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Abstract 37 

Nitrogen (N) use efficiency (NUE) is an economically important trait for dairy cows. 38 

Recently, we proposed a new N efficiency index (NEI), that simultaneously considers both 39 

NUE and N pollution. This study aimed to validate the genomic prediction for NEI and its 40 

composition traits and investigate the relationship between SNP effects estimated directly 41 

from NEI and indirectly from its composition traits. The NEI composition included genomic 42 

estimated breeding value of N intake (NINT), milk true protein N (MTPN), and milk urea 43 

N yield. The edited data were 132,899 records on 52,064 cows distributed in 773 herds. The 44 

pedigree contained 122,368 animals. Genotypic data of 566,294 SNP was available for 4,514 45 

individuals. A total of 4,413 cows (including 181 genotyped) and 56 bulls (including 32 46 

genotyped) were selected as the validation populations. The linear regression method was 47 

used to validate the genomic prediction of NEI and its composition traits using best linear 48 

unbiased prediction (BLUP) and single-step genomic BLUP (ssGBLUP). The mean 49 

theoretical accuracies of validation populations obtained from ssGBLUP were higher than 50 

those obtained from BLUP for both NEI and its composition traits, ranging from 0.57 51 

(MTPN) to 0.72 (NINT). The highest mean prediction accuracies for NEI and its 52 

composition traits were observed for the genotyped cows estimated under ssGBLUP, 53 

ranging from 0.48 (MTPN) to 0.66 (NINT). Furthermore, the SNP effects estimated from 54 

NEI composition traits, multiplied by the relative weight were the same as those estimated 55 

directly from NEI. This study preliminary showed that genomic prediction can be used for 56 

NEI, however, we acknowledge the need for further validation of this result in a larger 57 

dataset. Moreover, the SNP effects of NEI can be indirectly calculated by using the SNP 58 
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effects estimated from its composition traits. This study provided a basis for adding genomic 59 

information to establish NEI as part of future routine genomic evaluation programs. 60 

 Keywords: nitrogen use efficiency, SNP effect, mid-infrared spectra61 
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Introduction 62 

Livestock production contributes to 18% of the global human-induced greenhouse gas 63 

emissions in the form of carbon dioxide, methane, and nitrous oxide (Moran and Wall, 2011). 64 

The main sources of nitrous oxide production in cattle are deposited urine and manure (Rochette 65 

et al., 2014), primarily due to excessive protein content in their feed. Protein constitutes the 66 

costliest component of indoor dairy cow feed, and protein loss reduces farm profitability. Thus, 67 

improving the nitrogen (N) use efficiency (NUE) of dairy cows has the potential to enhance the 68 

profitability of dairy herds while reducing N pollution (Chen et al., 2021). Management and 69 

breeding systems aimed at increasing NUE in dairy cows primarily focus on reducing urinary 70 

N through proxies such as milk urea concentration (MU) or N (MUN) (Kauffman and St-Pierre, 71 

2001; Spek et al., 2013; Bobbo et al., 2020; Ma et al., 2023). Researchers in New Zealand have 72 

recently investigated the potential consequences of using MUN in genetic selection programs 73 

to reduce N pollution in grazing dairy cows (Correa-Luna et al., 2021; Marshall et al., 2021, 74 

2022). Marshall et al. (2021, 2022) demonstrated that selection for low MUN breeding values 75 

can reduce urine N in cattle, while Correa-Luna et al. (2021) reported the opposite findings. In 76 

the Walloon Region of Belgium, nearly all cattle graze on pasture from April to September 77 

(Soyeurt et al., 2022), and farmers seek dairy cows that are best suited for grazing to minimize 78 

feed production costs (Lefèvre et al., 2022). However, the oversupply of N for dairy cows is 79 

not solely responsible for urinary N, but the imbalance between dietary N and energy in the 80 

grazed pasture (Kebreab et al., 2002). 81 

A recent large international collaboration revealed that predicting N excretion in dairy 82 

cows requires the inclusion of N intake (NINT) and MUN to more accurately predict N 83 

pollution, with the need for region-specific models (Bougouin et al., 2022). We proposed a 84 

novel N efficiency index (NEI) that combines the estimated breeding values (EBV) of NINT, 85 

milk true protein N (MTPN), and MUN yield (MUNY) through a selection index, considering 86 
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both NUE and N pollution simultaneously (Chen et al., 2022). MUNY is proportional to urinary 87 

N excretion (Wisconsin Alumni Research Foundation, 2015). The NEI aims to maintain a 88 

constant NINT, increase MTPN, and decrease MUNY through genetic selection (Chen et al., 89 

2022). However, the index was developed without incorporating genomic information. 90 

Genomic information is valuable for selecting low-heritability traits, and is widely employed 91 

in animal breeding programs. Currently, the single-step genomic best linear unbiased prediction 92 

