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Abstract 
 

Isogenic cell populations can cope with stress conditions by switching to alternative 
phenotypes. Even if it can lead to increased fitness in a natural context, this feature is typically 
unwanted for a range of applications (e.g., bioproduction, synthetic biology, biomedicine…) 
where it tends to decrease the controllability of the cellular response. However, little is known 
about the diversification profiles that can be adopted by a cell population. We characterized 
the diversification dynamics for various systems (bacteria and yeast) and for different 
phenotypes (utilization of alternative carbon sources, general stress response and more 
complex development patterns). Interestingly, our results suggest that the diversification 
dynamics and the fitness cost associated with cell switching are coupled. For quantifying the 
contribution of the switching cost on population dynamics, we built a stochastic model that 
allowed us to reproduce the dynamics observed experimentally and identified three 
diversification regimes, i.e., constrained (at low switching cost), dispersed (at medium and 
high switching cost), and bursty (for very high switching cost). Furthermore, we used a cell-
machine interface that we call the Segregostat to demonstrate that different levels of control 
can be applied to these diversification regimes, enabling applications involving more precise 
cellular responses.  
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1. Introduction 
 
Cell populations can respond to environmental changes, and to the frequency of these 
changes, by adjusting phenotypes resulting from the activation of dedicated gene circuits1–3. 
This phenotypic plasticity has a lot of importance in microbial ecology, where the fitness of a 
cell population depends on a cost-benefit ratio between the sensing machinery needed for its 
activation and deactivation4 and the activity of a given gene circuit. Thus, controlling the 
phenotype of cells has a lot of importance in various fields of research, such as bioproduction 
and synthetic biology, where coordinated gene expression is typically wanted5–10. Generating 
and controlling cell collective behavior is considered as a hallmark of synthetic biology9,11,12, 
and is now enabled by the parallel advances made at the level of cell cultivation procedures 
(i.e., microfluidics13 and cell-machine interfaces14), as well as the manipulation of synthetic 
gene circuits15–17. Effective control of gene expressions and their underlying cellular functions 
can be achieved in cell populations5,18,19 or individual cells within a population20,21. Different 
approaches can be used to coordinate/synchronize gene expression in cell populations. On 
the one hand, specific gene circuits can be designed in order to generate natural 
oscillations12,22. On the other hand, external forcing can be used for coordinating cellular 
responses6,23,24. According to this last approach, a given stimulus (e.g., chemical inducer20, 
light18,25…) is repeatedly applied at a given frequency and amplitude in order to entrain gene 
expression within a cell population. In this case, the effective transfer of information from the 
extracellular environment to the effector sites within cellular systems is of critical importance 
and can be corrupted by biological noise26–28. In silico experiments pointed out that specific 
environmental fluctuation frequencies could significantly reduce stochasticity in cell switching, 
giving rise to corresponding population diversification regimes1,28. However, the main factors 
affecting these diversification regimes are not known. This feature will be experimentally 
investigated in this work by looking at the temporal diversification profile of different types of 
cell populations in continuous culture. For this purpose, chemostat runs will be 
complemented by experiments conducted in Segregostat. The Segregostat relies on a cell-
machine interface to generate environmental perturbations that are compatible with the 
diversification rate of the considered cell population (Figure 1D)19. This “rational” 
environmental forcing allows for the observation of several diversification cycles in one 
experimental run (Figure 1E). We applied this technology to look at the dynamics of cell 
populations with cellular functions leading to different fitness costs, i.e., utilization of 
alternative carbon sources (E. coli), general stress response (E. coli and S. cerevisiae), 
sporulation (B. subtilis) and activation of a T7-based expression system (E. coli). We 
determined that, based on the fitness cost associated to the cell switching mechanism 
(referred as switching cost or fitness cost in this study), three different population 
diversification regimes, with different level of sensitivity to environmental perturbations, can 
be observed. 
 

2. Results 
 

2.1. Environmental forcing triggered by cell switching dynamics leads to 
coordinated gene expression for diverse biological systems 

 
Temporal diversification of cell populations has been followed based on chemostat cultivation 
of GFP reporter bearing strains and automated flow cytometry (FC) (Figure 1A). In order to 
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characterize population dynamics based on snapshot data, we developed a methodology to 
compute the fluxes of cells from a phenotype to another and the resulting degree of 
heterogeneity of the population, i.e., in our case, based on the measurement of information 
entropy (Figure 1B&C). This entropy is a measure derived from information theory allowing 
to compute the degree of heterogeneity of a population29. Briefly, GFP distributions obtained 
from automated FC measurements are binned and these bins are used to compute the 
cumulative probabilities of occurrence (Supplementary file, Supplementary note 1, figure S1). 
The benefit of this proxy is its independent from the mean of the distribution, by contrast with 
other noise proxies (e.g., Fano factor) that are known to be overestimated when the mean 
value increases30,31. Using entropy to analyze chemostat experiments, however, provides 
limited information about diversification dynamics. The main diversification process taking 
place during the transition between the batch and continuous phases of the culture. Therefore, 
we used a cell-machine interface allowing to produce several diversification cycles in a single 
experiment. This device is called the Segregostat and comprises a continuous cultivation 
device connected to an in-house online flow cytometry (FC) platform19  (Figure 1D). This 
device lets us observe several diversification cycles per experiment, leading to a better 
characterization of the population switching dynamics (Figure 1E). Practically, the cells 
analyzed based on automated FC are clustered into a GFP negative and a GFP positive group. 
Depending on the gene circuits used, a pulse of inducer is applied when the ratio between the 
two clusters (i.e., either 50% or 10% of the total amount of cells in the desired state, 
depending on the cellular system considered) is not met.  
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.06.535654doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535654
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

 
Figure 1: scheme of the device used for characterizing cell population diversification dynamics. A Chemostat 
culture is monitored based on automated FC. B The fluorescence distribution acquired by FC are assembled into 
a time scatter plot. This time scatter plot is then further reordered into 45 fluorescence bins in order to compute 
the evolution of the entropy H of the population (Supplementary File, Supplementary note 1). C The binned 
data are further processed by applying a gradient in order to compute the fluxes of cells into the phenotypic 
space, leading to the quantification of the total fluxes of cells per time interval F. D Scheme of the Segregostat 
set-up. Pulses of nutrient are added in function of the ratio between GFP negative and GFP positive cells, as 
recorded by automated FC. E Expected evolution of a Segregostat experiment where, upon controlled 
environmental forcing, several diversification cycles can be generated.  
 
