
Chaussette: A Symbolic Verification of Bitcoin
Scripts

Vincent Jacquot1[0009−0007−8026−5277] and Benoit Donnet1[0000−0002−0651−3398]?

Université de Liège, Montefiore Institute, Belgium
{vjacquot, benoit.donnet}@uliege.be

Abstract. The Bitcoin protocol relies on scripts written in Script, a
simple Turing-incomplete stack-based language, for locking the money
carried over the Bitcoin network. This paper explores the usage of sym-
bolic execution for finding transactions that permit to redeem the money
without being the legitimate owner. In particular, we show in detail how
using insecure scripts could have led to security breaches, resulting in
bitcoins theft. Our contributions include (i) a quantification of the vul-
nerable script instances over the full Bitcoin history up to Feburary, 4th

2023; (ii) the development and open source publication of a symbolic
execution tool, called Chaussette; (iii) the description of how to use
Chaussette to perform the attack; and, (iv) a discussion around a way
to secure vulnerable money.

1 Introduction

Bitcoin, the first decentralized cryptocurrency has been deployed in 2008 [42].
While numerous cryptocurrencies followed thereafter [26,12], Bitcoin is the largest
by market cap: half a trillion USD as of April 2023 [28]. Since then, the develop-
ment of cryptocurrencies has generated a popular enthusiasm. In particular, for
Bitcoin, multiple and various use cases have been implemented both by the aca-
demic and developers community [7] [5, Chapter 7]. Among others, we can cite
lotteries [9,39], multiparty computations [3,11], or contingent payments [8,38].

In parallel to this enthusiasm, cryptocurrencies have been the subject, through-
out the years, of several hijacking [35,33]. According to TRM Labs analysis, 2022
was a record-setting year for crypto hacks, with about $3.7 billion in stolen funds,
including 10 hacks involving $100 million or more [47].

One key aspect of Bitcoin is that all applications share the common prop-
erty of being handled by scripts written in the Script programming language.
Indeed, Bitcoin relies fully on scripts to check the ownership and the validity
of money expenses. These scripts are subject to bugs or vulnerabilities [13],
introducing the risk of getting hacked and losing money.

In this paper, we provide a security analysis performed on the whole Bitcoin
blockchain using Chaussette, a symbolic execution tool we developed. Chaus-
sette explores all the paths a script’s execution might take and searches for a
? This work is supported by the CyberExcellence project funded by the Walloon Re-
gion, under number 2110186.

2 Jacquot and Donnet

set of input values that allow a money transfer. In addition, we publicly release
the Chaussette code.1

Our analysis shows that numerous scripts, more than three hundred thou-
sand, do not properly secure the money they are in charge of. In particular, these
insecure scripts allow people other than the true owner to spend the money. In
total, tens of bitcoins could have been stolen.

The remainder of this paper is organized as follows: Sec. 2 provides a compre-
hensive guide on the main building blocks of the Bitcoin protocol and Script;
Sec. 3 introduces Chaussette, with the results of the analysis on the whole
blockchain. The attacks we found are carefully described and quantified; Sec. 5
discusses a potential solution to secure vulnerable funds; Sec. 6 positions this
paper with respect to the state of the art; finally, Sec. 7 concludes this paper by
summarizing its main achievements.

2 Background

In this section, we provide the required background for the remainder of
the paper. In Sec. 2.1, we discuss the main concepts on which the Bitcoin pro-
tocol [42] (hereafter abbreviated as Btc), is built. In Sec. 2.2, we provide a
comprehensive guide on the mechanisms used to verify the ownership of the
currency defined by the protocol: the bitcoin (hereafter abbreviated as B).

2.1 The Bitcoin Protocol

The Bitcoin protocol (Btc) defines a decentralized digital currency that en-
ables payments to anyone, anywhere in the world. The satoshi is the smallest
possible division and equals one hundred millionth of a bitcoin (B).

Btc runs over a decentralized network of nodes running a consensus algo-
rithm for updating a public ledger of financial transactions. Those transactions
are grouped into blocks which are chained together and form the blockchain.

Transactions are verified and blocks are created by special nodes called min-
ers. In every new block, a given number of new B is created and attributed to the
miner as a reward. Initially, the reward was set to 50 B and this value is halved
every 210,000 blocks [5, Chapter 10]. Additionally, every transaction specifies a
transaction fee paid to the miner which includes the transaction in the block.