(ssGBLUP) is the most popular method for genetic evaluations of populations with both 93 

genotyped and non-genotyped animals (Bermann et al., 2022).  94 

 To the best of our knowledge, genomic prediction is currently performed solely for 95 

individual traits and not for indices. Results from genome-wide association analysis of NEI and 96 

its composition indicated that NEI may reflect the interactions of its component traits (Chen et 97 

al., 2023). The objectives of this study were to validate the genomic prediction of NEI and its 98 

composition traits, and investigate the relationship between the single nucleotide 99 

polymorphisms (SNP) effects estimated directly from NEI and indirectly from its composition 100 

traits. This approach aims to verify whether NEI can be genomically predicted directly and 101 

whether the index reflects its composition at the SNP level. 102 

Materials and Methods 103 

The study framework is shown in Figure 1. 104 

Data  105 

Phenotypic Data. As an exploratory study, the data between 2012 and 2019 were selected from 106 

the official milk recording database in the Walloon Region of Belgium. During this study's data 107 

collection period, Holstein cows primarily grazed from April to September each year, while 108 

their diet consisted of a total mixed ration (TMR, silage dominated) for the rest of the year. The 109 

milk samples were analyzed by mid-infrared (MIR) spectrometry (commercial instruments 110 

from FOSS) to assess milk composition (including MU) and generate MIR spectra. All milk 111 
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MIR spectra were standardized according to the method described by Grelet et al. (2015).  The 112 

3 features including NINT, MTPN, and MUNY were used in this study. These features were 113 

divided into 2 classes: primiparous and multiparous (2 to 5 lactations) denoted as NINT1, 114 

MTPN1, MUNY1, NINT2+, MTPN2+, and MUNY2+ (six traits in total). The formulas used 115 

to compute MTPN and MUNY were as follows: MTPN = [ (Milk yield × Protein percent / 6.38) 116 

– MUNY] and MUNY = [(Milk urea concentration / 2.14) × Milk yield] (WHO and FAO, 117 

2011). The NINT of each cow was predicted using the equation developed by Grelet et al. 118 

(2020). The determination coefficients and root mean square errors of validation for the NINT 119 

equation were 0.71 and 0.07 kg/d, respectively.   120 

The data editing procedure used for all the included traits was the same as explained by 121 

Chen et al. (2022). Briefly, all records were restricted to the first 50 days in milk (DIM) because 122 

of the predicament of the NINT model. The NINT model was built based on data from the first 123 

50 DIM only. For NINT, two criteria were considered in the filtering procedure: 1) the 124 

standardized Mahalanobis distance of the new predicted MIR spectra and the calibration dataset 125 

is ≤ 3; 2) the predicted value of NINT was restricted within the range of ±3 standard deviations 126 

of the mean. Finally, 132,899 records, observed between 2012 and 2019 from 52,064 cows in 127 

773 herds, were kept. The pedigree related to the dataset comprised 122,368 animals. 128 

Genotypic data. The genotype data of 4,514 animals included in the pedigree were extracted 129 

from the cattle genetic evaluation system in the Walloon Region of Belgium. The used chip 130 

versions were BovineSNP50 K v1 to v3 (Illumina, San Diego, CA, USA). The SNPs common 131 

between all three chips were kept. Non-mapped SNPs, SNP located on sex chromosomes, and 132 

triallelic SNPs were excluded. A minimum GenCall Score of 0.15 and a minimum GenTrain 133 

Score of 0.55 were used to keep SNP (Wilmot et al., 2022). Then, genotypes were imputed to 134 

a high density (HD) SNP array using FImpute V2.2 software (Sargolzaei et al., 2014). The 135 

SNPs with Mendelian conflicts, and those with minor allele frequency less than 5% were 136 
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excluded. The difference between observed heterozygosity and that expected under Hardy-137 

Weinberg equilibrium was estimated, and if the difference was greater than 0.15, the SNP was 138 

excluded (Wiggans et al., 2009). Finally, 566,294 out of 730,539 SNPs, distributed on 29 Bos 139 

taurus autosomes, were kept. 140 

 (Co)variance Component Estimation 141 

A six-trait (six traits; 3 features, 2 parity classes) repeatability model was used to estimate 142 

the variance components. For more detailed information on the model, refer to Chen et al. 143 

(2022). In summary, the model incorporated fixed effects such as herd-year-season of calving, 144 

standardized DIM and its quadratic term, and standardized calving age with constant, linear, 145 

and quadratic regression (nested within parities). Random effects included non-genetic cow 146 

effects, non-genetic cow effects specific to parity (for multiparous traits only), additive animal 147 

genetic effects, and residual effects. To calculate the relationship between animals, either a 148 

single (H) or pedigree-based (A) relationship matrix was employed. The H matrix combined 149 

the A and genomic (G)-based relationship matrices. The inverse of H, as defined by Aguilar et 150 

al. (2010) is as follows: 151 

𝐇−1 =  𝐀−1 +  [
0 0
0 𝐆−1 − 𝐀22

−1] 152 

where A is the numerator relationship matrix for all animals included in the pedigree; A22 is the 153 

numerator relationship matrix for genotyped animals; G is the genomic relationship matrix 154 

obtained using the function described by VanRaden (2008). In addition, the inverse of all 155 

matrices considers the coefficient of inbreeding between individuals (Lourenco et al., 2020). 156 

