Solution of optimization problems using adjoint automatic differentiation

Adrien Crovato

Optimization problems

General formulation
Minimize objective function
with respect to design variables
subject to constraints

Aerodynamic shape optimization

$$
\begin{aligned}
& \min _{y, \alpha} c_{d} \\
& \text { s.t. } c_{l}=c_{l}^{\star}, \quad t=t^{\star}
\end{aligned}
$$

Gradient-based optimization

General formulation

$\min _{\boldsymbol{x}} \quad F(\boldsymbol{u} ; \boldsymbol{x})$	
	$\boldsymbol{R}(\boldsymbol{u} ; \boldsymbol{x})=0$
s.t.	$\boldsymbol{C}_{\mathrm{E}}(\boldsymbol{u} ; \boldsymbol{x})=0$
	$\boldsymbol{C}_{\mathrm{I}}(\boldsymbol{u} ; \boldsymbol{x}) \geq 0$

\boldsymbol{u}: \& physical variables

\boldsymbol{x}: \& design variables

\boldsymbol{R}: \& residual equations

\boldsymbol{C}_{\mathrm{E}}: \& equality constraints

C_{\mathrm{I}}: \& inequality constraints\end{cases}\)

Gradient-based approach

$$
\begin{aligned}
d_{\boldsymbol{x}} F(\boldsymbol{u} ; \boldsymbol{x}) & \rightarrow 0 \\
\boldsymbol{R}(\boldsymbol{u} ; \boldsymbol{x}) & =0 \\
\text { s.t. } \boldsymbol{C}_{\mathrm{E}}(\boldsymbol{u} ; \boldsymbol{x}) & =0 \\
\boldsymbol{C}_{\mathrm{I}}(\boldsymbol{u} ; \boldsymbol{x}) & \geq 0
\end{aligned}
$$

The adjoint method and the automatic differentiation technique are one way of formulating and computing the gradients

Outline

Theory

- Formulation of the gradients
- Computation of the gradients

Optimization of coupled physics problem

- Description and formulation
- Methodology and cases
- The sellar problem

Implementation details

- DART
- SDPM

Formulation of the gradients

$$
\begin{aligned}
& \text { "perturbation" } \\
& d_{x} F(u ; x) \rightarrow 0 \\
& R(u ; x)=0 \\
& \text { "chain rule" }
\end{aligned}
$$

Methods based on perturbation

Finite differences

$$
\left\{\begin{array}{c}
R(u(x))=0 \\
R\left(u^{+}(x+\delta x)\right)=0 \\
d_{x} F=\frac{F\left(u^{+}\right)-F(u)}{\delta x}+O(\delta x)
\end{array}\right.
$$

Complex step

$$
\left\{\begin{array}{c}
R(u(x))=0 \\
R\left(u^{+}(x+i \delta x)\right)=0 \\
d_{x} F=\operatorname{Im}\left\{\frac{F\left(u^{+}\right)}{\delta x}\right\}+O\left(\delta x^{2}\right)
\end{array}\right.
$$

Cost

Solve equations: $n_{x} \times n_{s} \times t_{s}$
Evaluate gradients: $n_{x} \times n_{f} \times t_{f}$
Total: $n_{x} \times\left(n_{s} \times t_{s}+n_{f} \times t_{f}\right)$
n_{x} : n.o. design variables
n_{s} : n.o. nonlinear iterations n_{f} : n.o. functionals
t_{s} : time to solve linear equations
t_{f} : time to compute functional

Methods based on chain rule

Direct and adjoint

$\left\{\begin{array}{c}R(u(x))=0 \\ d_{x} F=\partial_{x} F-\partial_{u} F \partial_{u} R^{-1} \mid \partial_{x} R \\ \partial_{u} R^{\mathrm{T}} \lambda=\partial_{u} F^{\mathrm{T}} \quad \partial_{u} R \lambda=\partial_{x} R \\ \text { Adjoint } \quad \text { Direct }\end{array}\right.$
Cost (adjoint)
Solve adjoint: $n_{f} \times t_{s}$
Evaluate gradients: $\left(n_{u}+n_{x}\right) \times\left(n_{f} \times t_{f}+t_{r}\right)$
Total: $\left(\left(n_{u}+n_{x}\right) \times\left(n_{f} \times t_{f}+t_{r}\right)+n_{f} \times t_{s}\right)$
n_{x} : n.o. design variables
n_{u} : n.o. variables
n_{s} : n.o. nonlinear iterations
n_{f} : n.o. functionals
t_{s} : time to solve linear equations t_{f} : time to compute functional
t_{f} : time to compute residuals

