
Solution of optimization problems using
adjoint automatic differentiation

Liège, August 2023

Adrien Crovato

Optimization problems

2

General formulation

Minimize objective function

with respect to design variables

subject to constraints

Can be solved using:
• Gradient-based approach
• Gradient-free approach

Aerodynamic shape optimization

min
𝑦,𝛼

𝑐𝑑

s.t. 𝑐𝑙 = 𝑐𝑙
⋆, 𝑡 = 𝑡⋆

initial
optimized

𝛼

𝑐𝑙

𝑦
𝑐𝑑 𝑡

Gradient-based optimization

3

General formulation

min
𝒙

𝐹 𝒖; 𝒙

s.t.

𝑹 𝒖; 𝒙 = 0
𝑪E 𝒖; 𝒙 = 0

𝑪I 𝒖; 𝒙 ≥ 0

Gradient-based approach

𝑑𝒙𝐹 𝒖; 𝒙 → 0

s.t.

𝑹 𝒖; 𝒙 = 0
𝑪E 𝒖; 𝒙 = 0

𝑪I 𝒖; 𝒙 ≥ 0

Need to:
• Formulate total gradient
• Compute any gradients

The adjoint method and the automatic differentiation technique
are one way of formulating and computing the gradients

𝐹: objective function
𝒖: physical variables
𝒙: design variables
𝑹: residual equations
𝑪E: equality constraints
𝑪I: inequality constraints

Outline

Theory
• Formulation of the gradients
• Computation of the gradients

Optimization of coupled physics problem
• Description and formulation
• Methodology and cases
• The sellar problem

Implementation details
• DART
• SDPM

Formulation of the gradients

5

𝑅 𝑢 𝑥 = 0

𝑑𝑥𝐹 = 𝜕𝑥𝐹 − 𝜕𝑢𝐹𝜕𝑢𝑅
−1𝜕𝑥𝑅

𝑅 𝑢 𝑥 + 𝛿𝑥 = 0

𝑑𝑥𝐹 = Δ
𝐹 𝑢 𝑥 + 𝛿𝑥

𝛿𝑥

𝑑𝑥𝐹 𝑢; 𝑥 → 0
𝑅 𝑢; 𝑥 = 0

“perturbation”

“chain rule”

Methods based on perturbation

6

Finite differences

𝑅 𝑢 𝑥 = 0

𝑅 𝑢+ 𝑥 + 𝛿𝑥 = 0

𝑑𝑥𝐹 =
𝐹 𝑢+ − 𝐹 𝑢

𝛿𝑥
+ 𝑂 𝛿𝑥

Complex step

𝑅 𝑢 𝑥 = 0

𝑅 𝑢+ 𝑥 + 𝑖𝛿𝑥 = 0

𝑑𝑥𝐹 = Im
𝐹 𝑢+

𝛿𝑥
+ 𝑂 𝛿𝑥2

Cost

Solve equations: 𝑛𝑥 × 𝑛𝑠 × 𝑡𝑠

Evaluate gradients: 𝑛𝑥 × 𝑛𝑓 × 𝑡𝑓

Total: 𝑛𝑥 × 𝑛𝑠 × 𝑡𝑠 + 𝑛𝑓 × 𝑡𝑓

𝑛𝑥: n.o. design variables
𝑛𝑠: n.o. nonlinear iterations
𝑛𝑓: n.o. functionals

𝑡𝑠: time to solve linear equations
𝑡𝑓: time to compute functional

Methods based on chain rule

7

Direct and adjoint

𝑅 𝑢 𝑥 = 0

𝑑𝑥𝐹 = 𝜕𝑥𝐹 − 𝜕𝑢𝐹𝜕𝑢𝑅
−1𝜕𝑥𝑅

𝜕𝑢𝑅 𝜆 = 𝜕𝑥𝑅𝜕𝑢𝑅
T 𝜆 = 𝜕𝑢𝐹

T

Adjoint

Cost (adjoint)