Computations were performed using the BLUPF90 family of programs (Misztal et al., 157 

2014). The (co)variance components for NINT, MTPN, and MUNY were estimated by Gibbs 158 

sampling using the models described by Chen et al. (2022). Posterior means of (co)variances, 159 

heritabilities (h2), repeatabilities, genetic and phenotypic correlations were obtained using a 160 
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single chain of 130,000 iterations after a burn-in of 10,000 replicates. The formulas used to 161 

calculate the later four parameters have been previously described by Chen et al. (2021). 162 

Posterior convergence and approximated standard errors of (co)variances and four parameters 163 

were analyzed by POSTGIBBS90 (version 3.14). Repeatability, in this context, refers to within 164 

the six traits. For the traits in multiparous, repeatability was equal to the sum of the variances 165 

of the 3 random effects (non-genetic cow + non-genetic cow × parity + additive animal genetic) 166 

divided by the sum of the variances of all random effects. 167 

Estimated Breeding Values and Nitrogen Efficiency Index 168 

By using the estimated genetic variance components, the EBV and genomic EBV (GEBV) 169 

were estimated for the six studied traits through best linear unbiased prediction (BLUP) and 170 

ssGBLUP, respectively. Two scenarios were considered for estimating the (co)variance 171 

components: one with both pedigree, phenotypic, and genotypic data, and the other with only 172 

pedigree and phenotypic data. The EBV and GEBV for the six studied traits were estimated 173 

using the BLUPF90 program (version 1.71) with the same model used for (co)variance 174 

components estimation (Chen et al., 2022). The reliabilities (REL) of EBV and GEBV for the 175 

studied traits based upon the whole data were calculated by the formula: 176 

REL𝑗 = 1 −  
𝑆E𝑗

2

𝜎𝑢𝑗
2 (1 + 𝑓)

 177 

where REL𝑗 is the reliability of j trait, SE𝑗  is the standard error of prediction for j trait retrieved 178 

from the inverse of the left-hand side matrix of the mixed model equations, 𝜎𝑢𝑗
2  is the additive 179 

genetic variance, and f is the mean inbreeding coefficient for all animals included in the 180 

pedigree. 181 

The calculation methods of the NEI and its reliability were the same as those described by 182 

Chen et al. (2022). In brief, the NEI was defined as a combination of the EBV or GEBV of 183 

NINT, MTPN, and MUNY through a selection index. The index weights (a) of the six studied 184 
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traits were calculated by selection responses, which assumed that the genetic selection 185 

responses for NINT, MTPN, and MUNY were 0, 1, and -1, respectively. This assumption 186 

allows genetic selection for NEI to maintain NINT while increasing MTPN and decreasing 187 

MUNY. The REL of NEI was estimated using the approach described in VanRaden et al. 188 

(2018): 189 

𝐑𝐄𝐋𝐍𝐄𝐈 =  
𝐰𝐆𝐂𝐰′

𝐚𝐆𝐂𝐚′
 190 

where 𝐑𝐄𝐋𝐍𝐄𝐈 was the REL of NEI, w was obtained by multiplying the elements of a by the 191 

square root of reliability for the EBV or GEBV of the six studied traits, 𝐆𝐂 was the genetic 192 

correlation matrix between the six studied traits. 193 

Nitrogen Efficiency Index and its Composition Traits Validation  194 

The theoretical accuracies of NEI and its composition traits in the whole dataset were 195 

calculated and were considered as the maximum accuracy of genetic selection in this dataset. 196 

The theoretical accuracy is equal to the square root of REL for NEI and each trait. 197 

To assess the prediction accuracy of the genomic prediction in young animals, a linear 198 

regression-based method developed by Legarra and Reverter (2018) was used. The basic step 199 

of the linear regression method involves calculating the evaluation metrics by regressing the 200 

breeding value of the partial dataset according to the breeding value of the whole dataset. The 201 

data from 2017 to 2019 were set as missing values (n=38,906) and called the partial dataset. 202 

Since the whole dataset was small, only the records of the last three years were removed (2012 203 

to 2019). Both variance components and breeding values need to be estimated again in the 204 

partial dataset. 205 

The validation population (called the focal individuals) consisted of cows and bulls (Figure 206 

1). Cows (n=4,413) born after 2015 were used as the focal individuals (without phenotypes in 207 

the partial dataset), of which 181 cows were genotyped. We verified the cows with and without 208 
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genotypic data, separately. In the case of the genotyped cows, BLUP validation was also 209 

performed to show whether differences in results could be caused by different validation 210 

populations. Bulls (n=55) were selected as the validation population under two criteria, of 211 

which 35 bulls were genotyped. The first criterion was used on bulls which only have daughters 212 

born after 2015 with records of six traits. The second criterion was used on those bulls with at 213 

least 5 daughters or at least 1 genotyped daughter. These 55 bulls altogether have 695 daughters 214 

with 872 records in this dataset. Since a small number of bulls met both the above criteria, bulls 215 

with and without genotypes were put together.  216 

Four following metrics were used to measure prediction validation results in this study.  217 