Computation of the gradients

Hand differentiation

\checkmark Most effective
\times Difficult, sometimes not feasible

Finite differences
\checkmark Very easy
\times Inaccurate

Complex step
\checkmark Accurate
\times Complex arithmetic

Automatic differentiation

\checkmark Straightforward
\times Increased memory usage

Automatic differentiation - implementation

Source code transformation

```
double x = 1;
double y = sin(x)* cos(x);
```

\square

```
double x = 1;
double s = sin(x);
double c = cos(x);
double ds = cos(x);
double dc = -sin(x);
double dy = ds * c + s * dc;
```


Operator overloading

ADdouble $x=1$; x.setGradient(1);

ADdouble $y=\sin (x) * \cos (x)$; double dy = y.getGradient();

CoDiPack

Automatic differentiation - accumulation

Consider

$$
\begin{aligned}
& y=f(x)=g(h(x)) \\
& w_{0}=x \\
& w_{1}=h\left(w_{0}\right) \\
& w_{2}=g\left(w_{1}\right)=y
\end{aligned}
$$

Forward (tangent) mode

$$
\dot{y}=\frac{d f}{d x} \dot{x}
$$

$$
\frac{d y}{d x}=\frac{d y}{d w_{2}}\left(\frac{d w_{2}}{d w_{1}}\left(\frac{d w_{1}}{d w_{0}} \frac{d w_{0}}{d x}\right)\right)
$$

Chain rule yields
$\frac{d y}{d x}=\frac{d g}{d h} \frac{d h}{d x}=\frac{d y}{d w_{2}} \frac{d w_{2}}{d w_{1}} \frac{d w_{1}}{d w_{0}} \frac{d w_{0}}{d x}$

Reverse (adjoint) mode

$$
\bar{x}=\frac{d f^{T}}{d x} \bar{y}
$$

$\frac{d y}{d x}=\left(\left(\frac{d y}{d w_{2}} \frac{d w_{2}}{d w_{1}}\right) \frac{d w_{1}}{d w_{0}}\right) \frac{d w_{0}}{d x}$

Automatic differentiation - forward mode

Forward (tangent) mode
$y=\sin x \cos x$
$\dot{y}=\frac{d f}{d x} \dot{x}$

Automatic differentiation - reverse mode

Forward (tangent) mode
$y=\sin x \cos x$
$\bar{x}=\frac{d f^{T}}{d x} \bar{y}$

Automatic differentiation - modes

Forward mode

```
ADdouble x = 1;
x.setGradient(1);
ADdouble y = sin(x) * cos(x);
double dy = y.getGradient();
```

One pass to compute value and derivative with respect to one input

Reverse mode

```
ADdouble x = 1;
```

ADdouble x = 1;
Tape tape;
Tape tape;
tape.setActive();
tape.setActive();
tape.registerInput(x);
tape.registerInput(x);
ADdouble y = sin(x) * cos(x);
ADdouble y = sin(x) * cos(x);
tape.registerOutput(y);
tape.registerOutput(y);
tape.setPassive();
tape.setPassive();
y.setGradient(1);
y.setGradient(1);
tape.evaluate();
tape.evaluate();
double dx = x.getGradient();

```
double dx = x.getGradient();
```

One pass to compute value and cache intermediate results (tape), and a second pass to compute derivatives of one output

Automatic differentiation - "best" mode

Forward mode n inputs m outputs $\boldsymbol{n} \ll \boldsymbol{m}$

Reverse mode n inputs m outputs
$n \gg m$

Outline

Theory

- Formulation of the gradients
- Computation of the gradients

Optimization of coupled physics problem

- Description and formulation
- Methodology and cases
- The sellar problem

Implementation details

- DART
- SDPM

Coupled optimization - description

Mathematical formulation

$$
\begin{array}{ll}
\min _{x} F(u, v ; x) \\
\text { s.t. } & R_{u}(u, v ; x)=0 \\
R_{v}(u, v ; x)=0
\end{array}
$$