Solve adjoint: 𝑛𝑓 × 𝑡𝑠

Evaluate gradients: (𝑛𝑢 + 𝑛𝑥) × 𝑛𝑓 × 𝑡𝑓 + 𝑡𝑟

Total: (𝑛𝑢 + 𝑛𝑥) × 𝑛𝑓 × 𝑡𝑓 + 𝑡𝑟 + 𝑛𝑓 × 𝑡s

Direct

Nearly independent on number of design variables

𝑛𝑥: n.o. design variables
𝑛𝑢: n.o. variables
𝑛𝑠: n.o. nonlinear iterations
𝑛𝑓: n.o. functionals

𝑡𝑠: time to solve linear equations
𝑡𝑓: time to compute functional

𝑡𝑓: time to compute residuals

Computation of the gradients

8

Hand differentiation

 Most effective

× Difficult, sometimes not feasible

Automatic differentiation

 Straightforward

× Increased memory usage

Finite differences

 Very easy

× Inaccurate

Complex step

 Accurate

× Complex arithmetic

Automatic differentiation – implementation

9

Source code transformation Operator overloading

double x = 1;
double y = sin(x) * cos(x);

double x = 1;
double s = sin(x);
double c = cos(x);
double ds = cos(x);
double dc = -sin(x);
double dy = ds * c + s * dc;

ADdouble x = 1;
x.setGradient(1);
ADdouble y = sin(x) * cos(x);
double dy = y.getGradient();

CoDiPackTAPENADE

Automatic differentiation – accumulation

10

Forward (tangent) mode

 𝑦 =
𝑑𝑓

𝑑𝑥
 𝑥

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑤2

𝑑𝑤2

𝑑𝑤1

𝑑𝑤1
𝑑𝑤0

𝑑𝑤0

𝑑𝑥

Reverse (adjoint) mode

 𝑥 =
𝑑𝑓

𝑑𝑥

𝑇

 𝑦

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑤2

𝑑𝑤2

𝑑𝑤1

𝑑𝑤1
𝑑𝑤0

𝑑𝑤0

𝑑𝑥

Consider

𝑦 = 𝑓 𝑥 = 𝑔 ℎ 𝑥

𝑤0 = 𝑥
𝑤1 = ℎ 𝑤0

𝑤2 = 𝑔 𝑤1 = 𝑦

Chain rule yields
𝑑𝑦

𝑑𝑥
=
𝑑𝑔

𝑑ℎ

𝑑ℎ

𝑑𝑥
=

𝑑𝑦

𝑑𝑤2

𝑑𝑤2

𝑑𝑤1

𝑑𝑤1
𝑑𝑤0

𝑑𝑤0

𝑑𝑥

Automatic differentiation – forward mode

11

Forward (tangent) mode

𝑦 = sin 𝑥 cos 𝑥

 𝑦 =
𝑑𝑓

𝑑𝑥
 𝑥

 𝑤0 = 1
(seed)

 𝑤1
𝑎 = cos 𝑥 𝑤0

 𝑤2 = 𝑤1
𝑎 cos 𝑥

+ 𝑤1
𝑏 sin 𝑥

 𝑤1
𝑏 = −sin 𝑥 𝑤0

sin

cos

∗ 𝑦𝑥

Automatic differentiation – reverse mode

12

Forward (tangent) mode

𝑦 = sin 𝑥 cos 𝑥

 𝑥 =
𝑑𝑓

𝑑𝑥

𝑇

 𝑦

 𝑤2 = 1
(seed)

 𝑤1
𝑎 = 𝑤2 cos 𝑥

 𝑤1
𝑏 = 𝑤2 sin 𝑥

 𝑤0
𝑎 = 𝑤1

𝑎 cos 𝑥

 𝑤0
𝑏 = − 𝑤1

𝑏 sin 𝑥

sin

cos

∗ 𝑦𝑥 𝑤0 = 𝑤1
𝑎 + 𝑤0

𝑏

Automatic differentiation – modes

13

Forward mode Reverse mode

ADdouble x = 1;
Tape tape;
tape.setActive();
tape.registerInput(x);
ADdouble y = sin(x) * cos(x);
tape.registerOutput(y);
tape.setPassive();
y.setGradient(1);
tape.evaluate();
double dx = x.getGradient();