The population bias (𝜇𝑤𝑝) was expected to be 0 if the evaluation was unbiased, which was 218 

defined as the following:  219 

𝜇𝑤𝑝 =  �̂�𝑝 − �̂�𝑤 220 

where �̂�𝑝 and �̂�𝑤 were average (G)EBV of focal individuals in the partial and whole datasets, 221 

respectively. 222 

The dispersion (𝑏𝑤𝑝) was expected to be 1 if the evaluation showed no dispersion, which was 223 

defined as the following: 224 

 𝑏𝑤𝑝 =  
𝑐𝑜𝑣(𝑢𝑝,�̂�𝑤)

𝑣𝑎𝑟(𝑢𝑝 ̂ )
 225 

where �̂�𝑝 and �̂�𝑤 were EBV (or GEBV) of focal individuals in the partial and whole datasets, 226 

respectively. 227 

The prediction accuracy (𝑎𝑐�̂�) was expected to be 1 if the evaluation was perfect. The 228 

predictive accuracy of the breeding values of focal individuals in the partial dataset was defined 229 

as the following: 230 

𝑎𝑐�̂� =  √
𝑐𝑜𝑣(�̂�𝑝, �̂�𝑤)

(1 − 𝑓)𝑣𝑎𝑟(�̂�𝑝)
 231 
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where 𝑓 was the average inbreeding coefficient of the focal individuals in the partial and whole 232 

datasets, respectively. Other parameters were the same as described above. 233 

The relative increased accuracy with the phenotype (𝑖𝑛𝑐𝑝ℎ𝑒𝑛 ; Bermann et al., 2021) is 234 

expected to be low value, which means more stability between the partial and whole datasets. 235 

The 𝑖𝑛𝑐𝑝ℎ𝑒𝑛 was defined below: 236 

𝑖𝑛𝑐𝑝ℎ𝑒𝑛 =  
𝑎𝑐�̂�𝑤 −  𝑎𝑐�̂�𝑝

𝑎𝑐�̂�𝑝
=  

1

𝑐𝑜𝑟(�̂�𝑝, �̂�𝑤)
− 1 237 

where 𝑎𝑐�̂�𝑤  and 𝑎𝑐�̂�𝑝  were accuracy in the whole and partial datasets, respectively. Other 238 

elements were the same as described above. 239 

Relationship between Nitrogen Efficiency Index and its composition traits 240 

The Pearson correlation coefficients between the direct SNP effects estimated from NEI 241 

and indirect SNP effects estimated from its composition traits were estimated. The SNP effect 242 

(�̂�) for the NEI and its composition traits were estimated using the POSTGSF90 software 243 

(version 1.73; Aguilar et al., 2014). The formula for the �̂� is the same as that described by Wang 244 

et al. (2012) but without iteration. The formula of �̂� was as follows: 245 

�̂� = 𝐃𝐙𝐠
′ [𝐙𝐠𝐃𝐙𝐠

′ ]
−𝟏

�̂� 246 

where D = I, means that the weight for all SNPs is 1; 𝐙𝐠 was an incidence matrix of genotype 247 

for each SNP; �̂� was a vector of GEBV of each trait for genotyped animals (n=4,514) in the 248 

whole dataset.  249 

The SNP effects for the six studied traits were multiplied by a (relative weight) to calculate 250 

the SNP effects of NEI_hat. Then, the Pearson correlations between the SNP effects of NEI_hat 251 

and the SNP effects estimated directly from NEI were calculated. 252 

Results and Discussion 253 
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Genetic Parameter 254 

The mean, h2, and repeatability for the six studied traits are shown in Table 1. The average 255 

NUE, calculated as the mean MTPN divided by mean NINT, was lower for primiparous 256 

(30.95%) than for multiparous (34.69%). This difference could be partly attributed to the more 257 

developed rumen in multiparous cows. The average NUE values were within the normal range 258 

reported by previous studies (Cantalapiedra-Hijar et al., 2018; Spanghero and Kowalski, 2021). 259 

The h2 and repeatability for the six traits ranged from 0.10 to 0.14, and 0.40 to 0.67, 260 

respectively. These results are similar to our previous findings without using genotypic data 261 

(Chen et al., 2022). 262 

Table 2 shows the genetic and phenotypic correlations among the six studied traits. The 263 

same feature in primiparous and multiparous showed high genetic correlations, ranging from 264 

0.85 to 0.89. The NINT showed medium positive genetic correlations with MTPN (0.45 to 265 

0.53), but low negative genetic correlations with MUNY (-0.08 to -0.20). These results suggest 266 

that NINT may have a greater genetic influence on MTPN, but less on MUNY. Medium 267 

positive genetic correlations were found between MTPN and MUNY (0.39 to 0.56). Our recent 268 

study (Chen et al., 2023) indicated that the genomic regions affecting MTPN and MUNY were 269 

not the same, supporting our hypothesis of simultaneous increases in MTPN and decreases in 270 

