R1 10000 10000
R2 10000 10000
R3 10000 10000
R4 34000 115000
Rs 2000 2610
Rp,1 10000 49900
Rp,2 10000 10000

Table 1.1: Resistances of the DVAs used in the experimental campaigns.

DVAs is displayed in Figure 1.13. TL081 OpAmps from Texas Instruments were used
with the resistor values displayed in Table 1.1.

For the attenuation of the structural vibrations of a BluM, the DVA design was realized
on printed circuit boards (PCB) (cf. Figure 1.14). The advantage of these PCBs is that
the connections are properly �xed and the PCBs are more compact than a breadboard
(44mm × 43mm). TI OPA445 and two additional power supply decoupling capacitors
between the ground and both V + and V − were used in this realization. The respective val-
ues for the resistances di�er from the ones used in the bladed rail setup and are presented
in the right column of Table 1.1. We note that the DVA design for the BluM was chosen
with a so-called fail-safe solution, which means that in case of a power supply failure, the
total resistance of the circuit forms an R shunt tuned toward the mean frequency of the
�rst mode family of the structure. With this fail-safe solution integrated in the DVAs, a
reduction of resonance peaks by about 1 dB is guaranteed even in the fully passive case.

19



1.5: Tuning the DVA accounting for imperfections in its electrical

circuit

𝑉𝐴𝐷𝐶 𝑉𝐷𝐴𝐶

𝑉𝑝 𝑉+

𝑉−

Figure 1.14: DVA on a printed circuit board design used for the experimental BluM structure.

1.5 Tuning the DVA accounting for imperfections in its

electrical circuit

We now show that the transfer function implemented in the DVA can be tuned solely
using the transfer function between VDAC and VADC , which can easily be measured exper-
imentally by the digital unit. Neither a numerical model of the structure to be controlled
nor a detailed knowledge of the electrical circuit of the DVA are required by this tuning
approach. It is particularly convenient for dealing with the complex systems treated in
this thesis. In the ideal case (δc = 0), the transfer function of the electromechanical
system from VDAC to VADC reads

Zp,EM(s) =
VADC

VDAC

=
gcαDV AVp

q̇p
=

gcαDV A

sCp(s)
. (1.40)

This relation is illustrated in a block diagram from VDAC to VADC in Figure 1.15. We
observe that this plant transfer function is naturally related to the dynamic capacitance
introduced in Section 1.2.3 and therefore contains all the necessary information to tune
the shunt. If one were to identify a dynamic capacitance (or elastance) from the measured
plant transfer function in this ideal case, one would �nd the same short- and open-circuit
resonance frequencies and a scaled piezoelectric capacitance (Cε

p/gcαDV A).

Using this scaled capacitance in the tuning rules outlined in Section 1.3.2, one observes
that the scaled parameters R and L would be multiplied by gcαDV A. The shunt impedance
and admittance would likewise be scaled by gcαDV A and 1/(gcαDV A), respectively. As
discussed at the end of Section 1.4.1, the implemented transfer function (i.e. the term
gYShunt(s) in Equation (1.33)) can thus be set equal to this scaled admittance to guar-
antee that the desired shunt impedance is emulated. In summary, Cp(s), gc and αDV A

do not need to be known individually, but their combination as the scaled piezoelectric
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capacitance su�ces to tune the transfer function implemented in the DVA. This scaled ca-
pacitance is directly identi�able from the measured plant transfer function. Conveniently,
this practical rule turns out to be true as well when more complex shunts are used such
as the ones presented in Chapter 2.

We now look in more detail at the inevitable case of the presence of imperfections in
the resistances on the analog board. They can be interpreted as a conductance δc that
acts in parallel with the dynamic capacitance as illustrated in Figure 1.16. Indeed, from
Equations (1.35) and (1.39),

q̇p
Vp

= sCp(s) = gcαDV A
VDAC

VADC

+ δc (1.41)

from which we deduce
VADC

VDAC

=
gcαDV A

sCp(s)− δc
, (1.42)

which corresponds to the situation depicted in Figure 1.15. We observe that this conduc-
tance plays the role of a constant in the dynamic impedance function and dominates the
FRF at low frequencies. The e�ect that this conductance has on the FRF is the creation
of a real pole, causing a change of slope of the transfer function for small s. This is
illustrated on a simple example in Figure 1.17 where the FRF with δc = 0 is compared to
an FRF with δc ̸= 0. The ideal impedance function would behave as 1

s
until the possible

occurrence of a mechanical mode. In practice, this simple pole can be detected applying
system identi�cation methods on the measured dynamic impedance function. In particu-
lar, from Equation (1.16), the static value of the plant transfer function is gcαDV A

δc
. It can

therefore be identi�ed, and the ideal-case plant transfer function can be retrieved as

gcαDV A

sCp(s)
=

1
VDAC

VADC
+ δc

gcαDV A

, (1.43)

allowing for a tuning approach of the shunt admittance identical to the ideal case. In-
deed, as illustrated in Figure 1.18, the imperfections of the DVA can be counteracted by
neutralizing δc if the implemented digital transfer function is

VDAC

VADC

= YDV A(s) =
YShunt(s)

gcαDV A

− δc
gcαDV A

. (1.44)

This is con�rmed when introducing this relation into Equation (1.39) and using Equation
(1.35), we indeed obtain q̇p

Vp
= YShunt(s) as desired. Therefore, also in the non-ideal case,

it is possible to tune the implemented transfer function using only the measured plant
transfer function.

1.6 Discretization of the controller function

Although the shunt circuit that is mimicked in the digital unit works according to a pas-
sive control law, instabilities might occur when using digital shunts. This is due to the
occurrence of sampling delays introduced by the digital unit: a continuous voltage signal
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Figure 1.15: Feedback diagram for the measurement of the dynamic impedance with δc ̸= 0.
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Figure 1.16: E�ect of the imperfections of the resistances in the electrical circuit of the DVA.
They can be modeled as a conductance δc (marked in red) in parallel with the piezoelectric
capacitance.
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Figure 1.17: FRF example for a dynamic impedance with a perfect realization of the electrical
circuit (cf. Equation (1.40))( ) and with imperfections in the resistances (Equation (1.42))( ).
The x-axis scale is logarithmic. This example contains one mechanical mode.

is converted to a discrete one via an ADC. For the re-conversion to continuous time, this
discrete signal is then held constant for each sampling time τ by a zero-order hold (ZOH),
appearing as a staircase in Figure 1.19. An average over this ZOH representation results
then in a shift of the initial continuous signal of τ

2
, also denoted delay. Hence, due to the

ZOH, the continuous transfer function H(s) di�ers from its discrete counterpart which
can be interpreted as the actual transfer function that the controller imposes on the in-
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Figure 1.18: Feedback diagram for the shunt admittance acting on the electromechanical
structure.

put signal. These delay-induced modi�cations of the output also cause deviations of the
closed-loop poles between the discretized and the continuous systems. This is schemat-
ically illustrated in Figure 1.20 where the root locus of a shunted controlled closed-loop
system is displayed. The ideal poles, under the assumption that the delays are absent, are
marked with an ×. The root locus is then displayed in red as a function of increasing τ .
For a certain value of τ , the changes in the imposed transfer function can become critical
for the integrity of the system: the poles cross the imaginary axis and shift from the left
half of the s-plane to the right side so that the closed-loop system becomes unstable [69].

Delay-induced instabilities are a well-known problem in the �eld of control engineering
and can occur if the discretization process is not performed accurately. Considering the
sampling period τ = 1

fs
, the problem can be avoided by choosing fs high enough to keep

the delays small, as is often done in practice. However, the coupling factors in the piezo-
electric shunt attenuation are naturally relatively small, so that the poles of the control
loop are already close to the imaginary axis in the s-plane representation. Therefore, even
small shifts of these poles can lead to a crossing of this axis and, consequently, to system
instability. Especially when high frequencies are targeted, the hardware can become a
limiting factor for the sampling frequency so that this parameter cannot be selected arbi-
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Figure 1.19: Schematical representation of the conversion of a continuous signal to a discrete
signal and back.
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Figure 1.20: Root locus as a function of τ of a closed-loop system presented in the s-plane.
The × mark the ideal poles of the system, assuming that τ = 0 [30].
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trarily high. In these cases, it is important to pay special attention to the discretization
process.

The problem of instabilities was already tackled in [30] and [70] where a correction
procedure was proposed anticipating the delay e�ects and modifying the shunt circuit
admittance accordingly in order to counteract them. To this end, the continuous shunt
admittance is �rst expressed as a rational function

YShunt(s) =

∑Ns−1
m=0 bms

m∑Ns−1
n=0 ansn

, (1.45)

with Ns being the number of poles in the shunt transfer function. The poles pk of the
ideal closed-loop when the system is shunted with this transfer function are then obtained
by looking at the characteristic equation. In a next step, the expression for YShunt(s) is
amended by the modi�cation factors δan and δbm and so that it reads

ỸShunt(s) =

∑Ns

m=0 bm(1 + δbm)s
m∑Ns

n=0 an(1 + δan)s
n

. (1.46)

The purpose of these modi�cation factors is to counteract the delay-induced modi�cations
of the closed-loop. At this step, they are unknown and need to be de�ned. Knowing τ ,
the impact that the delays have on the closed-loop system controlled by ỸShunt can be
anticipated. Comparing the closed-loop expression for the ideal case without delays and
the case where delays are present, the following relationship is found:

ỸShunt(pk)
1− e−τpk

τpk
= YShunt(pk) , (1.47)

where pk is representing a pole of the ideal closed-loop that should be maintained. In
other words, the method looks for an expression for ỸShunt that allows the poles of the
modi�ed control loop to be the same as for the nominal, ensuring stability. This is done
by forming a linear system of equations for k = 1, ..., K based on Equation (1.47) and
solving it for δan and δbm . The modi�ed shunt admittance ỸShunt(s) is then discretized
with Tustin's method and implemented in the controller. This paragraph only provides a
brief overview over the method proposed by Raze et al. [30, 70]. We refer the reader to
the references for full mathematical details.

Di�erent to the procedure described above, in this thesis we ensure closed-loop stability
thanks to a novel procedure to discretize the shunt transfer function. It can be considered
as a continuation of the work in [30] and [70], however, the focus is di�erent: as explained
before, in [30, 70], the shunt admittance was tuned and corrected in the continuous time
domain to anticipate phase lags and discretized afterwards. In this work, the discrete
shunt admittance is tuned directly using a pole-placement technique taking the ZOH dis-
cretization of the plant transfer function into account at �rst hand. The experimental
campaigns discussed later in this mansucript con�rmed that it is crucial to pay special
attention to the discretization of the shunt admittance.
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Figure 1.21: From a continuous plant to a discrete controller � two classic approaches [71].

1.6.1 From a continuous plant to a discrete controller design

To obtain a discrete controller function two classical paths can be followed, as shown in
Figure 1.21. One could start with a continuous plant transfer function and design an ideal
controller for it. This continuous controller is then discretized eventually. However, due to
the discretization process, the discrete counterpart will di�er from the desired continuous
design and might even cause instabilities in the closed-loop system. Another option is
to choose a controller based on the discrete plant transfer function. Here, one can take
advantage of the fact that the plant and its ZOH discretization are known and include this
knowledge in the controller design. The controller parameters are then directly chosen by
means of the discrete plant. However, this controller will di�er from an ideal one.

In this thesis, a method that attempts to combine the best of both worlds is presented:
�rst, an optimal expression of the desired closed-loop transfer function is formed in con-
tinuous time and shunt parameters are derived. Then, in a second step, the closed-loop
transfer function is formulated in discrete time consisting of discretizations of the plant
transfer function and a discrete shunt admittance. This formulation enables us to �nd
a discrete shunt admittance which ensures that the poles of discrete closed-loop transfer
function are the discrete equivalent of the continuous one. The discretization procedure
will be described in the following sections.

Formulation as a feedback problem

In Figure 1.22, the feedback presentation of a piezoelectric structure controlled by a shunt
admittance YShunt

� from Figure 1.9 is now reconsidered for the discrete case using a dis-
cretized shunt admittance YShunt(z). In the following mathematical expressions, it is
implied that a transfer function with the variable z represents a discretized version of its
associated continuous-time transfer function.

In a �rst step, we simplify the model by only considering the electrical part of the piezo-
electric structure and neglecting its mechanical properties, assuming that the structure is
blocked and using Cε

p . The plant of the feedback problem then becomes Zp, namely the

�For the sake of simplicity and generality, YShunt is herein considered instead of YDVA, neglecting
the characteristics of the particular DVA realization in this work.
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Figure 1.22: Feedback diagram of a discrete shunt admittance acting on a piezoelectric struc-
ture.
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Figure 1.23: Example for a plant transfer function; (a) simpli�ed, only taking the electrical
part Zp of the system into account ( ) and (b) considering the full electromechanical system
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piezoelectric impedance. Its inverse is the piezoelectric admittance

Yp(s) = Z−1
p (s). (1.48)

The simpli�cation step is made based on the assumption that the electromechanical
resonances are somewhat marginal compared to the general trend of the piezoelectric
impedance whose amplitude is rapidly decreasing with increasing s:

Zp(s) =
1

sCε
p

. (1.49)

This trend is illustrated in Figure 1.23 for Equation (1.49) above and a multimodal ex-
ample. By taking only the electrical part of the piezoelectric structure into account, a
considerably simpler feedback problem can be formulated. It will be demonstrated later
on an example that this assumption is justi�ed by showing that the in�uence of the me-
chanical part does not have a signi�cant impact on the performance of the shunt. The
simpli�ed feedback problem is illustrated in Figure 1.24a, where a discrete shunt admit-
tance is acting on the piezoelectric impedance.
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Figure 1.24: The simpli�ed feedback problem.

Following the left path of Figure 1.21, ideal shunt parameters are then found for a con-
tinuous controller. The characteristic equation for this new feedback formulation reads
[72]

1 + Zp(s)YShunt(s) = 0 . (1.50)

By premultiplying Equation (1.50) with Equation (1.48), we obtain the following expres-
sion for the roots of the characteristic equation:

Yp(s) + YShunt(s) = 0 . (1.51)

This expression corresponds to the zeros of Norton's equivalent admittance [36] of a
piezoelectric capacitance connected to a shunt circuit

YN(s) = Yp(s) + YShunt(s) . (1.52)

This view allows us to express separately the di�erent parts of the feedback problem,
namely the shunt admittance and the plant transfer function, as it will be outlined be-
low. The closed-loop transfer function can be obtained by forming the inverse of Equa-
tion (1.52):

1

YN(s)
=

Zp(s)

1 + Zp(s)YShunt(s)
. (1.53)

If a DVA is used, the discrete-time transfer function of the closed control loop becomes

1

YN(z)
=

Zp(z)

1 + Zp(z)YShunt(z)
, (1.54)

where Zp(z) is the ZOH-discretized counterpart of Zp(s) denoted by ZOH {·}, i.e., it
represents the relation between Ip driven by a ZOH and the sampled Vp and is given by

Zp(z) = ZOH {Zp(s)} (1.55)

and YShunt(z) corresponds to the I/O relation that is imposed by the DVA. This expression
is equivalent to the diagram in Figure 1.24a, as marked in orange.
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1.6: Discretization of the controller function

General philosophy of the proposed discretization method

There exist on-hand methods to discretize a transfer function such as Tustin's method, the
pole-zero matching technique or impulse-invariant mapping [69]. While these discretiza-
tion methods might lead to good approximations of a discrete equivalent of YShunt(s),
they cannot automatically ensure stability. In particular, if D {·} denotes the selected
discretization method (among any of the three aforementioned methods), one would have
YShunt(z) = D {YShunt(s)}, and the following inequality is generally true:

ZOH

{
1

YN(s)

}
̸= ZOH {Zp(s)}

1 + ZOH {Zp(s)}D {YShunt(s)}
, (1.56)

where the right-hand side represents the closed-loop transfer function of the discrete sys-
tem (see Figure 1.24a). Hence, the dynamics of the discrete closed-loop system may
signi�cantly di�er from the continuous one, which we assume satisfactorily represented
by the left-hand side ZOH

{
Y −1
N (s)

}
in this work. More problematically, if Y −1

N (s) has
stable continuous closed-loop poles, ZOH

{
Y −1
N (s)

}
is guaranteed to have stable discrete

poles, but this does not extend to the discrete closed-loop system due to the inequality.

The proposed discretization method precisely aims at turning (1.56) into an equality.
More speci�cally, it is sought to �nd YShunt(z) such that

ZOH

{
1

YN(s)

}
:=

1

YN(z)
=

ZOH {Zp(s)}
1 + ZOH {Zp(s)}YShunt(z)

:=
Zp(z)

1 + Zp(z)YShunt(z)
, (1.57)

i.e.,

YShunt(z) =
Zp(z)YN(z)− 1

Zp(z)
. (1.58)

Equation (1.57) implies that the representations in Figures 1.24a and 1.24b are equivalent.

Classical discretization methods yield a discretized shunt admittance which approximate
YShunt(s) well [69]. The proposed discretization method distinguishes itself from them
by the fact that it also accounts for the plant transfer function Zp(z). As a consequence,
owing to Equation (1.57), the discrete closed-loop transfer function is closer to the desired
continuous one, and the discrete system has guaranteed stability.

The remainder of this section shows how to derive the coe�cients of the transfer function
YShunt(z) based on Equation (1.57) and demonstrates that the approach is well posed.

Discrete piezoelectric impedance

The ZOH discretization of Zp, relating Ip and Vp that is sampled at multiples of τ , reads
[69]

Zp(z) = ZOH {Zp(s)} = ZOH

{
1

sCε
p

}
=

z − 1

z
Z
{

1

s2Cε
p

}
=

τ

Cε
p

1

z − 1
. (1.59)

Z is a shortcut notation denoting the z-transform of the sampled inverse Laplace trans-
form.
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1.6: Discretization of the controller function

Discrete shunt admittance

To be able to relate Equations (1.53) and (1.54), we express the discrete shunt admittance
as a rational transfer function of the variable z by

YShunt(z) =

Ns−1∑
m=0

bmz
m

Ns−1∑
n=0

anz
n

, (1.60)

where Ns is the number of poles of Y −1
N (s) and corresponds to twice the number of

resonances of the electrical circuit. For a simple RL shunt, Ns = 2. It will be justi�ed
hereafter that the degrees of the numerator and denominator are equal, and consequently
YShunt(z) represents a proper transfer function.

Discrete Norton's admittance

The ZOH discretization of the inverse of Norton's admittance reads [69]

ZOH

{
1

YN(s)

}
=

z − 1

z
Z
{

1

sYN(s)

}
. (1.61)

To express this relation more explicitly, a partial fraction expansion of (sYN(s))
−1 can be

obtained as
1

sYN(s)
=

Ns∑
k=1

rk
s− pk

(1.62)

where rk is the residue of the transfer function (sYN(s))
−1 at its pole pk. Recalling that

the z-transform of a transfer function with a simple pole is given by [69]

Z
{

1

s+ a

}
=

z

z − e−aτ
, (1.63)

and using the linearity of the z-transform, the ZOH discrete version of Norton's admit-
tance (cf. Equation (1.61)) is eventually obtained as

ZOH

{
1

YN(s)

}
= (z − 1)

Ns∑
k=1

rk
z − eτpk

=

(z − 1)
Ns∑
k=1

rk

Ns∏
i=1,i ̸=k

(z − eτpi)

Ns∏
k=1

(z − eτpk)

. (1.64)

At �rst sight, it may appear that this transfer function has both Ns poles and zeros and
is thus not strictly proper. However, it can be shown that the numerator is actually of
degree Ns − 1. Indeed, from Equations (1.52) and (1.62):

1

sYN(s)
=

1

s2Cε
p + sYShunt(s)

=
Ns∑
k=1

rk
s− pk

. (1.65)
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1.6: Discretization of the controller function

To �nd the value of the sum of residues, we take the limit of Y −1
N (s) for s → ∞,

lim
s→∞

1

sCε
p + YShunt(s)

=
Ns∑
k=1

rk , (1.66)

and analyze the asymptotic properties of YShunt. Since it is the admittance of a passive
circuit, it is a positive-real transfer function (cf. Section 1.3.1), and the degrees of its
numerator and denominator cannot di�er by more than one. Assuming that YShunt is
proper, meaning that the degree of the numerator is smaller than or equal to the one of
the denominator, it becomes negligible in front of the piezoelectric admittance sCε

p when
s → ∞. In the opposite case, the admittance behaves asymptotically as cs where c is a
constant. This constant must be positive because YShunt is positive-real. In both cases,
the left-hand side of this equation tends to zero and thus

Ns∑
k=1

rk = 0. (1.67)

Hence, the coe�cient associated with zNs in the numerator of Equation (1.64) vanishes,
making this numerator a polynomial of degree Ns − 1. The discrete version of Norton's
admittance thus has Ns − 1 zeros and Ns poles.

Discrete feedback problem

Using Equations (1.54), (1.59) and (1.60), the inverse of Norton's admittance can alter-
natively be expressed as

1

YN(z)
=

τ

Cε
p

Ns−1∑
n=0

anz
n

(z − 1)
Ns−1∑
n=0

anz
n +

τ

Cε
p

Ns−1∑
m=0

bmz
m

. (1.68)

Since the numerator and denominator are of respective degrees Ns − 1 and Ns, using an
admittance of the form of Equation (1.60) gives Ns−1 zeros and Ns poles. Consequently,
using a discrete admittance of the form of Equation (1.60) yields a transfer function similar
to that given in Equation (1.64) in terms of number of poles and zeros.

Tuning of the shunt admittance

We now aim to enforce Equation (1.57) by equating Equations (1.64) and (1.68). The
zeros zz,k of Y −1

N (z) are computed from Equation (1.64) and, from Equation (1.68), they
must satisfy

Ns−1∑
n=0

anz
n
z,k = 0, ∀k ∈ [1, · · · , Ns − 1] . (1.69)

Without loss of generality, these Ns − 1 equations can be solved for the Ns coe�cients an
by imposing

aNs−1 = 1. (1.70)
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1.6: Discretization of the controller function

In this way, the poles of Norton's admittance are kept and a stable shunt admittance can
be guaranteed. The poles zp,k of Y −1

N (z) are computed from Equation (1.64) and, from
Equation (1.68), they must satisfy

(zp,k − 1)
Ns−1∑
n=0

anz
n
p,k +

τ

Cε
p

Ns−1∑
m=0

bmz
m
p,k = 0. ∀k ∈ [1, · · · , Ns] (1.71)

These Ns equations form a linear system that can then be solved numerically for the Ns

coe�cients bm.

