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Abstract

In this paper, we look at the solutions of the Fréchet functional equa-
tion for connected Lie groups. In particular, we give a characterization
of theses solutions using the lower central series, providing a notion of
polynomial for such groups.

1 Introduction

Let G be a connected Lie group and given x ∈ G, define the left and right
translations as the maps defined on G by Lx : y 7→ xy and Rx : y 7→ yx
respectively. We then set ∆h = R∗h− I, where I is the identity operator and R∗h
denotes the pullback of Rh, ∆2

h1,h2
= ∆h1

◦∆h2
and

∆m+1
h1,...,hm+1

= ∆m
h1,...,hm ◦∆hm+1 ,

for m ∈ N. For the sake of simplicity, we will often write ∆m+1
h instead of

∆m+1
h1,...,hm+1

; in this context, h ∈ V must be understood as h ∈ V m+1, that is

hj ∈ V for any j ∈ {1, . . . ,m + 1}. We will consider the Fréchet functional
equation

∆m+1
h f(x) = 0, (1)

where m+ 1 ∈ N will be called the order of the equation. We will be interested
in local solutions at x0 ∈ G, i.e. in maps f : G→ R for which (1) is satisfied for
any x ∈ G in some neighborhood of x0 and h ∈ Gm+1 in some neighborhood
of the identity (let us recall one last time that this means that h1, . . . , hm+1

must be in some neighborhood of the identity) and global solutions, where (1)
is satisfied for any x ∈ G and any h ∈ Gm+1.
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�Corresponding author E-mail: S.Nicolay@uliege.be, Phone: +32 (0)4 366 9433, Fax:
+32 (0)4 366 9547

1



These equations were first globally studied by M. Fréchet in the case G = R
[11, 12]. He showed that all the continuous global solutions of (1) are given by
the polynomials of degree at most m. Let us remark that a regularity condition
is necessary to recover the polynomials from (1). For example, using a Hamel
basis H, it is easy to define a function on R which is affine on xjQ for any
xj ∈ H so that we have

f(x+ y) = f(x) + f(y). (2)

Obviously, such a function satisfies (1) with m = 1. If f is not affine on R, it is
discontinuous at every point, not bounded on any Lebesgue-measurable set of
positive measure (and thus not Borel-measurable) and its graph is dense in R2

[1]. Indeed, let f be a function satisfying (2); if f is continuous at some point,
then it is continuous on R. If it is bounded on some set of positive measure, then
it is continuous at the origin and any Borel-measurable function is bounded on
some set of positive measure. In other words, a function satisfying (2) is either
affine or very irregular. The same phenomenon is observed with the Fréchet
functional equation: it is sufficient to ask the solution to be continuous at some
point or bounded almost everywhere on some interval to recover a polynomial
[7, 20, 19].

Given m ∈ N, for h ∈ G, let us also define ∆h = ∆h and ∆m+1
h = ∆h ◦∆m

h .
Instead of (1), one can consider its restriction to identical steps h,

∆m+1
h f(x) = 0, (3)

with x in a neighborhood of x0 ∈ G and h in a neighborhood of the identity.
On Rn (this is even true in the Abelian case), this equation is equivalent to the
Fréchet functional equation (1). In a more general context however, solutions of
(3) could not satisfy (1). Equation (1) is usually called Fréchet mixed differences
equation, while (3) is called Fréchet unmixed differences equation.

Now, if g is the Lie algebra of G, given f : G → R and x0 ∈ G, define
fx0 : g → R by fx0(X) = f(x0 expX), where exp : g → G is the exponential
map. We may also consider the following local equation on the group (g,+, 0):

∆m+1
Y fx0

(X) = 0, (4)

for X,Y ∈ g in a neighborhood of 0. If G is Abelian, it is easy to check that
∆m+1
Y fx0

(X) = ∆m+1
exp(Y )f(x0 exp(X)). As G is connected, exp is surjective and

equations (4) and (3) are (locally and globally) equivalent in the Abelian case.
The same remark can be made in the unmixed case.

The global Fréchet functional equation has been studied on groups (with
sometime a more restrictive definition of the equation), which were most of the
time assumed to be Abelian (see for example [28, 24, 26, 13, 16, 15, 7, 22, 21,
18, 5, 9, 3, 6, 27, 14, 23, 2, 4] and references therein). There are also results on
topological groups and semigroups. As far as we know, they only are of global
nature [25, 8]. In [8], the equation was studied from a representation theory
point of view with several notions of polynomials; the authors showed relations
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between these notions and existence results. In [25], the author extended the
equation to general semigroups; he provided a general form for the right-Abelian
solutions thanks to multiadditive mappings.

Fréchet considered Equation (1) as a functional definition of the polynomi-
als (on the Euclidean space). In general, a (smooth) solution of (1) is called
a (smooth) generalized polynomial of degree m, while an ordinary polynomial
is a polynomial on a vector space in the usual sense. A (smooth) solution of
(3) will be called a weak (smooth) generalized polynomial. The object of this
work is to give more insight about such polynomials for general connected Lie
groups and carry on the work of Fréchet. Roughly speaking, we show that
these are generated by (g(N))⊥, where N is the number for which the lower
central series stabilizes (see Definition 5). In practice, since there are groups G
where the global solutions are necessarily trivial while there exists non-constant
local solutions (such examples are easy to obtain in some cases of compact
groups, see Proposition 9), we use germs at the identity to define such poly-
nomials. As for non-Abelian Lie groups, Equation (3) has no trivial relation
with Equation (4), we also study the solutions of this equation on the Lie al-
gebra. To do so, we replace the latter with another one which, thanks to the
Baker-Campbell-Hausdorff formula, gives a direct connection with the Fréchet
functional equation. The new equation however, has only a local character.