MUNY through genetic selection. Phenotypic correlations were generally lower than genetic 271 

correlations. Overall, the genetic and phenotypic correlations among the six traits are consistent 272 

with our previous study (Chen et al., 2022). However, lower genetic correlations were estimated 273 

between NINT and MUNY when genotypic data were used. 274 

Validated Nitrogen Efficiency Index and its Composition Traits  275 

The mean theoretical accuracies of focal individuals from ssGBLUP were higher than 276 

those from BLUP for both NEI and its composition traits (except MTPN2+ and MUNY2+ were 277 
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the same) (Table 3), which is consistent with Cesarani et al. (2021). The higher theoretical 278 

accuracy of ssGBLUP is attributed to its smaller prediction error. 279 

The validated results of the genomic prediction conducted for NEI and its composition 280 

traits in genotyped cows, non-genotyped cows, and bulls through BLUP and ssGBLUP are 281 

presented in Table 4.  282 

First, the results of BLUP and ssGBLUP were compared. The estimated 𝜇𝑤𝑝 (nearly 0) 283 

and 𝑏𝑤𝑝(nearly 1) for the NEI and its composition traits of BLUP and ssGBLUP in genotyped 284 

cows indicate that bias and dispersion for genomic prediction between BLUP and ssGBLUP 285 

are similar. Similar results for the NEI and its composition traits were found for non-genotyped 286 

cows and bulls, except for the 𝑏𝑤𝑝 of bulls. Gao et al. (2021) observed similar results for feed 287 

intake in pigs when comparing BLUP and ssGBLUP, even though they used more genotyped 288 

animals than non-genotyped animals. As expected, the 𝑎𝑐�̂� of the NEI and its composition traits 289 

estimated by ssGBLUP in genotyped cows were higher than that estimated by BLUP, ranging 290 

from 0.48 to 0.66. The H relationship matrix, used in the ssGBLUP, may explain this finding 291 

(Cesarani et al., 2021). Even for non-genotyped animals, the 𝑎𝑐�̂� of the NEI and its composition 292 

traits estimated by ssGBLUP were slightly higher than that estimated by BLUP, ranging from 293 

0.36 to 0.55. Some of the genotyped animals in the dataset are related to the non-genotyped 294 

animals which might partially explain this result. The 𝑎𝑐�̂� of NEI and its composition traits 295 

estimated by ssGBLUP in bulls were higher than that estimated by BLUP, ranging from 0.39 296 

to 0.56. Similarly, multiple studies have shown that the accuracy of ssGBLUP is higher than 297 

BLUP (Bermann et al., 2021; Cesarani et al., 2021). The 𝑖𝑛𝑐𝑝ℎ𝑒𝑛 of the NEI and its composition 298 

traits in genotyped cows and bulls estimated by ssGBLUP were lower than that estimated by 299 

BLUP, which is in line with Bermann et al. (2021) study on chicken mortality. However, the 300 

𝑖𝑛𝑐𝑝ℎ𝑒𝑛 of NEI and its composition traits in non-genotyped animals estimated by ssGBLUP 301 
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and BLUP were similar, except for NINT. This suggests that when making genomic predictions 302 

for non-phenotyped cows, providing their own genotypic data is a good predictor.  303 

On the other hand, the obtained results were compared between genotyped cows, non-304 

genotyped cows, and bulls. The 𝜇𝑤𝑝 of NINT and MTPN estimated by ssGBLUP (or BLUP) 305 

for genotyped cows, non-genotyped cows, and bulls were similar, while the 𝜇𝑤𝑝 of MUNY and 306 

NEI estimated by ssGBLUP (or BLUP) for genotyped cows and bulls were higher than that 307 

estimated for non-genotyped cows. The 𝑏𝑤𝑝 of NEI and its composition traits estimated by 308 

ssGBLUP (or BLUP) were similar between genotyped and non-genotyped cows. However, the 309 

𝑏𝑤𝑝 of NEI and its composition traits estimated by ssGBLUP (or BLUP) in bulls were worse 310 

than in cows. The 𝑎𝑐�̂�  of the NEI and its composition traits estimated by ssGBLUP in 311 

genotyped cows were higher than that in non-genotyped cows and bulls, which can be a 312 

consequence of using extra information available (SNP data) for genotyped cows. This is an 313 

advantage of using genomic selection for low heritability traits (Parker Gaddis et al., 2014). 314 

However, the 𝑎𝑐�̂� of the NEI and its composition traits estimated by BLUP in genotyped cows 315 

and bulls (after removing genotypic data) were lower than that in non-genotyped cows, which 316 

can be attributed to the smaller number of cows in the genotyped group (n = 181) and bulls 317 