This methodology was applied to map the diversification of cell populations upon chemostat 
and Segregostat cultivations. We began our analysis by considering two gene circuits involved 
in simple cellular processes in E. coli, i.e., the activation of the arabinose (Figure 2A) and 
lactose (Figure 2B) operons respectively. This type of cellular process is quite simple since it 
involves two inputs, i.e., the absence or limitation in glucose and the presence of either lactose 
or arabinose as an alternative carbon source4. Since these cultures were carried out in 
continuous mode, it was quite easy to ensure glucose limitation. Furthermore, the gene 
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circuitry behind the activation/deactivation of these two operons is well documented in the 
literature4,32.  

 
Figure 2: time scatter plots binned into 50 cell clusters (fluorescence bins) for cultivations made in chemostat 
and Segregostat for A the ParaB:GFP system in E. coli. B the PlacZ:GFP system in E. coli. C the PbolA:GFP system in 
E.coli. D the Pglc3:GFP system in S. cerevisiae. Animated movies for the time evolution of the FC raw data for each 
system are available (Supplementary Movies M1 to M8). For the Segregostat experiments, environmental 
forcing has been performed based on nutrient pulsing (type of nutrient shown in the drawings for cell switching). 
E Computation of the flux of cells and the entropy for the ParaB:GFP system cultivated in Segregostat mode (similar 
computation have been done for the other systems and can be found in Supplementary information, Figure S2). 
All the data are displayed in function of time intervals of 12 minutes, as the population snapshots have been 
acquired by automated FC.  
 
A feature of these two systems is that, upon activation, these circuits do not result in a 
reduction of fitness. More often than not, that is not the case in natural gene circuits. We thus 
decided to investigate other gene circuits involved in more complex cellular processes, and 
known to lead to a higher switching cost (growth reduction). We first chose to consider the 
general stress response in E. coli and selected the promoter of the bolA gene as a 
representative σ! -dependent system33,34 (Figure 2C). In order to extend our analysis to 
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another biological system, we also selected a promoter involved in the accumulation of 
glycogen in yeast35, i.e., Pglc3, as a representative reporter of bet-hedging in S. cerevisiae36,37 
(Figure 2D). Both genes are involved in very complex regulons, making it difficult to find an 
external trigger. However, both reporter systems are known to share common features in the 
sense that the growth of individual cells is anticorrelated with the level of expression of these 
general stress response reporters, making them very useful for analyzing cell collective 
behavior such as bet-hedging34,38.  We then decided to use the external glucose concentration 
as the main actuator for these two systems. Glucose-limited chemostats were then run as 
reference conditions. For the Segregostat experiments, glucose was pulsed instead of lactose 
or arabinose, allowing to generate feast to famine environmental transitions.  
For all four cellular systems investigated, Segregostat cultivation led to entrainment and 
sustained oscillation of gene expression (Figure 2A-D). Based on the analysis of the entropy 
H(t) and the flux of cells F(t) over time, we observed that for all systems, entrainment phases 
were accompanied by an increased flux of cells switching to the alternative phenotype and a 
corresponding decrease of entropy H(t) at the time of pulsing (Figure 2E where the analysis is 
shown for the ParaB:GFP system; analyses for the other systems can be found in 
Supplementary file, Supplementary note 1, figure S2). However, the entropy increases during 
the relaxation phase (GFP dilution upon cell division). At this stage, the question is whether 
the different population profiles recorded based on automated FC can lead to different 
functionalities. We then decided to conduct an in-depth characterization of the heterogeneity 
of cell populations.   
 

2.2. Coordinated gene expression doesn’t necessarily lead to a more 
homogeneous cell population 

 
We then compared the entropies recorded for each systems considered cultivated either in 
chemostat or Segregostat modes (Figure 3A-D). For the ParaB:GFP and PbolA:GFP only slight 
differences of H were observed between chemostat and Segregostat conditions. However, for 
the two other systems, noticeable differences were observed. For the PlacZ:GFP, the average 
entropy in the Segregostat is always higher than in chemostat. This is probably due to the 
leakiness of the promoter during the relaxation phase of the diversification cycles. This causes 
unwanted induction even when little to no inducer is present. On the other hand, we observed 
a significant reduction in entropy for the Pglc3:GFP system when cultivated in Segregostat, 
suggesting that cell entrainment can have an effect on the structure of the population. In 
order to understand why we do observe such differences in behavior between the cellular 
systems, we computed the mutual information (MI) between the environmental conditions 
and the activation of the target gene circuit for the ParaB:GFP and Pglc3:GFP systems. MI is a 
proxy derived from information theory26,27 and involves the computation of the entropy of 
the cell population, as defined in the previous section. In short, MI tells us how much we can 
learn about the input (i.e., in our case the environmental stimulus used for entraining the cell 
population) from the output (i.e., in our case the distribution of GFP in cell population, the 
dispersion being quantified based on the entropy). Thus, in our case, MI is a proxi for 
information transfer efficiency between the inducer concentration and the cell population 
induction. The total entropy for each system was evaluated from the conditional probabilities 
obtained by exposing cell populations to different cultivation conditions (Figure 3E&F). 
Detailed description of the experiments done for determining the conditional probability 
distributions can be found in Supplementary file, Supplementary note 2, Figures S3-S6. MI 
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was obtained by subtracting the time-dependent entropies to the total entropies recorded for 
each system. For the ParaB:GFP system, MI is already relatively high in the chemostat leaving 
little room for improvement in the Segregostat (Figure 3C&E). It means that a reduction in 
entropy between the two cultivation modes has to be expected when the amount of 
information conveyed in chemostat condition is low (e.g., when cells cultivated in chemostat 
do not sense the inducer and, accordingly, do not activate the corresponding gene circuit). 
This is exactly what happened during the chemostat culture of the Pglc3:GFP system (Figure 
3D). MI analysis had pointed out that there was still room for additional reduction in entropy 
(Figure 3D&F), and this was observed in Segregostat where glucose pulses reduced the 
average entropy (Figure 3D). This indicates that Pglc3:GFP is the only studied system where 
entrainment leads to a more homogeneous population. The next section investigates why 
such a phenomenon occurs. 
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Figure 3: Comparative analysis of the entropy computed from the binned population data for four different cell 
systems. Comparative analysis of the entropy profile for the A PbolA:GFP system in E. coli. B PlacZ:GFP system in E. 
coli.  C ParaB:GFP system in E. coli. D Pglc3:GFP system in S. cerevisiae. For the ParaB:GFP and Pglc3:GFP systems, the 
conditional probabilities, i.e., the GFP distribution of the population exposed at different environmental 
conditions, have been experimentally determined (Supplementary information, Supplementary note 2), 
allowing the computation of the mutual information (MI). E MI for the ParaB:GFP system exposed to different 
arabinose concentrations. The MI distribution for the ParaB:GFP system suggests that, at high arabinose 
concentration a gain of information of approximately 0.5 bit has to be expected (the value has been reported by 
a red line on Figure 3C).  F MI for the Pglc3:GFP system exposed to different sugar uptake rates in a accelerostat 
cultivation device (Supplementary information, Figure S4). The MI distribution for the Pglc3:GFP system suggests 
that, at high glucose concentration a gain of information of approximately 1 bit has to be expected (the value 
has been reported by a red line on Figure 3D). 
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2.3. Fitness cost associated to cell phenotypic switching leads to a higher entropy 