In summary, the tuning procedure follows:

1. Tuning of the continuous shunt admittance YShunt(s) and computation of Norton's
admittance YN(s) = sCε

p +YShunt(s) (or direct tuning of Norton's equivalent admit-
tance YN(s)).

2. Computation of the ZOH discretization of the inverse of YN(s).

3. Computation of the poles zp,k and zeros zz,k of the discrete inverse Norton's admit-
tance.

4. Determination of the coe�cients of the discrete shunt admittance with Equations
(1.69), (1.70) and (1.71).

A key advantage of this tuning and discretization procedure is that the closed-loop system
stability is preserved due to that fact that the poles of the closed-loop transfer function
are given by zp,k = eτpk , which are stable if the original closed-loop poles of the continuous
system pk are stable.

1.6.2 Demonstration of the discretization procedure

The discretization e�ects of the shunt transfer function are now demonstrated on a �cti-
tious SDOF example with the parameters ωoc = 50 rad, Cε

p = 1 and α = 0.1. To this end,
di�erent discretization methods are compared for di�erent τ :

� direct discretization of YShunt(s) without any correction using Tustin's method,

� discretization of a corrected YShunt(s) according to [70] using Tustin's method,

� tuning of YShunt(z) according to the tuning procedure presented in Section 1.6.1,

� tuning of YShunt(z) according to the tuning procedure presented in Section 1.6.1
without simpli�cation; the impedance of the electromechanical system 1

s
Cp(s) is

considered as the plant transfer function.

The last method listed, working without the simpli�cation, requires more explanation,
which is given hereafter. Since the whole dynamic elastance of the electromechnical sys-
tem is considered in this method, the poles and zeros related to the resonance frequencies
of the mechanical modes are also included in Norton's equivalent admittance. In order to
determine the shunt transfer function parameters, the additional zeros are not taken into
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1.6: Discretization of the controller function

Sampling period τ [s]
2× 10−5ω−1

oc = 0.001 s
0.25ω−1

oc = 0.0031 s
0.75πω−1

oc = 0.75τmax = 0.03 s

Table 1.2: Values of the chosen sampling periods for the discretization study presented in Figure
1.25 presented in increasing order.

account. From Equation (1.54) we can see that the zeros of 1
YN (z)

are the union of the
zeros of Zp(z) and the poles of YShunt(z). Therefore, only a few of them can be changed
by the choice of the shunt transfer function, while the others are �xed and may hence
be discarded. On the other hand, following the spirit of the approach, the poles of the
electromechanical system are taken into account for the choice of the shunt parameters.
Equation (1.71) needs then to be solved with a least square error (LSE) optimization,
considering that the number of present poles exceeds the number of the numerator coe�-
cients of YShunt(z). Using this LSE optimization to determine these coe�cients can then
become a potential source of imprecision, especially for complex structures with numerous
modes.

For the demonstration of the di�erent discretization methods on an SDOF example, three
di�erent sampling periods are regarded corresponding to the di�erent degrees of delay-
induced changes in the discretized shunt admittances. We start with a su�ciently small
value for τ that is increased until approaching the maximum value for τmax according
to the Nyquist-Shannon sampling theorem. It should be mentioned that approximating
τmax is a rather academic example chosen here to illustrate the di�erent behaviors of the
controllers. Normally, the sampling period should be chosen substantially smaller than
its limit value, if possible. The values for the chosen sampling periods are listed in Table
1.2. The FRFs of the corresponding closed-loop systems are displayed in Figure 1.25.
Signi�cant di�erences between the discretization approaches can be observed. Even for a
su�ciently small sampling period τ , the controller that has been discretized by Tustin's
method without accounting for delays is slightly detuned. Increasing the sampling period
stepwise shows that this controller quickly loses its e�ciency (cf. Figure 1.25b). When
τmax is approached, both the discretization with Tustin's method and also the approach
presented in [70] cannot provide a satisfying damping performance (cf. Figure 1.25c).
However, the discretization method presented in Section 1.6.1 remains e�cient. From
Figure 1.25, it can also be observed that the simpli�cation of the plant transfer function
is justi�ed: both FRFs of the closed-loop systems, one for the case where Zp is the plant
( ), and one that considers the entire electromechanical system as a plant ( ) only
di�er slightly from each other. The poles of the closed-loop system in Figure 1.26 for
a sampling period close to τmax show that only the controller that has been discretized
according to the approach presented in this chapter can ensure that the poles are located
within the unit circle and, hence, that the closed-loop system is stable. In addition, it
can be observed that the poles with and without simpli�cation are almost identical.

Finally, the proposed discretization method is demonstrated on a more complex numerical
example featuring multiple modes. In Figure 1.27, the receptance functions of a bladed
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(a) τ = 0.001s.
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(b) τ = 0.25ω−1

oc = 0.0031s.

7.5 8 8.5

Frequency (Hz)

-60

-55

-50

-45

-40

-35

-30

-25

F
R

F
 (

d
B

)

(c) τ = 0.75πω−1
oc = 0.75τmax = 0.03s.

Figure 1.25: Discretization e�ects illustrated on the FRF of an SDOF system (open-circuit
( )) controlled by digital RL shunts discretized in di�erent ways: Tustin's method ( ), ac-
cording to [70]( ), according to Section 1.6.1 ( ) and according to Section 1.6.1 without
simpli�cation of the plant transfer function ( )

rail model are displayed. This structure was also subject to experimental investigations in
Chapter 3. The �gure compares the open-circuit receptance with the FRF of the system
controlled by a simple RL shunt targeting a mode located in the �rst group of modes,
shown in the close-up (cf. Figure 1.27). The shunt transfer function was discretized with
τ = 1

3
ω−1
oc according to the proposed method that takes advantage of the approximation

of the plant. ωoc corresponds to the targeted normalized resonance frequency which is
located at 0.184. Figure 1.27 shows that the shunt controller yields a remarkable and
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Figure 1.26: Discretization e�ects illustrated in a pole-zero map for an SDOF system controlled
by digital RL shunts. The shunt transfer function has been realized in di�erent ways, setting τ =
0.75τmax and discretizing a) with Tustin's method ( ), b) according to [70]( ) c) according to
Section 1.6.1 ( ) and d) according to Section 1.6.1 without simpli�cation of the plant transfer
function ( ). Poles of the respective closed-loop system are indicated with a × while zeros are
marked by a ◦.

satisfying damping performance on the whole group of modes. We can conclude that
the discretization method performs well for complex structures and is suitable for the
applications used in this thesis. This will be con�rmed later by the experimental results.

1.7 Conclusion

This chapter recalled important concepts and basic equations for piezoelectric shunt damp-
ing which is an attractive and relatively easy-to-implement solution for vibration mitiga-
tion. Di�erent approaches to design the shunt controller were presented and discussed.
Di�culties in the practical realization can be overcome by using a digital implementation
of the shunt circuit as an alternative to often cumbersome analog shunt circuits. A digital
absorber o�ers the user a considerable �exibility in the implementation and enables adap-
tivity of the controller parameters. The working principles of the DVA were presented as
well as the practical realizations used in this work. Finally, a new discretization procedure
for the shunt admittance that prevents delay-induced instabilities of the controlled system
was proposed and validated numerically.
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Figure 1.27: Blade tip FRFs of a numerical bladed rail model. ( ): open-circuit FRF and
( ): controlled by an RL shunt discretized by the proposed method.
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Chapter 2

A multimodal vibration mitigation

strategy for bladed structures

2.1 Introduction

After the introduction of piezoelectric shunt damping for an SDOF host system and
the working principles of a DVA, we move to the multi-degree-of-freedom (MDOF) case.
Speci�cally, bladed structures which can feature complex dynamics are considered in
this chapter, because they will be studied experimentally in Chapters 3 and 4. In the
�rst part, we provide an overview of their dynamic properties together with the existing
damping approaches. The theory behind di�erent multimodal damping strategies using
multiple piezoelectric transducers is then presented with the aim to bring piezoelectric
shunt damping one step closer to industrial applications.

2.2 Dynamic properties of bladed assemblies

Bladed structures are envisaged for their industrial relevance and in view of the challenges
posed by their dynamic properties. Bladed structures often appear in the context of cyclic
structures that are widely encountered in, e.g., wind turbines, power stations and turbo-
molecular pumps. Such structures also constitute the core of turbojet engines through
the stages of compressors, stators, and turbines. A full description of the functioning of
such systems can be found in [73].

2.2.1 Cyclic symmetric structures

The main mathematical feature of a cyclic structure is that a portion of it (also called fun-
damental sector) is repeated (N − 1) times around an axis to form a closed structure with
N sectors as schematized in Figure 2.1. Due to their symmetric properties, the physical
coordinates can be translated into cyclic ones. Such a change of variables enables us to
describe the system in terms of nodal diameters [74]. For linear systems, the equations of
motion become uncoupled for each nodal diameter. The 0−th nodal diameter corresponds
to a deformed shape of the structure where all sectors move in unison. On the contrary,
for the N

2
nodal diameter (if N is even), the adjacent sectors have opposite motion. Both

cases correspond to non-degenerated nodal diameters. The other cases ([1, N
2
− 1] if N

37



2.2: Dynamic properties of bladed assemblies

7

8
1

2

3

4
5

6

(a)

ϕ = 2π
N

(b)

Figure 2.1: (a): Full cyclic symmetric structure, (b): Cyclic properties.

is even and [1, N−1
2

] otherwise) are called degenerated nodal diameters [75]. As a con-
sequence, their deformed shapes correspond to traveling waves. The di�erent deformed
shapes of the example presented in Figure 2.1 are illustrated for the �rst �exural mode
in Figure 2.2.

2.2.2 Blade modes and mode families

Another feature of structures exhibiting multiple blades of the same shape and size is that
the natural frequencies of the blade modes appear in groups, also called mode families, for
which each mode features a di�erent nodal diameter. The corresponding dynamics can
be analyzed by plotting the nodal diameters over the natural frequencies of the structure,
as displayed in Figure 2.3 for a numerical model of a BluM, discussed in [30]. The BluM
structure will be the subject of experimental investigations in Chapter 4. For a low num-
ber of nodal diameters, the natural frequencies appear scattered. These modes belong
to the drum-dominated modes. For a higher number of nodal diameters, the structural
motions are dominated by the blade modes, and the drum support only participates to a
small extent. The horizontal lines in the diagram indicate that a large number of modes
appears around speci�c ranges of frequencies. For illustration, the mode shapes of two
bending modes (1B and 2B) and the �rst torsional mode (1T) of the blades are displayed
in Figure 2.4. The high modal density of two mode families, namely the 1B and 1T fam-
ilies, is illustrated in Figure 2.5. The drum modes appear around these mode families.

In general, the excitation of blade modes in mode families should be avoided to, e.g.,
prevent material fatigue. If this is not possible, damping of these modes is of the upmost
importance. The usual source of excitation for bladed structures comes from aerodynamic
forces resulting from the engine's rotation, subjecting them to periodic rotational exci-
tation at a frequency that is a multiple of the engine order. For rotating structures, the
natural frequencies may change with rotational speed because of spin softening, pre-stress,
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(a) (b)

(c) (d)

Figure 2.2: First edgewide �exural mode of the cyclic symmetric structure presented in Figure
2.1 (a): 0th nodal diameter (movement in unison), (b): N

2 th nodal diameter (alternating motion),
(c): 1st nodal diameter (forward), and (d): 2nd nodal diameter. The third nodal diameter is not
illustrated for brevity. Red lines represent the lines where the motion is equal to 0 (at the time
the motion is represented).
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Figure 2.3: Natural frequency versus number of nodal diameter diagram of the BluM. Modes on
the left-hand side of the green dashed line are considered as being drum-dominated whereas the
ones on the right-hand side are blade-dominated [30]. For con�dential reasons, the frequencies
have been normalized with respect to the �rst natural frequency of the cantilever blade.

(a) (b) (c)

Figure 2.4: Mode shapes of the �rst (bending 1B) (a), second (torsion 1T) (b) and third
(bending 2B) (c) cantilevered blade modes [30].
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Figure 2.5: FRF measured at a blade tip of a BluM with an excitation force at the drum. The
1B and 1T mode families are marked in red and green, respectively.

Coriolis and gyroscopic e�ects [76]. In addition, Coriolis e�ect may, for high rotational
speeds and for some speci�c cases, remove the occurrence of mode families [77]. The evo-
lution of natural frequencies is typically represented with a Campbell diagram. Overall,
the frequency versus number of nodal diameters diagram as well as the Campbell diagram
are usually used for the load assessment of these structures [75]. We note that the ro-
tational e�ects are disregarded in the framework of this thesis because the experimental
campaign was conducted on a BluM at rest.

2.2.3 Applications to turbomachinery and damping approaches

The theory about the dynamic behavior of cyclic symmetric structures is fully described
in [74] but only holds true if each repeated sector is identical. However, in practice, due
to, e.g., manufacturing tolerances, material irregularities and wear of the system, small
di�erences may exist between the sectors. This is referred to as random mistuning; it
can be detrimental as localization phenomena can occur [78, 79]. An FRF illustrating
mistuning around one mode family is represented in Figure 2.6. It can be seen that the
modes are still close together, but that their frequencies change and may become more
scattered. In the presence of mistuning, the notion of nodal diameters remains relevant
to describe the mode shapes of the structure. However, the equations of motion become
fully coupled. Research was conducted to characterize mistuned cyclic structures. In [80],
the authors proposed a methodology to identify geometric mistuning. A similar approach
was used in [81] and it was demonstrated that mistuning from the boundary conditions
can also have a signi�cant impact on the mode shapes. Recently, a methodology using a
neural network was proposed [82], which shows that this research is still relevant in the
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scienti�c community.
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Figure 2.6: FRFs measured at a blade tip of a BluM with an excitation force at the drum:
perfect cyclic symmetric ( ) and mistuned ( ) cases. The focus is on the �rst mode family
and the frequency was normalized with respect to �rst resonance family of this mode group.

The BluM, used in the low-pressure compressor of aircraft engines, was already the subject
of several studies in [32, 83�85]. Its manufacturing process comprises two steps, namely
the production of the drum followed by friction welding of the blades [86]. The same pro-
cedure is used for BLISKs with a disk instead of a drum. Besides a weight reduction of the
order of 25%, the BluM and BLISK also o�er improved aerodynamic e�ciency. Moreover,
the occurrence of fretting fatigue at the interfaces between drum/disk and blades can be
avoided, a typical reason for the failure of such structures [65, 87].

One consequence of the manufacturing process is that BluMs/BLISKs have extremely
low structural damping and are thus more prone to detrimental vibrations and high-cycle
fatigue problems. For this reason, mitigating their vibrations is important in order to
avoid failure and prevent deterioration. Di�erent strategies for vibration mitigation of
bladed structures have been developed over the years. The most popular one is to attach
small mechanical devices that dissipate energy via friction. Blade root attachments are a
possibility when considering bladed drums/disks [88] (cf. Figure 2.7a), but they cannot be
applied to single-piece designs where the interface between the blades and the disk/drum
is no longer present. Underplatform dampers [89, 90] (cf. Figure 2.7b�) and friction ring
dampers [91] (cf. Figure 2.7c) constitute good candidates for vibration reduction without
disturbing the air�ow going through the engine. A thorough review of these techniques

�The underplatform dampers geometry is exaggerated to match the low number of sectors.
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(a) Cyclic structure with dovetail attachments. (b) Cyclic structure with underplatform dampers.
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(c) Friction ring dampers [42].

Blade

Disk

Blade 

root
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material

(d) Damping with viscoelastic materials [93].

Figure 2.7: Di�erent damping solutions for bladed structures.

can be found in [92]. However, two main di�culties arise when exploiting friction damp-
ing. First, energy dissipation is achieved when a relative displacement is obtained between
the structures. Therefore not all modes can be targeted. Second, numerical prediction
of vibration reduction can be challenging as nonlinear solvers must be used, complicating
the design process. Another possible damping solution utilizes viscoelastic materials [93]
placed between the blade root and the disk as illustrated in Figure 2.7d. For single-piece
designs, viscoelastic coating can be used. However, due to their material properties, their
e�ectiveness varies with temperature with the result that this damping solution is not
applicable for high temperatures [32]. Another interesting vibration mitigation approach
is the modi�cation of the blade pro�le so as to create an acoustic black hole e�ect [94].
The method allows for an amplitude reduction of a large number of vibration modes.
Nevertheless, this comes at the expense of a loss of aerodynamic e�ciency.

For the past two decades, strategies based on piezoeletric shunt damping were also con-
sidered. Tang and Wang placed piezoelectric patches on each blade of a bladed disk,
shunting them to either a passive resonant shunt or an active-passive hybrid network [95].
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2.2: Dynamic properties of bladed assemblies

In [96, 97], piezoelectric networks were exploited for multimodal vibration mitigation of
bladed disks. The authors proposed a multi-circuit network that was designed analyti-
cally by means of an analysis of the host system. This approach proved also e�ective in
the case of mistuning. Later, Liu et al. compared piezoelectric shunts with piezoelectric
networks acting on a bladed disk structure in [98]. They concluded that both methods
can damp the vibrations of the systems e�ectively, with the network approach being more
e�cient in the case of an excitation of a non-engine order. In [99], Kau�man and Lesieu-
tre introduced a damping strategy that detunes the resonance frequencies of the blades.
Using piezoelectric shunt circuits, they switched between open- and short-circuit states of
the patches every time the resonance frequency was approached by the excitation. The
method was demonstrated experimentally on blades mounted in a stationary frame, using
titanium �at plates with surface-mounted piezoelectric patches. One limitation of this
method is that the excitation frequency must be known since the switching mechanism
depends on the knowledge of the rotor speed. Choi et al. used an RLC shunt circuit
realized via a digital controller to damp the structural vibrations of a high-speed turbo-
machinery fan blade [100, 101]. In their implementation, two piezoelectric patches were
placed to the blade surface, one functioning as a sensor and the other as an actuator. After
a thorough study of the best suited patch material and their position, they demonstrated
the damping performance of the digital shunts in a spin test on two GEnx blades. In [102]
passive electrical shunt circuits were connected to the blades of a simpli�ed rotor model,
one circuit shunted to one blade. Two frequencies were targeted by one circuit tuned
using numerical optimization. Thierry et al. demonstrated the e�ciency of piezoelectric
shunts on a turbojet fan blade [103]. They mounted a parallel connection of multiple
piezoelectric patches in a mosaic on the blade surface and shunted them to a single RL
shunt. In all the aforementioned strategies, the position of the patches was chosen on
the blades itself, which is not a viable solution for industrial applications, since interac-
tion with the air�ow must be avoided. To overcome this issue, the transducers can be
incorporated directly in the blades [104]. However, this solution considerably complicates
the manufacturing process. Recently, Rossi et al. proposed to cover blades of a BLISK
with piezoelectric patches to then impose a voltage distribution that intentionally caused
a disturbance of the inlet �ow of the fan. In numerical simulations, they were able to
demonstrate that the stresses occurring at resonant frequencies can be reduced using this
method [105].

In order to avoid disturbing the air�ow, piezoelectric patches can be installed inside
the drum/disk under the blade roots, as illustrated for a BluM in Figure 2.8. This was
achieved by Mokrani et al. [32, 85], Zhou et al. [106] and Viguié et al. [107]. Placing the
patches in this way provides an acceptable compromise between the aerodynamic perfor-
mance and the electromechanical coupling. Considering this positioning strategy, Mokrani
connected multiple piezoelectric patches in parallel and shunted them with piezoelectric
shunt circuits [83]. Doing so, the values required for the inductances could be reduced
while achieving a satisfying damping performance over the �rst group of blade modes. Yet,
the approach could not prove robust against mistuning. In [106], Zhou et al. designed
piezoelectric shunt circuits mimicking a nonlinear energy sink. Their method proved to
be robust and e�ective over a large frequency band and could also reduce the required
inductance values in comparison with a linear resonant shunt circuit. However, a non-
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piezoelectric transducers

Figure 2.8: Piezoelectric patches (blue) installed under the blade roots inside the drum of a
BluM structure (modi�ed from [32]).

linear damping solution adds signi�cant complexity to the design problem. Paknejad et
al. utilized pairs of piezoelectric patches installed under the blade roots of a bladed rail
structure to damp their structural vibrations with PPF controller [108]. In [109], Jamshidi
et al. installed such piezoelectric transducer pairs in the drum of a BluM structure and
achieved a remarkable reduction of their structural vibrations using IFF controller [109].
Both controllers work according to active control laws. In [30], through detailed numeri-
cal simulations, Raze proved the e�ciency of di�erent piezoelectric tuning strategies on a
BluM. To the best of our knowledge, a digital realization of a passive piezoelectric shunt
circuit has never been applied to a real cyclic bladed structure.