In this paper, we start by gathering results from previous works [20, 19] to
describe more explicitly the “regular” solutions in the case (3) and make some
easy remarks. We show that these previous results could hardly be improved
upon. We also give the explicit form of some specific solutions of the Fréchet
functional equation (1), by enhancing a result from [19]. Next, we show that
there is no distributional solution that is not associated to a smooth function.
We then consider the explicit cases of the Abelian and nilpotent Lie groups,
showing that there is no clear notion of degree that can be associated to the
smooth solutions of (1). We then consider the structure of the (smooth) gener-
alized polynomials on G by studying the set of (smooth) functions satisfying (1)
for some m; we characterize these solutions thanks to the lower central series.
Finally, we consider the Fréchet functional equation on homogeneous spaces.

2 Notations and previous results

Let use precise some notations used throughout this paper. We will consider
an arbitrary connected Lie group G whose Lie algebra is g. The left-invariant
vector field associated to X ∈ g will be denoted by LX and if E1, . . . , En is
a basis of g (n will always stand for the dimension), Lk1,...,km will stand for
the composed operator LEk1 · · · LEkm . We will use X ∗ Y as a short notation
for log(expX expY ), with X,Y ∈ g sufficiently close to 0 (log is only defined
locally).

Let us recall two results from previous works [20, 19]. First, every solution
of (1) or (3) that is “regular” is necessarily smooth.

Proposition 1. Let G be a connected Lie group equipped with a left Haar mea-
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sure; if f is a solution of (3) at x0 that is bounded almost everywhere in a
neighborhood of x0, then f is smooth in a neighborhood of x0.

In particular, continuous solutions are smooth. We can describe the solutions
of Equation (3).

Proposition 2. A function f : G → R that is locally bounded almost every-
where in a neighborhood of x0 is a smooth solution of (3) at x0 if and only if
there exist a neighborhood Vx0 of x0 and a neighborhood V0 of 0 in g such that

fx(X) =

m∑
j=0

1

j!
LjXf(x) = f(x) +

m∑
j=1

∑
1≤k1,...kj≤n

Lk1···kjf(x)

j!
Xk1 · · ·Xkj , (5)

for X ∈ V0 and x ∈ Vx0
.

The following example will help us to underline the difference between the
Fréchet mixed differences equation (1) and the unmixed differences equation (3).

Example 1. If G is a 2-nilpotent Lie group, there exists a linear functional f on
g that does not identically vanish on [g, g]. For X,Y, Z ∈ g, we have

∆2
Y,Zf(X) =

1

2
f([Y, Z]),

which is not zero for some appropriate choice of Y and Z, while it vanishes for
Y = Z. Let us also remark that we have

f(X ∗ Y ∗ Z)− f(X ∗ Z ∗ Y ) = f([X,Z]);

this identity will be useful in Section 6.

3 The left Fréchet equation

Let us first show that the Fréchet functional equation is symmetric: the left
local Fréchet equation is equivalent to (1). Given h ∈ G, let h∆ = L∗h − I in
order to define the left difference operator h∆m in the same way as ∆m

h .

Proposition 3. A function f : G→ R is a solution of the local Fréchet Equa-
tion (1) at x0 if and only if it satisfies

h∆m+1f(x) = 0,

for any x in some neighborhood of x0 and any h in some neighborhood of the
identity.

Proof. Given x ∈ G (in a neighborhood of x0) and h ∈ Gm+1 (in a neighborhood
of 1), let us define h′ ∈ Gm+1 by setting h′j = x−1hjx for j ∈ {1, . . . ,m+ 1}, so
that we have

h∆m+1f(x) = ∆m+1
h′ f(x).

The result follows from the fact that (x, h) 7→ x−1hx is continuous at (x0, 1).

Of course, this result can easily be adapted for the equation with unmixed
differences (3).
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4 A simple case where the unmixed differences
equation is equivalent to the mixed differences
equation

On Rn, Equation (3) is equivalent to the Fréchet mixed differences equation
(1). Indeed, this result is well-known for Abelian group in general and has
been obtained for more general cases (see [10, 15] and references therein). For
example, it is shown in [15] that if G and G′ are Abelian groups such that, for
every prime number p ≤ m+ 1, either G′ does not contain any element of order
p or |G/pG| ≤ p, then f : G → G′ is a solution of (1) if and only if it is a
solution of (3). If G is not Abelian however, solutions of (3) could not satisfy
the Fréchet equation; Example 1 provides a function f that satisfies (3) in a
neighborhood of 1 for m = 1 but not (1) for the same m. We consider here
the local case and easily show that in the Abelian setting, polynomial germs
are solutions of both (1) and (3). In particular, these equations admit the same
smooth solutions. This equivalence is a particular case of Lemma 13 in [15].

Definition 1. A map f : G → R is a polynomial germ at x0 if the germ of
fx0

at the origin is the germ of a polynomial function P in g. In this case, the
degree of f at x0 is the degree of P .

Proposition 4. If G is Abelian, polynomial germs at x0 of degree at most m
are solution of the local equations (1) and (3) at x0.

As a consequence, if G is Abelian, the Fréchet equation (1) is equivalent to
the unmixed version (3) for the smooth solutions.

Proof. Since G is Abelian, the difference operator can be locally seen as the
classical difference operator on g with its vector space structure. For X and Y
in a neighborhood of 0 in g, we have

∆expY f(x0 expX) = ∆Y fx0(X),

where the operator in the right-hand side is the difference operator on a vector
space. In this case, the smooth solutions are given by polynomials of degree at
most m defined on a neighborhood of x0.

5 A relation with linear partial differential equa-
tions

Let us give a complementary result in the case of the unmixed differences equa-
tion (3), which shows that there is very little hope to be able to describe more
explicitly all the solutions of (3) than what is proposed in Proposition 2: the
coefficients of the operators are not tractable since they rely on a quite cumber-
some formula. It suggests that the obstruction on the existence of solutions is,
at least partially, of algebraic nature.
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We will denote by ad the adjoint representation of a Lie algebra; recall that
ad(X)(Y ) = [X,Y ]. As usual, Gm+1 denotes the set of permutations of m + 1
elements.