at the population level that can be reduced upon environmental forcing  
 
Stress response pathways in yeast are known to be involved in bet-hedging strategies, leading 
to a trade-off between growth and expression of stress-related genes37,38. The glc3 gene 
belongs to this category. Accordingly, cells activating glc3 exhibit reduced growth. This 
phenomenon has been characterized based on Microfluidics Single-Cell Cultivation (MSCC)39 
experiments allowing to expose yeast cells to tightly defined glucose concentrations (Figure 
4A). Unlike with FC analyses where only population snapshots are captured, these 
experiments let us monitor cell traces and thus analyze the fitness cost (growth reduction 
upon switching) associated to the switching. It can be observed that, at low glucose 
concentration (< 0.2 mM), a single cell fully activates stress reporter and stops growing 
(Supplementary movie M12). At a higher glucose concentration, growth of the microcolonies 
is faster, but some stochastic switching events can be clearly observed, with cells suddenly 
expressing the fluorescence reporter and stopping their growth (Supplementary movie M13). 
In order to confirm the beneficial impact of Segregostat condition on the Pglc3:GFP, we used 
dynamic microfluidic single-cell cultivation (dMSCC)40 where we applied environmental 
fluctuations between 0.1 and 1 mM of glucose, at the frequency recorded in the Segregostat 
conditions (Figure 2D). We observed a very homogenous gene expression pattern with cells 
turning green in perfect synchrony (Figure 4B, Supplementary movie M14). The growth of all 
cells was comparable, the stress level being kept at a low level thanks to the fluctuating 
environmental conditions. It seems that when phenotypic switching is associated with a loss 
of fitness, there is more stochasticity in the diversification pattern followed by the population. 
However, when the nutrient level is changed at a given frequency, switching can be kept under 
control, leading to a drastic reduction of the phenotypic heterogeneity of the cell population. 
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Figure 4: A Picture of yeast Pglc3:GFP microcolonies cultivated in a MSCC device at different glucose 
concentrations. Movies of a microcolony growing at a concentration of 0.1 mM and 1mM can be accessed in 
Supplementary movie M12 and M13 respectively). B Single cell traces of yeast Pglc3:GFP cells cultivated in a 
dMSCC device fluctuating between 1 and 0.1 mM of glucose (T1mM = 3h; T0.1mM = 0.8h). Between 10 and 40 cells 
have been tracked in four different cultivation chambers over two biological replicates (mean fluorescence is 
shown in bold). Pictures of a microcolony taken at regular time intervals are shown (Supplementary movie M14).   
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2.4. Phenotypic switching associated with extreme fitness cost gives rise to a 
bursty diversification regime 

 
According to the results exposed in the previous section, a lower entropy in Segregostat has 
to be expected when the fitness cost associated with phenotypic switching is high. To validate 
this hypothesis, we investigated the diversification dynamics of two other systems known for 
their high impact on cellular fitness; the T7-based expression system in E. coli BL21 – a typical 
heterologous protein production platform – and the sporulation regulon in B. subtilis 
(PspoIIE:GFP). Indeed, for both, phenotypic switching leads to a drastic reduction of growth. 
Surprisingly, even in chemostat, FC profiles reveal bursts of diversification (Figure 5A&B). 
These bursts are the result of a subpopulation of cells deciding to switch and being washed 
out from the continuous cultivation device due to the associated fitness cost. During 
chemostat cultivation, bursts involving small fluxes of cells occur continuously and result in a 
high entropy at the population level. Then, upon environmental forcing based on Segregostat 
cultivation, the number of bursts is reduced and the fluxes of cells involved in the process are 
increased, leading to a substantial but temporary reduction of the entropy for the population 
(Figure 5A&B). 
These results point out that the Segregostat reduces the average entropy of gene circuits with 
a high fitness cost despite very complex dynamics. It has been suggested in the literature that 
the stochasticity in cell switching is associated to its fitness cost and is important for the 
survival of the whole population. This feature is well illustrated in this case where a phenotype 
switch induces a dramatic loss of growth rate, leading to the wash-out of these cells in 
continuous cultivation conditions. However, this stochasticity can be reduced by applying 
environmental perturbations at a rate matching the phenotypic switching rate of cells. In the 
context of the T7 system, this approach led to the maximization of cells in the GFP positive 
state suggesting that it could be used for mitigating metabolic burden and maximizing 
productivity in continuous bioprocesses.  
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Figure 5: Temporal diversification profile for the PT7:GFP system  in E. coli (A) and the PspoIIE:GFP system (B) 
cultivated in chemostat and Segregostat modes. Only the continuous phase of the cultivation is shown on the 
graphs. Bursts of diversification are highlighted in red on the fluorescence bins data (the full diversification profile 
determined based on automated FC is available as Supplementary movie M9-M10. In both cases, the entropy 
H(t) and the fluxes of cells in the phenotypic space F(t) have been computed from the binned fluorescence data. 
All the data are displayed in function of time intervals, as the population snapshots have been acquitted by 
automated FC. One time interval corresponds to 12 minutes. 
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2.5. Fitness cost drives the appearance of different dynamical regimes with 
different levels of controllability 

 
According to the datasets acquired from the different biological systems, we observed three 
types of diversification regimes named respectively constrained, dispersed and bursty (Figure 
6). When the fitness cost associated to the switching is low or non-existent, we observe a 
constrained diversification regime where the population switches upon environmental 
change and adopts a homogeneous distribution. In that case, the stimulation of the 
population with controlled environmental pulsing does not homogenize it (since information 
transmission is already maximal in the non-controlled conditions, Figure 3A&B).  
 

 
Figure 6: illustration of the three diversification regimes observed based on automated FC in function of the 
fitness cost. The consequences on the control of cell population are also shown based on the time evolution of 
the entropy of the population between non-controlled (i.e., obtained upon standard chemostat cultivation) and 
controlled (i.e., obtained upon periodic environmental stimulation of the population in the Segregostat) 
conditions.  
 