Btc is designed to produce a block every ten minutes on average [5, Chap-
ter 10]. The transactions that are broadcasted on the network wait in the mem-
pool for a block to be mined.

A transaction is composed of a set of n > 0 inputs: i0, . . . , in−1 and m > 0
outputs: o0, . . . , om−1. The rightmost transaction represented in Fig. 1 is com-
posed of two inputs and two outputs. Every output is defined by a script that
locks the money and its value in satoshis. Here, the two outputs respectively
lock 107 and 9, 096, 749 satoshis. Every input refers to an output from a previ-
ous transaction and contains a proof of ownership. From that point, the referred
1 See https://gitlab.uliege.be/bitcoin/symbolic_execution

https://gitlab.uliege.be/bitcoin/symbolic_execution

Chaussette: A Symbolic Verification of Bitcoin Scripts 3

......

...

Transaction hash: 204f7034...
Transaction fee: 0.00004761 BTC

 0.1 btc

 0.09096749 btc

...

BLOCK 783,041
2023-03-29 15:31:19 UTC

BLOCK 783,019
2023-03-29 11:42:22 UTC

BLOCK 783,014
2023-03-29 10:58:07 UTC

Transaction hash: 4bf54ef80...

 0.05685600 btc

 0.13218618 btc

...

Transaction hash: 2edbcbed...

 0.05882892 btc

 0.01152482 btc

...

Fig. 1: The satoshis unlocked by the two inputs in the right-most transaction are
split between two outputs. The transaction fee is attributed to the miner who
includes the transaction into the block.

outputs’ values are considered spent. Thus, the miners will reject any further
transaction containing an input spending one of them. The two inputs claim
respectively 5, 882, 892 and 13, 218, 618 satoshis from previous outputs. The sum
of the values unlocked by the n inputs of a transaction has to be greater or equal
to the sum of the values of the m outputs. The difference of the two sums (in
the example: 4, 761 satoshis) is the transaction fee that is rewarded to the miner
including the transaction into the block.

2.2 The Bitcoin Script Language

Btc defines a stack-based language, Script, to determine whether an input
is allowed to spend or not an output. This language instructions are encoded
over one byte and support a wide range of general functionalities such as cryp-
tographic, arithmetic, or branching operations [19]. Some other operations allow
pushing byte vectors onto the stack. When used as numbers, byte vectors are
interpreted as little-endian variable-length integers with the most significant bit
determining the integer sign [19].

Every input and output contains a script, which are both concatenated and
executed by the miners. If no error occurs and the script returns True, the input
is allowed to spend the money. Any non-zero value is interpreted as True, but
its default representation is the byte vector 0x01 [20]. On the other hand, False
is represented by any representation of 0, such as an empty byte vector (its
default representation [20]), 0x00, or 0x80 (negative zero). Btc specifies a set of
standard scripts [14] that are well known and secure methods to lock an output.
While the use of standard scripts is recommended, users can implement their
own, i.e., non-standard, scripts to support their specific needs.

Fig. 2 illustrates the process of validation for an output locked with a stan-
dard pubkey script. By extension, the output and the corresponding input are
said to be of type pubkey.

Firstly, the miner extracts the input and output scripts, that are provided in
hexadecimal format in Fig. 2. Then, the scripts are parsed and concatenated. The
parsing is straightforward: the first opcode 48 (72 in decimal) in the input script
indicates the following 72 bytes stand for a constant. This completes the parsing
of the input script. The output script starts with the opcode 41 that indicates a

https://www.blockchain.com/explorer/transactions/btc/42b11aeb827fefeb847db81d463ad4739233f9a3181ed22a47c9ae4fb8edc320

4 Jacquot and Donnet

Stack

3045[...]1501

1. CONSTANTS: The constants are pushed onto the stack.
2. OP_CHECKSIG: The operator pops a public key and a signature from the stack.
 If the signature is valid for the public key and the transaction, True is pushed onto the stack. Otherwise, False is pushed.