(n=55) compared with non-genotyped (n = 4,232). The 𝑖𝑛𝑐𝑝ℎ𝑒𝑛 of NEI and its composition 318 

traits estimated by ssGBLUP (or BLUP) ranged from 17.43% (32.14%) to 31.42% (76.17%) in 319 

genotyped cows, from 23.14% (28.06%) to 57.38% (60.44%) in non-genotyped cows, and from 320 

27.93% (52.27%) to 65.73% (86.07%) in bulls.  321 

In short, these findings showed that genomic information is beneficial for genomic 322 

predictions for NEI and its composition traits. The highest mean prediction accuracies for NEI 323 

and its composition traits were estimated for genotyped cows using ssGBLUP. Furthermore, it 324 

is worth mentioning that even for non-genotyped and non-phenotyped animals in the partial 325 
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dataset, the prediction accuracy of genomic prediction for NEI was nearly the theoretical 326 

accuracy by ssGBLUP (0.52 vs 0.58). 327 

Relationship between Nitrogen Efficiency Index and its Composition Traits 328 

Figure 2 shows the 566,294 SNPs effects values of the NEI, ranging from -0.003 to 0.003. 329 

The Pearson correlation between SNP effects estimated directly from NEI and indirectly from 330 

its composition traits was 1 with an intercept of 0 (Figure 2), which indicates that indirect 331 

genomic prediction can be performed on the NEI index.  332 

Over the past few decades, the breeding goal of dairy cattle has gradually shifted from 333 

increasing milk production to balanced breeding (Miglior et al., 2017), which has resulted in 334 

more traits being added to the breeding system. With increasing the number of traits in a 335 

breeding program, breeders usually classify the traits to generate an index, and then combine 336 

them to generate a total index for breeding. Our results showed that the SNP effects estimated 337 

directly from the generated index are completely consistent with those estimated from its 338 

composition traits (Figure 2). This implies that if SNP effects of the total index are obtained, it 339 

becomes more convenient to perform genomic prediction of the total index on young bulls. 340 

Indirect genomic prediction offers the advantage of reducing the computational cost of large-341 

scale genomic selection (Tsuruta et al., 2021), thus facilitating the implementation of genomic 342 

prediction at the national level. 343 

Another potential advantage of indirect genomic prediction of NEI is the potential 344 

reduction in prediction error. There are potential errors in the calculation of breeding values for 345 

each of the six examined traits, which may lead to a reduction in the accuracy of NEI. The 346 

potential improvement in the accuracy of the NEI can be achieved by reducing the number of 347 

steps in its calculation. However, it is important to note that the theoretical accuracy of indirect 348 

genomic predictions of NEI needs further review, as conducted by Garcia et al. (2022) for post-349 
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weaning weight gain. Furthermore, the effectiveness of indirect genomic prediction for indices 350 

should be validated on more indices to ensure its applicability. 351 

Limitations and Perspectives 352 

The results of this study also require several points of attention. First, the NEI is a proxy 353 

for the NUE of dairy cattle, therefore, it is not identical to the genetic merit of NUE. Moreover, 354 

there were some prediction errors in the NEI calculation process, such as the prediction models 355 

of the MIR-based phenotypes and the estimation of relevant GEBV. To address these issues, 356 

two approaches (data edited) were adopted to mitigate potential problems. Additional reference 357 

phenotypes are expected to be added for improving the prediction models of the MIR-based 358 

phenotypes. Furthermore, Tiplady et al. (2022) recently reported that genetic correlations 359 

between directly measured and MIR-predicted fatty acid and protein fractions were typically 360 

high. This suggests that MIR-based phenotypes represent a valid estimation of genetic 361 

contributions to the directly measured traits. The estimation of relevant GEBV will become 362 

accurate with an increasing number of genotyped animals. 363 

This study should be considered an exploration study, also based on a limited dataset. This 364 

implies that before constructing a national-level NEI combining genomic information and its 365 

integration into a global breeding goal additional work will be required. Although the mean 366 

prediction accuracies (0.52-0.59) of NEI in focal individuals from ssGBLUP are not very high, 367 

they are not too far from mean theoretical accuracies (0.58-0.66). The average reliability (square 368 

of theoretical accuracy) of the bulls (n = 736) was 0.68 when establishing NEI without genomic 369 

information (Chen et al., 2022), indicating that NEI can still perform genomic predictions when 370 

sufficient records are available, especially when combined with genomic information.  371 

The small number of records extracted from the official milk recording database is the 372 

main reason for the low accuracy obtained. Especially, NINT data used was still limited to the 373 

first 50 DIM because the currently available MIR prediction equation is established using only 374 



Validating genomic prediction for nitrogen efficiency index 
 

18 

 

data from the first 50 DIM. However, extending it to the entire lactation period is planned when 375 

relevant reference data are available. This will be our focus as the next step, which should also 376 

increase the reliability of NEI because we could use MIR-predicted phenotypes across the 377 

whole lactation. Another possible way to increase the reliability of NEI is to increase the number 378 

of genotyped animals. The number of cows genotyped has been increasing rapidly in recent 379 

years (Wiggans and Carrillo, 2022), not only in the USA but also to a lesser degree in the 380 