 
When there is a fitness cost associated to the switch, what we call a dispersed diversification 
regime can be observed. In that case, cells react to environmental changes but then adopt a 
more heterogeneous population structure. In this case, the application of controlled 
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environmental perturbations allowed a substantial reduction in population heterogeneity. For 
the bursty diversification regime (higher fitness cost), cells switch in bursts, leading to a very 
heterogenous population structure. The application of controlled environmental 
perturbations reduces the number of bursts and increases the number of cells involved in 
these bursts, leading to a transient decrease in population heterogeneity. 
It seems that the regime depends on the fitness cost associated with the phenotypic switching 
event. In order to verify that fitness cost is indeed the driver for the diversification pattern 
adopted by cell populations, we conducted in silico experiments. For this purpose, we 
considered the kinetic parameters obtained from the inference of the Pglc3:GFP system in yeast 
and conducted stochastic simulations based FlowStocKS (Supplementary file, Supplementary 
note 3). We conducted 32 different chemostat simulations by varying only the value for the 
fitness cost and computed the entropy H (Figure 7A) and the fluxes of cells (F) involved in 
phenotypic switching (Figure 7B). Solely based on the fitness cost associated to the switching, 
we were able to reproduce the three types of diversification regimes experimentally observed 
during the experiments (Figure 3C). Complete wash-out of the cells was observed for extreme 
fitness cost (>99% reduction in growth rate). We then wondered if we could observe clear 
transitions between the different regimes. Such transition was observed between the bursty 
and the dispersed regime based on the computation of the flux of cells F. Indeed, the bursty 
regime is marked by the appearance of a strong variation in flux of cell which is not observed 
for the other two regimes (Figure 7E). The transition between the dispersed and constrained 
regime is more progressive (Figure 7D). FlowStocKS was also able to reproduce the behavior 
of the population under Segregostat cultivation, and the reduction in entropy upon 
environmental forcing was computed (Figure 7F). Again, reduction in entropy depended on 
the associated fitness cost and thus was observed for the dispersed and bursty regimes, in 
accordance with our experimental observations.  
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Figure 7: main outputs of the FlowStocKS simulations. A Evolution of the mean entropy recorded in chemostat 
in function of the fitness cost (here expression as the percentage of reduction of the initial growth rate prior 
phenotypic switching). B Evolution of the mean flux of cells recorded during chemostat experiments in function 
of the fitness cost associated to phenotypic switching (see Figure 1 for more details about the computation of 
the flux of cells). C Selected simulated time scatter fluorescence plots illustrating the different diversification 
regimes observed at different fitness costs (the whole simulation dataset can be found as Supplementary movie 
M15). D Selected simulated time scatter fluorescence plots illustrating the progressive transition between the 
dispersed and constrained diversification regimes. E Selected simulated time evolution for the fluxes of cells 
recorded for different values of fitness cost. The bursty regime is characterized by the spontaneous generation 
of flux of cells (bursts) in chemostat cultivations. F Reduction of the entropy upon environmental forcing in 
function of the fitness cost associated with phenotypic switching. The entropy values have been computed by 
substracting the mean entropy value recorded for chemostat experiment to the corresponding ones obtained in 
Segregostat.   
 

3. Discussion 
 

We used the Segregotat to better characterize cell population diversification dynamics by 
generating successive diversification cycles during the same experimental run. The basic 
principle behind this technology is to revert the environmental conditions when a fraction of 
cells (50% or 10% of the total population depending on the system investigated) crossed a 
predefined fluorescence threshold. This approach allows to maintain a cell population in a 
dynamic switching state during the experiment. Based on the analysis of the mutual 
information, i.e., the amount of information transferred from the extracellular conditions to 
the cell systems27,29,42, we determined that for the ParaB:GFP system, the chemostat drives a 
similar amount of information than the Segregostat. On the other hand, we observed a drastic 
reduction in entropy when entraining stress-related systems, such as the Pglc3:GFP system in 
yeast, in the Segregostat. In this case, we determined that the high entropy observed in the 
chemostat was related to a trade-off between growth and gene expression36–38,43–45, which 
was further confirmed based on microfluidics experiment, and by considering two additional 
systems where phenotypic switching induced a huge fitness cost i.e., the sporulation system 
in B. subtilis and the T7-based expression system in E. coli. 
Based on all the data accumulated by automated FC for six different biological systems, we 
found that cell populations diversified according to three distinct regimes associated to 
increasing fitness costs, i.e., constrained, dispersed and bursty. The most noticeable 
difference between these regimes is the level of entropy of the cell population, the entropy 
being a measure derived from information theory giving a robust estimate of population 
dispersion29,41. The lowest entropy values were observed for the constrained regime and the 
highest ones were observed for dispersed and bursty regimes. The other difference was 
observed upon the cultivation of cell populations under fluctuating environmental conditions 
in the Segregostat were a reduction of entropy compared to chemostat cultivation was 
observed for the dispersed and bursty regimes but not the constrained. Taken altogether, the 
data suggested that cell population diversification dynamics are mainly driven by the fitness 
cost associated with the phenotypic switching mechanism, a higher cost giving rise to the 
dispersed and bursty regimes. All these observations were confirmed based on stochastic 
simulations (FlowStocKS), suggesting that the proposed diversification framework could be 
generalized for characterizing diversification dynamics for any kind of cellular system.  
Harnessing phenotypic heterogeneity of microbial populations has been the subject of much 
research, leading to the design of various technologies aiming at homogenizing gene 
expression in cell populations46.  We have shown that the level of diversification of microbial 
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populations cultivated in continuous bioreactors depends mainly on the fitness cost. Since 
many applications involve gene circuits whose activation leads to substantial burden for the 
cellular system48,49, active diversification processes have to be expected in a number of cases50. 
Our data point out that, under these circumstances, phenotypic diversity could be promoted, 
instead of being reduced, by using environmental forcing to provide cell populations with 
robust temporal patterns in gene expression. For example, bursty diversification profiles have 
been observed for two cellular systems exhibiting high switching cost. According to this regime, 
marked cycles of diversification can be observed even in chemostat cultures. These cycles are 
due to the rapid switching (burst) of a fraction of the population that lower the average growth 
rate of the population and are washed out of the system. These cells are then replaced by the 
next burst of diversification, starting from a subpopulation of non-diversified cells. This type 
of temporal profile has been previously observed, but based on spatially organized cells 
equipped with synthetic circuits7,51,52. Here, we show that it is possible to reproduce such a 
complex but organized diversification profile with cells in suspension in a bioreactor and that 
the complex dynamics behind phenotypic heterogeneity are linked to the fitness cost 
associated to the switch. 
 

4. Methods 
 

4.1. Stains and plasmids 
 
The analyses of alternative carbon source utilization and stress response in E. coli were done 
based on a E. coli W3110 backbone and kanamycin resistance bearing plasmids originating 
from the Zaslaver collection (i.e., ParaB::GFPmut2, PlacZ::GFPmut2 and PbolA::GFPmut2)53. For 
investigating the T7 induction system response, we used E. coli BL21 (DE3) carrying 
pET28:GFP56. To observe the starvation response, we used S. cerevisiae CEN-PK 117D 
background with the chromosomal integration of a reporter cassette Pglc3:eGFP35,54. The E. coli 
W3110 ΔaraBAD strain used for determining the conditional entropy of the ParaB:GFP system 
was constructed through CRISPR-cas9 enhanced lambda red phage mediated homologous 
recombination as described by Jiang et al.55 (the primer sequences are described in 
Supplementary File, Table S1). Finally, we monitored the early stage of the sporulation process 
in B. subtilis 168 based on a chromosomal integration of PspoIIE::GFPmut2 (kindly provided by 
Denise Wolf and Adam Arkin)57.  
 