Proposition 5. A smooth solution f of the local Fréchet equation at x0 is
a local solution of the system of

(
n+m
m+1

)
homogeneous linear partial differential

equations of order m+ 1 defined by∑
σ∈Gm+1

Lkσ1 ,··· ,kσm+1
f = 0 ∀k1, . . . , km+1 ∈ {1, . . . , n},

in a neighborhood of x0.
The system can be rewritten as∑
1≤|α|≤m+1

bαk1,...,km+1
(ad(X))Dαfx0

(X) = 0 ∀k1, . . . , km+1 ∈ {1, . . . , n},

where X is in a neighborhood of 0 in g, bαk1,...,km+1
are some analytic functions

in a neighborhood of 0 that are symmetric with respect to the indices k1, . . . km+1

and Dα represents the ordinary derivatives with respect to a fixed basis of g.

Proof. From (5) and the Taylor theorem, we have∑
σ∈Gm+1

Lkσ1 ,...,kσm+1
f = 0

on a neighborhood of 1 for any k1, . . . , km+1 ∈ {1, . . . , n}. Since a solution of
the equation of order m + 1 is also a solution for the equation of order m + 2,
the terms of order m + 1 in the polynomial solution fx(X) must be equal to
zero. The coefficient of Xk1 , . . . , Xkm+1 , given by

1

(m+ 1)!

∑
σ∈Gm+1

Lkσ1 ,...,kσm+1
f(x)

is thus equal to zero for any x sufficiently close to x0.
Let us examine the local expression of the equations in the chart exp : g→ G.

For X sufficiently small and k ∈ {1, . . . , n}, we have

Lkf(x0 expX) = [Dtfx0
(X ∗ tEk)]t=0 =

n∑
j=1

ajk(X)Djfx0
(X),

with ajk(X) = [Dt(X ∗ tEk)j ]t=0. An application of the Baker-Campbell-
Hausdorff formula shows that

ajk(X) = [φ(ead(X))(Ek)]j ,

where

φ(T ) = I +

∞∑
j=1

(−1)j

j(j + 1)
(T − I)j ,
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for T ∈ L(g, g) sufficiently close to the identity (see [17]). Indeed, we have

X ∗ tEk = X +

∫ 1

0

φ(ead(X)euad(tEk)) tEk du

= X +

∫ t

0

φ(ead(X)evad(Ek))Ek dv.

So that differentiating at t = 0 gives the expression of ajk(X). The coefficients

aαk1,...,km+1
are thus simply a sum of products of the ajk and their derivatives up

to order m. The analyticity of the coefficients is clear from the formula for the
coefficients ajk.

6 Right-Abelian solutions

Let us give a condition on the solutions under which they are characterized in
terms of local homomorphisms; this section improves results from [19].

Definition 2. A map f : G → R is locally right-Abelian at x0 ∈ G if
f(xyz) = f(xzy), for any x in some neighborhood of x0 and any y, z ∈ G
in some neighborhood of the identity.

Here, given some distance on G, B(r) denotes the ball centered at 1 with
radius r.

Proposition 6. If f : G → R is smooth in a neighborhood of x0 and lo-
cally right-Abelian at x0, then there exists a neighborhood Vx0

of x0 such that
Lk1,...,kmf = Lσk1 ,...,σkm f on Vx0

for any σ ∈ Gm.

Moreover, LkXf is also locally right-Abelian for any X ∈ g and any k ∈ N.

Proof. Let d be a left-invariant Riemannian distance on G and r > 0 be such
that f(xyz) = f(xzy) for any x ∈ Vx0

and y, z in the ball B(r). It is easy to
show that we have

f(xyσ1 · · · yσk) = f(xy1 · · · yk),

for any σ ∈ Gk with k ≤ m, x ∈ Vx0
and y1, . . . , yk ∈ B(r/(k + 1)).

Since the dilation t 7→ exp(tX) is continuous in a neighborhood of the origin
for any X ∈ g, there exists a neighborhood V0 of 0 in R such that

f(x exp(tk1Ek1) · · · exp(tkmEkm)) = f(x exp(tσk1Eσk1 ) · · · exp(tσkmEσkm )),

for any x ∈ Vx0
and tk1 , . . . , tkm ∈ V0. Both sides of this equality seen as

functions of tk1 , . . . , tkm are smooth in a neighborhood of the origin, which can
be assumed to be V m0 . The first part of the result is obtained by differentiating
with respect to these variables at 0.

It remains to prove the second statement for the first order differentiation.
For X ∈ g, we have fxyz(tX) = fxzy(tX) for any x ∈ Vx0

, y, z in a neighborhood
of 1 and t in a neighborhood of 0. Differentiating with respect to t at 0 allows
to conclude.
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Combining results from [19], we have the following:

Proposition 7. Let k be the dimension of Homloc(G,R); a locally right-Abelian
map f : G→ R at x0 that is also bounded almost everywhere in a neighborhood
of this point is a solution of the local Fréchet equation (1) at x0 if and only
if there exist f1, . . . fk ∈ Homloc(G,R), real numbers aα for α ∈ Nk such that
|α| ≤ m and a neighborhood V1 of the identity such that

f(x0h) =
∑
|α|≤m

aαf1(h)α1 · · · fk(h)αk ,

for any h ∈ V1.
If moreover G is simply connected, we also have f1, . . . , fk ∈ Hom(G,R).

Unfortunately, not every solution of (1) is right-Abelian; once again, Exam-
ple 1 gives a function f that is not right-Abelian but satisfies (1) for m = 2.

7 The Fréchet functional equation for distribu-
tions

In this section, we wonder whether or not there are distributional solutions that
are not associated to a smooth function.

Let δ : G→ (0,∞) be the modular function of G, which we suppose equipped
with a left Haar measure. It is easy to see that ∆m

h f is well-defined as an element
of L1

loc(G), since it does not depend on the representation of f in L1
loc(G). Let

ϕ be a function of D(G), the space of smooth functions on G with compact
support; in a distributional sense, ∆m

h f (we use unmixed differences for the
sake of clarity) is given by

〈∆m
h f, ϕ〉 =

m∑
j=0

(−1)m−j
(
m

j

)∫
G

f(xhj)ϕ(x) dx

=

m∑
j=0

(−1)m−j
(
m

j

)∫
G

δ(h−1)jf(x)ϕ(xh−j) dx

= 〈f,∆′mh−1ϕ〉,

with ∆′h = δ(h)R∗h−I. For the right Haar measure however, we get the expected

identity 〈∆m
h−1f, ϕ〉 = 〈f,∆m

h̃
ϕ〉, where, if h = (h1, . . . , hm), h̃ = (hm, . . . , h1).