Walloon Region of Belgium. 381 

To implement the routine use of NEI, its integration into a broader breeding goal would 382 

be crucial. In the context of the Walloon genetic evaluation system, which defines sub-indexes 383 

(Vanderick et al., 2022), utilizing NEI as an N efficiency sub-index or part of a broader 384 

efficiency sub-index would be relevant. This approach could serve as a starting point for 385 

breeding efforts aimed at improving NUE in cattle. 386 

Conclusions 387 

This study demonstrated that genomic prediction can be successfully applied to the NEI, 388 

providing valuable insights into NUE in dairy cattle. Even when animals in the partial dataset 389 

lacked both genotypic and phenotypic data, the genomic prediction for NEI achieved a mean 390 

prediction accuracy close to the theoretical accuracy by ssGBLUP (0.52 vs 0.58). Moreover, 391 

we explored the potential benefits of both direct and indirect genomic prediction for the NEI 392 

index, which could prove advantageous for larger datasets at the national level. This study also 393 

confirmed that NEI effectively reflects reflect its composition at the SNP level. However, it is 394 

important to acknowledge that further validation in a larger dataset is needed to bolster the 395 

credibility of our findings. By adding genomic information to the establishment of NEI, this 396 

study lays the groundwork for future routine genomic evaluation programs. The integration of 397 

NEI into such programs holds promise for enhancing N efficiency breeding efforts in dairy 398 
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cattle, thus promoting more sustainable and environmentally responsible practices in the dairy 399 

industry.  400 

Supplementary Materials 401 

The R code for calculating the NEI and its reliability with example data can be found on 402 

GitHub (https://github.com/Yansen0515/GP_NEI) 403 
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Table 1 Description statistics of the six studied traits1 and their heritabilities and repeatabilities 577 

in the whole dataset 578 

Parity class2 NINT (kg/d) MTPN (kg/d) MUNY (g/d) 

1 (n = 40,916)    

     Mean 0.42 0.13 2.93 

     SD3 0.06 0.03 1.08 

    Heritability 0.14 ± 0.01 0.13 ± 0.01 0.14 ± 0.01 

    Repeatability 0.45 ± 0.01 0.61 ± 0.00 0.40 ± 0.01 

2+ (n = 91,938)    

     Mean 0.49 0.17 3.74 

     SD 0.07 0.04 1.56 

    Heritability 0.13 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 

    Repeatability 0.53 ± 0.00 0.67 ± 0.00 0.43 ± 0.00 
1NINT – N intake; MTPN – Milk true protein N; MUNY – Milk urea N yield 579 
2Parity class: based on the parity, the data were divided into 2 classes including primiparous 580 

(class 1) and multiparous (class 2+) 581 
3SD: standard deviation 582 
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Table 2. Genetic correlations (above the diagonal) and phenotypic correlations (below the 583 
diagonal) are among the six studied traits.  584 

Traits1 NINT1 MTPN1 MUNY1 NINT2+ MTPN2+ MUNY2+ 

NINT1  0.48 ± 0.04 -0.20 ± 0.05 0.87 ± 0.02 0.50 ± 0.04 -0.16 ± 0.05 

MTPN1 0.36 ± 0.01  0.56 ± 0.04 0.53 ± 0.04 0.85 ± 0.03 0.46 ± 0.05 

MUNY1 0.06 ± 0.01 0.37 ± 0.002  -0.03 ± 0.04 0.39 ± 0.04 0.89 ± 0.03 

NINT2+ 0.17 ± 0.01 0.14 ± 0.01 0.02 ± 0.01  0.61 ± 0.03 -0.08 ± 0.05 

MTPN2+ 0.11 ± 0.01 0.20 ± 0.01 0.11 ± 0.01 0.43 ± 0.00  0.45 ± 0.04 

MUNY2+ -0.02 ± 0.01 0.09 ± 0.01 0.16 ± 0.01 0.14 ± 0.00 0.41 ± 0.00  

1NINT1 - N intake in primiparous cows; MTPN1 – Milk true protein N in primiparous cows; 585 

MUNY1 - Milk urea N yield in primiparous cows; NINT2+ - N intake in multiparous cows; 586 
MTPN2+ - Milk true protein N in multiparous cows; MUNY2+ - Milk urea N yield in 587 
multiparous cows 588 
2standard error is less than 0.005.589 
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Table 3. The mean theoretical accuracies in the whole dataset for genotyped cows, non-590 

genotyped cows, and bulls of nitrogen efficiency index (NEI) and its composition traits1 591 

 NINT1 MTPN1 MUNY1 NINT2+ MTPN2+ MUNY2+ NEI 

Genotyped cows (n=181)2        
    BLUP   0.63 0.58 0.61 0.61 0.57 0.59 0.57 

    ssGBLUP3 0.72 0.67 0.69 0.71 0.67 0.69 0.66 

Non-genotyped cows (n=4,232)      