Stack

True

48304502206e21798a42fae0e854281abd38bacd1aeed3ee3738d9e
1446618c4571d1090db022100e2ac980643b0b82c0e88ffdfec6b64
e3e6ba35e7ba5fdd7d5d6cc8d25c6b241501

Input Script Output Script

4104283338ffd784c198147f99aed2cc16709c90b1522e3b3637b31
2a6f9130e0eda7081e373a96d36be319710cd5c134aaffba81ff0865
0d7de8af332fe4d8cde20ac

3045[...]1501 0428[...]de20 OP_CHECKSIG

Stack

0428[...]de20

3045[...]1501

Parsing & concatenation

Execution

Fig. 2: Claim of a pubkey output.

constant of 65 bytes is following. Finally, the last opcode is ac standing for the
operator op_checksig [19].

The miner’s last step is to execute the concatenation of the input and output
script. The constants are pushed on the stack in lifo order. op_checksig pops
two elements from the stack. The first one is assumed to be a public key and
the second one a signature. A hash digest is obtained from the transaction. The
exact parts of the transaction that are considered to produce the hash [16] are
not discussed in this paper. The signature used by op_checksig must be a
valid signature for this hash and public key. If it is, True is pushed onto the
stack. Otherwise, False is pushed onto the stack.

We also need to cover two other standard scripts defined by Btc: script-
hash [2] and witness_v0_scripthash [37] which require an extra verification
rule.

Every scripthash and witness_v0_scripthash input contains a second
script called the redeem script that is included as the last constant inside the
input script. For example, in Fig. 3, the constant 5121022afc[...]52ae is the
redeem script. For the sake of simplicity, we do not present the raw hex script,
but rather its parsed version. Note that this example stands for one particular
instance. Redeem scripts are not restricted to the use of a standard multisig
script. In fact, redeem scripts might also be non-standard.

As usually, the miners will execute the input and output script together as
illustrated at step 1 in Fig. 3. The redeem script is just interpreted as a constant.
Then, a few extra steps are required for the transaction to be valid. The redeem
script is parsed again. In the current example, the first byte is 51 that represents
the instruction op_1 and the second byte indicates the presence of a 33-byte
constant: 022afc[...]. To finish, 52 and ae stand for the instructions op_2 and
op_checkmultisig. Finally, the parsed redeem script is executed with the

https://www.blockchain.com/explorer/transactions/btc/5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2

Chaussette: A Symbolic Verification of Bitcoin Scripts 5

Input Script Output Script

Redeem script

OP_HASH160 7482[...]b8755121022afc[...]52ae3046[...]e70100 OP_EQUAL

OP_HASH160 7482[...]b8755121[...]52ae3046[...]e70100 OP_EQUAL

Step 1. The input script and the output script are concatenated and executed as usally.

Step 2. The redeem script is parsed another time,

 and executed with the constants in the input script.

5121022afc[...]52ae3046[...]e70100

3046[...]e70100 OP_1 022a[...] OP_2 OP_CHECKMULTISIG

Fig. 3: Claim of a scripthash output whose redeem script is a standard mul-
tisig script.

remaining input data. This second execution must also run without errors and
return True for the input to be valid.

3 Data Collection Methodology

Measurements were run on a computer equipped with an AMD 3600X pro-
cessor running Ubuntu 20.04.5 at 4.4 GHz using 16 GB. We ran a Btc node on
the machine to obtain the full blockchain. The client used was the C++ reference
implementation [18] version v22.0.0. This client offers a convenient command line
interface to fetch the transactions in JSON format. The blockchain was analyzed
from block 0 to 775,000 (included). This latter was published on February 4th,
2023 at 13:14:22 UTC.

Unfortunately, the command line interface does not include much informa-
tion about the transactions’ inputs in the results as they just point to an out-
put [17]. In fact, the type and value of the corresponding output are not included.
To circumvent the issue, instead of relying on existing pieces of code, such as
Blocksci [32] (no longer supportered by its authors as of November 2020 [31])
we developed our own tool to parse the blockchain and annotate the inputs (our
code is freely available2). The annotation is composed of two phases.

During the first phase, the blockchain is parsed exactly once. Unspent outputs
are collected and cached in a utxo (Unspent Transaction Outputs) set in RAM.
Because of the RAM constraints, this set can only contain a maximum number
of outputs. When the set is full, the oldest unspent outputs are evicted from the
cache. The inputs are annotated with their corresponding output, if this latter
is in the set.