Coupled optimization - adjoint formulation

Augmented Lagrangian

$\mathcal{L}=F+\lambda_{u} R_{u}+\lambda_{v} R_{v}$

$$
\delta \mathcal{L}=0 \Leftrightarrow\left\{\begin{array}{c}
\partial_{u} F+\lambda_{u} \partial_{u} R_{u}+\lambda_{v} \partial_{u} R_{v}=0 \\
\partial_{v} F+\lambda_{u} \partial_{v} R_{u}+\lambda_{v} \partial_{v} R_{v}=0 \\
\partial_{x} F+\lambda_{u} \partial_{x} R_{u}+\lambda_{v} \partial_{x} R_{v}=0 \\
R_{u}=0 \\
R_{v}=0
\end{array}\right.
$$

Linear algebra

$$
\begin{aligned}
d_{x} F & =\partial_{x} F \\
& +\partial_{u} F \partial_{x} u+\partial_{v} F \partial_{x} v \\
& =\partial_{x} F \\
& +\partial_{u} F\left(\partial_{R_{u}} u \partial_{x} R_{u}+\partial_{R_{v}} u \partial_{x} R_{v}\right)+\partial_{v} F\left(\partial_{R_{u}} v \partial_{x} R_{u}+\partial_{R_{v}} v \partial_{x} R_{v}\right) \\
& =\partial_{x} F \\
& +\left(\partial_{u} F \partial_{u} R_{u}^{-1}+\partial_{v} F \partial_{v} R_{u}^{-1}\right) \partial_{x} R_{u}+\left(\partial_{u} F \partial_{u} R_{v}^{-1}+\partial_{v} F \partial_{v} R_{v}^{-1}\right) \partial_{x} R_{v}
\end{aligned}
$$

Coupled optimization - methodology

Solve adjoint
$\left[\begin{array}{ll}\partial_{v} R_{v}^{T} & \partial_{v} R_{u}^{T} \\ \partial_{u} R_{v}^{T} & \partial_{u} R_{u}^{T}\end{array}\right]\left[\begin{array}{l}\lambda_{v} \\ \lambda_{u}\end{array}\right]=-\left[\begin{array}{l}\partial_{v} F^{T} \\ \partial_{u} F^{T}\end{array}\right]$

Compute total gradient
$d_{x} F^{T}=\partial_{x} F^{T}+\partial_{x} R_{u}^{T} \lambda_{u}+\partial_{x} R_{v}^{T} \lambda_{v}$

Main cases

A) Partial gradients are available and matrices are small enough
B) Partial gradients are available but matrices are too large
C) Partial gradients are not available

Coupled optimization - case B

Gradients are available but matrices are too large to fit in memory. Solution is computed iteratively, e.g. using a BGS approach.

$$
\partial_{u} R_{u}^{T} \lambda_{u}^{k+1}=-\partial_{u} F^{T}-\partial_{u} R_{v}^{T} \lambda_{v}^{k+1}
$$

Discipline 1

$$
\begin{aligned}
& \lambda_{u}^{k+1} \\
& \partial_{v} R_{u}^{T} \\
& \partial_{x} R_{u}^{T}
\end{aligned}
$$

$$
d_{x} F^{T}=\partial_{x} F^{T}+\partial_{x} R_{u}^{T} \lambda_{u}+\partial_{x} R_{v}^{T} \lambda_{v}
$$

Coupled optimization - case C

Gradients are not available.
Solution is computed iteratively, e.g. using a BGS approach.
Each contribution is added individually using matrix-vector product.

$$
\partial_{u} R_{u}^{T} \lambda_{u}^{k+1}=\partial u^{k+1}
$$

$$
\partial u^{k+1}=\partial u^{0}-\partial_{u} R_{v}^{T} \lambda_{v}^{k+1}
$$

Discipline 1

$$
d_{x} F^{T}=\partial_{x} F^{T} 1+\partial_{x} R_{u}^{T} \lambda_{u}+\partial_{x} R_{v}^{T} \lambda_{v}
$$

The sellar problem

https://openmdao.org

Outline

Theory

- Formulation of the gradients
- Computation of the gradients

Optimization of coupled physics problem

- Description and formulation
- Methodology and cases
- The sellar problem

Implementation details

- DART
- SDPM

Implementation details

DART

- Steady full potential formulation
- Finite element discretization
- Unstructured tetrahedral grid
- Analytical discrete adjoint
- Mesh morphing
- C++ with python API