If G is unimodular, we recover a definition of the difference operator on the
space of distributions D′(G) that is consistent. We will thus work with such a
group in this section.

Remark 1. If one wants to deal with groupsG that are not unimodular, it suffices
to consider a right Haar measure when working with right finite differences ∆h.

Definition 3. Given T ∈ D′(G) and h ∈ Gm, ∆m
h T is the distribution on G

defined by ∆m
h T (ϕ) = T (∆m

h−1ϕ), for any ϕ ∈ D(G). Its restriction to L1
loc(G)
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is the usual difference operator of function (up to a vanishing set for the Haar
measure).

Naturally, from the point of view of distributions, the local Fréchet functional
equation at x0 of order m+ 1 is given by

∆m+1
h T = 0 ∀ϕ ∈ D(Vx0

), (6)

where Vx0
is an open neighborhood of x0, with h in a neighborhood of 1. If f ?g

denotes the convolution of functions f and g on G, let us show that there is no
purely distributional solution to (6). Indeed, we show a slightly stronger result.

Proposition 8. If T ∈ D′(G) is a solution of the local equation

∆m+1
h T = 0 ∀ϕ ∈ D(Vx0),

where Vx0 is an open neighborhood of x0, with h in a neighborhood of 1, then
the restriction of T to some neighborhood of x0 as a function is smooth.

Proof. Let ρ be a smooth function on g that is compactly supported on the ball
B(r/(m + 1)) centered at the origin for some r > 0 such that the exponential
is a diffeomorphism between B(r) and its image. Moreover, we assume that
C =

∫
g
ρ(X)dX 6= 0. Next, define

Φ̃(X) =

m+1∑
j=1

(−1)m−j+1

(
m+ 1

j

)
1

jn
ρ(
X

j
).

This function is supported on B(r). We then set

Φ(X) =
(−1)m

C
φ̃(X)

and
ϕ(x) = Φ(log x)ϑ(log x),

where ϑ(X) is the inverse of the Jacobian determinant at X of the exponential
map (with respect to a fixed basis of left-invariant vector fields).

Let us consider T ? ϕ̃, where ϕ̃(x) = ϕ(x−1). We have

(ψ ? ϕ)(x)− ψ(x) =
(−1)m+1

C

∫
B(r)

∆m+1
exp(−X)ψ(x)ρ(X) dX,

for any test function ψ. Let V = x0 exp(B(r)) in such a way that the exponential
is a diffeomorphism from B(r) into its image. For ψ ∈ D(V ), we have

〈T ? ϕ̃, ψ〉 − T (ψ) =

∫
G

T (L∗x−1ϕ)ψ(x) dx− T (ψ) = T (ψ ? ϕ− ψ)

=
(−1)m+1

C

∫
B(r)

∆m+1
exp(X)T (ψ)ρ(X) dX = 0.

Therefore T is equal as a distribution to a smooth function on V . As the
restriction of T to V as a function is bounded almost everywhere, it is smooth
on some neighborhood of x0.
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8 The case of the Abelian Lie groups

Let us consider the example of the Abelian Lie groups.

Since the solutions of the Fréchet functional equation for an Abelian group
are locally right-Abelian, the solutions are given by polynomials with degree
at most m when the exponential chart is applied. For example, in Rn, the
solutions of the local Fréchet functional equation at x0 are given by

f(x) =
∑
|α|≤m

aα(x− x0)α,

in a neighborhood of x0.
In the case of the one-dimensional torus S1, the solution of the local equation

at x0 are given by

f(x) =

m∑
j=0

aj arg(xx−10 )j ,

in a neighborhood of x0 (here, S1 is interpreted as the unit circle of the complex
plane). If we consider the local Fréchet functional equation on g at x0:

∆m+1
Y fx0

(X) = 0,

with X,Y ∈ g in a neighborhood of 0, we get

f(expx0
X) =

∑
|α|≤m

aαX
α,

with respect to some basis in the tangent space, X being in a neighborhood of
the origin. For the global solution, we have the following result:

Proposition 9. If G is Abelian, let k, n ∈ N0 be such that G = Rn × (S1)k;
the global solutions of (1) that are bounded almost everywhere are of the form

f(x, y) =
∑
|α|≤m

aαx
α,

for x ∈ Rn and y ∈ (S1)k.

Proof. We just need to show that if G is a torus, the only global solutions that
are bounded almost everywhere are constant. Let us assume that G = (S1)k

and develop f as a Fourier series. Let f̂(l) be the Fourier coefficient relative to
x 7→ e〈l,x〉/(2π)k/2, so that we can write

f(eix1 , . . . , eixk) =
∑
l∈Zk

1

(2π)k/2
f̂(l) ei〈l,x〉.
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With the Fourier decomposition of (x1, . . . , xk) 7→ ∆m
h f(eix1 , . . . , eixk), we get

0 =

∫
[0,2π)k

∆m
h f(eix1 , . . . , eixk) ei〈l,x〉 dx1 · · · dxk

=

m∑
j=0

(−1)m−j
(
m

j

)∫
[0,2π)k

f(eix1hj1, . . . , e
ixkhjk) ei〈l,x〉 dx1 · · · dxk

=
1

(2π)k

m∑
j=0

(−1)m−j
(
m

j

)∫
(S1)k

f(z1h
j
1, . . . , zkh

j
k)zl11 · · · z

lk
k dz1 · · · dzk

=
1

(2π)k

∫
(S1)k

f(z1, . . . , zk)zl11 · · · z
lk
k (h−l11 · · ·h−lkk − 1)m dz1 · · · dzk,

where the integrals on (S1)k are Haar integrals. For l 6= 0, by choosing h1, . . . , hk
close to 1 and such that hl11 · · ·h

lk
k 6= 1, we get f̂(l) = 0. We thus have f =

f̂(0).