2 https://gitlab.uliege.be/bitcoin/symbolic_execution

https://www.blockchain.com/explorer/transactions/btc/4d8eabfc8e6c266fb0ccd815d37dd69246da634df0effd5a5c922e4ec37880f6
https://gitlab.uliege.be/bitcoin/symbolic_execution

6 Jacquot and Donnet

The second phase consists in labeling the inputs that were not annotated
during the first phase. The RAM is filled with as many of these inputs as pos-
sible. Then, the blockchain is parsed to find their corresponding outputs. This
procedure is repeated with another batch of unannotated inputs until all inputs
are annotated.

Our code performed the two phases in roughly 48 hours. Our code will be
released upon paper acceptance.

4 Non-Standard Scripts as Attack Vector on Bitcoin

In this section, we expose how non-standard scripts can be used as an attack
vector to steal funds. Those custom scripts (see Sec. 2.2) are implemented by the
users or services to protect their funds. They can be involved either in inputs as
a redeem script or in outputs. As with every piece of code, they are subject to
bugs and vulnerabilities.

Fig. 4a exposes a few metrics to give an order of magnitude of the differ-
ent scripts’ usage. 433,458 outputs are locked with a non-standard script, which
represents 0.019% of all the outputs. 24,394,307 witness_v0_scripthash [37]
and 634,004,474 scripthash [2] outputs have been used. From these 658.3 mil-
lion outputs (29% of all outputs), 16.4M are unspent. Amongst the 641.9 million
inputs spending the outputs, 3,435,086 redeem scripts (0.15% of all outputs)
are non-standard. This gives a total of 3,868,544 non-standard scripts found in
the blockchain.

Finally, the probability distribution function (PDF) per output type is pro-
vided in Fig. 4b. Most of the variations in usage come from the fact that all
the standard scripts have been defined at different points in time. For example,
scripthash was defined in January 2012 [2] (roughly after block 160,000) and
took a long time to be widely adopted.

While still popular, the usage of outputs requiring a redeem script decreases
over time for the benefit of simpler locking methods such as pubkeyhash and
witness_v0_keyhash scripts.

While the usage of non-standard scripts stays low in proportion, this still
concerns numerous outputs. More importantly, the majority of B is held by
a small number of Virtual Asset Service Providers (VASP), because many Btc
users rely on them to manage their cryptocurrency [27]. A malicious VASP could
start using on purpose a vulnerable non-standard script to protect the funds of
their customers. Then, this could be used as a back door to steal the money and
the VASP could claim to be under attack.

In the following subsections, two attacks on non-standard scripts are de-
scribed. The tool implemented to perform these attacks is described priorly at
Sec. 4.1. The first attack targets the non-standard output scripts (Sec. 4.2) and
the second one targets the non-standard redeem scripts (Sec. 4.3).

Chaussette: A Symbolic Verification of Bitcoin Scripts 7

pu
bk

ey

pu
bk

ey
ha

sh

no
ns

ta
nd

ar
d

m
ul

tis
ig

sc
rip

th
as

h

nu
lld

at
a

witn
es

s v0
ke

yh
as

h

witn
es

s v0
sc

rip
th

as
h

witn
es

s v1
ta

pr
oo

t

witn
es

s un
kn

ow
n

Output type

103

105

107

109

T
o
ta

l
o
u

tp
u

t
co

u
n
t

(a) Total output types count

0 200000 400000 600000 800000
Block number

0.0

0.2

0.4

0.6

0.8

1.0

P
D

F

pubkey

pubkeyhash

multisig

scripthash

witness v0 keyhash

witness v0 scripthash

witness v1 taproot

witness unknown

(b) Output types share over the time
Fig. 4: Distribution of the Btc outputs up to block 775,000.

Table 1: Path and opcodes count of the non-standard scripts.
Mean Std Dev 95% CI

Path Count 5.622 2.87 ±0.003
Opcodes Count 15.35 10.47 ±0.01

4.1 Chaussette: A Script Symbolic Execution Tool

Symbolic execution is a way of analyzing a program to determine what
inputs cause each part of a program to execute. Symbolic execution employs
satisfiability-modulo theory (SMT) [40] constraint solvers to determine the fea-
sibility of a path condition and generate concrete solutions for it.