2.3 Multimodal vibration mitigation with multiple

piezoelectric transducers

In order to mitigate the vibrations of bladed structures, strategies to target several modes
with multiple piezoelectric DVAs are presented in this section. Tackling multiple modes
with one or more piezoelectric shunt circuits has already been attempted in various stud-
ies. One possibility to damp multiple modes simultaneously is to individually shunt each
transducer using a single RL circuit [110]. There also exist di�erent circuit topologies for
targeting multiple modes using a single piezoelectric shunt. The main idea is to make
the circuit resonate at several frequencies. Edberg et al. designed a two-mode shunt by
adding a second parallel LC branch to a simple RL shunt circuit [44]. Later, Hollkamp
extended this design to an arbitrary number of electrical frequencies, proposing a lay-
out of RLC branches in parallel [111]. Di�erent designs of current blocking circuits have
been discussed over the last decades [112, 113]. These circuits force the current to �ow
through a desired shunt branch for a particular frequency by blocking the other branches
via �lters. In [114], Behrens et al. proposed a current �owing circuit design. Other
multimodal shunt designs consist of Cauer networks [115] or a series�parallel impedance
structure [116]. In view of the often large number of electrical components, such shunt
circuits were also emulated digitally [117]. Raze et al. demonstrated the e�ectiveness of
a DVA acting on multiple modes and presented a simpli�ed current-blocking approach
[117]. An alternative to target multiple modes is to look at the problem from a control
design perspective and design the shunt as a feedback controller [118].
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2.4: Basic electromechanical equations for the multimodal case

In contrast to single RL shunts, multi-mode circuits may be hard to tune. Often, nu-
merical optimization is used to de�ne the values of the electrical components [119�121].
Berardengo et al. presented an approach for an optimal multimodal piezoelectric shunt
impedance that was based on matrix inequalities [122]. In [111], a transfer function was
considered for each mode to be damped. This function was then minimized while taking
into account the other modes by weighting factors. With the focus on the reduction of the
number of elements in an electrical circuit, Bo et al. proposed a design tool for electri-
cal multimodal shunt circuits based on optimization, using one transducer [62]. Multiple
piezoelectric transducers might also be used to tackle the problem, often in the context
of electrical networks. A decentralized multiport synthetic impedance was designed by
Moheimani et al. that was shunted to multiple piezoelectric elements [55]. Giorgio et al.
exploited a digital implementation of a shunt admittance that targeted multiple modes
of one- and two-dimensional structures. They used a multiterminal network intercon-
necting multiple piezoelectric transducers. Their aim was to design a network that was
equivalent to a set of single transducers so that common tuning rules for the electrical
parameters could be used [56, 57]. The same approach was later applied to the control of
sound radiation by Rosi et al. [58, 59]. Furthermore, they found optimal positions of the
transducers for the mitigation of multiple modes by optimizing the modal controllability.
In his work, Mokrani addressed the problem of targeting closely spaced modes of a BluM
consisting of 76 blades [32]. He proposed to target a mean frequency of the frequency
range of interest and tune multiple piezoelectric absorbers to it. This idea will be adapted
later in this chapter and extented from one to multiple mode families. Recently, a shunt
calibration method was introduced by Toftekær and Høgsberg that also takes into account
the in�uence of non-resonant vibration modes to achieve a more precise tuning [123].

In this thesis, we aim to exploit multimodal shunt damping approaches for vibration
mitigation of structures featuring high modal density. This poses a distinct challenge
since an optimal current �ow might not be guaranteed if di�erent shunt branches are res-
onating at similar frequencies. In addition, when using multiple DVAs, the patch-to-shunt
function distribution needs to be evaluated. For the tuning strategies presented hereafter,
several DVAs connected each to a piezoelectric transducer are used.

2.4 Basic electromechanical equations for the multi-

modal case

In order to obtain a model of an electromechanical structure, the �nite element (FE)
method can be used [124]. If x and f represent a vector of K generalized mechanical
degrees of freedom (DOFs) and a vector of generalized mechanical loading, respectively,
the governing equations of a piezoelectric structure are

Mẍ+Kscx+ γpVp = f , (2.1)

γp
Tx− Cε

pVp = qp . (2.2)

M represents the mass matrix, Ksc is the sti�ness matrix with the electrodes of the
transducer in short-circuit and γp is the electromechanical coupling vector. The Laplace
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2.4: Basic electromechanical equations for the multimodal case

transform of Equations (2.1) and (2.2) reads

(Ms2 +Ksc)x+ γpVp = f , (2.3)

γp
Tx− Cε

pVp = qp . (2.4)

We consider the model of an ideal voltage source (cf. Equation (1.10)):

(Ms2 +Koc)x− θpqp = f ,

θp
Tx− 1

Cε
p

qp = Vp,
(2.5)

where

Koc = Ksc +
1

Cε
p

γpγp
T , θp =

1

Cε
p

γp . (2.6)

If the matrix Φsc contains the short-circuit mode shapes and the diagonal matrix Ωsc

contains the short-circuit natural frequencies, we obtain the following relations:

ΦT
scMΦsc = I, ΦT

scKscΦsc = Ω2
sc . (2.7)

The expression for the dynamic capacitance in a multimodal case can then be obtained for
an unforced structure (f = 0) by condensing the mechanical equation into the electrical
one using Equations (2.3), (2.4) and Equation (2.7). The multimodal dynamic capacitance
reads

−
[
Cε

p + γT
pΦsc

(
s2I+Ω2

sc

)−1
ΦT

scγp

]
Vp =

−Cε
p

[
1 +

K∑
k=1

γ2
ϕ,k

Cε
p

1

s2 + ω2
sc,k

]
Vp = Cp(s)Vp = qp,

(2.8)

with the modal coupling coe�cients γϕ,n given by

γT
pΦsc = [γϕ,1 · · · γϕ,K ] . (2.9)

The example of a 3-DOF system is given in Figure 2.9. It can be seen that the values of
Cp(s) di�er according to the frequency at hand and that the value of Cε

p is approached
stepwise from mode to mode starting at Cp,static.

We now consider the case when multiple piezoelectric transducers are connected to a
structure with f = 0. Under the assumption that all other transducers are in open
circuit, we take the Laplace transforms of Equations (2.3) and (2.4). Inserting the former
equation into the latter yields an expression of the dynamic capacitance:

Cp(s) =
qp
Vp

= −Cε
p

∏M
m=1(s

2 + ω2
oc,m)∏M

m=1(s
2 + ω2

sc,m,p)
. (2.10)

ωsc,m,p is the mth natural frequency of the structure when transducer p is in short circuit
and every other transducer is in open circuit; ωoc,m is the corresponding open-circuit
frequency. Its inverse is the dynamic elastance in the multimodal case:

Ep(s) =
1

Cp(s)
. (2.11)
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Figure 2.9: An example of a dynamic capacitance function of piezoelectric structure for a
�ctitious 3-DOF system.

Finally, a dynamic capacitance function is obtained for each transducer p which provides
information about the electromechanical coupling with the modes of the structure (cf.
Equation (2.8)). We gather these di�erent Cε

p in a dynamic capacitance matrix with
dimensions P × P . Here, the pth diagonal entry for s = 0 gives information about the
static capacitance of transducer p:

Cp,static = (Cp(0))pp . (2.12)

2.5 Shunt tuning strategies

2.5.1 One mode family

If only the modes of one mode family are targeted, each mode is controlled via a single
series RL shunt. For the tuning of the shunt parameters, two di�erent approaches are
proposed, namely the isolated mode and mean shunt strategy.

Isolated mode strategy

In the isolated mode strategy, the RL shunt parameters are tuned based solely on the
H∞ norm, taking into account the actual resonance frequency of the mode. Following the
tuning strategy from Section 1.3.2.2, equal peaks of the receptance function are targeted.
The electromechanical coupling factor in a setup with multiple transducers is derived.
As it is the rate of converted energy by the piezoelectric material, it is di�erent for each
piezoelectric transducer. For a given patch p, the EMCF reads

K2
c,m,p =

ω2
oc,m − ω2

sc,m,p

ω2
sc,m,p

. (2.13)
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Using the tuning rules introduced in Equations (1.30) - (1.32) with Kc,m,p and ωoc,m and a
blocked modal capacitance, the values for the inductance Lm,p and the resistance Rm,p of
a single shunt branch can be calculated. For a maximum vibration mitigation and control
over the structure, each shunt is connected to the transducer p that features the largest
EMCF with the target mode.

Mean shunt strategy

Another option to target a family of closely spaced modes is a mean shunt strategy. The
idea, initially introduced by Mokrani [32], takes advantage of the high modal density. It is
adapted in this work by tuning each shunt according to a so-called mean frequency built
as the average of the M targeted resonant open-circuit frequencies ωoc,m

ω̂oc,m =
1

M

∑
m∈m

ωoc,m . (2.14)

The M mechanical modes are indexed bym. A mean e�ective electromechanical coupling
factor (MEMCF) is computed by averaging the EMCF over the M modes de�ned by P
transducers:

K̂2
c,m =

P∑
p=1

1

M

∑
m∈m

ω2
oc,m − ω2

sc,m,p

ω2
sc,m,p

. (2.15)

Eventually, the shunt parameters can be calculated according to Equations (1.30) - (1.32)
using Cp,static (Equation (2.12)) and the derived mean parameters K̂c,m and ω̂oc,m from
Equations (2.14) and (2.15). Due to the fact that each patch is used to target all the
modes of a family, the optimal patch to target a mode does not have to be determined
as in the isolated mode strategy; the application of the mean shunt strategy is thus truly
straightforward.

2.5.2 Multiple mode families

When multiple mode families and/or separate modes are targeted, a shunt circuit de-
sign possessing multiple branches is to be considered. In this work, each circuit branch
resonates with one mode of a family and/or a support mode. For good damping perfor-
mance, the interference between the di�erent shunt branches of a circuit is to be avoided.
To this end, the targeted modes of one circuit should be located away from each other.
This is one of the reasons why the modes of one mode family are not targeted by the
same multi-staged circuit. The current blocking approach proposed by Raze et al. [117] is
exploited herein in combination with either the isolated mode or the mean shunt strategy.
The shunt circuit is schematized in Figure 2.10. One stage consists of an RL shunt branch
and a notch �lter which is tuned toward one of the targeted frequencies, in ascending or-
der. By providing an in�nite impedance at the targeted frequency, the LC �lters ensure
that the current �ows through the appropriate shunt branch. Since multiple piezoelectric
transducers operate simultaneously, several multi-stage shunt circuits are implemented,
as shown for a BluM in Figure 2.11. The number of shunt circuits therefore corresponds
to the number of piezoelectric patches used. Each circuit stage is then tuned to one
frequency, either single or mean, from a speci�ed mode family and/or an isolated mode
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𝑍1𝑃 𝑍2 𝑍𝑁

𝐶1 𝐶2

𝐿2𝐿1

𝐶𝑁−1

𝐿𝑁−1

…

…

Figure 2.10: Electrical circuit for the multistage current blocking approach tuned toward N
resonant modes. One stage consists of a the shunt impedance ZN and a notch �lter.

𝑍1 𝑍2 𝑍3

FRF

3-stage shunt circuit #7 

#1

#2

#3

#4

#5

#6

#8

#9

# …

Figure 2.11: Exploitation of several multi-stage shunt circuits on a BluM example. The circuits
operate simultaneously, being connected to di�erent piezoelectric patches. One stage each is
tuned toward a particular frequency (range) of the host structure FRF.

such as a drum mode. As a �nal result, the same frequency ranges are targeted by var-
ious shunt branches that belong to di�erent circuits. Doing so, the interaction between
branches is mitigated, and a high level of control performance can be provided�.

When using a multi-stage shunt circuit, the di�erent stages have an impact on what is to
be considered the respective plant transfer function from the point of view of the individ-
ual shunt branches. To take this into account, a sequential tuning of the di�erent circuit
stages is adopted to determine the respective shunt parameters. This method was �rst
introduced by Raze et al. in [117] and is exploited herein.

Modeling the dynamic elastance from a shunt branch point of view

In the tuning procedure, an equivalent electromechanical structure as well as a �ctitious
optimal shunt branch are identi�ed at each state n of the network (cf. Figure 2.12). In this

�In practice, an ideal current �ow cannot always be guaranteed.
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way, common shunt tuning formulas can be used to tune the parameters of this optimal
shunt circuit which are eventually translated to physical parameters in the context of the
overall circuit. The relation between the piezoelectric transducer and a speci�c shunt
branch can be expressed by a transfer matrix G:[

Vs

sqs

]
= G

[
Vp

sqp

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
Vp

sqp

]
. (2.16)

The two-port network theory [125] is used to model an electrical network from the re-
spective shunt branch point of view. Due to the presence of di�erent circuit stages, this
electrical network has to be considered and updated at each tuning step. Vs is the voltage
across a shunt branch and qs the charge �owing through it. From Equation (2.16), the
dynamic elastance Es is derived as it is seen from a currently regarded shunt branch:

Vs

qs
= s

g12(s) +
Vp

sqp
g11(s)

g22(s) +
Vp

sqp
g21(s)

. (2.17)

Under the assumption that this expression is similar to Equation (2.11) for a single trans-
ducer p, Equation (2.17) can be approximated around a speci�c resonance frequency as

Vs

qs
≈ − 1

C̃ε
p

s2 + ω̃2
sc

s2 + ω̃2
oc

. (2.18)

C̃ε
p , ω̃sc and ω̃oc are the characteristics of an equivalent dynamic elastance from the point

of view of the nth shunt branch. They correspond to the equivalent piezoelectric structure
in Figure 2.12. Using ω̃sc and ω̃oc, a branch-speci�c EMCF, can be formed:

K̃2
c =

ω̃2
oc − ω̃2

sc

ω̃2
sc

. (2.19)

This quantity can help to assess the control authority over the mode that is targeted by
this speci�c branch. For more accuracy, Equation (2.18) can be expanded by adding an
inductance L̃ and a resistance R̃

Vs

qs
≈ −L̃s2 − R̃s− 1

C̃ε
p

s2 + ω̃2
sc

s2 + ω̃2
oc

. (2.20)

L̃ and R̃ are parameters of the equivalent piezoelectric structure (cf. Figure 2.12) as it is
seen from the nth shunt branch. Alternatively, in order to model a capacitive behavior,
the equivalent piezoelectric structure might be expressed as

qs
Vps

=
1

s

g22(s) +
Vp

sqp
g21(s)

g12(s) +
Vp

sqp
g11(s)

, (2.21)

which represents the inverse of Equation (2.17). Similarly to Equation (2.20), it can then
be modeled using a conductance G̃ and a reluctance B̃:

qs
Vps

≈ − B̃

s2
− G̃

s
− C̃ε

p

s2 + ω̃2
oc

s2 + ω̃2
sc

. (2.22)
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Network identi�cation

To identify the parameter values of the equivalent piezoelectric structure, the true elas-
tance from Equation (2.17) is �tted to the model. The identi�cation procedure was �rst
presented in [117] and is described hereafter for completeness.

At �rst, a best network model needs to be found that will be used to �t the parameters.
For an elastive model, this procedure consists of �tting the parameters from Equation
(2.20) to the true elastance given in Equation (2.17). Respectively, the parameters from
Equation (2.22) are �tted to Equation (2.21) in the capacitive case. To decide whether an
elastive or capacitive model should be chosen, the distance from the frequency of interest
ω0, which could, e.g., be a resonance frequency ωsc, to the poles or zeros of the elastance
is evaluated. It follows a comparison between (1) the sum of the distances from the fre-
quency of interest to the two closest surrounding poles with the respective distances to
(2) the two closest surrounding zeros to this frequency. If the former is greater than the
latter, the network is modeled as an elastive type. Otherwise, a capacitive network is
assumed.

If a dynamic elastance is to be �tted, the following expression is approximated:

Vs

qs
= −L̃s2 − R̃s− 1

C̃ε
p

s2 + ω̃2
sc

s2 + ω̃2
oc

=
L̃s4 + R̃s3 +

(
L̃ω̃2

oc +
1
C̃ε

p

)
s2 + R̃ω̃2

ocs+
ω̃2
sc

C̃ε
p

s2 + ω̃2
oc

. (2.23)

The idea is then to retain a pole p and a zero z from the true elastance which are chosen
to be the closest from the frequency ω0. The approximation function then reads

Vs

qs
≈ (as2 + bs+ c)(s2 + 2zrs+ z2)

s2 + 2prs+ p2
. (2.24)

Besides the conditions for p and z, additional conditions are imposed by the interpolation.
The identi�cation procedure can then be summarized as follows:

1. Consider the actual Vs/qs and set the pole p that is closest to jωsc (of magnitude p
and real part pr) to ω̃oc.

2. Find the closest zero Vs/qs (of magnitude z and real part zr) to this p.

3. We build the function f(s) = (s2 + 2prs+ p2)/(s2 + 2zrs+ z2)Vs/qs. The constants
a, b and c are determined by �tting f(s) in a LSE sense to a frequency range that
comprises p and z.

4. Setting Equations (2.23) and (2.24) equal yields the parameters R̃, L̃, ω̃oc, ω̃sc and
C̃ε

p .

When a mean shunt is used, step 4 has be to executed for every mode of the targeted
frequency range and then averaged according to Equations (2.14) and (2.15). Likewise,
an average of the parameters R̃, L̃ and C̃ε

p must be formed. The identi�cation procedure
for a capacitive model di�ers slightly and is described in detail in Appendix A.
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Capacitive
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𝑃 𝑍𝑆ℎ𝑢𝑛𝑡

Equivalent piezoelectric 

structure

Fictitious optimal shunt circuit

Figure 2.12: Schematics of the tuning procedure for the multimodal current blocking approach.
The circuit can be regarded in two parts: an equivalent piezoelectric structure and a �ctitious
optimal shunt that is to be tuned.

Optimal shunt parameters

Eventually, the optimal parameters of the shunt branch can be calculated from the equiv-
alent piezoelectric structure. Knowing C̃ε

p , ω̃sc and ω̃oc, either the isolated mode or the
mean shunt strategy can be applied to determine the optimal shunt parameters R∗ and
L∗ of the nth �ctitious shunt branch. Together with the parameters of the piezoelectric
structure, they add up the to the physical shunt parameters [117]:

R = R∗ − R̃, L = L∗ − L̃ . (2.25)

This tuning procedure needs to be performed for all subsequent branches of the shunt
until all parameters are determined.

2.6 Conclusion

This chapter presented the challenges that can be faced in vibration damping of com-
plex structures. A speci�c focus was set on bladed structures. Di�erent approaches for
vibration mitigation of these structures exist, all of which have signi�cant limitations,
making this research topic still highly relevant. The damping solution chosen herein re-
lies on piezoelectric shunt damping. In this thesis, the proposed innovation is twofold.
First, the use of a DVA represents a compact, e�ective and versatile solution. Second, a
tuning strategy targeting multiple modes of di�erent mode families is proposed by incor-
porating a current blocking multimodal shunt circuit within the isolated mode and mean
shunt strategies. In the following chapters, the proposed strategy will be demonstrated
experimentally on two bladed structures, namely a bladed rail and a BluM.
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Chapter 3

Experimental vibration mitigation of a

bladed rail

3.1 Introduction

We now focus on the experimental application of the shunt tuning strategies introduced
in Chapter 2. The shunt circuits were realized with DVAs (cf. Section 1.4.2 and 1.4.3)
shunted to multiple transducers and acting simultaneously on the structure. The strategy
presented in Chapter 2 is demonstrated using a bladed rail, a simpli�ed version of an
industrial bladed disk which also features low damping and mode families with a relatively
high modal density. This chapter begins with a description of the experimental setup
and the structure under investigation. A practical procedure is then outlined for the
identi�cation of the plant parameters, which is essential for the tuning of the shunts.
Finally, the experimental damping performance of these shunts are presented. First, the
focus is set on the �rst family of bending modes, including a robustness analysis of the
shunts. Second, two mode families are targeted at the same time.

3.2 Experimental setup

The structure

The experimental structure is a 3D-printed steel support with �ve equidistant blades of
the same shape. The bladed rail is displayed in Figure 3.1 and was already the subject
of previous numerical investigations [30, 126]. The geometrical properties of the blades
conform to current state-of-the-art designs for bladed disks [32]. In the experimental
setup, both ends of the support structure (rail) were clamped by 3D-printed clamps made
of PLA and �xed on an optical table. At the underside of the rail, �ve PIC151 (10mm ×
15mm × 0.5mm, Physik Instrumente) piezoelectric patches were glued with conductive
glue since high strains are expected at this location [32].

One patch #i is connected to a respective DVA #i, i = 1, ..., 5 (see Figure 3.3). Di�erent
pictures of the experimental set-up are shown in Figures 3.1 and 3.2. In addition, Figure
3.4 gives an overview of the patch arrangement in relation to the blade shape. For reasons
of con�dentiality, no further details on the dimensions of the structure can be provided.
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Figure 3.1: The bladed rail structure clamped to an optical table.

(a) (b)

Figure 3.2: Experimental setup for the experiments with the bladed rail. The �ve patches of
the rail were connected to �ve DVAs (a). For acoustic excitation, the speaker in the background
was used (b).

Equipment

The excitation signal was an acoustic sine sweep over the range of one or two mode
families of the bladed rail, realized by a Headrush FRFR-108 Active Monitor speaker (cf.
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3.2: Experimental setup

DVA 1 DVA 2 DVA 3 DVA 4 DVA 5

Figure 3.3: Schematics of the experimental setup: Five piezoelectric patches are glued to
the bottom of the support structure at the locations of the blade roots. The patches are each
connected to one DVA. The DVAs are grounded.

Figure 3.4: Layout of the experimental bladed rail with �ve piezoelectric patches glued on the
rail at the locations of the blade roots.

Figure 3.2b). In order to assess the vibration reduction, a laser vibrometer was installed
to measure the velocity at the �rst tip blade. The results were then post-processed in the
Simcenter Testlab software. For the realization of the digital shunts, a controller board
MicroLabBox from dSPACE and the associated software were used.

Dynamics of the bladed rail

In order to obtain an overview of the structure's dynamics and the locations of the mode
families, the open-circuit FRF of the �rst blade tip was measured and analyzed. This
was achieved by disconnecting the electrodes of the piezoelectric patches from the DVAs
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Figure 3.5: Open-circuit FRF of the �rst blade under a sine sweep acoustic excitation.

Family 1 Family 2
Frequency Damping ratio [%] Frequency Damping ratio [%]
0.3143 0.03 0.7943 0.05
0.3213 0.03 0.8146 0.03
0.3240 0.03 0.8200 0.02
0.3243 0.08 0.8237 0.02

- - 0.8257 0.02

Table 3.1: Normalized resonance frequencies and associated damping ratios of the �rst and
second mode families.

and exciting the structure with a sine sweep over the �rst two groups of bending modes
and the �rst torsion modes. Their approximate location and their mode shapes could
be characterized based on numerical simulations conducted in [127]. The focus of this
study was on the �rst two mode families so that the sweep rate of the excitation was set
to 0.5Hz s−1 in their frequency range and to 10Hz s−1 in the region of the other modes.
Figure 3.5 shows the FRF of the �rst blade tip. Mode family #1 located between 0.30
and 0.33 is the �rst bending mode family. The second mode family between 0.79 and
0.83 is associated with the �rst torsion modes of the blades. The natural frequencies in
the two targeted families are listed in Table 3.1. Since the structure has �ve blades, �ve
modes are expected to be visible for each family. However, only four resonance peaks were
visible for family #1. It was possible to account for this during the tuning procedure by
targeting one mode with two patches.
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Figure 3.6: Dynamic impedances of the �ve piezoelectric patches in the frequency range up to
mode family #1 and #2; P1 ( ), P2 ( ), P3 ( ), P4 ( ) and P5 ( ).