9 Weak generalized polynomials for nilpotent
Lie groups

In this section, we assume that G is nilpotent with order of nilpotency N . Let
us recall that in this case, the lower central series is given by the sequence of
subspaces

g ⊃ g(1) ⊃ · · · ⊃ g(N−1) ⊃ g(N) = {0},

with g(1) = [g, g] and g(j+1) = [g, g(j)] for j ∈ N. The group law of G is a
polynomial of degree N if we look in the Lie algebra. In the sequel, we denote
the group law on the Lie algebra by two reorderings of the terms of the Baker-
Campbell-Hausdorff formula:

X ∗ Y =

N−1∑
j=0

Hj(X,Y ) =

N−1∑
j=1

Hj(X,Y ),

where Hj is a g-valued homogeneous ordinary polynomial of degree j with re-
spect to X and Hj is a homogeneous polynomial of degree j with respect to
X,Y . We denote by MY,j the j-multilinear map in the variables X1, . . . , Xj on
g that is symmetric and such that MY,j(X, . . . ,X) = Hj(X,Y ). By doing so,
we have a family of multilinear maps MY,j : gj → g that locally defines the
group structure when restricted to the diagonal.

Before proceeding further, let us restate Equation (3). In this section, we
are interested in the unmixed version. If f is the unknown function and if
the equation is studied in a neighborhood of a point x0 ∈ G, we consider the
function fx0 : g → R defined by fx0(X) = f(x0 exp(X)). It is well-known

11



that exp(X) exp(Y ) = exp(X + Y ) when [X,Y ] = 0 while exp(X) exp(Y ) =
exp(X ∗ Y ) in full generality. This implies that

f(x0 exp(X) exp(Y )j) = f(x0 exp(X) exp(jY ))

= f(x0 exp(X ∗ jY )).

So, for X and Y sufficiently close to 0 in g, Equation (3) becomes

0 = ∆m+1
expY f(x0 exp(X))

=

m+1∑
j=0

(−1)m+1−j
(
m+ 1

j

)
f(x0 exp(X) exp(Y )j)

=
m+1∑
j=0

(−1)m+1−j
(
m+ 1

j

)
f(x0 exp(X ∗ jY ))

=

m+1∑
j=0

(−1)m+1−j
(
m+ 1

j

)
fx0

(X ∗ jY )

= ∗∆m+1
Y fx0

(X),

where ∗∆m+1
Y is the unmixed finite difference of order m+1 on the group (g, ∗, 0).

From now on, we will simply check the local equation

∗∆m+1
Y f(X) = 0, (7)

for functions f defined in a neighborhood of 0 in g. Note that (7) (which uses
the operation ∗) is not equivalent to (3) (operation + is used).

Let us first show that polynomials on g provide solutions of the Fréchet
functional equation (3) of sufficiently high order. We denote by RY the right
translation by Y on (g, ∗, 0).

Lemma 10. For k ∈ {1, . . . , N}, we have ∗∆k
ZRY (X) ∈ g(k), for any X,Y, Z ∈

g.

Proof. We have RY (X) =
∑N−1
j=1 Hj(X,Y ) and thus

∗∆k
ZRY (X)

=

k∑
j=0

(−1)k−j
(
k

j

)N−1∑
m=0

Hm(

N−1∑
l=0

Hl(X, jZ), Y )

=

N−1∑
m=0

∑
l1,...,lm≤N−1

k∑
j=0

(−1)k−j
(
k

j

)
MY,m(Hl1(X, jZ), . . . ,Hlm(X, jZ)).

We can write

MY,m(Hl1(X, jZ), . . . ,Hlm(X, jZ))

= PY,m,X,l1,...,lm(jZ) +QY,m,X,l1,...,lm(jZ),

12



where PY,m,X,l1,...,lm(jZ) represents the terms up to order k− 1 with respect to
jZ and QY,m,X,l1,...,lm(jZ) are the remaining terms.

Since QY,m,X,l1,...,lm(jZ) is obtained from a sum of iterated commutators of
at least k times the factor jZ and one time the factor X, it belongs to g(k). As
for PY,m,X,l1,...,lm(jZ), we have

∆k
ZPY,m,X,l1,...,lm(0) = 0

where the finite difference here is the one for the group (g,+, 0). It remains to
notice that

∗∆k
ZRY (X) =

N−1∑
m=0

∑
l1,...,lm≤N−1

k∑
j=0

(−1)k−j
(
k

j

)
QY,m,X,l1,...,lm(jZ)

belongs to g(k).

Lemma 11. If P is additive and vanishes on g(k) for k ≤ N , then ∗∆k
Y P (X) =

0. In particular, we have ∗∆N+1
Y P (X) = 0 for any additive function P .

Proof. This is trivial as we have

∗∆k
Y P (X) =

k∑
j=0

(−1)k−j
(
k

j

)
P (X ∗ jY ) = P (∗∆k

YR0(X)) = 0,

since ∗∆k
YR0(X) belongs to g(k).

The previous result shows that the notion of degree for ordinary polynomials
is not linked to the order of the Fréchet functional equation in a trivial way. A
linear form vanishing on g(k) should be seen as a polynomial of degree at most
k − 1. This motivates the following notion of degree.

Definition 4. Let P be a diagonalization of a non-zero symmetric r-multiadditive
mapping T : gr → R. The G-degree of P is the number r(k − 1) where
k ∈ {2, . . . , N} is the lowest integer such that T (X1, . . . , Xr−1, ·) vanishes on
g(k) for all X1, . . . , Xr−1 ∈ g.

If P is any solution of (3), we may decompose it into a sum of func-
tions Pj that are diagonalizations of j-multiadditive symmetric mapping for
j ∈ {0, . . . , r}. The G-degree of P is the largest G-degree among those of
P0, . . . , Pr.

Remark 2. If P is a homogeneous ordinary polynomial on g of degree r, then
there is a unique r-multilinear symmetric mapping T on g such that P is the
diagonalization of T . Hence, the above definition also applies to ordinary poly-
nomials on some Lie algebra.