SDPM

- Unsteady potential formulation
- Panel discretization
- Unstructured quadrangular grid
- Reverse automatic differentiation
- C++ with python API

DART implementation

Mesh residuals
$R_{x}\left(x_{s}\right)=0$
Potential residuals
$R_{\phi}(x, \phi, \alpha)=0$

Loads functional
$\left[F_{x}, F_{y}, F_{z}\right](x, \phi, \alpha)$

Coefficients functional $\left[C_{L}, C_{D}\right](x, \phi, \alpha)$
$/ / R_{\phi}=\int_{V} \rho \nabla \phi \cdot \nabla \psi d V-\int_{S} \rho \nabla \phi \cdot n \psi d S$
Vector PotentialResidual::build()
$/ / \partial_{x} R_{\phi}=\partial_{x} \int_{V} \rho \nabla \phi \cdot \nabla \psi d V-\partial_{x} \int_{S} \rho \nabla \phi \cdot n \psi d S$ Matrix PotentialResidual::buildGradientMesh()
$/ / \partial_{\phi} R_{\phi}=\partial_{\phi} \int_{V} \rho \nabla \phi \cdot \nabla \psi d V-\int_{S} \rho \nabla \phi \cdot n \psi d S$
Matrix PotentialResidual::buildGradientFlow()
$/ / \partial_{\alpha} R_{\phi}=\int_{V} \rho \nabla \phi \cdot \nabla \psi d V-\partial_{\alpha} \int_{S} \rho \nabla \phi \cdot n \psi d S$ Vector PotentialResidual: :buildGradientAoA()

```
\# \(\partial x=\partial_{x} R_{\phi}^{T} \partial R_{\phi}\)
d_in['xv'] += computeFlowMesh(d_res['phi'])
\# \(\partial \phi=\partial_{\phi} R_{\phi}^{T} \partial R_{\phi}\)
d_out['phi'] += computeFlowFlow(d_res['phi'])
\# \(\partial \alpha=\partial_{\alpha} R_{\phi}^{T} \partial R_{\phi}\)
d_in['aoa'] += computeFlowAoa(d_res['phi'])
```


SDPM implementation

Loads functional
 $\left[F_{x}, F_{y}, F_{z}\right](x, \alpha, \omega)$

Coefficients functional

$\left[C_{L}, C_{D}\right](x, \alpha, \omega)$

```
// F}\mp@subsup{F}{[x,y,z]}{}(x,\alpha,\omega),\mp@subsup{C}{[L,D]}{}(x,\alpha,\omega
void Adjoint::solve() {
    tape.registerInput(aoa);
    solver.run();
    tape.registerOutput(cl); }
// }\mp@subsup{\partial}{[x,\alpha,\omega]}{}\mp@subsup{C}{L}{
Map Adjoint::compute(dOut) {
    cl.setGradient(dOut);
    tape.evaluate();
    dIn["aoa"] = aoa.getGradient(); }
```

```
d_x_a_o = sdpm.adjoint.compute(d_out['cl'])
d_in['x'] += d_x_a_o['x'] # \partialx = \partialx 位T}\partial\mp@subsup{C}{L}{
d_in['aoa'] += d_x_a_o['aoa'] # \partial\alpha = \partial\alpha C CL
d_in['omega'] += d_x_a_o['om'] # \partial\omega = \partial\omega}\mp@subsup{|}{L}{T}\partial\mp@subsup{C}{L}{
```


Conclusion

Main points

- The adjoint method is a mathematical method that formulates the total gradient of a functional with respect to any variables as a function of partial gradients of intermediate quantities.
- Automatic differentiation is a numerical technique that computes the gradient of a variable with respect to another variable solely based on the source code of a computer program. AD can operate in reverse accumulation mode, which corresponds to the adjoint formulation.
- Optimization of coupled physics problems often involve large systems that need to be solved iteratively, for which the automatic differentiation method is well suited. If the number of design variables is larger than the number of functional, the adjoint method and reverse accumulation should be preferred.

Group meeting

Adjoint automatic differentiation
Adrien Crovato - Liège, August 2023