Dynamic impedances and coupling assessment

In a �rst step, parametric models of the plant transfer functions are needed to obtain
the system parameters required for shunt tuning and to evaluate the coupling. To this
end, the structure was excited by a multisine excitation over the full frequency range via
the piezoelectric patches. A multisine signal is periodic and composed of multiple sine
waves that are harmonically related. Various frequencies can be excited at the same time
with a user-de�ned amplitude and random phase [128]. The resulting transfer functions
are the dynamic impedances of the electromechanical system (cf. Equation (1.42)). The
measured impedances are presented in Figure 3.6, with a close-up on the mode families
in Figure 3.7. On the basis of these dynamic impedances, state-space models of the plant
transfer functions were identi�ed for the di�erent patches using the PolyMAX modal pa-
rameter estimation method [129] in a multiple-input multiple-output (MIMO) context.
The method works with a stabilization diagram that allows the user to manually select
the poles in a prescribed frequency range, facilitating the identi�cation of closely-spaced
modes. To this end, the frequency ranges of interest were prede�ned and curve �tting
procedures with increasing model orders were performed up to a user-de�ned limit in
each frequency range. The poles that were consistently identi�ed with increasing model
orders were then considered as stabilized poles. A selection of the stabilized poles was
then performed by displaying these poles together with the measured FRFs in a stabi-
lization diagram. The resulting stabilization diagrams for mode families #1 and #2 are
presented in Figure 3.8. The procedure yields a good accuracy while avoiding to retain
spurious poles in the identi�cation process, making the user con�dent that the selected
poles are close to the actual poles of the physical system. Evaluating the stabilization
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(a) Mode family #1.
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Figure 3.7: Close-up views on the dynamic impedances of the �ve piezoelectric patches in the
range of the mode families #1 and #2: P1 ( ), P2 ( ), P3 ( ), P4 ( ) and P5 ( ).
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Figure 3.8: Stabilization diagram obtained with the PolyMAX method applied to measured
dynamic impedances of the �ve piezoelectric patches: P1 ( ), P2 ( ), P3 ( ), P4 ( ) and
P5 ( ). The stabilized poles are displayed with a ×.

diagram results in a set of selected poles and corresponding participation factors. With
the knowledge of these parameters, the corresponding mode shapes can then be obtained
by expressing the measured FRFs in a partial fraction format and solving the equations in
a least-squares sense [129], a procedure that is known as least-squares frequency-domain
(LSFD) method [130].

In addition to the complex poles that correspond to the resonance frequencies of the
electromechanical system, a simple pole is to be identi�ed from the dynamic impedance
measurements. This pole occurs at low frequencies and corresponds to a so-called `knee'
in the FRF caused by the imperfections of the DVA resistances, as discussed in Section
1.5 (cf. Figure 3.6). At the beginning of the system identi�cation procedure, this knee is
identi�ed as a real pole by evaluating the trend of the measured impedances over the full
frequency range. The PolyMAX method, originally designed to identify complex poles,
was adapted to account for this real pole. The resulting state-space model is presented
in a Bode plot in Figure 3.9.

From the knowledge of the identi�ed resonance frequencies, the electrical coupling be-
tween the modes and the patches could be assessed with the EMCF (2.13) and an evalua-
tion of the measured impedances in Figure 3.6. As outlined in Section 1.2.3, the identi�ed
zeros (poles) of the dynamic elastances are the short- (open-) circuit resonance frequencies
of the electromechanical structure. If they are clearly visible in the transfer function, it
can be concluded that there is a signi�cant electromechanical coupling between a patch
and the considered mode. Eventually, a mode is assigned to the patch with which the
electromechanical coupling is the strongest, as shown in Table 3.2. For mode family #1,
only four modes are visible in Figure 3.7a so that the fourth mode was targeted by two
patches simultaneously. The results of the identi�cation then served as the basis for the
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Figure 3.9: Bode plot of the measured dynamic impedance for patch 1 ( ) and the identi�ed
state-space model ( ) of the overall trend and the imperfection.

application of the proposed tuning strategies (cf. Section 2.5). The structural resonance
frequencies and damping ratios identi�ed by the PolyMAX method are listed in Table
3.1. The associated damping ratios are very low, i.e., on the order of 0.05%. As discussed
in Chapter 2, this low damping is typical of bladed assemblies and justi�es the use of
additional damping devices. Since the identi�ed damping ratios are small, damping was
neglected in the tuning process. However, when damping cannot be neglected, methods
that account for it can be employed during shunt tuning [131].

Mode family 1
Mode Patch
1 5
2 4
3 3
4 2 & 1
- -

Mode family 2
Mode Patch
1 1
2 5
3 3
4 4
5 2

Table 3.2: Patch distribution per mode family.
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Figure 3.10: Bode plot of the measured dynamic impedance for patch 1 ( ) and the identi�ed
state-space model ( ) in the frequency range of mode family #1.

3.3 Summary of the shunt tuning procedure

The di�erent steps for the design and implementation of the shunt transfer functions
applied to the bladed rail sum up as follows:

1. Measurement of the dynamic impedance functions of all patches in a MIMO setup
using multiple DVAs simultaneously (cf. Section 1.4.2).

2. System identi�cation of the measured data using the PolyMAX method [129]. The
identi�ed parameters are the resonance frequencies (open- and short-circuit), damp-
ing ratios and values for δc that are then considered in the controller gain during
the shunt implementation (step 5).

3. Coupling evaluation for each patch with the targeted modes and mode-to-patch
distribution for the isolated mode strategy.

4. Design of the shunt transfer function YShunt(s) based on steps 1 and 2. The tuning
rules from Section 2.5 and (if multiple mode groups are targeted) Section 2.5.2 are
exploited in this step.

5. Discretization of YShunt(s) according to the procedure described in Section 1.6.1 and
implementation of the shunts using the dSPACE software. The identi�ed values for
δc are considered directly by setting the controller gains.
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Figure 3.11: FRFs of the �rst mode family of the bladed rail: open circuit ( ), shunted by
the isolated mode ( ) or mean shunt ( ) strategies. The mean frequency is indicated in (
).

We note that this procedure relies solely on experimental measurements and the result-
ing identi�ed data so that no numerical model of the structure is needed. This greatly
facilitates the application of the method and makes it highly practical.

3.4 Experimental results

3.4.1 Mode family #1

The �rst mode family was �rst targeted, implementing a single series RL shunt circuit per
DVA. In order to assess damping performance, the bladed rail was excited acoustically by
a sine sweep, both in open-circuit and shunted con�gurations. The FRFs corresponding
to isolated mode and mean shunt tuning are presented in Figure 3.11. A substantial
reduction of the resonance amplitudes could be achieved with both approaches. However,
the mean shunt strategy is more e�ective, particularly for the �rst mode, i.e., it yields
a reduction of 14 dB in comparison to 8 dB for the isolated mode strategy. While both
approaches performed similarly for the second mode (19 dB), for modes 3 and 4, the
isolated mode and mean shunt strategies achieved a reduction of 8 and 12 dB, respectively.
The mean frequency targeted by the mean shunt strategy was located in the vicinity of the
third and fourth modes which explains the better performance. In addition, the in�uence
of closely-spaced modes can somewhat compromise the attenuation performance of the
isolated mode strategy so that a precise frequency target is not always possible.
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Figure 3.12: H∞ (a) and H2 (b) norms of the FRF for the �rst mode family of the bladed
rail for di�erent shunt frequencies. The isolated mode ( ) and mean shunt ( ) strategies are
compared to the open-circuit case ( ).

3.4.2 Robustness study

In order to examine the robustness of the shunts, the performance was studied under
changing conditions. First, the digital controller frequency was varied to account for errors
that could happen during shunt tuning, e.g., due an inaccurate system identi�cation.
Second, the system was altered physically by adding masses to the blades to simulate
mistuning.

3.4.2.1 Variation of the digital shunt frequency

The optimal frequencies of each shunt function were varied up to± 10%. The performance
was assessed based on two norms, namely the H∞ (maximum amplitude) and the H2 (area
under the FRF) norm and is displayed in Figure 3.12. It can be observed that the optimal
amplitude attenuation with the isolated mode strategy occurred at a frequency factor of
1.01 which can be attributed to a slight time variability of the setup. Comparing the
evolution of the norms, it is visible that the mean shunt performance was consistently
and smoothly decreasing with deviations of the frequency factor from the optimal value.
This was not the case for shunts tuned according to the isolated mode strategy as there
was an abrupt performance decrease at a frequency factor at 0.99. There may not have
been su�cient coupling with this new mode for this particular frequency variation. The
mean shunt could compensate better for this due to the averaging of the parameters.
Generally, the damping performance of the two shunts can be considered e�ective up to
frequency deviations of approximately 5% with respect to the initially identi�ed ones.
If the shunts are detuned to a greater extent, the DVAs can even slightly amplify the
resonance amplitudes in comparison to the uncontrolled case (cf. Figure 3.12).
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Figure 3.13: Modi�cation of the bladed rail. A pair of magnets was added to the �rst blade in
order to change the resonance frequencies of the blade modes.

3.4.2.2 Modi�cation of one blade

In a next step, an additional mass in the form of a pair of magnets was added to the �rst
blade of the structure as depicted in Figure 3.13. Approximately 45% of the blade mass
was added causing a shift of 2.7% of the �rst resonance frequency of mode family #1. The
FRFs of the initial and modi�ed systems are presented in Figure 3.14. In addition, the
FRFs of the detuned and retuned systems are shown both for the isolated mode (Figure
3.14a) and mean shunt strategies (Figure 3.14b). From Figure 3.14a it can be seen that a
satisfactory damping reduction of all modes could be achieved using the retuned isolated
mode strategy. On the other hand, a retuned mean shunt could only reduce the amplitude
of the �rst resonance frequency by less than 1 dB (cf. Figure 3.14b). The modi�cations
caused the resonance frequency of this mode to be relatively far from the other modes of
the mode family. As the mean shunt strategy relies on a large proximity of the frequencies
to be attenuated, it was less e�cient in this case. However, a look at the direct comparison
between the two proposed approaches in Figure 3.15 evidences that the performance of
the mean shunt was clearly more robust on the other family modes in comparison to the
isolated mode strategy owing its more broadband character.

3.4.2.3 Modi�cation of all blades

All �ve blades of the structure were then modi�ed with magnets. In order to model a
non-uniform mistuning, they were placed di�erently for each blade as displayed in Figure
3.16. The mistuning caused a decrease in the �rst resonance frequency of 3.6%. The
resulting FRFs are presented in Figure 3.17. Again, the retuned isolated mode strategy
proved successful amplitude attenuation of the �rst mode family. Conversely, the retuned
mean shunts could not achieve the same damping performance as in the initial system.
From Figure 3.17b, we can see that only modes 2 and 3 could be attenuated e�ectively
while the damping performance on mode 1 was only slightly improved, as already observed
in the previous section. On the other hand, there was even an increase in amplitude for
mode 4. Regarding the new FRF of the open-circuit measurement, the mistuning caused
an increase in the distance between the third and the fourth modes which had a distinct
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(a) Isolated mode strategy.
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(b) Mean shunt strategy. ( ) and ( ) indicate the respective mean frequencies.

Figure 3.14: Robustness study (�rst blade mass modi�ed): open-circuit FRFs of the initial (
) and mistuned systems ( ), system controlled by the detuned ( ) and retuned ( ) shunts.
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Figure 3.15: Robustness study (�rst blade mass modi�ed): FRFs of the open circuit (modi�ed)
( ), of the system shunted by an RL shunt (retuned) ( ) and of a mean shunt (retuned) ( ).
The mean frequency is indicated in ( ).

Figure 3.16: Modi�cation of the bladed rail. A pair of magnets was added to each blade.

e�ect on the damping performance of the mean shunt. From these observations, it can
be stated that this strategy becomes less e�cient and is not necessarily robust when
mistuning introduces a large gap between the targeted modes. A retuning of the shunts
with this strategy might thus not always be advisable.

68



3.4: Experimental results

0.28 0.29 0.3 0.31 0.32 0.33

Normalized frequency

-20

-10

0

10

20

30

40

50

60
M

ag
n
it

u
d
e 

(d
B

)

(a) Isolated mode strategy.
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(b) Mean shunt strategy. ( ) and ( ) indicate the respective mean frequencies.

Figure 3.17: Robustness study (all blades modi�ed): open-circuit FRFs of the initial ( )
and mistuned systems ( ), system controlled by the detuned ( ) and retuned ( ) shunts.

3.4.3 Vibration mitigation of two mode families

By exploiting a two-stage current blocking shunt circuit, the vibrations of two mode fami-
lies could be attempted simultaneously. To this end, a single DVA targeted one mode per
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Figure 3.18: Robustness study (all blade masses modi�ed): FRFs of the open circuit (modi�ed)
( ), of the system shunted by an RL shunt (retuned) ( ) and of a mean shunt (retuned) ( ).
The mean frequency is indicated in ( ).

family, following the isolated mode and the mean shunt strategy, respectively. The FRFs of
the controlled systems are presented in Figure 3.19 for both mode families. The resonance
amplitudes of the second mode family could be reduced by approximately 10 dB. This
uniform and superior (in comparison with the �rst mode family) damping performance
can be explained partly by the fact that the modes were more equally distributed in the
frequency range. The damping performance for the second mode family comes at the cost
of a somewhat lower performance of the shunts on the �rst mode family, particularly for
the mean shunt approach. Considering an additional mode family and targeting multiple
modes with one shunt circuit can thus lead to a decrease in the damping performance for
certain frequencies compared to a single branch shunt circuit. This is due the fact that
the control authority needs to be distributed over more modes. In addition, the current
can possibly �ow through other branches than the desired one when the complexity of the
electrical circuit increases so that an optimal current �ow might not always be guaranteed.

3.5 Conclusion

The multimodal tuning strategies proposed in Chapter 2 proved herein successful during
the experimental testing of a bladed rail structure featuring di�erent mode families with
closely-spaced modes. Identifying the parameters of the host structure with the help of
the PolyMAX method enabled the tuning of the shunt parameters. Subsequently, the
magnitudes of 9 modes could be reduced by a factor ranging from 5 to 18 dB, depending
on the mode or tuning strategy considered. A robustness study on the �rst mode family
showed that the shunts performed satisfactorily for changes of the resonance frequencies
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(a) Mode family #1.
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(b) Mode family #2.

Figure 3.19: FRFs of the bladed rail with open-circuited ( ) patches or shunted with current
blocking circuits in the range of the mode families #1 and #2. Isolated mode ( ) and mean
shunt ( ) strategies.
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3.5: Conclusion

up to 5%, making the method robust toward a certain degree of structural mistuning.
Thanks to the use of DVAs, the shunt parameters could be easily adapted, highlighting
the �exibility of a digital implementation.
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Chapter 4

Experimental vibration mitigation of a

BluM

4.1 Introduction

After the bladed rail in Chapter 3, the application of interest is now the BluM structure
introduced in Section 2.2. It possesses 76 blades; it thus features signi�cantly more vibra-
tion modes and also a greater number of piezoelectric patches. This structure was already
investigated experimentally by Mokrani et al. [83�85]. In their works, gyrator circuits
were used in the synthetic inductors realizing the RL shunts. The structure was excited
harmonically without contact using voice coil actuators, and small permanent magnets
attached to blade tips. 28 piezoelectric patches were installed in the drum. In order to
overcome the need of impractically high inductances, they implemented parallel loops of
piezoelectric shunts when targeting speci�c single resonance frequencies [32, 83]. Further,
they addressed the problem of closely-spaced modes through the mean shunt strategy,
used as a basis technique for the tuning strategies in Section 2.5 [32, 84]. They observed
that mistuning was present in the BluM structure, which impaired damping performance.
In contrast to these studies based on analog circuits, our research relies on a digital shunt
realization using DVAs, which, in addition to increased tuning �exibility, eliminates the
need for synthetic inductors. The isolated mode and mean shunt strategies presented in
Section 2.5 are exploited in this chapter to mitigate the vibrations of the BluM.

This chapter is organized as follows. First, the BluM structure and the di�erent setup
con�gurations used for the numerical and experimental studies are described in Section
4.2. In Section 4.3, the results of the numerical study are presented. Sections 4.4.1 and
4.4.2 include a description of the experimental setup together with the dynamic properties
of the experimental BluM. The results of the system identi�cation procedure at the root
of the shunt tuning strategy are discussed in Section 4.4.3. The chapter ends with Sec-
tion 4.4.4 which discusses the experimental results including performance and robustness
analyses.
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4.2: The BluM structure

4.2 The BluM structure

The BluM structure investigated in this work is a compressor stage of an airplane rotor
provided by Safran Aero Boosters [132]. The BluM is made of an alloy of titanium and
exhibits 76 blades. 28 patches PI-PIC255 were �xed in the support drum under the blade
roots, with one patch covering approximately three blades. Here, one electrode of a patch
was connected to the BluM structure. The drum itself is connected to an electrical ground.
The patch dimensions are 40mm × 10mm × 200µm. During the experimental campaign,
only 16 out of the 28 available patches could be used simultaneously, corresponding to
the 5 con�gurations illustrated in Figure 4.1. Patches marked in red were individually
shunted to a DVA. The remaining 12 patches were left in open circuit.

For the sake of industrial con�dentiality, any sensitive data about such as response levels
and frequencies of the structure is normalized in what follows.

4.3 Numerical study

An FE model of the BluM that was already used for numerical investigations in [30] is
considered in this section, featuring a modal damping of 0.01%. From the ideal case
without any mistuning, three di�erent variants of the model were created, each introduc-
ing mistuning by arbitrarily adding small masses to the blades of the BluM. While their
locations were varied, the total number of masses and mass points remained similar, i.e.,
between 13 and 16 with an average of 3 g. As displayed in Figure 4.2, mistuning resulted
in lower resonance frequencies that also appeared more spread. Mode families #1 and
#2 are clearly visible in this �gure, represented by an almost horizontal line around fre-
quencies 1.0 and 2.5. Based on the numerical simulations conducted using the Siemens
NX software [133], state-space models were built. To this end, 25 FRFs were calculated
considering the excitation force Fy in Figure 4.3. The locations were chosen to be evenly
distributed over the circumference of the BluM.

For the presentation of the results, the amplitude reduction was assessed by comparing the
average of the H2 norm of the 25 FRFs of the system in open circuit and of the controlled
system in the frequency range of the targeted modes. For all simulations, only the mean
shunt strategy was exploited with single RL shunts tuned toward the mean frequency of
mode family #1. This family was considered to be between frequencies 1.00 and 1.08.

The case without mistuning is �rst considered. Figure 4.4 shows the evolution of the
amplitude reduction as a function of the number of active piezoelectric patches. The
piezoelectric patches with the lowest mean coupling factors (over all modes) were re-
moved in the di�erent cases. For a small number of patches, the amplitude reduction
increases sharply. Already with 6 patches, the FRF amplitudes are reduced by approx-
imately 50%. Then, the increase is less impressive. This indicates that it might not be
necessary to use all patches simultaneously.

The mean coupling factors averaged over all modes of family #1 are displayed for each
piezoelectric patch in Figure 4.5. The overall mean of these EMCF per patch is also
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Figure 4.1: Di�erent con�gurations of the piezoelectric patches. Red indicates that the cor-
responding patch is used. The numbers 1-5 refer to the respective con�guration. The hammer
indicates the impact location.
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Figure 4.2: BluM frequencies (normalized with respect to the �rst resonance frequency of mode
family #1). No mistuning ( ), mistuning case #1 ( ), #2 ( ) and #3 ( ).
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Figure 4.4: Amplitude reduction for mode family #1 as a function of the number of active
piezoelectric patches (case without mistuning).

represented. In the absence of mistuning, the �gure shows that (i) the deviation from
the mean is much smaller and (ii) the coupling is better. The overall mean EMCF for
the di�erent mistuned cases remain similar, being approximately 17% smaller than with-
out mistuning. For some patches, the coupling factors are signi�cantly smaller than the
overall mean, which can be explained by the localization of vibrational energy induced by
mistuning [134].
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Figure 4.5: Mean coupling factors averaged over all modes of family #1: no mistuning ( ),
mistuning case #1 ( ), #2 ( ) and #3 ( ). The mean coupling factor over all patches is
represented using a horizontal line.

E�ciency of patch con�gurations

The amplitude reduction for mode family #1 obtained with di�erent patch con�gurations
and di�erent mistunings is displayed in Figure 4.6. It is important to note that the shunts
were tuned optimally for each mistuned case. All patch con�gurations lead to a mean
amplitude reduction of more than 60%. In addition, a reduction of at least 40% can be
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(a) Patch con�guration 1.
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(b) Patch con�guration 2.
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(c) Patch con�guration 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

FRF point

30

50

70

90

A
m

p
. 
re

d
u
ct

io
n
 [

%
]

(d) Patch con�guration 4.
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(e) Patch con�guration 5.

Figure 4.6: Amplitude reduction for mode family #1. No mistuning ( ), mistuning case #1
( ), #2 ( ) and #3 ( ). All shunts were tuned optimally. The mean amplitude reduction
per patch con�guration is represented using a horizontal line.
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achieved in the worst case scenario. Although the coupling is better without any mistun-
ing, this does not translate into any improvement in terms of amplitude reduction. The
similar damping performance can be explained by Figure 4.4, i.e., if enough patches are
used, a strong amplitude reduction can be expected even in the presence of mistuning.

Figure 4.7 presents a comparison between the di�erent patch con�gurations. It con�rms
our previous �ndings, i.e., when considering the mean value of the amplitude reduction,
all patch con�gurations yield excellent damping performance. Moreover, no con�guration
seems to signi�cantly outperform the other con�gurations.