Let us show that if P is a polynomial on g of G-degree m, then P ◦ log ◦Lx−1
0

satisfies (3) at x0.
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Proposition 12. If P is an ordinary polynomial on g of G-degree m, then we
have ∗∆m+1

Y P (X) = 0 for X,Y ∈ g in a neighborhood of zero.

Proof. By linearity, it suffices to consider homogeneous polynomials. Let P be
a homogeneous ordinary polynomial of degree r with G-degree m and denote by
T the associated symmetric r-form. We know that T (X1, . . . , Xr−1, ·) vanishes
on g(k) for all X1, . . . , Xr−1 ∈ g with k = 1 +m/r. We can write

∗∆m+1
Y P (X)

=

m+1∑
j=0

(−1)m−j+1

(
m+ 1

j

)
T (

N∑
l1=1

Hl1(X, jY ), . . . ,

N∑
lr=1

Hlr (X, jY ))

=

k∑
l1=1

· · ·
k∑

lr=1

m+1∑
j=0

(−1)m−j+1

(
m+ 1

j

)
T (Hl1(X, jY ), . . . ,Hlr (X, jY )).

Since T (Hl1(X, jY ), . . . ,Hlr (X, jY )) is an ordinary polynomial with degree at
most r(k − 1) with respect to jY and

k∑
l1=1

· · ·
k∑

lr=1

m+1∑
j=0

(−1)m−j+1

(
m+ 1

j

)
T (Hl1(X, jY ), . . . ,Hlr (X, jY ))

=

k∑
l1=1

· · ·
k∑

lr=1

∆m+1
Y (T (Hl1(X, ·), . . . ,Hlr (X, ·)))(0),

the conclusion follows.

In the case N = 2, i.e. for two-step nilpotent Lie groups, we can be more
precise: the solutions are similar to the Abelian case. For example, Heisenberg
groups are two-step nilpotent.

Proposition 13. Let G be a two-step nilpotent Lie group; A function f : G→ R
that is bounded almost everywhere in a neighborhood of x0 is a solution to (3)
at x0 if and only if fx0 is a polynomial of degree at most m in a neighborhood
of 0. If, moreover, G is connected and simply connected, then the global result
also holds.

Proof. As the problem is local, we can assume that G = g and x0 = 1. It is
obvious that the G-degree of a polynomial is equal to its usual degree, since
any linear form vanishes on g(2) = {0}. As for the global case, it is well-known
that the exponential map is a diffeomorphism between G and g when G is
connected and simply connected so the previous argument can be used in a
global fashion.

The previous result does not remain true when replacing Equation (3) with
(1), as evidenced by Example 1.

Finally, let us point out the following result that is proved the same way as
above. It shows that even non-regular solutions of (4) also satisfy (3).
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Proposition 14. If P : g → R is a function satisfying ∆r+1
Y P (X) = 0 with

G-degree m, then it is a solution of (7).

Proof. We can follow the same proofs above since we only exploit additivity
(linearity over integers).

10 The set of generalized polynomials

We show here that the generalized polynomials, when composed with the expo-
nential, are generated by additive functions on g vanishing on g(N), where N is
the number for which the lower central series stabilizes.

Once again, we change our perspective by looking (1) at the level of g. First,
let us introduce the mixed difference ∗∆m+1

Y of order m+ 1 which is simply the
operator in (1) in g using the operation ∗ given by X ∗Y = log(exp(X) exp(Y ))
for X,Y ∈ g defined only in a neighborhood of 0. If f is some solution of (1)
in a neighborhood of, say, the identity, then the function fg : g→ R defined by
fg(X) = f(exp(X)) satisfies

0 = ∆m+1
exp(Y )f(exp(X))

=

m+1∑
l=0

(−1)m+1−l
∑

i1<···<il

f(exp(X) exp(Yi1) · · · exp(Yil))

=

m+1∑
l=0

(−1)m+1−l
∑

i1<···<il

f(exp(X ∗ Yi1 ∗ · · · ∗ Yil))

=

m+1∑
l=0

(−1)m+1−l
∑

i1<···<il

fg(X ∗ Yi1 ∗ · · · ∗ Yil)

= ∗∆m+1
Y fg(X).

So, obviously, f is a local solution of (1) in a neighborhood of the identity
if and only if fg locally satisfies

∗∆m+1
Y fg(X) = 0, (8)

in a neighborhood of 0 in g. The local solutions of (8) will be called Fréchet
polynomials.

If G is not nilpotent, the lower central series is ultimately stable: there exists
an order N ∈ N0 for which we have

g ⊃ g(1) ⊃ g(2) ⊃ · · · ⊃ g(N) = g(N+1) = · · · .

We thus have the following chain concerning their annihilator spaces:

{0} ⊂ (g(1))⊥ ⊂ (g(2))⊥ ⊂ · · · ⊂ (g(N))⊥ ⊂ g∗.

We adopt the following definition.
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Definition 5. Given G, let N ∈ N0 be the smallest integer for which the lower
central series stabilizes, i.e. such that g(N) = g(N+1); M(g) (resp. M∞(g)) is
the space of additive (resp. linear) functions f : g→ R such that g(N) ⊂ ker(f)
and an element of M(g) (resp. M∞(g)) is called a (resp. regular) fundamental
monomial. The space of (resp. regular) fundamental polynomials P (G) (resp.
P∞(G)) is the space of germs at 1 of functions f : G→ R such that f ◦ exp is
generated by a basis of (resp. regular) fundamental monomials in a neighborhood
of 0.

Obviously, since linear functions are additive, we have M∞(g) ⊂M(g). Let
us first show that the elements of P (G) are generalized polynomials at the level
of germs at the identity.

Theorem 15. If f ∈ P (G), then there exists m ∈ N such that f satisfies (1)
for all x and h in a neighborhood of 1.