 

4.2. Cultivation conditions and Segregostat procedure 
 

Bacteria (E. coli and B. subtilis) precultures and cultures have been performed in a defined 
mineral salt medium containing (in g/l): K2HPO4 14.6; NaH2PO4.2H2O 3.6; Na2SO4 2; (NH4)2SO4 
2.47; NH4Cl 0.5; (NH4)2-H-citrate 1; glucose 5, thiamine 0.01, antibiotic 0.1. Thiamine is 
sterilized by filtration (0.2 mg/l). The medium is supplemented with 3 ml/l of a trace element 
solution, 3ml/l of a FeCl3.6H2O (16.7 g/l), 3 ml/l of an EDTA (20.1 g/l) and 2ml/l of a MgSO4 
solution (120 g/l). The trace element solution contains (in g/l): CoCl2.H2O 0.74; ZnSO4.7H2O 
0.18; MnSO4.H2O 0.1; CuSO4.5H2O; CoSO4.7H2O. Filtered sterilized kanamycin (50 mg/l) was 
added for plasmid maintenance in E. coli. S. cerevisiae cultures and precultures have been 
performed based on a Verduyn mineral medium49. The precultures were performed in 1L 
baffled flask overnight either at 37 °C (bacteria) or 30°C (S. cerevisiae) at a shaking speed of 
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150 rpm and used to start the batch phase in a lab-scale stirred bioreactor (Biostat B-Twin, 
Sartorius) total volume: 2 l; working volume: 1 l at an initial OD600 of 0.5. Once the batch phase 
was over (typically after 5,8 and 15 h for E. coli, B. subtilis, S. cerevisiae respectively). The 
operating conditions used for the various cell systems are provided in Supplementary 
information, Supplementary note 4, Table S3. 
 
Data was collected through online flow cytometry during the experiments, and in Segregostat 
experiments, the actuator was pulsed based on both the observed distribution and a pre-
defined set-point. The Segregostat platform has been described earlier10. Briefly, every 12 
minutes, a sample is automatically taken from the bioreactor, diluted, and analyzed in a flow 
cytometer (BD Accuri C6, BD Biosciences) with an FSC-H analysis threshold of 20,000 for 
bacteria and 80,000 for S. cerevisiae. During the chemostat experiment, glucose and, if 
applicable, an alternative carbon source was fed together, while in the 
Segregostat experiment, glucose was the sole carbon source in the feed. In Segregostat, a 
feedback control loop, which includes a custom MATLAB script based on FC data, activates a 
pump to pulse an actuator. For S. cerevisiae, E. coli stress response, and B. subtilis sporulation, 
the actuator pulses glucose, while for E. coli alternative carbon source utilization, the actuator 
pulses lactose and arabinose. For all systems except for the sporulation control, a control 
threshold of 50/50 was utilized. However, for the sporulation control, the regulation was 
triggered once the fluorescence threshold was exceeded by more than 20% of the cells. This 
decision was made based on the irreversibility of the sporulation process, which required 
earlier intervention.  
 

4.3. Microfluidic cultivations and time lapse microscopy 
 

All devices and parameters were the same as previsouly59, excepted few modifications. S. 
cerevisiae cells have been cultivated in the dynamic microfluidic single-cell cultivation (dMSCC) 
chips provided by Alexander Grünberger’s lab (reference 24W, chambers size : 80 µm x 80 µm 
x 850 nm)40. Their design enables the simultaneous use of 2 cultivation media. They are 
separated in three zones: 2 control zones, fed by either one or the other medium, and a 
switching zone fed in alternance by the two media. Diverse combinations of Verduyn medium 
with different glucose concentrations have been tested (i.e., 0.4 mM - 0.6 mM, 0.2 mM – 0.8 
mM, 0.1 mM - 1 mM and 5 µM – 3 mM). To approach the Segregostat conditions, the duration 
of the switching zone feeding with the medium containing more (or less) glucose corresponds 
to the mean period with (or without) pulsing when population is controlled in the segregostat 
(i.e., 180 min (or 48 min)). High precision pressure pumps (line-up series, Fluigent, Le Kremlin-
Bicêtre, France) were used to precisely control medium flow rate. The temperature was set at 
30◦C. The chambers were inoculated with one or two cells by flushing the device with a cell 
suspension (OD600 between 0.4 and 0.5). At least 6 cultivation chambers were selected 
manually for each zone of the dMSCC chips. Microscopy images were acquired during 72 hours 
using a Nikon Eclipse Ti2-E inverted automated epifluorescence microscope (Nikon Eclipse Ti2-
E, Nikon France, France) equipped with a DS-Qi2 camera (Nikon camera DSQi2, Nikon France, 
France), a 100× oil objective (CFI P-Apo DM Lambda 100× Oil (Ph3), Nikon France, France). The 
GFP-3035D cube (excitation filter: 472/30 nm, dichroic mirror: 495 nm, emission filter: 520/35 
nm, Nikon France, Nikon) was used to measure GFP. The phase contrast images were recorded 
with an exposure time of 300 milliseconds and an illuminator’s intensity of 30%. The GFP 
images were recorded with an exposure time of 500 milliseconds and an illuminator’s intensity 
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of 2% (SOLA SE II, Lumencor, USA).  During the first 48 hours, GFP and phase contrast images 
were acquired every hour.  During the 24 last hours, phase contrast images were acquired 
every 6 minutes and GFP images every hour (or every 20 minutes for one experiment with 
media 5 µM – 3 mM glucose). The optical parameters and the time-lapse were managed with 
the NIS-Elements Imaging Software (Nikon NIS Elements AR software package, Nikon France, 
France). The single-cell data have been computed for the 24 last hours of the time lapse for at 
least 3 chambers per condition (i.e., zone of the dMSCC device). The cell-segmentation of the 
images and the measure of single-cell mean GFP intensity were performed using either the 
Python GUI60 or the Matlab algorithm of Wood and Doncic61. This last was also used for cell 
tracking. In this case, seeds for segmentations have been corrected manually and at least 10 
cells per microfluidic cultivation chamber (well segmented and tracked all the time lapse long) 
were selected manually. 
 