For illustration, Figure 4.8 depicts the FRFs of four points distributed around the BluM
for patch con�guration 3 and mistuning #1. The magnitudes were normalized with re-
spect to the FRF amplitude of the �rst mode of mode family #1. A relatively important
and broadband amplitude reduction can be achieved over the whole frequency range of
mode family #1. We just note that the amplitude reduction is somewhat smaller around
the frequency 1.07 for FRF #7 and #20.

Finally, we stress that this study does not claim to be a comprehensive statistical in-
vestigation, but it can rather be seen as a support study for the experimental campaign.

Robustness of patch con�gurations

In this section, the robustness of damping performance is assessed by using systemati-
cally the shunts tuned when no mistuning is present. Unlike the previous section, no
shunt retuning is thus achieved when mistuning is introduced. The resulting amplitude
reductions are depicted in Figure 4.9. All con�gurations are relatively robust toward mis-
tuning, providing a mean amplitude reduction of more than 60%. For obvious reasons,
the deviations from the mean are greater than when the shunts are retuned. Again, no
patch con�guration signi�cantly outperforms the other ones. The receptance of point
#10 in Figure 4.10 shows that the amplitude of almost all resonance peaks could be sig-
ni�cantly reduced both in the tuned (no mistuning) and detuned (mistuning #1) cases,
highlighting that the shunts do not necessarily have to be retuned.

Targeting two mode families

Finally, using the current blocking circuit presented in Chapter 2.5.2, two mode families
of the BluM were targeted with the mean shunt strategy. A mistuned BluM structure
(case #1) was subject to 16 shunts in patch con�guration 3. The results are presented in
Figure 4.11 by means of FRF #10. The FRF shows that both mode family #1 (located
around normalized frequency 1) and #2 (located around normalized frequency 2.5) could
be attenuated with the multi-stage shunt design. Reductions of the resonance amplitudes
of up to 20 dB and 15 dB, respectively, could be achieved. Comparing this amplitude
reduction on mode family #1 with these obtained using single shunts (cf. Figure 4.10b),
we note that there is a loss in damping performance. Using a passive control law, this
loss in performance for this mode group can be explained by the fact that the available
control authority is now distributed over two frequency ranges. However, the reductions
of the resonance amplitudes remain highly satisfying.
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(a) No mistuning.
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(b) Mistuning case #1.
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(c) Mistuning case #2.
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(d) Mistuning case #3.

Figure 4.7: Amplitude reduction for mode family #1. Patch con�guration 1: ( ), 2: ( ),
3: ( ), 4: ( ) and 5: ( ). All shunts were tuned optimally. The mean value per mistuning
case is represented using a horizontal line.
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(a) FRF #1.
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(b) FRF #7.
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(c) FRF #14.
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(d) FRF #20.

Figure 4.8: FRF for patch con�guration 3 and mistuning #1.
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(a) No mistuning.
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(b) Mistuning case #1.
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(c) Mistuning case #2.
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(d) Mistuning case #3.

Figure 4.9: Amplitude reduction for mode family #1. Patch con�guration 1: ( ), 2: ( ),
3: ( ), 4: ( ) and 5: ( ).
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(a) No mistuning.
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(b) Mistuning case #1.

Figure 4.10: FRF #10. Patch con�guration 1: ( ), 2: ( ), 3: ( ), 4: ( ) and 5: ( ).
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Figure 4.11: FRF #10 of a mistuned BluM (case #1). The uncontrolled case ( ) is compared
to a system controlled by multi-stage shunt circuits using patch con�guration 3 ( ).
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(a) Photograph of the BluM setup with DVAs. The
hammer indicates the location of the excitation and
the arrow refers to the location of the tip velocity
measurement.
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(b) Overview of the patch distribution.

Figure 4.12: The BluM structure.

4.4 Experimental study

4.4.1 Experimental setup

A photograph of the BluM structure is provided in Figures 4.12a and 4.13. The patch
distribution in Figure 4.12b corresponds to the one used in the numerical study. Figure
4.14 gives an overview over the whole experimental setup including the clamping and
a close-up on the patch �xation. Using conductive glue, the piezoelectric patches were
installed inside the drum, one electrode being connected to the BluM structure. The
clamping of the drum was realized by screwing it on a metal plate that was vertically
�xed on an optical breadboard. This optical breadboard was then mounted on an optical
table, building the electrical ground. An impulsive force located at the outer part of the
drum below patch#9 was applied using a hammer (�ve runs per FRF). A laser vibrometer
measured the tip velocity at a blade tip at the bottom of the BluM close to patch#15. The
magnets that were mounted at the blade tips to excite the structure [83�85] were initially
retained and eventually modi�ed in the course of the robustness study. The digital shunts
were implemented via a dSPACE MicroLabBox, and the Simcenter Testlab software was
used for data acquisition and post-processing. Since the MicroLabBox has only 16 DAC
output channels, only 16 of the 28 patches of the BluM were used simultaneously. As
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Figure 4.13: Experimental setup of the BluM with DVAs - side view.

already mentioned earlier and discussed in [83�85], the BluM is inevitably mistuned. For
this reason, the patch con�gurations in Figure 4.1 were used, in line with the numerical
simulations in Section 4.3.

4.4.2 BluM dynamics

Figure 4.15 presents the FRF (mobility) when the piezoelectric patches are in open circuit.
The resonance frequencies and amplitudes are normalized with respect to the frequency
and peak amplitude of the �rst mode of the �rst bending mode family located between
1 and 1.06. The second family of BluM modes comprising torsional modes is not visible
because the laser measured the velocity at the center of the blade. The third mode family
consisting of the second bending modes of the blades is located after 2.5. Between these
families, isolated modes of the drum support appear. Our focus for vibration mitigation is
on the �rst mode family comprising 35 visible resonance peaks and the surrounding drum
modes. This mode family features closely-spaced modes with predominantly low damping.
The subsequent mode families are located at higher frequencies, requiring high sampling
frequencies that cannot be straightforwardly achieved using the available hardware.

4.4.3 Dynamic impedances and coupling assessment

To assess the electromechanical coupling, the dynamic impedance function is considered
for each shunted patch. A total of 16 dynamic impedances were measured per patch
con�guration. To this end, the BluM was excited via a piezoelectric patch, resulting in
one set of measurements per con�guration. Considering the available working memory
of the MicroLabBox, this sequential excitation was necessary in order to simultaneously
measure with 16 patches. The excitation signal was a multisine in the frequency interval
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Figure 4.14: View on the whole experimental setup of the BluM with DVAs and its clamping
realization (left) and a close-up on the patch �xation inside the drum (right).

0-4.4. RMS amplitudes were chosen for each patch individually to avoid saturation of the
DVA and to achieve an overall uniform excitation with all transducers combined. With
n = 400000 samples per period and a sampling rate fs= 10000Hz, a frequency resolution
of 0.05Hz was obtained. One multisine realization was averaged over P = 10 periods [128].

The dynamic impedance measurement of patch 1 for patch con�guration 3 is plotted
in Figure 4.16. The mode families #1 and #3 are visible whereas mode family #2 cannot
be observed. The dynamic impedances for the �rst mode family for the 16 piezoelectric
patches are presented in Figure 4.17. Each patch features good coupling with the di�erent
modes. Besides, there is no coupling with all 76 blade modes in any patch. One possible
reason for this is the presence of mistuning in the BluM. The dynamic impedances for the
other patch con�gurations in Appendix B present similar characteristics.

Plant models were identi�ed using the PolyMAX method [129], as in Section 3.2. During
the identi�cation process, the relations between the patches were not taken into account
since the o�-diagonal FRF terms are relatively small and thus easily corrupted by noise.
The stabilization diagram for patch con�guration 3 is plotted in Figure 4.18. The iden-
ti�ed modes for all patch con�gurations are listed in Table 4.1. The table also includes
the modes of an altered BluM setup used later for a robustness study. It contains the
modes of the �rst mode family as well as drum modes at frequencies < 1. Modes that
appear after mode family #1 are not listed herein since they are not targeted by the
shunts. Comparing the stabilization diagram in Figure 4.18 with Figure 3.8, we see that
the multiplicity of modes complicates the identi�cation of the stabilized modes. In ad-
dition, not every patch features a good coupling with each identi�ed mode (cf. Figures
4.17 and 4.18). We also note that the signal-to-noise ratio is smaller in comparison to the
measurements conducted on the bladed rail, representing a further complication for the
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(a) Whole frequency range.
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(b) Mode family #1.

Figure 4.15: Open-circuit FRF of the BluM.
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Figure 4.16: Dynamic impedance of piezoelectric patch 1 in patch con�guration 3.

identi�cation process.

The identi�ed state-space model comprising the general trend of the dynamic impedance
function is presented in Figure 4.19. The model features a relatively good �t of the mag-
nitude, but it is 0.4 dB lower than the measurements in the frequency range of the mode
family. In addition, the phase has errors of approximately 5◦, and the general trend is not
captured correctly. A possible reason for this disagreement is noise at low frequencies.
Nevertheless, these errors were corrected when the identi�ed complex poles were incorpo-
rated in the model. This is shown in the Bode plots of Figure 4.20. A good agreement
between the measurements and the model can be obtained both for the magnitude and
the phase. However, the phase plot reveals that not all modes that feature a coupling
with this patch were identi�ed in the model, e.g., around the frequencies 1.026 and 1.046.

The identi�ed models provided the parameters of the electromechanical system neces-
sary for coupling evaluation and shunt tuning. The damping ratios were generally around
0.04% for con�guration 3. In addition, following the isolated mode strategy, the patch-
to-mode distribution is listed in Table 4.2. This distribution was chosen in such a way
that no mode was targeted twice.

4.4.4 Performance of the shunts

4.4.4.1 Mode family #1

To mitigate the resonant vibrations of the �rst mode family, the isolated mode and mean
shunt strategies were applied to the BluM. Table 4.3 presents the di�erent mean frequen-
cies used for each patch con�guration. Figure 4.21 displays the FRF (mobility) of the
uncontrolled and controlled systems for patch con�guration 3 (see Figures B.5-B.8 in Ap-
pendix B for the other patch con�gurations). Both strategies yield excellent performance
with reductions of the resonance peak amplitudes up to 10 dB. Vibration attenuation
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(a) Patch 1 ( ), patch 2 ( ), patch 3 ( ) and patch 4 ( ).
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(b) Patch 5 ( ), patch 6 ( ), patch 7 ( ) and patch 8 ( ).
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(c) Patch 9 ( ), patch 10 ( ), patch 11 ( ) and patch 12 ( ).

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

Normalized frequency

8

9

10

M
ag

n
it

u
d

e 
(d

B
)

(d) Patch 13 ( ), patch 14 ( ), patch 15 ( ) and patch 16 ( ).

Figure 4.17: Dynamic impedance of patches 1-16 for patch con�guration 3.
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Figure 4.18: Stabilization diagram for patch con�guration 3. ×: stabilized poles; ◦ and (
) at the corresponding frequency: identi�ed poles. Since the individual transfer functions are
indistinguishable in this plot, they are not noted in the legend.
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Normalized frequency

Mode Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 3 Conf. 5
number (altered) (altered)

1 0.603 0.603 0.602 0.604 0.9213 0.602 0.603
2 0.872 0.921 0.921 0.872 0.937 0.998 0.938
3 0.921 0.936 0.960 0.921 0.100 1.008 0.976
4 0.936 0.960 1.000 0.936 1.012 1.011 0.987
5 0.960 1.000 1.012 1.012 1.015 1.016 0.998
6 1.000 1.010 1.020 1.016 1.018 1.019 1.008
7 1.010 1.012 1.030 1.018 1.012 1.022 1.014
8 1.012 1.016 1.033 1.020 1.024 1.025 1.017
9 1.016 1.018 1.039 1.024 1.026 1.030 1.019
10 1.018 1.020 1.041 1.026 1.028 1.032 1.022
11 1.020 1.025 1.047 1.028 1.032 1.034 1.025
12 1.024 1.026 1.048 1.030 1.034 1.036 1.027
13 1.026 1.029 1.051 1.032 1.038 1.039 1.029
14 1.028 1.030 1.054 1.033 1.040 1.042 1.032
15 1.030 1.032 1.057 1.034 1.042 1.048 1.034
16 1.032 1.034 1.059 1.035 1.046 1.049 1.040
17 1.034 1.039 1.063 1.037 1.049 1.053 1.042
18 1.039 1.046 1.065 1.039 1.052 1.056 1.044
19 1.040 1.049 1.069 1.040 1.054 1.061 1.047
20 1.044 1.051 1.075 1.042 1.058 1.064 1.049
21 1.046 1.053 1.098 1.044 1.060 1.074 1.053
22 1.047 1.057 1.102 1.046 1.063 1.075 1.057
23 1.049 1.059 - 1.047 1.065 1.098 1.059
24 1.051 1.061 - 1.049 1.067 - 1.061
25 1.053 1.063 - 1.051 1.069 - 1.064
26 1.057 1.065 - 1.053 1.075 - 1.065
27 1.059 1.069 - 1.054 - - 1.068
28 1.061 1.075 - 1.056 - - 1.071
29 1.063 1.099 - 1.057 - - 1.074
30 1.069 - - 1.061 - - 1.075
31 - - - 1.062 - - 1.079
32 - - - 1.075 - - 1.082

Table 4.1: Identi�ed mode frequencies of the initial and altered systems.
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Figure 4.19: Bode plot of the dynamic impedance for patch 1/con�guration 3 ( ) and the
identi�ed model ( ) of the overall trend and the imperfection knee.

Mode number

Patch Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 3
number (Robustness)

1 6 9 11 7 6 6
2 4 15 14 4 2 10
3 12 19 21 13 11 21
4 15 11 20 19 14 16
5 16 20 19 20 15 14
6 18 16 18 24 17 13
7 8 18 11 9 8 8
8 19 29 17 25 18 17
9 13 27 14 22 28 14
10 20 23 22 15 26 12
11 22 25 16 6 25 5
12 26 22 17 29 23 18
13 21 14 7 31 16 19
14 23 17 6 33 22 18
15 3 24 9 28 19 14
16 11 21 12 30 29 22

Table 4.2: Patch-to-mode distribution for the isolated mode strategy.
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Figure 4.20: Bode plot of the dynamic impedance for patch 1/con�guration 3 ( ) and the
identi�ed model ( ).
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is particularly high between normalized frequencies 1.02 and 1.07 where the modes are
very close to each other. This is due to two reasons, i.e., the mean frequency lies in this
interval, and the coupling for these modes is stronger, as indicated in Table 4.2.

To compare the di�erent patch con�gurations, the FRF are displayed in Figures 4.22
and 4.23, and the H2 norms of the FRF are given in Table 4.4. For better visualization, a
linear scale is used for the vertical axis. The magnitudes were normalized with respect to
the peak magnitude of the �rst mode of family #1. Overall, the di�erent con�gurations
yield very good damping performances. However, it is clear that con�guration 3 provides
the best vibration attenuation results leading to a relatively uniform reduction without
important dropouts. Conversely, con�guration 4 which can be seen as complementary to
con�guration 3 (see Figure 4.1) features such dropouts, e.g., at 1.054. The same holds
true for the other con�gurations, partly explaining the di�erence between the H2 norms.
A possible explanation for these di�erences can be, e.g., the excitation location centered
at the localized patch distribution in con�guration 3. Here, the coupling might be strong.
The setup has also uncertainties and asymmetries due to mistuning and possible irreg-
ularities due to the �xation of the patches (uneven distribution of the conductive glue),
which can possibly in�uence the coupling with speci�c modes. It is thus di�cult to draw
general conclusions regarding the performance for di�erent patch con�gurations. In ad-
dition, the numerical study did not evidence particularly favorable con�gurations either.

Con�guration Mean frequency
1 1.038
2 1.040
3 1.044
4 1.028
5 1.041

Table 4.3: Mean frequencies targeted by the mean shunt strategy.

Con�guration H2 norm
Open circuit 221.52

- Isolated mode Mean shunt
1 166.24 164.84
2 184.80 190.45
3 143.45 147.64
4 194.08 157.95
5 161.99 155.47

Table 4.4: Amplitude reduction measured through the H2 norm between 0.9778 and 1.0667.
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Figure 4.21: FRFs for patch con�guration 3. Open circuit ( ), isolated mode ( ) and mean
shunt ( ). The mean frequency is represented using ( ).

4.4.4.2 Robustness study

To evaluate the robustness of the previous results, some of the small magnets mounted
on the blade tips in [83�85] were detached. A total number of 14 magnets with a mass of
1.3 g were removed at the locations indicated in Figure 4.24. This resulted in a change in
the resonance frequencies of up to 0.7%, as shown in Figure 4.25. In the following �gures,
the frequencies and amplitudes remain normalized with respect to the �rst resonance fre-
quency of mode family #1 in the initial con�guration.

Both the isolated mode and mean shunt strategies with patch con�guration 3 were ap-
plied to the altered system, considering the original shunt transfer function (referred to as
detuned case) and a retuned design based on newly identi�ed system parameters. Their
respective performance is compared in Figure 4.26.

For the detuned case, we observe similar damping performance (from 5 to 10 dB) be-
tween 0.99 and 1.05. However, certain resonance peaks, e.g., at 1.008, 1.011, and 1.027,
feature no or only a small amplitude reduction. At 1.019, one can even observe an in-
crease in the resonance amplitude. Around 1.044, both approaches yield large amplitude
reductions. For the mean shunt strategy, this is because this frequency range is speci�-
cally targeted. For the isolated mode strategy, it turns out that several shunts were also
tuned toward frequencies close to 1.044. For frequencies starting from 1.05, there was
less coupling with the modes than in the initial BluM. The mean shunt strategy is clearly
more robust than the isolated mode strategy in this frequency range.

Overall, both strategies could be retuned successfully, as con�rmed in Figure 4.26b. How-
ever, as for the detuned case, no signi�cant amplitude reduction could be achieved for the
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Figure 4.22: FRFs: open circuit ( ), isolated mode strategy, con�gurations 1 ( ), 2 ( ),
3 ( ), 4 ( ) and 5 ( ).
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Figure 4.23: FRF: open-circuit ( ), mean shunt strategy, con�gurations 1 ( ), 2 ( ), 3
( ), 4 ( ) and 5 ( ).
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Figure 4.24: Locations where magnets were removed.

resonances after 1.05. It can also be observed that the mean shunt strategy clearly leads
to better vibration attenuation, particularly in the range of the mean frequency (1.019).

Figure 4.27 which plots the FRFs of the BluM controlled by detuned and retuned mean
shunts evidences the in�uence of the mean frequency. For instance, the mode at 1.057
could be attenuated with the detuned mean frequency (1.044) whereas this was not pos-
sible for the retuned mean frequency (1.019). Figure B.9 shows the same comparison for
the isolated mode strategy.

4.4.4.3 Targeting multiple modes with one shunt circuit

Thanks to the multi-stage current blocking circuit presented in Section 2.5.2, not only the
modes of family #1 but also the modes of the drum support can be targeted with one
shunt circuit with di�erent stages.

Two-stage shunt circuit

The mean shunt strategy was applied to mode family #1 along with an individual RL
shunt targeting the drum mode at 0.602 in patch con�guration 3. The resulting FRFs in
Figure 4.28 evidence a reduction in resonance amplitude for both the drum mode (7.5 dB)
and the mode family (amounting to 12 dB especially between 1.040 and 1.065).

We note that the use of the multimodal two-stage shunt circuit leads to a certain loss of
control authority over the �rst mode family, as can be seen from the fact that the reso-
nance amplitudes were somewhat less reduced compared to the single shunt case (up to
5 dB). In addition, as already mentioned in Section 2.5.2, the use of a multi-stage shunt
circuit can lead to some imprecision in the tuned shunt branches due to the fact that an
ideal current �ow cannot always be guaranteed since the stages might interact.
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Figure 4.25: Open-circuit FRFs of the initial ( ) and altered systems ( ).

Three-stage shunt circuit

Two drum modes were then targeted together with mode family #1 by implementing
a shunt circuit comprising three stages. To this end, we consider patch con�guration 5
due to the fact that it features a good coupling with multiple drum modes. The patch
con�guration was applied to the altered BluM con�guration used for the robustness study
in Section 4.4.4.2. The identi�ed modes for this setup are listed in the last column of
Table 4.1. The �rst identi�ed drum modes, namely 0.603 and 0.938, were targeted by
the �rst stages of the shunt circuit whereas the last stage was tuned toward the mean
frequency of mode family #1 (1.040). The resulting FRF in Figure 4.29 shows that the
resonance amplitudes of the drum modes could be successfully attenuated (3.5 dB and
6 dB, respectively). Moreover, the amplitudes of almost every resonance peak of the
mode family could be reduced by amounts ranging from 3 dB to 11 dB.

4.5 Conclusion

The objective of this chapter was multimodal shunt damping with multiple transducers,
each connected to a DVA. The tuning strategies developed in Section 2.5 were successfully
validated numerically and experimentally using a complex industrial structure, the BluM.
Speci�cally, the resonant vibrations of mode family #1 together with one or two drum
modes were attenuated thanks to the multi-stage shunt design presented in Section 2.5.2.
This chapter also studied carefully the in�uence of di�erent parameters, including the
number/con�guration of piezoelectric patches and mistuning. For instance, numeri-
cal simulations showed that the attenuation performance is already satisfactory with 7
patches. In addition, all patch con�gurations could provide an overall uniform and sub-
stantial damping performance with a mean attenuation of the FRF amplitudes of about
70% and a minimum attenuation of 40%, this even in the presence of mistuning. For the
experimental BluM, reductions of the resonance magnitudes mostly ranged from 4 dB to
10 dB.
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(a) Detuned shunts.
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(b) Retuned shunts.

Figure 4.26: Robustness study. Initial open-circuit FRF ( ), open-circuit FRF of the altered
system ( ), isolated mode strategy ( ) and mean shunt strategy ( ). The mean frequency
is represented using ( ).
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Figure 4.27: Open-circuit FRF of the altered system ( ) and FRFs of the system controlled by
detuned mean shunts ( ) and retuned mean shunts ( ). The mean frequencies are represented
using ( ) and ( ), respectively.

Both the isolated mode and mean shunt tuning strategies proved e�cient in the dif-
ferent cases investigated. However, the tuning procedure for the mean shunt strategy is
signi�cantly faster. Indeed, unlike the isolated mode strategy, a coupling evaluation and
a mode-to-patch distribution are not needed. All in all, the preference should thus be
given to the mean shunt strategy.