Proof. Let f ∈ P (G); without loss of generality, we may assume that fg = f◦exp
has the form fα1

1 · · · f
αk
k , with f1, . . . , fk additive such that g(N) ⊂ ker(fi) (i ∈

{1, ..., k}) and α1, . . . , αk ∈ N with α1 + · · ·+αk = d. Obviously, fg can be seen
as the diagonalization of some multiadditive mapping

T : gd → R

and this mapping is such that T (X1, . . . , Xd) = 0 as soon as one of the entries
X1, . . . , Xd belongs to g(N), we simply have to consider

T = f⊗α1
1 ⊗ · · · ⊗ f⊗αkk .

Note that we do not necessarily require symmetry for T here, nor in what follows.
We then have fg(X) = (T ◦ δd)(X), where δd : g→ gd is the diagonal mapping.
We will apply an algorithmic procedure to prove that ∗∆m+1

H fg(X) vanishes for
X,H1, . . . ,Hm+1 in some neighborhood of 0 in g for the appropriate choice of
m. The finite difference here uses the Baker-Campbell-Hausdorff series as the
group operation; we restrict ourselves to a small neighborhood of 0 to have a
convergent series. The neighborhood V considered here will be sufficiently small
to make sense for the products appearing in the five steps method described
below.

1. Let us consider ∗∆dN+1
H fg(X) for X,H1, . . . ,HdN+1 ∈ V . It can be written

as

∗∆dN+1
N fg(X) =

dN+1∑
l=0

(−1)dN+1−l
∑

i1<···<il

fg(X ∗Hi1 ∗ · · · ∗Hil)

=

dN+1∑
l=0

(−1)dN+1−l
∑

i1<···<il

fg(X +Hi1 + · · ·+Hil +Ri1···il)
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where Ri1···il are the remaining terms of the series made of iterated com-
mutators. Moreover, the series can be truncated to the terms made of iter-
ated Lie brackets of at most N vectors. Since T is multiadditive (hence Q-
multilinear, remember that coefficients in the Baker-Campbell-Hausdorff
series are rational numbers), we can write

∗∆dN+1
H fg(X)

=

dN+1∑
l=0

(−1)dN+1−l
∑

i1<···<il

(T ◦ δd)(X +Hi1 + · · ·+Hil) +R

= ∆dN+1
H fg(X) +R

where are R are the remaining terms that we do not write explicitly and
∆dN+1
H is the difference operator of the group (g,+, 0). Since fg is a

Fréchet polynomial of ordinary degree d, we have ∆dN+1
H fg(X) = 0 and

∗∆dN+1
H fg(X) = R.

Using multilinearity, we can write out the remaining terms R as

N∑
k=1

∑
j∈Jk

(T
(1)
k,j ◦ δdj )(X), (9)

where, given k, T
(1)
k,j is some multilinear mapping obtained as a composi-

tion of T with mappings of the form

(Y1, . . . , Yl) 7→ [Y1, . . . , [. . . , Y2, [. . . , [Yl, . . .] · · · ],

in some of its components such that the minimal number of bracket iter-
ations appearing in this composition is k; we will call them terms of type

k. Let us denote by dj the number of entries in T
(1)
k,j . It is clear that dj

cannot exceeds dN because of the vanishing property of T on g(N).

2. We have

∗∆dN+1
H fg(X) =

N∑
k=1

∑
j∈Jk

(T
(1)
k,j ◦ δdj )(X).

The elements T
(1)
1,j are given by the composition of T with a single Lie

bracket in one of its entries. Let us apply ∗∆dN+1
H(1) on both sides for some

other H
(1)
1 , . . . ,H

(1)
dN+1 in V . For k0 ∈ {1, . . . , N} and j ∈ Jk0 , we have

∗∆dN+1
H(1) (T

(1)
k0,j
◦ δdj )(X) = ∆dN+1

H(1) (T
(1)
k0,j
◦ δdj )(X) + (∗).
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The first term vanishes and the remaining terms (∗) can be written as
the same sort of sum as (9), with the sum starting at k = k0. Doing this
procedure to each k0 and j ∈ Jk0 , we may write

∗∆dN+1
H(1)

∗∆dN+1
H fg(X) =

N∑
k=1

∑
j∈J(2)

k

(T
(2)
k,j ◦ δdj )(X),

where, this time, T
(2)
1,j contains simple brackets at two distinct entries.

3. Apply Step 2 again d− 2 more times to get

∗∆dN+1
H(d−1) · · · ∗∆dN+1

H(1)
∗∆dN+1
H fg(X) =

N∑
k=1

∑
j∈J(d)

k

(T
(d)
k,j ◦ δdj )(X),

where T
(d)
1,j is a composition of T with simple brackets in all of its d entries

for all j ∈ J (d)
1 .

By applying once again ∗∆dN+1
H(d+1) , we obtain a sum of type

N∑
k=2

∑
j∈J(d+1)

k

(T
(d+1)
k,j ◦ δdj )(X),

since the Euclidean finite difference will cancel out T
(d)
1,j ◦δdj for all j ∈ J (d)

1

and the remaining terms will add more brackets. As all the entries have
been exhausted with brackets for terms of type 1, this will only give the
above sum with iteration of two brackets at least appearing in the entries
of T .

4. Repeat 2(d− 1) times Step 2 to obtain

N∑
k=2

∑
j∈J(d+1+2(d−1))

k

(T
(d+1+2(d−1))
k,j ◦ δdj )(X),

with T
(d+1+2(d−1))
2,j given by a composition of T with double brackets on

each of its component. So, applying Step 2 again gives only terms of type
bigger than 2. We have a sum of type

N∑
k=3

∑
j∈J(d+2+2(d−1))

k

(T
(d+2+2(d−1))
k,j ◦ δdj )(X).

5. Repeat (3(d−1)+1)+ · · ·+(N(d−1)+1) times Step 2 to obtain 0 (using
arguments from Step 4 to cancel out each term of each type).
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In the end, the number of times we have to apply a finite difference of
order dN + 1 is equal to N + 1

2 (N(N + 1)(d− 1)); so, in total, we obtain

∗∆
(dN+1)(N+

N(N+1)(d−1)
2 )

H fg(X) = 0,

for all X,H1, . . . ,H(dN+1)(N+
N(N+1)(d−1)

2 )
in a small neighborhood of 0.