ADdouble x = 1;
x.setGradient(1);
ADdouble y = sin(x) * cos(x);
double dy = y.getGradient();

One pass to compute value and
derivative with respect to one
input

One pass to compute value and
cache intermediate results (tape),
and a second pass to compute
derivatives of one output

Automatic differentiation – “best” mode

14

𝑥𝑖

…

𝑥0 𝑥𝑛

𝑦𝑖𝑦0 𝑦𝑚

Forward mode
𝑛 inputs
𝑚 outputs
𝒏 ≪ 𝒎

Reverse mode
𝑛 inputs
𝑚 outputs
𝒏 ≫ 𝒎

𝜕𝑥0

𝜕𝑦0 𝜕𝑦𝑖 𝜕𝑦𝑚 𝜕𝑦𝑚

𝜕𝑥𝑛𝜕𝑥𝑖𝜕𝑥0

Outline

Theory
• Formulation of the gradients
• Computation of the gradients

Optimization of coupled physics problem
• Description and formulation
• Methodology and cases
• The sellar problem

Implementation details
• DART
• SDPM

Coupled optimization – description

16

Discipline 1
𝑅𝑢 𝑢, 𝑣; 𝑥 = 0

Discipline 2
𝑅𝑣 𝑢, 𝑣; 𝑥 = 0

Objective
𝐹 𝑢, 𝑣; 𝑥

Mathematical formulation
min
𝑥

𝐹 𝑢, 𝑣; 𝑥

s.t.
𝑅𝑢 𝑢, 𝑣; 𝑥 = 0

𝑅𝑣 𝑢, 𝑣; 𝑥 = 0

Coupled optimization – adjoint formulation

17

Linear algebra
𝑑𝑥𝐹 = 𝜕𝑥𝐹

+𝜕𝑢𝐹𝜕𝑥𝑢 + 𝜕𝑣𝐹𝜕𝑥𝑣
= 𝜕𝑥𝐹

+𝜕𝑢𝐹 𝜕𝑅𝑢𝑢𝜕𝑥𝑅𝑢 + 𝜕𝑅𝑣𝑢𝜕𝑥𝑅𝑣 + 𝜕𝑣𝐹(𝜕𝑅𝑢𝑣𝜕𝑥𝑅𝑢 + 𝜕𝑅𝑣𝑣𝜕𝑥𝑅𝑣)

= 𝜕𝑥𝐹
+ 𝜕𝑢𝐹𝜕𝑢𝑅𝑢

−1 + 𝜕𝑣𝐹𝜕𝑣𝑅𝑢
−1 𝜕𝑥𝑅𝑢 + 𝜕𝑢𝐹𝜕𝑢𝑅𝑣

−1 + 𝜕𝑣𝐹𝜕𝑣𝑅𝑣
−1 𝜕𝑥𝑅𝑣

Augmented Lagrangian

ℒ = 𝐹 + 𝜆𝑢𝑅𝑢 + 𝜆𝑣𝑅𝑣

𝛿ℒ = 0 ⇔

𝜕𝑢𝐹 + 𝜆𝑢𝜕𝑢𝑅𝑢 + 𝜆𝑣𝜕𝑢𝑅𝑣 = 0
𝜕𝑣𝐹 + 𝜆𝑢𝜕𝑣𝑅𝑢 + 𝜆𝑣𝜕𝑣𝑅𝑣 = 0
𝜕𝑥𝐹 + 𝜆𝑢𝜕𝑥𝑅𝑢 + 𝜆𝑣𝜕𝑥𝑅𝑣 = 0

𝑅𝑢 = 0
𝑅𝑣 = 0

Coupled optimization – methodology

18

Solve adjoint

𝜕𝑣𝑅𝑣
𝑇 𝜕𝑣𝑅𝑢

𝑇

𝜕𝑢𝑅𝑣
𝑇 𝜕𝑢𝑅𝑢

𝑇

𝜆𝑣
𝜆𝑢

= −
𝜕𝑣𝐹

𝑇

𝜕𝑢𝐹
𝑇

Compute total gradient

𝑑𝑥𝐹
𝑇 = 𝜕𝑥𝐹

𝑇 + 𝜕𝑥𝑅𝑢
𝑇𝜆𝑢 + 𝜕𝑥𝑅𝑣

𝑇𝜆𝑣

Main cases
A) Partial gradients are available and matrices are small enough
B) Partial gradients are available but matrices are too large
C) Partial gradients are not available

Coupled optimization – case B

19

Gradients are available but matrices are too large to fit in memory.
Solution is computed iteratively, e.g. using a BGS approach.