The digital implementation of the shunts o�ers great advantages over the analog shunt
circuits used in [83�85]. Indeed, in this study, the DVAs allowed for a rapid and easy
retuning of the shunt when mistuning was introduced. Also, the DVAs are very compact
when realized on a PCB.

This chapter proposed a proof of concept that can be used as a basis for more robust
industrial implementation. Further research could, e.g., automate the system identi�ca-
tion procedure to progress toward self-tuning DVAs. It would also be of interest to study
the impact of di�erent measurement locations and types of excitation on shunt perfor-
mance. A good candidate is engine order excitation which better re�ects the BluM's
operational conditions. Finally, a rotating BluM could also be envisioned where energy
harvesting from the rotational energy could be used to power the DVAs.
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(a) Whole frequency range.
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(b) Close-up on mode family #1. Comparison with single mean shunts ( ).

Figure 4.28: FRFs of the uncontrolled system ( ) and of the system controlled by a two-stage
current blocking circuit ( ). The targeted mean frequency is represented using ( ).
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(b) Close-up on mode family #1.

Figure 4.29: FRFs of the uncontrolled system ( ) and of the system controlled by a three-
stage current blocking circuit ( ). The targeted mean frequency is represented using ( ).
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Chapter 5

Exact H∞ tuning rule for a positive

position feedback controller

5.1 Introduction

In the previous chapters, passive control laws were applied to structures featuring dif-
ferent levels of complexity. This chapter focuses on active control methods which have
the advantage of improving the control authority over the system. However, since active
controllers can potentially introduce additional energy into the system, special attention
must be paid to stability conditions.

To allow for damping performance enhancement, this chapter discusses the possibility
to add an active component to classical RL shunts, namely a negative capacitance, to
form an NCRL shunt. In this context, classic H∞ tuning rules for passive RL shunts
are �rst extended to this case. In a second step, a parallel between the control parame-
ters of an NCRL shunt and of a PPF controller is drawn. This parameter equivalence is
subsequently used to translate the shunt tuning rules to PPF controllers with the aim to
provide exact H∞ tuning rules and a closed-form expression of the maximum amplitude of
the receptance function. Using these newly-derived tuning rules, a thorough comparison
between NCRL shunts and PPF controllers is performed using an SDOF example. Owing
to their considerably greater stability margins, we then focus solely on the PPF controller
for the evaluation of the performance of these tuning rules.

5.2 Enhancing the damping performance of RL shunts

with a negative capacitance

The damping performance of classical RL shunts, which operate according to a purely
passive control law, is limited by the coupling between the mechanical structure and the
piezoelectric transducer. Consequently, an improvement of this coupling, characterized
by the EMCF, can augment control performance. To achieve this, an NC can be added
in series or parallel to the shunt circuit.
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The concept of an NC was �rst introduced by Forward [18]. The author aimed to compen-
sate for the inherent capacitance of electromechanical transducers coupled to vibrating
mechanical structures using an NC circuit in parallel to a piezoelectric transducer. Bon-
doux cancelled the electrical reactance in simple R shunt circuits with an NC alone and
eventually compared it to an RL shunt [135]. Tang and Wang implemented an NC in
series with the piezoelectric material to improve the damping performance of resonant
shunts [136]. They adapted the shunt tuning rules based on the common intersection
points (�xed points) of the FRF for passive RL shunts �rst introduced by Hagood and
von Flotow [19]. Behrens et al. presented a thorough theoretical analysis of a controller
consisting of an R shunt with an NC. Their results were demonstrated using a plate
structure whereas the NC value was chosen to be as close as possible to the stability limit
[137]. Fleming and Moheimani designed active shunt impedance based on LQG and H∞
synthesis techniques. In their work, they noticed some similarities between these active
impedances and an NC [27]. Neubauer et al. compared di�erent circuit compositions of
series NCRL shunts in order to point out the stability limits and the enhanced damping
performance. They provided experimental validations with a vibrating mass mounted on
a piezoelectric stack actuator [138]. In their study, the optimal shunt parameters were
also derived by means of the �xed-points tuning rule. Later, de Marne�e and Preumont
compared a series and a parallel con�guration of an NC and concluded that the series
implementation is more robust [28]. Their theoretical results were veri�ed by experiments
on a truss structure where the NC values were chosen so that 90% of the stability limit
was reached. In addition, they compared an NCRL shunt to the classical active approach
of an integral force feedback (IFF) controller. It could be shown that the IFF controller
leads to better damping performance than the shunt [28]. Berardengo et al. derived more
complex formulations for the dynamic capacitance of the piezoelectric transducer in order
to take multiple modes and their in�uence into account and to design a robust electrical
network by using a real circuit to realize the NC. They proposed di�erent designs for RL
shunts with an NC in parallel or series as well as a circuit with two NC in parallel-series
combinations. Eventually, their �ndings were validated using a cantilever steel beam [39,
139]. Subsequently, Berardengo et al. proposed a solution for multimodal shunt damping
with R shunts connected to an NC (RNC shunts) and to an inductance L. Instead of
tuning L toward a monomodal control, the inductor was used to improve the broadband
attenuation of the RNC shunt being relatively robust to detuning [140]. The method was
demonstrated numerically and experimentally. Recently, Sugino et al. realized an NC
circuit with a digital controller to create programmable bandgaps in a beam [141]. Both
the synthetic impedance and the NC need to be powered [138]. This is why piezolectric
NCRL shunts, although working according to a passive control law, are sometimes classi-
�ed in the active control �eld.

In this chapter, the exact H∞ tuning rule for RL shunts, �rst proposed by Soltani et
al. [47] (cf. Section 1.3.2.2), are extended to the case when an RL shunt is connected in
series to an NC. An equivalence between a PPF controller and an NCRL shunt is then
put forward in order to translate this tuning rule to the active control case. Finally, a
comparison between the two approaches is provided, highlighting the superiority of the
PPF controller for practical applications.
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Figure 5.1: SDOF system with a series RL shunt in series with an NC.

5.2.1 The NCRL shunt

We reconsider the example of a piezoelectric SDOF structure similar to the one in Figure
1.6, now connected to a series RL shunt in series with an NC as displayed in Figure
5.1. The equations of motion for the passive part of the system are given in Equation
(1.27), with θp characterizing the amount of energy that is transformed between the
piezoelectric transducer and the mechanical system [19]. We recall the de�nition of the
dimensionless EMCF given in Equation (1.13), or, alternatively normalized with the open-
circuit resonance frequency in (1.14). This coupling factor is de�ned by means of the �xed
properties of the host system, namely θp and Cε

p . The maximum amplitude of the forced
response of the controlled system is determined by the EMCF, as it is taken into account
for the de�nition of the shunt parameters [47]. If an NC is added to the shunt circuit,
the electromechanical coupling can be increased and the shunt performance is enhanced
[28]. For a piezoelectric transducer connected to a passive RL shunt circuit in series with
a negative capacitance Cn, the relation between the voltage and the charge is given by(

Ls2 +Rs− 1

Cn

)
qp = Vp . (5.1)

The electrical part of Equation (1.27) adapted to the case when an NC is used reads

Ls2qP +Rsqp +
1

Ceff

qp − θpx = 0 , (5.2)

with the e�ective capacitance [39]

1

Ceff

=
1

Cε
p

− 1

Cn

. (5.3)

With this additional parameter, the shunt parameters R and L now need to be tuned
in dependence of Cn to obtain an optimal damping performance. We write the transfer
function from the disturbance force to the displacement using the �rst line of Equation
(1.27) and Equation (5.2)

x

f
=

[
ms2 + koc −

θ2p
Ls2 +Rs+ 1

Ceff

]−1

. (5.4)
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Introducing the electrical frequency and the damping ratio of the shunt, Equation (5.4)
can be rewritten in dimensionless form

ω2
e :=

1

CeffL
, 2ωeζe :=

R

L
(5.5)

so that [48]

xst :=
f

koc
, α̃2 :=

θ2pCeff

koc
, νe :=

ωe

ωoc

, ŝ :=
s

ωoc

. (5.6)

The tilde refers to the case when an NC is used. Using Equations (5.5) and (5.6), the
transfer function of the SDOF system with an NCRL shunt reads

h(ŝ) =
x

xst

=

[
ŝ2 + 1− α̃2

ŝ2

ν2e
+ 2ζe

ŝ
νe

+ 1

]−1

. (5.7)

With Equations (1.14), (5.3) and (5.6), the EMCF, enhanced by an NC is now

α̃2 =
θ2pC

ε
p

koc

Ceff

Cε
p

= α2

[
1−

Cε
p

Cn

]−1

. (5.8)

Its value is greater than the EMCF of the initial system, when Cε
p < Cn < ∞. Due to

the relation

K̃2
c =

α̃2

1− α̃2
, (5.9)

the short-circuit normalized EMCF is also increased.

5.2.2 H∞ tuning rules for RL shunts with NC

The exact H∞ tuning rules for passive RL shunts presented in Section 1.3.2.2 are now
extended to the NCRL case. There is now an additional free parameter α̃ that is �xed in
the �rst place in order to �nd optimal values for νe and ζe. This is done by minimizing
the H∞ norm of the transfer function h(iω̂). ω̂ represents a circular frequency normalized
by ωoc given in Equation (5.7):

minνe,ζe∥h(jω̂e)∥∞ → �nd νe, ζe such that |h(jω̂e,A)| = |h(jω̂e,B)| ≡ h0 .

Here, h0 is the maximum ampli�cation of two equal resonance peaks at the dimensionless
frequencies ω̂e,A and ω̂e,B. It can be expressed as function of the e�ective EMCF [47]:

h0 =
8

α̃
√
2
√
54α̃4 − 144α̃2 + 64 + 9α̃2 + 16

. (5.10)

Equation (5.10) can then be solved for α̃, being equivalent to

135h4
0α̃

8 − 864h4
0α̃

6 + 1152h2
0α̃

4 + 2048h2
0α̃

2 − 4096 = 0 . (5.11)

Equation (5.11) is a quartic equation in α̃2 that is solvable in closed-form. This means
that a coupling coe�cient α̃2 can be deduced for a desired ampli�cation h0 by solving
Equation (5.11).
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By minimizing the peak amplitude h0, we �nd a value for α̃ so that

∂h0

∂α̃
= 0 . (5.12)

Using Mathematica [142], we obtain:

∂h0

∂α̃
= −

4

(
216α̃3−288α̃√

54α̃4−144α̃2+64
+18α̃

)
α̃(9α̃2+2

√
54α̃4−144α̃2+64+16)

3/2 − 8

α̃2
√

9α̃2+2
√
54α̃4−144α̃2+64+16

. (5.13)

Equations (5.10) and (5.12) are solved for α̃, yielding

α̃opt = 2

√
2

15
. (5.14)

Inserting α̃opt in Equation (5.10), we obtain a quanti�cation of the minimum attainable
dimensionless H∞ norm:

h0,opt =
√
5 . (5.15)

With α̃opt, we can also de�ne the shunt parameters νe and ζe, expressed as a function
of K̃2

c (cf. Equation (5.9)). To this end, the tuning rules provided by Soltani et al. [47]
can be used to �nd the optimal shunt parameters. The intermediate parameter r is found
with Equation (1.30), using K̃2

c instead of K2
c . The optimal frequency and damping ratios

then read

νe =

√
3K̃2

c − 4r + 8

4K̃2
c + 4

(5.16)

and

ζe =

√
27K̃4

c + 80K̃2
c + 64− 16r

(
4 + 3K̃2

c

)
√
2
(
5K̃2

c + 8
) , (5.17)

Finally, a theoretical optimal value for Cn can be derived with Equations (5.8) and (5.14):

Cn,opt = Cε
p

[
1− α2

α̃2
opt

]−1

. (5.18)

Using Equation (5.5), physical shunt parameters R and L can be calculated for a series
shunt. They are a function of Ceff , ωoc, νe and ζe.

5.3 Equivalence between an RL shunt with an NC and

a PPF controller

Another way to attenuate vibrations is to control a structure with an active damping
device such as a PPF controller [21]. This approach acts like a �lter, controlling a dis-
placement with an actuation force [22, 143, 144]. As already implied in the name, the
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position coordinate is measured by a sensor and positively fed to both the compensator
and eventually back to the structure via an actuator [144, 145]. Three controller param-
eters, namely the pole frequency, the damping ratio and the controller gain, need to be
de�ned for a second-order PPF. The controller acts on the system as a low-pass �lter and
is rolling o� at higher frequencies. Hence, there is no risk to excite higher-order modes
with a PPF controller which is an interesting feature of the approach [72]. Moreover, it
can be designed using solely experimentally obtained transfer functions, eliminating the
need to create analytical models of the plant structure. Goh and Caughey provided a
comparison between velocity feedback and PPF controllers, stating that the latter yields
a more robust closed-loop system [22]. All these properties make the PPF an attractive
solution for the mitigation of structural vibrations.

Di�erent strategies can be followed for the choice of the controller parameters. In [22],
the authors aimed for maximum attainable closed-loop damping that was combined with
tuning �lters in the multimodal case. A self-sensing PPF controller with a piezoelec-
tric patch acting simultaneously as a sensor and actuator was proposed by Dosch et al.
[146]. An optimization algorithm was then used to determine the controller parameters
aiming for optimal damping of the resonance amplitude of the receptance function [146,
147]. Kwak and Han investigated the possibility of using a genetic algorithm to �nd
optimal PPF parameters [148]. In their work, solely the controller frequency was var-
ied, whereas the remaining parameters remained �xed, which is a notable drawback of
their study. Enríquez-Zárate et al. proposed a controller design with an a priori de�ned
damping factor and chose the controller gain with the focus on ensuring system stability
[149]. A common tuning approach for the controller parameters is to focus on the pole
frequency ensuring that the controller resonates at the host structure's natural frequency
[150]. For a maximum �atband response, a �fth-order Butterworth �lter for a speci�c
frequency might be used to design the PPF controller [151]. In their work, Paknejad
et al. aimed to optimize all three controller parameters opting for maximum damping
[152]. It is widely known that PPF controllers increase the low-frequency sensitivity of
the controlled system, resulting in a growth of the static response [153]. To limit this
static softening, Paknedjad et al. minimized the H2 norm of the receptance for the �nal
controller design. Alternatively, the problem can be addressed by expressing the PPF
�lter in a fractional-order format [154, 155]. A feedforward control that is counteracting
the increasing static response might become an option, if the user has a good knowledge
of the system dynamics [156]. Recently, MacLean et al. studied how a desired damping
performance, the static softening and system stability interact with each other [153]. In
[157], Den Hartog's �xed-points theory was adapted to tune a PPF controller. Similarly
to the resonant piezoelectric shunt controller, the receptance function of the controlled
system exhibits two resonance peaks around the targeted frequency. Using the tuning
rules in [157], the resonance peaks then feature an approximately equal amplitude. Yet,
an exact solution in the H∞ sense is not provided.
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𝑚

𝑘

𝑥

PPF𝑔𝑐𝑢𝑐

𝑓

Figure 5.2: SDOF system with a PPF controller.

5.4 Parameter equivalence between NCRL and PPF

controllers

The SDOF system is now controlled by a PPF controller as displayed in Figure 5.2 with
a collocated sensor-actuator pair. We obtain the following equations of motion{

mxs2 + kx = f + ω2
cgcuc

(s2 + 2ωcζcs+ ω2
c )uc = x

, (5.19)

with the control signal uc, the damping ratio ζc, the controller frequency ωc and the
controller gain gc. The second line of Equation (5.19) is then inserted in the �rst so that

(ms2 + k)x = f +
ω2
cgcx

s2 + 2ωcζcs+ ω2
c

. (5.20)

Equation (5.20) is then divided by x. The reciprocal of this expression yields the recep-
tance function

x

f
=

[
ms2 + k − ω2

cgc
s2 + 2ωcζcs+ ω2

c

]−1

. (5.21)

With [48]

xst :=
f

k
, ω0 :=

√
k

m
, ŝ :=

s

ω0

, νc :=
ωc

ω0

, g :=
gc
k
, (5.22)

Equation (5.21) can be rewritten in dimensionless form:

x

xst

=

[
ŝ2 + 1− g

ŝ2

ν2c
+ 2ζc

ŝ
νc
+ 1

]−1

. (5.23)

Comparing Equations (5.7) and (5.23), we can see that the controller parameters of an
NCRL shunt and those of a PPF controller play the same role in the receptance function.
This parameter equivalence is provided in Table 5.1. Interestingly, a dynamical similarity
was already pointed out by Agnes [145]. In this work, a full equivalence of the tuning
parameters and the receptance functions is stated. To demonstrate this equivalence, a
SDOF host system is controlled by an NCRL shunt and a PPF controller, both tuned
with the optimal parameters in Table 5.1. The results in Figure 5.3 evidences that the
receptance functions are identical, con�rming our �nding.
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Shunt α̃2 νe ζe
PPF g νc ζc

Table 5.1: Equivalence between the dimensionless parameters of an NCRL shunt and a PPF
controller.
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Figure 5.3: Receptance function of a dimensionless SDOF system in the uncontrolled case
( )) and controlled by an NCRL shunt (α = 0.1) ( ) and a PPF controller ( )). Both are
tuned according to H∞ tuning rules.

5.5 Limitations of the parameter equivalence

In the previous section, it was shown that an NCRL shunt and a perfectly collocated
PPF exhibit identical receptance functions when the parameter equivalence of 5.1 is con-
sidered. However, this equivalence is only valid up to certain limits. This becomes clear
when assessing the stability limits of the two approaches. In the following, two di�erent
viewpoints to investigate stability are discussed. To this end, we regard the open-loop
transfer functions of the two systems. They can be derived by means of the feedback
diagrams displayed in Figure 5.4. For the NCRL shunt, the transfer function G(s), also
known as the dynamic impedance of the piezoelectric transducer, can be derived from
Equation (1.10) and the expression of ksc (cf. Equations (1.9) and (1.11)):

GShunt(s) =
Vp

sqp

∣∣∣∣
f=0

= − 1

sCε
p

s2 + ω2
sc

s2 + ω2
oc

. (5.24)

It is the relation between sqp and Vp when the external forcing f is set to zero. The
feedback YShunt,NC(s) then reads

YShunt,NC =
1

Ls+R− 1
sCn

. (5.25)
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𝐺𝑆ℎ𝑢𝑛𝑡(𝑠)

𝑌𝑆ℎ𝑢𝑛𝑡,𝑁𝐶(𝑠)

+
+𝑠𝑞 𝑉

𝑥𝑓

(a) Piezoelectric NCRL shunt.

𝐺𝑃𝑃𝐹(𝑠)

𝑃𝑃𝐹(𝑠)

+
+𝑓𝑃𝑃𝐹

𝑥𝑓

(b) PPF controller.

Figure 5.4: Feedback control of a host system with di�erent control approaches.

Equations (5.24) and (5.25) are now combined to obtain the open-loop transfer function
in dimensionless form (with Equations (5.5) and (5.6))

Hol,Shunt(ŝ) = −GShunt(ŝ)YShunt,NC(ŝ) =
ŝ2 + 1− α2

ŝ2 + 1

α̃2

α2

ŝ2

ν2e
+ 2ζe

ŝ
νe

+ 1− α̃2

α2

. (5.26)

For the PPF controller, the plant transfer function GPPF is derived from Equation (5.19)
as the relation between the controller force fPPF = ω2

cgcuc and the displacement x when
f = 0:

GPPF (s) =
1

ms2 + k
. (5.27)

In the PPF case, the feedback is a second-order �lter:

PPF (s) =
gcω

2
c

s2 + 2ωcζcs+ ω2
c

. (5.28)

With Equations (5.27) and (5.28), and the parameters in Equation (5.22), the open-loop
transfer function is written in dimensionless form:

Hol,PPF (ŝ) = −GPPF (ŝ)PPF (ŝ) = − 1

ŝ2 + 1

g
ŝ2

ν2c
+ 2ζc

ŝ
νc
+ 1

. (5.29)

Case 1: Only α̃2 and g are varied

Following the spirit of the parameter equivalence, the controller gains α̃2 and g are varied
in the same way. The characteristic equation for the NCRL shunt can be derived from
Equation (5.26)

1 +
ŝ2 + 1− α2

ŝ2 + 1

α̃2

α2

ŝ2

ν2e
+ 2ζe

ŝ
νe

+ 1− α̃2

α2

= 0. (5.30)

It can be rewritten so that

(ŝ2 + 1)

(
ŝ2

ν2
e

+ 2ζe
ŝ

νe
+ 1− α̃2

α2

)
+
(
ŝ2 + 1− α2

) α̃2

α2
= 0 (5.31)

and

(ŝ2 + 1)

(
ŝ2

ν2
e

+ 2ζe
ŝ

νe
+ 1

)
− α̃2 = 0. (5.32)
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𝐺𝑆ℎ𝑢𝑛𝑡(𝑠)

𝑌𝑆ℎ𝑢𝑛𝑡,𝑁𝐶(𝑠)

+
+𝑠𝑞 𝑉

𝑥𝑓

𝑘𝑓𝑒𝑒𝑑

(a) Piezoelectric RL shunt with NC.

𝐺𝑃𝑃𝐹(𝑠)

𝑃𝑃𝐹(𝑠)

+
+𝑓𝑃𝑃𝐹

𝑥𝑓

𝑘𝑓𝑒𝑒𝑑

(b) PPF controller.

Figure 5.5: Feedback control with a loop gain with a piezoelectric RL shunt with di�erent
control approaches.

For the PPF, we obtain the characteristic equation from Equation (5.29)

1−− 1

ŝ2 + 1

g
ŝ2

ν2c
+ 2ζc

ŝ
νc
+ 1

= 0, (5.33)

rewritten as

(ŝ2 + 1)

(
ŝ2

ν2
c

+ 2ζc
ŝ

νc
+ 1

)
− g = 0. (5.34)

From classic control theory it is known that the roots of this characteristic equation
correspond to the poles of the controlled system [69]. Given the equivalence between α̃2

and g, a comparison between Equations (5.32) and (5.34) reveals that both approaches
lead to the same closed-loop poles. Thus, varying them in the same way, also leads to the
same root locus. For the shunt, this variation in α̃2 only could be interpreted as a global
mismatch between the shunt parameters and the NC. For the PPF controller, changing g
would already correspond to a change of the loop gain.