4.4. Modelling cell population dynamics based on FlowStocKS 
 
The aim of this simulation toolbox is to be able to represent with high fidelity the population 
snapshots and dynamics captured based on automated flow cytometry. Briefly, population 
dynamics is modelled based on a set of ODEs representing the time evolution of biomass and 
substrates according to a Monod kinetics in a continuous cultivation device. From the global 
population, a given number of cells (approx. 10,000, some cells being washed-out during the 
simulation) are considered for generating a stochastic process. For these cells, phenotypic 
switching is modelled according to a Markov chain process driving the synthesis and 
degradation of GFP. Cell growth and division are taken into account for computing the GFP 
content. Upon switching, cells may encounter a fitness cost depending on an inhibitory kinetics. 
The data are then fitted to a seven-decade fluorescence scale in order to fit to the automated 
FC data. Detailed information, including parameters and equations settings, are provided as 
supplementary information (Supplementary file, Supplementary note 3). 
 
Data and code availability 
 
The data sets and the supplementary movies are available on gitlab 
(https://gitlab.uliege.be/mipi/published-software/mipi-model-and-simulation-database/-
/tree/main/Fitness%20cost%20associated%20with%20cell%20phenotypic%20switching%20
drives%20population%20diversification%20dynamics%20and%20controllability 
). The FlowStoCKS toolbox is on https://gitlab.uliege.be/mipi/published-software/mbms-
toolbox/-/tree/main/FlowStoCKS .   
 
 
Supplementary information 
 
Supplementary Information file 
 
Supplementary movie M1 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the ParaB:GFP 
system in E. coli cultivated in chemostat 
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Supplementary movie M2 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the PlacZ:GFP 
system in E. coli cultivated in chemostat 
 
Supplementary movie M3 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the PbolA:GFP 
system in E. coli cultivated in chemostat 
 
Supplementary movie M4 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the Pglc3:GFP 
system in S. cerevisiae cultivated in chemostat 
 
Supplementary movie M5 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the ParaB:GFP 
system in E. coli cultivated in Segregostat 
 
Supplementary movie M6 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the PlacZ:GFP 
system in E. coli cultivated in Segregostat 
 
Supplementary movie M7 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the PbolA:GFP 
system in E. coli cultivated in Segregostat 
 
Supplementary movie M8 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the Pglc3:GFP 
system in S. cerevisiae cultivated in Segregostat 
 
Supplementary movie M9 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the PspoIIE:GFP 
system in B. subtilis cultivated in chemostat (first 40h), followed by Segregostat cultivation.  
 
Supplementary movie M10 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the 
pET28:GFP system in E. coli cultivated in chemostat 
 
Supplementary movie M11 Time evolution of dotplots FSC-A (Forward Scatter signal) in 
function of FL1-A (GFP fluorescence signal) obtained based on automated FC for the 
pET28:GFP system in E. coli cultivated in Segregostat 
 
Supplementary movie M12 Cultivation of S. cerevisiae carrying a Pglc3:GFP reporter in a MSCC 
device. Chemically defined medium is constantly perfused into the chamber with a glucose 
concentration of 0.1mM, leading to a drastic reduction in growth of the colony and full 
activation of the Pglc3:GFP reporter. 
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Supplementary movie M13 Cultivation of S. cerevisiae carrying a Pglc3:GFP reporter in a MSCC 
device. Chemically defined medium is constantly perfused into the chamber with a glucose 
concentration of 1mM. 
 
Supplementary movie M14 Cultivation of S. cerevisiae carrying a Pglc3:GFP reporter in a 
dMSCC device. Cultivation conditions are periodically switched between chemically defined 
media containing glucose at a concentration of 0.1 and 1 mM respectively. The feast-to-
famine transitions have been applied with predefined durations i.e., T0.1mM = 0.8 h and T1mM = 
3h, for mimicking the Segregostat conditions.  
 
Supplementary movie M15 FlowStocKS simulations of chemostat cultivations under variable 
fitness cost. 
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Supplementary Information 
 
 
Supplementary note 1 Determination of the entropy (H) of the population from automated 
FC data 
 
Information theory has been used in this work for characterizing the response of cell 
population to environmental perturbations. This theory involves the computation of entropy 
H, which can be regarded as a measure of uncertainty about the response of the cell 
population (output) in function of the environmental stimulation (input). This input-output 
relationship, which constitute the basis of information theory, will be detailed in 
Supplementary note 2. In this note, we’ll concentrate on the description of the entropy H as 
a measure of the level of heterogeneity of the population. Entropy can be considered as a 
measure of uncertainty about the outcome of a draw from a probability distribution1 e.g., if 
we pick randomly a cell in our population, how much are we surprised to pick one cell with a 
given GFP level? In our case, we can measure the entropy based on fluorescence distribution 
acquired with automated FC based on the following equation: 
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𝐄𝐪𝐧	𝟏 ∶ H = 	−	+p(x"). log#	p(x")
$

"%&

 

 
With m being the number of states observed (i.e., GFP classes in our cases) and p being the 
probability to observe this state. The probability to observe different classes of fluorescence 
can be easily determined based on automated FC. The computation of H has been exemplified 
based on fictive population of cells clustered in three fractions according to the level of GFP 
exhibited by cells (Figure S1). As an example, the computation for the first population 
distribution (Figure S1A) is performed as: 
  

H =	−	[(0.1. log#	0.1) + (0.6. log#	0.6) + (0.3. log#	0.3)] = 1.29	bits 
 

 
Figure S1: computation of H for cell population clustered in three bins (computation according 
to equation 1). Each bin corresponds to a subpopulation of cells with a given fluorescence 
range i.e., low, medium or high.  
 
Based on this first example, the entropy of the population can be either increased (Figure S1B), 
the maximum entropy value being reached when cells are equally distributed into the 3 
different clusters. On the opposite, H can be decreased and set to zero when all the cells 
exhibit the same fluorescence range (Figure S1C). This approach has been applied to 
automated FC data for computing the evolution of H for different types of cell population 
(Figure S2 for three out of six of the cell systems investigated). In this case, we applied 50 bins 
for the computation of H (see Supplementary note 2 for more explanations). 
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Figure S2: computation of the entropy and flux of cells for the A PlacZ:GFP (E. coli), B PbolA:GFP 
(E. coli) and C Pglc3:GFP (S. cerevisiae) systems. 
 