Contrarily to miners who execute scripts on concrete values to check the
validity, our symbolic execution tool, called Chaussette, executes scripts on
symbols and returns scripts’ output as a function in terms of these symbolic
inputs. Then, Chaussette uses Z3 [41], an SMT solver, to find a set of concrete
values for which the script output is True. For example, while a miner would
execute the concatenation of an input script and an output script, Chaussette
only considers the output script and searches for values for which the output
script returns True.

This technique is particularly suitable for the Bitcoin script language as many
of the usual limitations do not apply. Indeed, the scripts are usually quite simple
(see Table 1), so the number of feasible paths stays computationally manageable.
Additionally, the Bitcoin language does not implement arrays [19] that are usu-
ally trickier to represent symbolically [43]. Finally, no operator interacts with
their environment as a regular program on a machine would, e.g., by making
system calls or receiving signals [19].

8 Jacquot and Donnet

OP_0
OP_GREATERTHAN

OP_IF OP_SIZE
0x04

OP_LESSTHAN

OP_ENDIF

OP_HASH160
0x96d0[...]31
OP_EQUAL

BLOCK0

BLOCK1 BLOCK2

BLOCK3

Stack

Empty

Stack

Empty

Stack Stack

Symbolic Execution

96d0[...]31OP_GREATERTHAN0 OP_IF OP_HASH160 OP_EQUAL OP_ELSE OP_SIZE 4 OP_LESSTHAN OP_ENDIF

Fig. 5: Example of Chaussette execution.

Due to space constraints, we do not describe how Chaussette deals with
every operator. Instead, we present how Chaussette deals with the script il-
lustrated in Fig. 5. Chaussette’s goal is to find the data that will redeem the
money locked by this script. We use the acronym ite standing for If-Then-Else,
such that the expression ite(a, b, c) is evaluated to b if a is True, c otherwise.
Finally, byte vectors used by Script are represented as tuples (v, s), where v
is the integer interpretation of the vector and s its size in bytes. The default
representation of False is the empty byte vector (val = 0, size = 0), while the
default representation of True is (1, 1) (see Sec. 2.2).

As a first step, Chaussette builds the control flow graph for the script.
The opcodes are grouped into blocks of consecutive instructions, these blocks
are chained together to represent all the possible paths. The full list of op-
codes that might alter the execution flow is [op-if, op-notif, op-return, op-
verify] [19]. These two latter are special in the sense that they may invalidate
the execution. To represent this feature in our model, we create a special final
block error-block that pushes 0 (False) onto the stack and does not point
to any block. Thus, whenever this block is visited, the top stack is necessar-
ily False and invalidates the execution accordingly. The informed reader will
notice that some branching operators are missing from the above list, such as
op_checksigverify, op_equalverify, etc. The reason is that these opera-
tors ending with “verify” can be replaced by two operators. For example, the op-
erator op_checksigverify can be replaced with the operators op_checksig
op_verify without any logic change [19].

The script is decomposed into four blocks: block0 containing the operators
[op-0 op-greaterthan op-if] that points to block1 and to block2 respec-
tively composed of [op-hash160 96d0[...]31 op-equal] and [op-else op-size 4
op-lessthan]. These two blocks point to the final block of the script: block4
composed of [op-endif].

The second step is the symbolic execution. We cover in detail in the next
paragraphs the execution for blocks 0, 1, 2, and 3. Fig. 5 illustrates for each
block the set of constraints and the state of the stack after execution which are
passed to the child blocks.

Chaussette: A Symbolic Verification of Bitcoin Scripts 9

block0 The first block to be executed is the entry point of the script. Firstly,
op-0 pushes the empty vector (0, 0) onto the stack. Then, op-greaterthan
tries to pop two elements from the top of the stack. As only one element is
on the stack, Chaussette will generate on the fly a symbolic Btc byte vec-
tor. This symbolic vector is represented with a tuple (v1, s1), where v1 stands
for its integer value interpretation and s1 is the number of bytes. Finally, op-
greaterthan pushes another symbolic vector onto the stack represented with
the tuple: ite(v1 ≥ 0, (1, 1), (0, 0)). Finally, op-if pops this symbolic vector. Con-
trarily to a regular execution, both child blocks, block1 and block2, will be
executed with a different set of constraints: respectively v1 ≥ 0 and v1 < 0.
Additionally, the state of the stack, that is currently empty, is passed to the
children.