Case 2: An additional loop gain is introduced and varied

The stability of the controlled systems may be studied by introducing an additional loop
gain kfeed that is varied while the controller parameters are kept constant. The schematics
are displayed in Figure 5.5. In the context of a practical implementation, the variation of
a loop gain is of great interest for stability investigations of the controller. This analysis
allows for investigating the e�ects of possible delays in the feedback loop that can change
the characteristics of the controller function and impact the dynamics of the closed-loop
system [70]. If the controlled system does not have a large enough tolerance to these
delays or other disturbances in the loop, instabilities can occur. We consider kfeed = 1 as
the optimal case. Based on Figure 5.5 and the previous developments, the characteristic
equation for the NCRL shunt can be derived from Equation (5.30) so that

1 + kfeedHol,Shunt(ŝ) = 1 + kfeed
ŝ2 + 1− α2

ŝ2 + 1

α̃2

α2

ŝ2

ν2e
+ 2ζe

ŝ
νe

+ 1− α̃2

α2

= 0, (5.35)

or,

(ŝ2 + 1)(
ŝ2

ν2
e

+ 2ζe
ŝ

νe
+ 1)− kfeedα̃

2 +
α̃2

α2
(kfeed − 1)(ŝ2 + 1) = 0. (5.36)
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(a) RL shunt with NC (α = 0.1).
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(b) PPF.

Figure 5.6: Root loci of of the controlled systems for variations of kfeed. Open-loop poles: ×,
and poles of the closed-loop system: ×.

For the PPF controller, we obtain

1 + kfeedHol,PPF (ŝ) = (ŝ2 + 1)

(
ŝ2

ν2
c

+ 2ζc
ŝ

νc
+ 1

)
− kfeedg = 0. (5.37)

Comparing Equations (5.36) and (5.37) reveals that, for kfeed ̸= 1, the characteristic
equations of the two controllers di�er from each other so that, for the same variation of
kfeed, the systems exhibit di�erent closed-loop poles. Only in the perfectly tuned case
with kfeed = 1, their roots are identical and the closed-loop stability is the same for
both approaches. This can be explained by the in�uence that the loop gain has on the
polynomials in the characteristic equation. Equation (5.36) shows that, for the NCRL
shunt, the zeroth and the second-order terms of the ŝ-polynomials are in�uenced by kfeed.
In contrast, for the PPF controller, only the zeroth-order term of the polynomial in ŝ is
a�ected by kfeed (cf. Equation (5.37)). The root loci of the controlled systems in the
s-plane are plotted in Figure 5.6. Indeed, the root loci evolve di�erently for kfeed ̸= 1.
For the NCRL shunt, the open-loop poles of the plant are located along the imaginary
axis, whereas one of the controller's poles lies in the right half plane (cf. Figure 5.6a).
Finally, when the loop is closed, their initial directions are reversed in the root locus due
to the positive feedback. On the other hand, all poles of the PPF controller are located
in the left half plane.

In summary, for the non-ideally tuned case, the proposed parameter equivalence does
not always hold true leading to di�erent performances (and stability margins) of the two
approaches.

5.5.1 Stability and stability margins

For the stability investigations of the closed-loop system, the open-loop transfer functions
given in Equations (5.26) and (5.29) are reconsidered. In previous works [28, 158], it was
shown that, given that the damping ratio and optimal frequency are greater than zero, the
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controller could only be destabilized by α̃ or g. Considering the NCRL shunt, the initial
electromechanical coupling characterized by α needs to be taken into account. Relatively
large values of α can ensure a better control authority and thus a more robust system.
However, systems controlled by piezoelectric RL shunts usually exhibit low coupling. In
[28], de Marne�e and Preumont de�ne a theoretical stability limit for NCRL shunts,
stating that the closed-loop system is stable when

Cn >
ω2
oc

ω2
sc

Cε
p . (5.38)

The system becomes unstable if the negative sti�ness of the transducer, represented by the
capacitance (ω2

ocC
ε
p/ω

2
sc = Cn), cancels out the structure's sti�ness (as it is seen from the

transducer) [28]. Comparing this condition with the value for Cn,opt proposed in Equation
(5.18), we deduce that the optimal value for the NC is already close to this limit. A look
at Equation (5.8) reveals that α̃2 = 1 when the stability limit is reached. Hence, stability
is ensured as long as α̃2 < 1. This explanation can be translated to the PPF controller.
Similarly to [28], Krenk et al. derived the stability limit for the PPF controller by means
of the overall structural sti�ness [159]. In their work, Zhao et al. de�ned the limit for the
controller gain directly to g < 1 [158].

If the theoretical closed-loop stability is a necessary condition, it is not su�cient to ensure
satisfactory control performance. In practical applications, uncertainties and unmodeled
dynamics need to be taken into account during controller design through adequate sta-
bility margins. We can derive these margins from the open-loop transfer functions [69].
A comparison between Equations (5.26) and (5.29) shows that the open-loop transfer
functions for the NCRL shunt and the PPF controller are not identical. For the PPF con-
troller, the plant transfer function is only represented by the mechanical system whereas
the whole electromechanical system is considered as a plant in the shunt approach. This
perspective is based on the actual practical application of piezoelectric shunts.

Based on the parameter equivalence listed in Table 5.1, the tuning rules from Equations
(5.14) and (5.16) - (5.18) can be used for both the NCRL shunt and the PPF controller.
Bode plots of the open-loop transfer functions in this optimal tuning scenario are plotted
in Figure 5.7. Hol,Shunt(ŝ) and Hol,PPF (ŝ) evolve di�erently, and signi�cantly greater sta-
bility phase margins are featured by the PPF controller around the resonance frequency.
The phase margins as a function of α̃ are displayed in Figure 5.8. The PPF controller
yields phase margins between 60◦ and 80◦ whereas the NCRL shunt features very small
phase margins when α̃ is greater than α = 0.1. If the optimal value (5.14) is reached,
the theoretical phase margin is even smaller than 1◦. This would not only render the
NCRL shunt prone to instabilities caused by modeling errors or errors made during the
controller design but also to delays generated by a digital controller. To avoid this, α̃
must be chosen smaller than α̃opt in practical applications. It can be concluded that the
PPF controller is clearly more robust and represents the only viable solution for practical
applications of the proposed tuning rule.
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Figure 5.7: Bode plots of the open-loop transfer functions of a dimensionless SDOF system
(α = 0.1) with an NCRL shunt ( ) and a PPF controller ( )) tuned according to H∞ tuning
rules.
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Figure 5.8: Phase margins for the open-loop transfer functions of the NCRL shunt ( ) and
the PPF controller ( ) for variations of the parameter α̃.
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Figure 5.9: FRFs between the structural response and external force of a SDOF system. Un-
controlled ( ), controlled by a PPF controller with exact H∞ rules ( ) and by a tuning based
on �xed points ( ).

5.6 Performance of the H∞ tuning rule for the PPF

controller

For performance assessment, the receptance functions of the uncontrolled (1.10) and con-
trolled (5.23) systems are displayed in Figure 5.9a. The FRF of the PPF controlled system
now presents two resonance peaks that are equal in amplitude instead of one. In com-
parison to the uncontrolled system, the resonance amplitudes could be very signi�cantly
decreased. However, this amplitude reduction comes at the price of an increased static
response which can be explained by examining Equation (5.23) at low frequencies:

h(0) =
1

1− g
. (5.39)

The growth of the static response is a well-known side e�ect of the PPF controller and
was widely discussed in the research community [152, 154�156]. In Figure 5.10, the FRF
of the SDOF system controlled by PPF with di�erent gains are shown. For g < gopt, the
growth of the static response can be reduced but, as a trade-o�, the resonance amplitudes
feature greater magnitudes.

In [47], it was concluded that an equal-peak design could only be ensured for values
of α̃ < α̃max = 0.74815, corresponding to gmax = 0.5597 for the PPF controller. The
maximum amplitude h0 of the receptance function and the static response are plotted
in Figure 5.11 for di�erent gain values g. In fact, for values g > gmax, the maximum
resonance amplitude occurs at ŝ = 0, corresponding to the static response. Therefore, the
minimum amplitude for gopt de�ned in Equation (5.15) is indeed an absolute minimum.
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Figure 5.10: FRFs between the structural response and the external disturbance voltage of
the SDOF system controlled by a PPF controller with di�erent gain settings. The uncontrolled
response is represented with ( ).

Finally, the H∞ tuning rule is compared to the �xed-points-based tuning method pre-
sented by Zhao et al. [157, 158]. In their work, the authors do not de�ne a speci�c
optimal gain value but propose to choose the controller gain to be as large as possible
without violating the stability limit. As it was shown before, this signi�cantly increases
the static response. Hence, g must �nally be set to a smaller value. For the comparison,
the gain of both controllers are equal to gopt. The FRF of the controlled systems are
presented in Figure 5.9b. As expected, the �xed-points method does not yield exactly
equal amplitudes of the resonance peaks. However, due to the choice of the gain values,
an identical amplitude of the static response is obtained. Thus, the tuning rule proposed
herein can also serve as a guidance for the choice of a concrete gain value when other
tuning methods are used.

5.7 Conclusion

In this chapter, it was demonstrated that the receptance function of an NCRL shunt
and of a collocated PPF controller are identical. Based on this result, an equivalence
between their parameters was derived. Subsequently, the exact H∞ tuning rule proposed
in [47] for passive RL shunts was extended to active control by introducing a tuning pa-
rameter, namely the e�ective electromechanical coupling factor or the controller gain. A
closed-form expression of the receptance (featuring two peaks of equal amplitude) was
then obtained. A lower bound for the H∞ norm of the controlled response was derived,
which highlights the inherent performance limits of the NC and PPF.
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Figure 5.11: Maximum amplitude h0 ( ) and static response ( ) of the controlled SDOF
system as a function of the gain g.

The NCRL shunt and the PPF controller were also compared in terms of their stabil-
ity margins and the open-loop transfer functions of the controlled system. The analogy
between the two approaches only holds true in terms of their governing parameters and
receptance functions but not for their stability margins. The reason is that the plant and
feedback transfer functions are de�ned di�erently. From the stability investigations, it
could be concluded that the use of an optimal NCRL shunt yields extremely small phase
margins so that it cannot safely be applied in practice. The NC value should thus be
chosen as a trade-o� between the desired performance and the required robustness of the
controlled system. Conversely, the stability margins of the optimal PPF controller are
su�ciently large for practical applications.

Because this chapter focused on an SDOF host structure, the MDOF case is discussed in
the next chapter.
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Chapter 6

H∞ tuning rule for a positive position

feedback controller: the

multi-degree-of-freedom case

6.1 Introduction

Conventionally, PPF controllers are tuned toward a selected resonant frequency of the
host system, so that it may seem natural to model the host system as an SDOF system.
Yet, for real structures, such an approximation is not always valid since the in�uence of
other structural modes can in�uence the controller e�ciency. For reliable and optimal
damping performance, the in�uence of these modes must be taken into account when
tuning the PPF parameters.

The task was approached in di�erent ways in the research community. A common practice
is to consider a simpli�ed version of the host system, truncated in the frequency range of
interest. There are several ways on how to account for the in�uence of the out-of-band
modes. For the case of a collocated controller, Clark described two possibilities [160]. One
is to model the out-of-bandwidth dynamics by a single mode that is acting as a feedback
on the truncated host system. The alternative option is to introduce a feedthrough to
a state-space model that incorporates the total displacement contribution of the out-of-
band modes. To de�ne this contribution, the pole-zero pattern of the open-loop transfer
function was analyzed with the aim to �nd the system poles that were of importance for
the bandwidth of interest and to then enforce them. Similarly, Moheimani et al. pro-
posed to add a feedthrough term to the truncated host system model in the context of
multivariable PPF controllers acting on a structure [161]. Recently, Silva et al. [162] used
particle swarm optimization to tune the PPF parameters in a MIMO setup. Their tuning
was based on a reduced-order model of the structure. In [163], the authors placed a PPF
controller in series with a �ctitious spring in a simpli�ed numerical beam model. The
added �ctitious sti�ness represented the in�uence of the higher-order modes. The PPF
controller was then tuned based on the simpli�ed model and could successfully introduce
system damping. Fenik and Starek accounted for the contribution of the non-targeted
vibration modes by including a constant as a correction to the optimal PPF controller
parameters [164]. They achieved a closed-loop damping but, as already discussed in Sec-
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tion 5.3, a drawback of their study is that they expressed the controller gain as a function
of the controller frequency and damping ratio and found an optimum only for these two
parameters. Their work additionally included a tuning strategy that incorporates the dy-
namics of other PPF controllers acting simultaneously, in descending order with respect
to their natural frequencies [164].

From a piezoelectric shunt damping perspective, the in�uence of higher-order modes can
be taken into account by using the dynamic capacitance to tune the shunt parameters [39,
165, 166]. Following the spirit of the comparison between a PPF controller and piezo-
electric shunts, we will adapt this idea in this chapter to the active PPF control case.
Speci�cally, we tune the parameters of the PPF controller aiming for a minimization of
the H∞ norm of the modal amplitude of the targeted mode. This chapter is structured as
follows. First, a procedure to obtain the correction factors accounting for the in�uence of
higher-order modes is presented. The e�ectiveness of the proposed correction procedure
and the H∞ tuning rule for a PPF controller are then studied, using a cantilever beam
structure.

6.2 Correction procedure to account for higher-order

modes

An MDOF system controlled by a PPF controller can be expressed with the following set
of equations of motion in modal space:

(s2I+Ω2)η = f +wω2
cgcuc

(s2 + 2ζcωcs+ ω2
c )uc = ω2

cgcxs

xs = vTη
. (6.1)

where vT and w are vectors denoting the position of the sensor and of the actuator,
respectively. I is the identity matrix, and Ω is a diagonal matrix with the resonance
frequencies. η is the vector of modal amplitudes, and xs is the sensor signal. η is
partitioned such that

ηT = [ ηT
<i, ηi, η

T
>i ] . (6.2)

In this case, the subscript i speci�es the targeted mode. Consequently, the modal amplit-
dues of lower and higher frequency modes are in�uenced by η<i and η>i, respectively. In
the same way, we can partition the vectors v and w :

vT = [ vT
<i, vi, v

T
>i ] and wT = [wT

<i, wi, w
T
>i ] . (6.3)

We consider the �rst line of Equation (6.1) and set f = 0. For η<i, Ω is small in relation
to s2I so that we can assume the dominating term is

s2η<i = w<iω
2
cgcuc . (6.4)

For η>i, we obtain
Ω2

>iη>i = w>iω
2
cgcuc, (6.5)
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6.2: Correction procedure to account for higher-order modes

by discarding the s2I term. The sensed signal xs is then written with Equation (6.2), so
that

xs = vT
<iη<i + viηi + vT

>iη>i. (6.6)

Inserting Equations (6.4) and (6.5) in Equation (6.6) yields

xs =
1

s2
vT
<iw<iω

2
cgcuc + viηi + vT

>iΩ
−2
>iw>iω

2
cgcuc. (6.7)

We introduce the auxiliary variables

κ<i

s2
= vT

<i

1

s2
w<i and κ>i = vT

>iΩ
−2
>iw>i, (6.8)

and insert Equation (6.7) into Equation (6.1): (s2 + ω2
i )ηi = wiω

2
cgcuc(

s2 + 2ζcωcs+ ω2
c − ω2

cgcκ>i − ω2
cgcκ<i

1

s2

)
uc = viηi

. (6.9)

In this work, the focus is set on the �rst structural mode so that κ<i = 0. The following
relations are introduced:

ûc =
uc

vi
, ω̂2

c = ω2
c − ω2

cgcκ>i, ĝc =
ω2
cgcwivi
ω̂2
c

, ζ̂c =
ζcωc

ω̂c

, (6.10)

so that Equation (6.9) reads{
(s2 + ω2

i )ηi = ω̂2
c ĝcûc(

s2 + 2ζ̂cω̂cs+ ω̂2
c

)
ûc = ηi

. (6.11)

Conveniently, we note that Equation (6.9) now has the same form as Equation (5.19).
Hence, we can use the formulas for the tuning of the controller parameters presented in
Section 5.2.2. With Equation (6.10), corrected parameters for the PPF controller in the
MDOF case are obtained:

gc =
ĝc

viwi + κ>iĝc
, ω2

c =
ω̂2
c

1− gcκ>i

, ζc =
ζ̂cω̂c

ωc

. (6.12)

The tuning steps for the PPF controller in the MDOF can then be summarized as follows:

1. Identi�cation of the system parameters ωi, wi, vi and κ>i.

2. Computation of the optimal PPF controller parameters ω̂c, ζ̂c and ĝc, using ωi as in
an SDOF case according to the tuning rules de�ned in Section 5.2.2.

3. Correction of the controller parameters according to Equation (6.12).

All system parameters used in this tuning and correction procedure can be easily deter-
mined using state-of-the-art system identi�cation methods. This is a clear advantage of
this method, as it makes it widely and easily applicable. Compared to [160], it can be
applied to di�erent sensor-actuator con�gurations. However, we note that the correction
factors depend on the measured plant transfer function and that the equal-peak design is
enforced only on one modal coordinate. As a result, the controller performance depends
on the setup choice together with the sensor/actuator positions, and the method cannot
inherently ensure an equal-peak design.
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6.3: Numerical demonstration on a cantilever beam
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Figure 6.1: Top view of the cantilever beam setup.

6.3 Numerical demonstration on a cantilever beam

The cantilever steel beam schematized in Figure 6.1 is considered for the numerical and
experimental demonstration of the tuning rules. The structure was already the subject
of other studies, often in the context of nonlinear dynamics, where the thin lamina at the
right end of the beam (cf. Figure 6.1) served to induce nonlinear behavior (see, e.g., [63,
166]). To this end, this lamina was clamped. In this work, we left it in a free con�guration
to remain in a linear motion regime. Table 6.1 lists the properties of the cantilever beam
model that was used for the numerical simulations. They are consistent with the proper-
ties of the experimental setup. The two piezoelectric patches P1 and P2 located on one
side of the beam close to the clamping served as voltage sensors. Patch P3 is the voltage
actuator for the controller whereas P4 is a voltage actuator exciting the structure with a
disturbance voltage. A displacement sensor was located at the end of the cantilever beam.

The FE model of the cantilever beam structure was built according to the method pre-
sented in [124]. It consists of Euler-Bernouilli beam elements and accounts for displace-
ments along the x- and y- axes and rotations around the z-axis incorporating three DOFs
per node (axial, transversal, rotation). Considering their motions as negligible, the other
DOF were not taken into account. Using a discretization of one element per millimeter for
both the beam and the lamina, we obtain a model with 4437 DOFs. To simplify this model
and reduce the computational e�ort, a Craig-Bampton-based model order reduction was
used [166]. Finally, all electrical DOFs of the patches and one interface mechanical DOF
were maintained together with 20 vibration modes. In addition, the model considers a
modal damping of 0.2%. For the evaluation of the controller performance, we analyze
the transfer functions from the disturbance voltage to the tip displacement and from a
disturbance force at the beam tip to the tip displacement. Figure 6.2 shows that the
numerically-obtained and experimentally-identi�ed open-loop plant transfer functions are
in satisfactory agreement, justifying the previous assumptions made for the numerical
model.

6.3.1 Plant transfer functions

A con�guration with a collocated sensor-actuator pair yields an alternating pole-zero pat-
tern in the open-loop transfer function. Good stability margins can be expected from
this pattern [167]. Figure 6.3 features the plant transfer functions obtained with pseudo-
collocated (P1 to P3) and non-collocated (P2 to P3) cases. In the pseudo-collocated
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6.3: Numerical demonstration on a cantilever beam

Property Value

Cantilever steel beam
Length 700mm
Cross-sectional area 14mm × 14mm
ρ 7850 kgm−3

E 210GPa
Thin steel lamina
Length 100mm
Height 14mm
Thickness 0.5mm
ρ 7850 kgm−3

E 210GPa
Piezoceramic PSI-5A4E patches
Length 67mm
Height 14mm
Thickness 2mm
ρp 7800 kgm−3

Ep 66GPa
d31 −190× 10−12 mV−1

ε0 8.854 pFm−1

εS33 1531ε0
Gap between the patches 3mm
Distance P1/P3 to clamping 1mm

Table 6.1: Properties of the numerical and experimental cantilever beams and the four piezo-
ceramic patches glued to it.

Mode number 1 2 3
Resonance frequency [Hz] 24.28 42.13 152.9

Table 6.2: Resonance frequencies of the numerical cantilever beam.

case, P1 and P3 are at the same location in the x-direction, but on either side of the
beam. Since the in-plane transverse motions could disturb the alternating pole-zero pat-
tern at high frequencies, it is described by the additional term pseudo. In what follows,
however, we refer to this case as collocated, as the numerical study in this work is not
a�ected by these possible perturbations. In Figure 6.3, it can be observed that both col-
located and non-collocated con�gurations feature an alternating pole-zero pattern. We
note that this is bene�cial, but de�nitely not a general feature for the non-collocated case.

Table 6.2 lists the resonance frequencies obtained by means of the plant transfer func-
tions. In this study, we focus on the �rst bending mode of the cantilever beam. Figure
6.3 shows the �rst two system poles are relatively close to each other. A tuning of the
PPF controller parameters using an SDOF approximation might thus not lead to optimal
damping performance.

6.3.2 Collocated versus non-collocated setups

We now regard the response of the controlled systems to assess the performance of the
PPF controller tuned according to the MDOF H∞ tuning rule. The FRFs for the collo-
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6.3: Numerical demonstration on a cantilever beam
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Figure 6.2: Plant transfer functions from P1 to P3 obtained by numerical simulations ( )
and experimental measurements ( ).

cated and non-collocated con�gurations are displayed in Figure 6.4.

When a disturbance voltage was applied to the beam via P4, both con�gurations caused a
reduction in resonance amplitude of about 40 dB. However, the increase in static response
which is expected for the PPF controller can only be observed for the non-collocated case.
As shown by the torque distribution sketched in Figure 6.5, the piezoelectric disturbance
actuator applies a torque on the structure that can only be sensed in the beam section
of P4 (assuming that the in-plane displacements are small herein). Consequently, for the
static case, only the P2 sensor can detect the disturbance and activate the controller.
In addition, we note that the two resonance peaks, clearly visible in the SDOF example
in Figure 5.9b, are more di�cult to observe in this example. The reason for this is the
increased static response as well as the in�uence of the modes occurring at higher fre-
quencies.