    BLUP   0.62 0.58 0.60 0.60 0.57 0.59 0.57 

    ssGBLUP 0.63 0.59 0.61 0.61 0.57 0.59 0.58 

Bulls (n=55)4        

    BLUP   0.64 0.60 0.62 0.61 0.58 0.60 0.59 

    ssGBLUP 0.70 0.66 0.68 0.68 0.64 0.67 0.65 
1NINT1 - N intake in primiparous cows; MTPN1 – Milk true protein N in primiparous cows; 592 

MUNY1 - Milk urea N yield in primiparous cows; NINT2+ - N intake in multiparous cows; 593 

MTPN2+ - Milk true protein N in multiparous cows; MUNY2+ - Milk urea N yield in 594 

multiparous cows 595 
2Ranges of standard deviation for genotype cows, non-genotyped cows, and bulls are 0.06 to 596 

0.10, 0.05 to 0.06, and 0.03 to 0.05, respectively 597 
3ssGBLUP - Single-step genomic BLUP 598 
435 of 55 bulls had genotype  599 
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Table 4. Validated nitrogen efficiency index (NEI) and its composition traits1 by linear 600 
regression 601 

 NINT1 MTPN1 MUNY1 NINT2+ MTPN2+ MUNY2+ NEI 

Genotyped cows (n=181)        

                         bias -0.01 0.00 -0.05 -0.01 0.00 -0.07 0.16 

     BLUP          dispersion 1.05 1.18 1.20 1.07 1.06 1.04 1.06 

                         accuracy 0.40 0.37 0.33 0.41 0.34 0.35 0.45 

                         incphen(%)2 76.17 38.91 60.02 64.92 45.54 58.42 32.14 

        

                         bias -0.01 0.00 -0.07 -0.01 0.00 -0.11 0.14 

     ssGBLUP3   dispersion 1.06 0.97 1.13 0.99 0.93 0.99 1.02 

                         accuracy 0.63 0.48 0.49 0.66 0.51 0.50 0.59 

                         incphen(%) 25.30 30.92 31.42 23.45 22.59 30.11 17.43 

Non-genotyped cows (n=4,232)      

                         bias 0.00 0.00 -0.03 -0.01 0.00 -0.03 0.01 

     BLUP          dispersion 1.08 1.14 1.10 1.15 1.09 0.96 1.03 

                         accuracy 0.47 0.43 0.33 0.50 0.39 0.35 0.48 

                         incphen(%) 52.07 29.69 60.44 41.02 33.73 54.36 28.06 

        

                         bias 0.00 0.00 -0.04 -0.01 0.00 -0.05 0.00 

     ssGBLUP   dispersion 1.13 1.06 1.06 1.16 1.04 0.95 1.00 

                         accuracy 0.53 0.45 0.35 0.55 0.43 0.36 0.52 

                         incphen(%) 35.42 28.62 57.38 27.88 27.27 52.26 23.14 

Bulls (n=55)4        

                         bias 0.00 0.00 -0.09 -0.01 0.00 -0.11 0.10 

     BLUP          dispersion 1.03 1.61 0.89 1.20 1.32 0.68 0.88 

                         accuracy 0.34 0.32 0.33 0.39 0.31 0.33 0.43 

                         incphen(%) 86.07 56.43 78.54 55.29 52.27 78.70 55.47 

        

                         bias 0.00 0.00 -0.11 -0.01 0.00 -0.14 0.06 

     ssGBLUP   dispersion 1.08 1.14 1.02 1.14 0.99 0.67 0.99 

                         accuracy 0.52 0.41 0.42 0.56 0.42 0.39 0.52 

                         incphen(%) 33.14 50.23 47.04 27.93 49.98 65.37 30.71 
1NINT1 - N intake in primiparous cows; MTPN1 – Milk true protein N in primiparous cows; 602 
MUNY1 - Milk urea N yield in primiparous cows; NINT2+ - N intake in multiparous cows; 603 

MTPN2+ - Milk true protein N in multiparous cows; MUNY2+ - Milk urea N yield in 604 
multiparous cows 605 
2incphen(%) - Increase reliability when adding phenotypic 606 
3ssGBLUP - Single-step genomic BLUP 607 
435 of 55 bulls had genotype  608 
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 609 

Figure 1. Workflow of validating genomic prediction for nitrogen efficiency index and its 610 
composition traits. NINT1 - the N intake in primiparous cows, MTPN1 - milk true protein N in 611 

primiparous cows, MUNY1 - milk urea N yield in primiparous cows, NINT2+ - N intake in 612 
multiparous cows, MTPN2+ - milk true protein N in multiparous cows, and MUNY2+ - milk 613 
urea N yield in multiparous cows. 614 
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 615 

Figure 2. Pearson correlation between SNPs effect (n = 566,294) is estimated directly from the 616 

nitrogen efficiency index (NEI) and indirectly from its composition traits (NEI-hat). Its 617 

composition traits included N intake, milk true protein N, milk urea N yield in primiparous 618 

cows, and N intake, milk true protein N, milk urea N yield in multiparous cows (six traits in 619 

total). 620 