 
Supplementary note 2 Experimental determination of the response function for the ParaB:gfp 
system in E. coli and the Pglc3:gfp system in S. cerevisiae and computation of the mutual 
information (MI) 
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Information theory relies on the characterization of the input-output relationship for various 
systems, and has been applied recently to the analysis of signal propagation in biological 
systems23. Basically, MI allows to quantify how much we can know about an input (e.g., change 
in environmental condition) from the output (i.e., in our case, the fluorescence distribution of 
the population). The first step for the computation of MI is to calculate the entropy of the 
population exposed to defined environmental conditions i.e., based on the conditional 
distribution. These conditional distributions represent the response function of our cellular 
systems and will be characterized in section a and b.  

a. Characterization of the response function for the E. coli ParaB:GFP system 
E. coli w3110 ΔaraBAD ParaB:GFPmut2 was constructed to characterize the relationship 
between the inducer concentration and induction profile. The knockout was realized 
accordingly to Jiang et al.4 where pTarget was modified with the Fw_sgRNA_20N_Ara primer 
and the homologous product was constructed from the upstream and downstream fragments 
generated with Fw_Frag1, Rv_Frag1, FW_Frag2, Rv_Frag2 (Table S1). 
The deletion of the araBAD genes has been done to ensure a perfectly defined concentration 
of arabinose i.e., no consumption during the trial. From an overnight preculture, 10 flasks (100 
ml total volume, 10 ml working volume) with buffered (10 g/l MOPS) mineral salt media were 
inoculated at an OD600 of 0.5. Once the cells were in glucose limited conditions, a solution of 
arabinose was added to a final concentration ranging from 0 to 2 g/l. Eight concentrations in 
duplicate were analyzed. Following a delay of 24 minutes, samples analyzed by FC (Figure S3) 
to determine the proportion of cells above the 1000 F.U. threshold. The response function was 
defined as the ratio of cells above this fluorescence threshold (typical fluorescence value 
above which a system is considered as induced) over the concentration in arabinose.  
 

 
Figure S3: Scatter plots of cell size (FSC-A) versus GFP fluorescence (FL1-A) for E. coli w3110 
ΔaraBAD ParaB:GFPmut2 exposed to arabinose concentrations (from A to K) of 0, 0.025, 0.05, 
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0.1, 0.15, 0.20, 0.25, 0.30, 0.50, 1.00 and 2.00 g/L. The redline represents the fluorescence 
threshold (i.e., 1000 F.U.) used for computing the GFP positive fraction of cells. 
 

Table S1  

Primer name Sequence 

 

Fw_sgRNA_20N_Ara 

agctagctcagtcctaggtataatactagtCGCCCGCAGGATATTCGTCGgttttagagcta

gaaatagcaagttaaaa 

Fw_fragment1 gttaaacgagtatcccggcagca 

Rv_fragment1 cgtttcactccatccaaaaaaacgg 

Fw_fragment2 tggagtgaaacgtgactgtataaaaccacagccaa 

Rv_fragment2 catcggcctcgtagacggtaac 

 

b. Characterization of the response function for the S. cerevisiae Pglc3:GFP system 
The response function of the Pglc3:GFP  in S. cerevisiae was determined by growing culture at 
different dilution rates in chemostat (Figure S4). For this purpose, the dilution rate of a 
chemostat was progressively increased in order to release the stress response of the 
population. This procedure is known as accelerostat (A-stat) and involves the progressive 
increase of the dilution rate. In our case, the pump flow rate was modified according to step 
change every 2 hours, resulting in a progressive increase of the dilution rate of 0.002 h-1 every 
hour. This incremental range was chosen in order to ensure pseudo steady-state for each 
increment. The whole process was followed by automated FC for mapping the GFP 
distribution of the cell population (Figure S4).    
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Figure S4: A-stat experiment monitored based on automated FC. The GFP level distribution 
(FL1-A channel) was determined for each dilution rate (D). The red line highlights the 
progressive release of the stress response at the population level based on the deactivation of 
the Pglc3:GFP reporter. 

c. Computation of mutual information (MI) based on the response function of a cell 
population  

Knowing the response function, and the corresponding conditional GFP distribution, it is 
possible to compute the MI of a specific cellular system. This computation will be exemplified 
for the Pglc3:GFP reporter in S. cerevisiae. The environmental input for this system is the glucose 
uptake rate determined based on the value of the dilution rate, as well as based on glucose 
and biomass measurement. The conditional fluorescence distributions were then acquired for 
different substrate uptake rate and H was computed accordingly (Figure S5A). If all the 
fluorescence distributions are summed up, the corresponding entropy value is the total 
entropy of the system. MI is then computed according to (Figure S5B): 
 

𝐄𝐪𝐧	𝟐 ∶ MI(y, x) = H(x) − H(x, y) 
 
With H(x) being the total entropy for output x and H(x,y) being the conditional entropy 
computed from the conditional distribution of the output x (x, being GFP distribution). 
 
When doing so, it is important to adjust the number of bins used for computing the entropy. 
In our case, this number was set to 45 bins and leads to a precise computation of MI without 
increasing the computing power (Figure S6). 
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Figure S5: A Evolution of the conditional entropy for the Pglc3:GFP  in S. cerevisiae exposed to 
different uptake rates. B MI can be deduced by subtracting the value of the total entropy of 
the system ( 2.49 bits in this case) by the corresponding conditional entropy.  
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Figure S6: impact of the binning procedure (number of bins considered) on the estimation of 
MI for the Pglc3:GFP  in S. cerevisiae (data extracted from A-stat experiments). 
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Supplementary note 3 Flow cytometry Stochastic Kinetic Simulator (FlowStocKS) 

FlowStocKS is a computational tool designed to simulate the phenotype distributions of a 
microbial population under different environmental regimes (Chemostat and Segregostat). 
Following the model framework classification proposed by Hartmann et al.5, FlowStocKS can 
be considered as:  i) biologically segmented as it considers single cells; ii) abiotically 
unsegmented as it assumes a homogeneous environment; iii) an unstructured cell model as it 
does not take intracellular kinetics or metabolic fluxes into consideration. FlowStocKS 
comprises two modules: the growth module and the switch module. The system is resolved 
using a Markov chain with discrete time, where the growth module is described by a set of 
ordinary differential equations (ODE). These ODEs detail how single cells grow (Eqn 3 and Eqn 
4) and consume (Eqn 5) their substrate (S), in accordance with the Monod-type equations that 
include a non-competitive growth inhibition term. 

𝐄𝐪𝐧	𝟑:	µ = µ$'(
[S]

[S] + Ks
[I]

[I] + KI 

𝐄𝐪𝐧	𝟒:	
dX
dT = µX − DX 

𝐄𝐪𝐧	𝟓:	
dS
dT = D[S)**+] − YµX − D[S] 

Where: 

µ,-. = Maximal growth rate 

µ = Growth rate 

𝑋 = Cell biomass 

𝐾𝐼 = Growth inhibition constant 

𝐾𝑠 = Affinity for the substrate 

𝑌 = Substrate to biomass yield 

𝐷 = Dilution rate 

[𝑆/001] = Substrate concentration in the feed 

[𝐼] = Inhibitor concentration 

[𝑆] = Substrate concentration 

In the growth module, single cells are simulated to grow until they double in size, at which 
point they divide into two daughter cells. Additionally, to simulate continuous cultivations, 
cells are randomly flushed out of the system based on a probability (𝑃234) set by the dilution 
rate and the time step (𝑇5406) used in the simulation (Eqn 6). 