𝜆𝑢
𝑘+1

𝜕𝑣𝑅𝑢
𝑇

𝜕𝑥𝑅𝑢
𝑇

𝜕𝑣𝑅𝑣
𝑇𝜆𝑣

𝑘+1 = −𝜕𝑣𝐹
𝑇 − 𝜕𝑣𝑅𝑢

𝑇𝜆𝑢
𝑘

Discipline 1

Discipline 2

Objective

𝜕𝑣𝐹
𝑇

𝜕𝑢𝐹
𝑇

𝜕𝑥𝐹
𝑇

𝜕𝑢𝑅𝑢
𝑇𝜆𝑢

𝑘+1 = −𝜕𝑢𝐹
𝑇 − 𝜕𝑢𝑅𝑣

𝑇𝜆𝑣
𝑘+1

𝜆𝑣
𝑘+1

𝜕𝑢𝑅𝑣
𝑇

𝜕𝑥𝑅𝑣
𝑇

𝑑𝑥𝐹
𝑇 = 𝜕𝑥𝐹

𝑇 + 𝜕𝑥𝑅𝑢
𝑇𝜆𝑢 + 𝜕𝑥𝑅𝑣

𝑇𝜆𝑣

Coupled optimization – case C

20

Gradients are not available.
Solution is computed iteratively, e.g. using a BGS approach.
Each contribution is added individually using matrix-vector product.

𝜕𝑣𝑘 = 𝜕𝑣0 − 𝜕𝑣𝑅𝑢
𝑇𝜆𝑢

𝑘

𝜕𝑣𝑅𝑣
𝑇𝜆𝑣

𝑘+1 = 𝜕𝑣𝑘

Discipline 1

Discipline 2

Objective

𝜕𝑣0 = −𝜕𝑣𝐹
𝑇1

𝜕𝑢0 = −𝜕𝑢𝐹
𝑇1

𝜕𝑢𝑅𝑢
𝑇𝜆𝑢

𝑘+1 = 𝜕𝑢𝑘+1

𝜕𝑢𝑘+1 = 𝜕𝑢0 − 𝜕𝑢𝑅𝑣
𝑇𝜆𝑣

𝑘+1

𝑑𝑥𝐹
𝑇 = 𝜕𝑥𝐹

𝑇1 + 𝜕𝑥𝑅𝑢
𝑇𝜆𝑢 + 𝜕𝑥𝑅𝑣

𝑇𝜆𝑣

The sellar problem

21https://openmdao.org

https://openmdao.org/

Outline

Theory
• Formulation of the gradients
• Computation of the gradients

Optimization of coupled physics problem
• Description and formulation
• Methodology and cases
• The sellar problem

Implementation details
• DART
• SDPM

Implementation details

23

DART
• Steady full potential formulation

• Finite element discretization

• Unstructured tetrahedral grid

• Analytical discrete adjoint

• Mesh morphing

• C++ with python API

SDPM
• Unsteady potential formulation

• Panel discretization

• Unstructured quadrangular grid

• Reverse automatic
differentiation

• C++ with python API

DART implementation

24

Mesh residuals
𝑅𝑥 𝑥𝑠 = 0

Potential residuals
𝑅𝜙(𝑥, 𝜙, 𝛼) = 0

Loads functional

𝐹𝑥 , 𝐹𝑦, 𝐹𝑧 𝑥, 𝜙, 𝛼

Coefficients functional
𝐶𝐿 , 𝐶𝐷 𝑥, 𝜙, 𝛼

// 𝑅𝜙 = 𝑉 𝜌𝛻𝜙 ⋅ 𝛻𝜓 𝑑𝑉 − 𝑆 𝜌𝛻𝜙 ⋅ 𝑛 𝜓 𝑑𝑆

Vector PotentialResidual::build()