It is clear from the previous results that the minimal order m + 1 of the
equation (1) satisfied by smooth generalized polynomials on G cannot be easily
linked to the degree of those smooth functions seen as ordinary polynomials.
This comes from the fact that equations

∆m+1
Y fg(X) = 0

and
∗∆m+1
Y fg(X) = 0

are not equivalent as soon as non-commutativity is involved. Indeed, the pos-
sibility to go from one equation to another stems from the fact that the expo-
nential map satisfies, at least in a neighborhood of 0,

exp(X) exp(Y ) = exp(X + Y ),

which does not always happen in the non-Abelian setting.
Let us now show that a smooth generalized polynomial belongs to P∞(X).

Theorem 16. If f is a smooth solution of Equation (1) for all x and h in a
neighborhood of 1, then f ∈ P∞(G).

Proof. We assume that
∆m+1
h f(x) = 0,

for all x and h in some neighborhood V of 1. Consider X1, . . . , Xm+1 ∈ g. For
t1, . . . , tm+1 ∈ R \ {0} sufficiently close to 0, we obtain

∆m+1
exp(t1X1),...,exp(tm+1Xm+1)

f(x)

t1 · · · tm+1
= 0.

If we successively take the limits for tm+1, . . . , t1 → 0, we obtain

LX1
· · · LXm+1

f(x) = 0,

for all x ∈ V and all X1, . . . , Xm+1 ∈ g. However, X ∈ g(m) can be written as a
combination of iterated brackets of m+1 elements of g. In terms of left invariant
vector field, this allows us to say that for X ∈ g(m), LX is a linear combination
of operators of type LX1 · · · LXm+1 . This implies that LXf(x) vanishes for all

x ∈ V and X ∈ g(m). Since g(N) ⊂ g(m), we infer that LXf(x) vanishes for all
x ∈ V and all X ∈ g(N). Using Proposition 5, we see that f ◦ exp is constant
on g(N) and equal to f(1), so that f belongs to P∞(G).

Corollary 17. The set of germs at 1 of smooth generalized polynomials is equal
to P∞(G).
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11 The Fréchet functional equation on homoge-
neous spaces

Let M be a smooth manifold endowed with an action of a Lie group G; without
loss of generality, we will assume that the action is done on the right. Given
p ∈M , Gp will denote the stabilizer of p. Using the quotient manifold theorem,

πp : G/Gp →M [x] 7→ px,

where x, y ∈ G are equivalent for the quotient if xy−1 ∈ Gp, is a diffeomorphism
for any p ∈M . The natural right action of G on G/Gp is obviously a right action
and πp is equivariant. On the other hand, the projection

Πp : G→ G/Gp x 7→ [x]

is an equivariant submersion. For a function f : M → R, one naturally defines
the operator ∆m

h with h ∈ G by

∆m
h f(p) =

m∑
j=0

(−1)m−j
(
m

j

)
f(phj),

for any p ∈M . We will say that f : M → R satisfies the local Fréchet functional
equation of order m+ 1 at p0 ∈M if

∆m+1
h f(p) = 0, (10)

for any p in a neighborhood of p0 and any h in a neighborhood of the identity
in G.

The local solutions of (10) are obtained from the solutions of (3). Let us
denote by TpM the tangent space of a differentiable manifold M at p.

Theorem 18. Let M be a naturally reductive Riemannian homogeneous space
where the geodesics are orbits of one-parameter subgroups of G. If f : M → R
is a solution of (10) at p0 that is bounded in a neighborhood of p0, then there
exist functions c0 and ck1,...,kj on M (kj ∈ {1, . . . , n} and j ∈ {1, . . . ,m}) that
are smooth in a neighborhood of p0 such that

f(exppX) = c0(p) +

m∑
j=1

∑
1≤k1,...,kj≤n

ck1,...,kj (p)Xk1 · · ·Xkj ,

for X in a neighborhood of 0 in TpM and p in a neighborhood of p0 in M .

Proof. One may reduce the problem to the case M = G/H, where H is a closed
subgroup of G and p0 = [1]; G is the group of isometries of M and Π : G→ G/H
will denote the projection. Let us consider the function fG : G→ R defined by
fG = f ◦Π; one has

∆m+1
h fG(x) = ∆m+1

h f(Π(x)) = 0,
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if x and h are in a neighborhood of the identity element. As a consequence, fG
is smooth in a neighborhood of 1. We may develop fG into a Taylor polynomial;
there thus exist smooth functions a0 and ak1,...,kj on a neighborhood V1 of 1
(j ∈ {1, . . . ,m}) such that

fG(x expX) = a0(x) +

m∑
j=1

∑
1≤k1,...,kj≤n

ak1,··· ,kj (x)Xk1 · · ·Xkj .

Since fG(x expX) = f(Hx expX), the polynomial is independent of the repre-
sentative of Hx, so that fG(hx expX) = fG(x expX) for all h ∈ H and all X in
a neighborhood of 0 in g. The functions a0 and ak1,...,kj thus induce functions
c0 and ck1,...,kj on G/H, so that we have

f(p expX) = c0(p) +

m∑
j=1

∑
1≤k1,...,kj≤n

ck1,...,kj (p)Xk1 · · ·Xkj ,

for p in a neighborhood of p0 and X in a neighborhood of 0 in g. As f is smooth,
so are the coefficients. Since it is also reductive, there exists a subspace m ⊂ g
such that Ad(H)m ⊂ m (where Ad denotes the adjoint representation of the
group) and g = m ⊕ h. We also have the isomorphism Tp0M ' m induced by
the projection dΠp0 : g → TH(G/H). Since the Riemannian exponential at p0
is

X 7→ p0 exp((dΠp0)|−1m X),

for X ∈ Tp0M , it suffices to write p expX in terms of Riemannian exponential
for X ∈ m.
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[12] M. Fréchet. Les polynômes abstraits. J. Math. Pures Appl., 8:71–92, 1929.
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Archimedeannormed spaces. Math. Commun., 17:511–524, 2012.
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Fréchet functional equations. J. Math. Anal. Appl., 466:1400–1409, 2018.
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