𝐄𝐪𝐧	𝟔:	P789 = D	T:9*; 
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The growth parameters (µ,-. , 𝐾𝐼, 𝑌, 𝐾𝑠) are given by the switch module, and define the 
phenotype of each cell. To initiate the switching process, a cell must first cross a time 
threshold by accumulating  𝑇5406, and this commitment process is governed by a switching 
probability (P). This probability is determined by a response function, taking the inducer 
concentration (i) as input. The Ρ function is a classical sigmoid function characterized by a 
steepness (n) and a 50% switching probability at concentration (K). 

𝐄𝐪𝐧	𝟕:	Ρ(i) =
[i]<

[i]< + K 

The accumulation of 𝑇5406 is analogous to the build-up of enzymes that are necessary for the 
expression of a different phenotype, commonly known in many processes e.g., substrate 
consumption switching and the diauxic shift time678. Once the time threshold (𝜏) is reached, 
the cell switches phenotype. In our experimental set-up, we use GFP-based reporters to track 
the phenotype switch. Thus, once the time threshold is reached a GFP is produced as a burst 
following a production rate set by a gamma distribution (𝛤=>!"#,#@)

9. Similarly to Taniguchi et 
al.9, we assumed that active degradation of GFP or the inhibitor is neglectable and accordingly 
dilution is determined by cell division.  

With this FlowStocKS toolbox, we conducted simulations using a constant time step (𝑇5406) of 
1 minute, which is two orders of magnitude faster than the fastest process considered 
(T:9*;<<< µ$'(). In these simulations, we modeled a population of 10,000 cells, each with an 
initial mass equal to 1/1000th of the initial biomass. Our simulations were based on the 
growth characteristics of Saccharomyces cerevisiae (Table S1).  The switch to the stressed 
phenotype is triggered by glucose limitation resulting in growth inhibition. To simplify our 
analysis, we assumed that the resulting GFP production is linearly correlated with the inhibitor 
concentration, and thus its concentration was used as the inhibitor  

Finally, by varying inhibition value KI  (lower value means higher growth inhibition), we were 
able to compute the phenotype distribution both in Chemostat and Segregostat for different 
fitness cost associated to switching. All FlowStocKS codes are available on the GitLab page 
(https://gitlab.uliege.be/mipi/published-software/mbms-toolbox/-/tree/main/FlowStoCKS ). 

Table S2: Parameters used for running FlowStocKS simulations 
 

Parameter Description Value Unit Source 
µ_max_glucose Maximal growth rate on 

glucose 
0.54 h-1 Jain10 

Ks_glucose Affinity constant for 
glucose 

0.034 g/l Jain10 

Y_glucose Substrate to biomass yield 
for glucose yeast 

0.5 g/g Bionumbers ID 10965111 

n Hill coefficient -2  This studya 

k 50 % probability switching 
concentration 

0.05 g/l This studya 

Gfp_prod Mean value of GFP 
production burst given a 
gamma distribution of 

1e5 fu This studyb 
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scale 2 and growth 
inhibition 
 

 
 
 
by [B]

[B]DEB
 

 

KI Growth inhibition From 0 to 1e99 fu 

delay (𝜏) Time delay between pulse 
and GFP production 

0.4 h This studyc 

 
aApproximated from the proportion of induced cells for different glucose concentrations observed in microfluidic 
cultivation 
bSet to evaluate the impact of inhibition strength, Gfp_prod and KI individual values are arbitrary, only the ratio 
matters as the inhibition strength is set 
cA delay of 0.4 hours (24 minutes) between sensing and switching was selected based on Segregostat 
observations, where two consecutive automated FC measurements (24 minutes) separate a pulse and the first 
increase in fluorescence. 
 
Supplementary note 4 Operating conditions used for the chemostat and Segregostat 
experiments  
 
Table S3 
  
Strain Process conditions Control conditions 
E. coli W3110  
ParaB::GFPmut2 

D = 0.45 h-1   pH = 7   T = 37 °c 
Aeration = 1 L/min 
Agitation = 1000 min-1 
[Glucose feed] = 5 g/L 
[Arabinose feed]chemostat = 1.5 g/L 
[Arabinose feed]Segregostat= 0 

Chemostat : none 
Segregostat :  
Regulation threshold = 50 % cells bellow 1000 F.U. 
Regulation = Pulse 0.15 g arabinose 
                         
 

E. coli W3110  
PlacZ::GFPmut2 

D = 0.45 h-1   pH = 7   T = 37 °c 
Aeration = 1 L/min 
Agitation = 1000 min-1 
[Glucose feed] = 5 g/L 
[Lactose feed]chemostat = 1.5 g/L 
[Lactose feed]Segregostat= 0 

Chemostat : none 
Segregostat :  
Regulation threshold = 50 % cells bellow 1000 F.U. 
Regulation = Pulse 0.15 g lactose 
                         
 

E. coli BL21  
pET28:GFP 

D = 0.45 h-1   pH = 7   T = 37 °c 
Aeration = 1 L/min 
Agitation = 1000 min-1 
[Glucose feed] = 5 g/L 
[Lactose feed]chemostat = 1 g/L 
[Lactose feed]Segregostat= 0 

Chemostat : none 
Segregostat :  
Regulation threshold = 50 % cells bellow 1000 F.U. 
Regulation = Pulse 0.5 g lactose 
                         
 

E. coli W3110  
PbolA:GFPmut2 

D = 0.45 h-1   pH = 7   T = 37 °c 
Aeration = 1 L/min 
Agitation = 1000 min-1 
[Glucose feed] = 5 g/L 

Chemostat : none 
Segregostat :  
Regulation threshold = 50 % cells above 2000 F.U. 
Regulation = Pulse 0.2 g glucose 

B. subtilis 168 
PspoIIE:GFPmut2 

D = 0.1 h-1   pH = 7   T = 37 °c 
Aeration = 1 L/min 
Agitation = 1000 min-1 
[Glucose feed] = 5 g/L 

Chemostat : none 
Segregostat :  
Regulation threshold = 20% cells above 1000 F.U. 
Regulation = Pulse 0.2 g glucose 

S. cerevisiae 
CEN-PK117D  
Pglc3:eGFP 

D = 0.1 h-1   pH = 5   T = 30 °c 
Aeration = 1 L/min 
Agitation = 1000 min-1 
[Glucose feed] = 5 g/L 

Chemostat : none 
Segregostat :  
Regulation threshold = 50% cells above 5000 F.U. 
Regulation = Pulse 0.2 g glucose 
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