// 𝜕𝑥𝑅𝜙 = 𝜕𝑥 𝑉 𝜌𝛻𝜙 ⋅ 𝛻𝜓 𝑑𝑉 − 𝜕𝑥 𝑆 𝜌𝛻𝜙 ⋅ 𝑛 𝜓 𝑑𝑆

Matrix PotentialResidual::buildGradientMesh()

// 𝜕𝜙𝑅𝜙 = 𝜕𝜙 𝑉 𝜌𝛻𝜙 ⋅ 𝛻𝜓 𝑑𝑉 − 𝑆 𝜌𝛻𝜙 ⋅ 𝑛 𝜓 𝑑𝑆

Matrix PotentialResidual::buildGradientFlow()

// 𝜕𝛼𝑅𝜙 = 𝑉 𝜌𝛻𝜙 ⋅ 𝛻𝜓 𝑑𝑉 − 𝜕𝛼 𝑆 𝜌𝛻𝜙 ⋅ 𝑛 𝜓 𝑑𝑆

Vector PotentialResidual::buildGradientAoA()

𝜕𝑥 = 𝜕𝑥𝑅𝜙
𝑇 𝜕𝑅𝜙

d_in['xv'] += computeFlowMesh(d_res['phi'])

𝜕𝜙 = 𝜕𝜙𝑅𝜙
𝑇 𝜕𝑅𝜙

d_out['phi'] += computeFlowFlow(d_res['phi'])

𝜕𝛼 = 𝜕𝛼𝑅𝜙
𝑇 𝜕𝑅𝜙

d_in['aoa'] += computeFlowAoa(d_res['phi'])

SDPM implementation

25

Loads functional

𝐹𝑥 , 𝐹𝑦, 𝐹𝑧 𝑥, 𝛼, 𝜔

Coefficients functional
𝐶𝐿 , 𝐶𝐷 𝑥, 𝛼, 𝜔

// 𝐹 𝑥,𝑦,𝑧 𝑥, 𝛼, 𝜔 , 𝐶 𝐿,𝐷 𝑥, 𝛼, 𝜔

void Adjoint::solve() {
tape.registerInput(aoa);
solver.run();
tape.registerOutput(cl); }

// 𝜕 𝑥,𝛼,𝜔 𝐶𝐿
Map Adjoint::compute(dOut) {
cl.setGradient(dOut);
tape.evaluate();
dIn[“aoa”] = aoa.getGradient(); }

d_x_a_o = sdpm.adjoint.compute(d_out[‘cl'])

d_in['x'] += d_x_a_o[‘x’] # 𝜕𝑥 = 𝜕𝑥𝐶𝐿
𝑇 𝜕𝐶𝐿

d_in[‘aoa'] += d_x_a_o[‘aoa’] # 𝜕𝛼 = 𝜕𝛼𝐶𝐿
𝑇 𝜕𝐶𝐿

d_in[‘omega'] += d_x_a_o[‘om’] # 𝜕𝜔 = 𝜕𝜔𝐶𝐿
𝑇 𝜕𝐶𝐿

Conclusion

Main points

• The adjoint method is a mathematical method that formulates
the total gradient of a functional with respect to any variables as
a function of partial gradients of intermediate quantities.

• Automatic differentiation is a numerical technique that computes
the gradient of a variable with respect to another variable solely
based on the source code of a computer program. AD can operate
in reverse accumulation mode, which corresponds to the adjoint
formulation.

• Optimization of coupled physics problems often involve large
systems that need to be solved iteratively, for which the
automatic differentiation method is well suited. If the number of
design variables is larger than the number of functional, the
adjoint method and reverse accumulation should be preferred.

26

Group meeting
Adjoint automatic differentiation
Adrien Crovato – Liège, August 2023

https://acrovato.github.io

https://acrovato.github.io/