When the disturbance was induced at the beam tip via a force, both con�gurations yielded
a reduction of the resonance amplitude of 47 dB. Since mainly the �rst bending mode was
activated by the force at the beam tip, the in�uence of the other modes was decreased,
and the controller could enforce two equal peaks. This illustrates that the choice of FRF
used for performance evaluation is of great importance.
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6.3: Numerical demonstration on a cantilever beam
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Figure 6.3: Bode plot of the plant transfer functions of the numerical beam. Non-collocated
(P2 to P3) ( ) and pseudo-collocated (P1 to P3) ( ).
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6.3: Numerical demonstration on a cantilever beam
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Figure 6.4: FRFs of the numerical beam. Uncontrolled ( ); controlled by a PPF accounting
for the in�uence of higher-order modes in a non-collocated ( ) and pseudo-collocated ( )
setup.
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Figure 6.5: Schematics of the cantilever beam when P4 is injecting a disturbance voltage (static
case).
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6.3: Numerical demonstration on a cantilever beam
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Figure 6.6: FRFs of the numerical beam. Uncontrolled ( ); PPF controller accounting for
higher-order modes ( ) or not ( ).

6.3.3 In�uence of higher order modes

To demonstrate the importance of the inclusion of higher-order modes, the receptance
functions for the system connected to a PPF controller tuned with and without the higher-
mode corrections are plotted in Figure 6.6. Thanks to the correction, amplitude reduction
could be enhanced by 5.5 dB and 3.5 dB, respectively. Moreover, a strong detuning of the
PPF controller can be observed if the in�uence of higher-modes is not taken into account,
since the second mode is close to the targeted one.

6.3.4 Variations of the controller gain

In a next step, the controller gain was varied for the collocated case, similarly to what was
carried out in Figure 5.10. Small variations of the controller gain are �rst considered, see
Figure 6.7a. When a disturbance voltage is acting, the FRF shows an imbalance between
the two resonance peaks, also in the optimal case. As discussed earlier, possible reasons
for this are the in�uence of other structural modes and the static response that was not
ampli�ed. On the other hand, for the disturbance force, the receptance function shows
that an equal-peak design could be better approached. This is partly because the static
response was magni�ed here, as is typical for the PPF controller. Second, the in�uence of
the higher-order modes on the system dynamics was reduced at this input location. The
theoretical developments for PPF controllers in Section 5.6 can be found in this transfer
function. For example, the optimal controller gain yielded the best damping performance.
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6.4: Experimental demonstration on a cantilever beam

Variations of the controller gain in a larger range are displayed in Figure 6.7b. The
FRF shows that setting the gain to gopt resulted in the highest reduction of the maximum
receptance amplitude in both cases. Yet, as expected from the previous results, the FRF
obtained from a disturbance voltage did not feature an increased static response so that
the trade-o� with the reduction of the resonance amplitude cannot be observed in this
example; the resonance peaks are unbalanced as anticipated. For the FRF from the tip
force to the displacement at beam tip, two-well balanced resonance peaks emerge. Again,
the modal coordinate to which the controller was tuned is strongly dominant in this FRF.
We can clearly see the trade-o� between the growth of the static response and reduction
of the resonance amplitude for di�erent gain factors.

6.3.5 Comparison with the �xed-point method

We conclude the numerical study with a comparison between the proposed tuning method
with the �xed-points method, as in Figure 5.9b. The correction factors for the higher
modes were applied to both methods. The resulting FRFs are displayed in Figure 6.8.
The exact H∞ tuning rule is slightly more e�cient (1 dB) than the �xed-points method.
Moreover, the two resonance peaks are better balanced for the H∞-based controlled sys-
tem. From these results, we can also state that the value for gopt in Equation (5.14) and
the correction factors for out-of-band modes can also be used for the �xed-points method.
Whereas the di�erence between the two methods may not seem signi�cant in terms of
performance, the developments in this work provide not only a new tuning rule with a
well-de�ned optimal gain value, but also a mathematically exact solution for the SDOF
case.

6.4 Experimental demonstration on a cantilever beam

The experimental beam corresponds to the same cantilever beam that was used in the
previous section. The experimental setup is presented in Figure 6.9. One piezoelectric
patch next to the clamping served as an actuator whereas the adjacent one induced the
disturbance voltage. Both opposite patches were employed as sensors, namely sensors
1 and 2. The former (latter) corresponds to the (non-)collocated con�guration. Voltage
ampli�ers magni�ed the disturbance signals by a factor ten. These gains are accounted for
in the FRFs to enable a fair comparison with the numerical results. The digital controller
unit dSPACE MicroLabBox realized the excitation signals, acquired the measurement
signals and served for the implementation of the controller function. An accelerometer
measured the response at beam tip. The signal was then integrated twice to obtain a
displacement.

6.4.1 Plant transfer functions

For the identi�cation of the system parameters, the plant transfer functions were measured
through the excitation of the system from 1Hz to 200Hz using a multisine signal with
an RMS amplitude of A = 0.5V . The signal consisted of N = 20000 samples per period,
P = 20 periods and R = 10 realizations [128]. With a sampling rate of 4000 samples per
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6.4: Experimental demonstration on a cantilever beam
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Figure 6.7: FRFs between the structural response and the external disturbance voltage of the
numerical beam controlled by a PPF with di�erent gains (uncontrolled response: ).
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6.4: Experimental demonstration on a cantilever beam
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Figure 6.8: FRFs of the numerical beam. Uncontrolled ( ); controlled by a PPF controller
tuning using H∞ rule ( ) or the �xed-points method ( ).
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Figure 6.9: Experimental setup.
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6.4: Experimental demonstration on a cantilever beam

second, a frequency resolution of 0.2Hz could be realized. To obtain the plant transfer
functions in Figure 6.10, an averaging of the measurements took place over P and R.
The �gure shows that the FRF is low in magnitude before the �rst resonance in the
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Figure 6.10: FRFs and phase evolutions between the voltage actuator and voltage sensor of
the experimental cantilever beam in a collocated ( ) and a non-collocated ( ) setup.

non-collocated con�guration, which is consistent with the numerical results (cf. Figure
6.3). It is also observed that both con�gurations yielded an alternating pole-zero pattern.
The �rst resonance frequency was found to be 23.2Hz and was set as a target in the
controller. The second and third modes were located at 44.8Hz and 146Hz, respectively.
Their in�uence was taken into account in the tuning procedure. Finally, the Matlab
functions tfest and tf2ss were applied to the measured transfer function data in order to
create a state-space model. This model served to de�ne the PPF controller parameters.
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6.4: Experimental demonstration on a cantilever beam
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Figure 6.11: FRFs between the voltage actuator and voltage sensor of the experimental can-
tilever beam for the uncontrolled case ( ) and controlled by a PPF controller accounting for
the in�uence of higher order modes in a collocated ( ) and a non-collocated ( ) setup.

6.4.2 Damping performance

For performance assessment, the receptance functions between the disturbance voltage
to the tip displacement in Figure 6.11 were calculated. The excitation signal had an
RMS amplitude of A = 0.5V from 1Hz to 200Hz, 100000 samples per period, 20 periods
and 10 realizations. A sampling rate of 10000 samples per second resulted in a frequency
resolution of 0.1Hz. In the controlled case, the peak amplitude of the �rst resonance could
be reduced by 36 dB and 30 dB in the collocated and non-collocated case, respectively.
For the collocated setup, the two expected resonance peaks are not clearly visible, maybe
due to the in�uence of the higher-order modes and the static response. In agreement
with the numerical simulations, the static response was (not) strongly increased in the
non-collocated (collocated) case. Overall, the performance of the PPF controller tuned
according to the H∞ tuning can be considered as highly satisfactory. A look at the
phase margins of the controlled systems, namely −19.46◦ and 61.03◦ in the collocated and
non-collocated cases, respectively, con�rms this conclusion. However, when the higher-
order modes are not taken into account, the open-loop transfer function shows that the
controlled system would be unstable (see Section 6.2). Hence, a practical implementation
of the PPF controller would have been impossible.
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6.4: Experimental demonstration on a cantilever beam
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Figure 6.12: FRFs between the disturbance voltage and the tip displacement of the experi-
mental cantilever beam for the uncontrolled case ( ) and controlled by a PPF controller tuned
with exact H∞ rules ( ) and with a �xed-points tuning ( ).

6.4.3 Comparison with the �xed-points method

The comparison is displayed in Figure 6.12. An amplitude reduction of 36.5 dB (exact
tuning rule) or 35.80 dB (�xed-points method) could be achieved with both methods.
The �rst method yielded a single resonant peak with higher damping whereas the second
method resulted in a FRF with two imbalanced peaks.

6.4.4 Gain variations

Finally, the di�erent FRFs resulting from variations of the controller gain are presented
in Figure 6.13. When g varies around the optimal value gopt, the resonance amplitude
was more reduced using gmax instead of gopt. This observation is not in line with the
theoretical developments in Chapter 5 and can be possibly explained by experimental
uncertainties, particularly since gopt is very close to gmax. For larger gain variations,
the best performance could be achieved with gopt. If the gain was chosen signi�cantly
lower than gopt, two resonance peaks appeared in the FRF. In this con�guration, the
static response seemed to absorb the left resonance peak. The more the amplitude of
the resonance peak was distinguished from the amplitude of the resonance frequency, the
better two resonance peak could evolve.
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6.4: Experimental demonstration on a cantilever beam
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(a) Gain variations of g = 0.85gopt ( ), g = gopt ( ) and g = 1.046gopt = gmax ( ).
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(b) Gain variations of g = 0.2gopt ( ), g = 0.5gopt ( ), g = 0.75gopt ( ) and g = gopt ( ).

Figure 6.13: FRFs between the structural response and the external disturbance voltage of
the experimental cantilever beam controlled by a PPF controller with di�erent gain settings in
contrast to the uncontrolled response ( ).
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6.5: Conclusion

6.5 Conclusion

The developments from Chapter 5 were extended to the MDOF case by introducing a cor-
rection procedure for the PPF parameters accounting for the in�uence of out-of-bandwidth
modes. Using these corrections, the H∞ tuning rule was demonstrated using numerical
and experimental cantilever beam examples. In the numerical study, di�erent sensor-
actuator positions were studied whereas the experimental demonstration was conducted
in a collocated setup. The results of both studies were consistent and proved the e�ec-
tiveness of the controller proposed in this work. We demonstrated that the consideration
of the out-of-bandwidth modes is crucial not only for e�ective damping performance, but
also for acceptable phase margins.

Yet, a limitation of the proposed approach is that the controller performance depends on
the choice of the transfer function considered; an equal-peak design cannot be enforced
for every FRF. An interesting continuation of this work could be the inclusion of lower
modes in case a higher mode is targeted or several modes are considered simultaneously
in the correction factors.
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Conclusions and outlook

This thesis developed multimodal damping strategies for complex mechanical structures
based on the use of multiple DVAs. This work also established a bridge between classi-
cal shunt damping approaches, traditionally classi�ed as passive, and the �eld of active
control. We provided speci�c contributions to the following problems with supporting
experimental demonstrations:

(a) E�cient vibration mitigation of families of closely-spaced modes.

(b) Attenuation of multiple modes with one shunt circuit.

(c) Robust vibration attenuation that can be adapted to changes in the host structure.

(d) Design of DVAs together with their practical implementation.

(e) Transition from passive to active control approaches from a piezoelectric shunt
damping viewpoint.

In Chapter 1, the basic equations of piezoelectric shunt damping were recalled together
with the advantages of digital shunts. The chapter presented a DVA circuit design, its
practical realization on a PCB as well as the associated technical di�culties. The reader
was provided with all the necessary information to interpret the experimental results ob-
tained with these DVAs, addressing point (d). In addition, we introduced a discretization
method for the shunt transfer function to be implemented. Its straightforward character
makes this method particularly attractive for ensuring closed-loop stability.

Chapter 2 outlined the dynamic characteristics and di�culties that come along with
bladed structures and presented solutions for tasks (a) and (b). Two strategies speci�-
cally designed for their complex dynamics were presented, namely the isolated mode and
the mean shunt strategies. They take advantage of the fact that multiple DVAs are used
simultaneously. If one may want to mitigate the vibrations of multiple modes in di�erent
mode families, these strategies can then be integrated in a multimodal shunt circuit design.

Practical applications followed to demonstrate these theoretical developments. Chapters
3 and 4 comprise results from extensive experimental campaigns conducted on bladed
structures. First, in Chapter 3, a bladed rail served as the structure of interest, exhibit-
ing similar dynamic properties as industrial bladed structures but a signi�cantly smaller
number of modes. Chapter 4 presented the results of an experimental campaign on a
BluM on which 16 DVAs acted. In both examples, the DVAs tuned according to the de-
veloped strategies proved e�cient and yielded highly satisfactory damping performances.
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Conlusions and outlook

In addition, they were also found to be robust to changes in the host structure, including
mistuning, meeting the requirement (c). A retuning of the shunt parameters could be
conducted easily thanks to the digital realization. In the BluM setup, despite the multi-
tude of DVAs that were used, a compact solution could be provided for the experimental
realization.

In Chapter 5, we addressed point (e) by pointing out similarities between RL shunts
with an NC and the classical active control approach of a PPF. Tuning rules for passive
RL shunts based on an H∞ optimization of the receptance function were extended to the
active control case of an NCRL shunt and then translated to a PPF controller. This could
be achieved by comparing their receptance functions, revealing an equivalence between
their controller parameters. In that way, the extendedH∞ tuning could be applied to both
cases, and their performance was compared by means of an SDOF example. Considering
that the PPF controller exhibited signi�cant greater stability margins, it is considered to
be the best solution for practical applications.

Finally, the newly-derived H∞ tuning rule for a PPF controller was applied to numerical
and experimental cantilever beams in Chapter 6. To this end, we presented a method to
account for the in�uence of modes of higher frequency than that of the targeted mode.
Overall, the tuning rules proved to be e�cient.

Outlook

In the �rst part of this thesis, we conducted a proof of concept study for di�erent damp-
ing strategies applied to structures featuring high modal density. Future works could now
progress further toward vibration mitigation of structures in operational conditions. In
the experimental campaigns, we showed that a retuning of the shunts could be easily
achieved thanks to the DVA concept. So far, this retuning was neither achieved auto-
matically nor in real-time. An interesting continuation of this work would thus be an
automation of the post-processing procedure to provide self-tuning shunts. This would
require frequent updates of the plant transfer function.

Another logical extension of this research could be the consideration of a rotating BluM
under a synchronous harmonic excitation, representing the actual excitation these struc-
tures are subject to. Exploiting the rotational energy, an electromagnetic induction system
could be installed in the drum, using the relative moment between the coils and the rows
of rotating magnets to create a variable magnetic �ux. In this way, the DVA could operate
autonomously from an energy standpoint. It would also be desirable to achieve a DVA
design that can be placed completely inside the drum without signi�cantly disturbing the
air�ow. To achieve this, the control law could be imposed via a micro-controller unit on
a powered digital signal processor chip implemented in the drum.

In the second part of this thesis, the performance enhancement of classical RL shunts
through the addition of a negative capacitance was discussed. From the experience we
gained, we know that the piezo-BluM structure does not feature great electromechanical
coupling. A way to gain better control authority could be to use NCRL shunts on the
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BluM. However, as outlined in Chapter 5, the NC value is to be chosen as a trade-o� be-
tween stability margins and performance. Because a PPF controller exhibits signi�cantly
greater phase margins for the newly-derived H∞ tuning rule, it could be interesting to
apply this active control approach on the BluM. An adaptation of the setup for this case
would be needed so that, e.g., collocated pairs of piezoelectric patches would act on the
BluM. We note that this was already realized on a bladed rail in [108] and for the appli-
cation of an IFF controller on a BluM in [109]. It would also be desirable to extend the
method taking out-of-bandwidth modes into account in way that not only higher but also
lower modes are considered.

Finally, DVAs represent an attractive damping solution that is not limited to bladed
structures, but may also be of interest for vibration attenuation of other industrial appli-
cations.
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Appendix A

A multi-stage current blocking circuit

The identi�cation procedure to �t a dynamic capacitance is described in the following.
We write the following expression that is then to be approximated:

qs
Vs

= − B̃

s2
− G̃

s
− C̃ε

p

s2 + ω̃2
oc

s2 + ω̃2
sc

= −
C̃ε

ps
4 + G̃s3 + (B̃ + C̃ε

pω̃
2
oc)s

2 + G̃ω̃2
scs+ B̃ω̃2

sc

s2(s2 + ω̃2
sc)

. (A.1)

We seek Equation (A.1) to take the form

qs
Vs

≈ (as2 + bs+ c)(s2 + 2zrs+ z2)

s2(s2 + 2prs+ p2)
. (A.2)

The identi�cation procedure reads:

1. Considering the actual qs/Vs and set the pole p that is closest to jωoc (of magnitude
p and real part pr) to ω̃sc.

2. Find the closest zero qs/Vs (of magnitude z and real part zr) to this p.

3. The function f(s) = (s2(s2+2prs+p2)/(s2+2zrs+z2)qs/Vs. The constants a, b and
c are determined by �tting f(s) in a LSE sense to a frequency range that comprises
p and z.

4. Equating Equations (A.1) and (A.2) yields the parameters G̃, B̃, ω̃oc, ω̃sc and C̃ε
p .
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(a) Patch 1 ( ), patch 2 ( ), patch 3 ( ) and patch 4 ( ).
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(b) Patch 5 ( ), patch 6 ( ), patch 7 ( ) and patch 9 ( ).
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(c) Patch 11 ( ), patch 13 ( ), patch 15 ( ) and patch 17 ( ).
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(d) Patch 19 ( ), patch 21 ( ), patch 23 ( ) and patch 25 ( ).

Figure B.1: Dynamic impedance measurements of the 16 shunted patches for patch con�gura-
tion 1.
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(a) Patch 1 ( ), patch 3 ( ), patch 5 ( ) and patch 7 ( ).
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(b) Patch 9 ( ), patch 11 ( ), patch 13 ( ) and patch 14 ( ).
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(c) Patch 15 ( ), patch 17 ( ), patch 19 ( ) and patch 21 ( ).

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

Normalized frequency

8

9

10

M
ag

n
it

u
d

e 
(d

B
)

(d) Patch 23 ( ), patch 25 ( ), patch 27 ( ) and patch 28 ( ).

Figure B.2: Dynamic impedance measurements of the 16 shunted patches for patch con�gura-
tion 2.
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(a) Patch 13 ( ), patch 14 ( ), patch 15 ( ) and patch 16 ( ).
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(b) Patch 17 ( ), patch 18 ( ), patch 19 ( ) and patch 20 ( ).
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(c) Patch 21 ( ), patch 22 ( ), patch 23 ( ) and patch 24 ( ).
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(d) Patch 25 ( ), patch 26 ( ), patch 27 ( ) and patch 28 ( ).

Figure B.3: Dynamic impedance measurements of the 16 shunted patches for patch con�gura-
tion 4.
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(a) Patch 1 ( ), patch 2 ( ), patch 3 ( ) and patch 4 ( ).
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(b) Patch 5 ( ), patch 6 ( ), patch 7 ( ) and patch 8 ( ).
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(c) Patch 15 ( ), patch 16 ( ), patch 17 ( ) and patch 18 ( ).
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(d) Patch 19 ( ), patch 20 ( ), patch 21 ( ) and patch 22 ( ).

Figure B.4: Dynamic impedance measurements of the 16 shunted patches for patch con�gura-
tion 5.
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EMCF

Patch Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 3
number (Robustness)

1 0.0079 0.0079 0.0062 0.0082 0.0077 0.0090
2 0.0010 0.0060 0.0053 0.0035 0.0028 0.0023
3 0.0060 0.0063 0.0053 0.0060 0.0063 0.0080
4 0.0053 0.0067 0.0047 0.0053 0.0057 0.0076
5 0.0048 0.0060 0.0056 0.0047 0.0051 0.0047
6 0.0052 0.0060 0.0057 0.0054 0.0055 0.0057
7 0.0067 0.0051 0.0056 0.0067 0.0066 0.0066
8 0.0069 0.0055 0.0049 0.0060 0.0080 0.0039
9 0.0056 0.0053 0.0440 0.0042 0.0053 0.0030
10 0.0046 0.0038 0.0063 0.0061 0.0043 0.0066
11 0.0040 0.0055 0.0056 0.0061 0.0057 0.0080
12 0.0051 0.0047 0.0106 0.0051 0.0043 0.0053
13 0.0027 0.0054 0.0049 0.0042 0.0051 0.0053
14 0.0042 0.0057 0.0074 0.0034 0.0057 0.0044
15 0.0045 0.0056 0.0057 0.0043 0.0055 0.0054
16 0.0049 0.0045 0.0042 0.0040 0.0065 0.0054

Table B.1: EMCF for the RL shunts for the isolated mode strategy applied to the di�erent
patch con�gurations 1 - 5 based on Table 4.2. The numbers of the respective modes are related
to each con�guration individually and are not globally valid (cf. Table 4.1).
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Figure B.5: FRFs from the excitation force to the blade tip in patch con�guration 1. Open
circuit ( ), isolated mode ( ) and mean shunt ( ). The mean frequency is indicated in (
).
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Figure B.6: FRFs from the excitation force to the blade tip in patch con�guration 2. Open
circuit ( ), isolated mode ( ) and mean shunt ( ). The mean frequency is indicated in (
).
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Figure B.7: FRFs from the excitation force to the blade tip in patch con�guration 4. Open
circuit ( ), isolated mode ( ) and mean shunt ( ). The mean frequency is indicated in (
).
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Figure B.8: FRFs from the excitation force to the blade tip in patch con�guration 5. Open
circuit ( ), isolated mode ( ) and mean shunt ( ). The mean frequency is indicated in (
).
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Figure B.9: Open-circuit FRF of the altered system ( ) and FRFs of the system controlled
by detuned ( ) and retuned ( ) shunts, both according to the isolated mode strategy.
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