block1 As op-hash160 tries to pop an element from an empty stack, a sym-
bolic vector (v2, s2) is generated. op-hash160 pushes the 20-byte vector [19]
(hash160(v2), 20) onto the stack, where hash160 is an uninterpreted function
taking one integer as an argument and returning one integer. As a remainder,
an uninterpreted function is a function that has no other property than its name
and a n-ary form. It allows any interpretation that is consistent with the con-
straints over the function. Then, the constant 96d0[...]31 is pushed onto the stack.
op-equal pushes the vector ite(hash160(v2) == int(96d0[...]31), (1, 1), (0, 0)).
Finally, the set of constraints and the state of the memory are passed to block3.

block2 A symbolic vector (v2, s2) is generated as op-size needs an element and
the stack is empty. op-size pushes onto the stack the element itself (v2, s2), then
the size of this element (s2,min_bytes_encoding(s2)) wheremin_bytes_enco−
ding is a function returning the size needed to encode s2. Then, the concrete
byte vector (4, 1) is pushed onto the stack. Finally, op-lessthan pops two el-
ements from the stack and pushes ite(s2 < 4, (1, 1), (0, 0)) on it. No additional
constraint is added to the path. As done for block1, the state of the memory
and the set of constraints are passed to block3.

block3 As this block has several parents, we need to reconcile both paths’
constraints and memories. The parents’ constraints are merged using a logical
or. This gives us the expression v1 ≥ 0 or v1 < 0, which simplifies into True,
which is expected as any execution of the script goes through that block. The
memories are reconciled using ite expressions. For example, top, the top stack
element, becomes:

top = ite(v1 ≥ 0, ite(hash160(v2) == int(96d0[...]31), (1, 1), (0, 0))

ite(s2 == 4, (1, 1), (0, 0)))

10 Jacquot and Donnet

Table 2: Patterns for which the votes were not unanimous. The 3rd column
designates the number of scripts for which Chaussette found a solution to
unlock them.

Pattern Script
count

Vulnerable
script count

op-constant op-checklocktimeverifyop-drop 15 7
op-constant op-constant 2 1
constant constant constant op-checkmultisig 18 3

The last step consists in using Z3 to find values such as top 6= 0. Because of
the nature of uninterpreted functions, hash160 is not constrained and Z3 can
evaluate hash160(v2) == int(96d0[...]31) to True. This is equivalent to assuming
we have the ability to perform a preimage attack, which is infeasible [36] for
ripemd-160 and sha256, the two hash functions being used by Script [19].
The trick is to add a final constraint hash160(v2) 6= int(96d0[...]31). Thus, Z3
will return a solution made of concrete values such as v1 < 0 and s2 == 4.
In order to redeem the money locked by this script, two constants in the input
script are required: the first one being a constant of 4 bytes, the second one
being a negative value of any size.

We conclude this subsection with the results of Chaussette on the 3,868,544
non-standard scripts found. Despite the quantity, most scripts are very similar
and can be grouped into 780 patterns. Two scripts containing the same opcodes,
but differing only in the constants are said to be generated from the same pattern.
In order to speed up the computation, up to 100 scripts (some patterns have fewer
than 100 script instances) from every pattern have been randomly selected to
be analyzed by Chaussette with a 30-second timeout. The final security tag
attributed to the pattern is voted by majority and propagated to all the script
instances generated from this pattern. A pattern can either be considered unsafe
if a solution allowing the script to be unlocked is found, safe otherwise.

Apart from three patterns (see Table 2), the votes per pattern were unan-
imous. These three instances correspond to cases where the constant plays a
predominant role in the semantic. For example, in the third pattern, the first
constant designates the number of valid signatures the owner must present [19].
In three cases, this constant is 0, making the script vulnerable.

In total, Chaussette ran 16,138 script over 14,549.65 seconds (∼4h). Ag-
gregating the run time per pattern, we obtain a 95% confidence interval for the
run time per pattern of 1.33±0.2448 seconds.

Moreover, due to the small number of patterns, we have inspected every one
of them manually to assert the security tag correctness. We define as a positive
a pattern tagged unsafe and a safe pattern as negative. Table 3 contains all
the analysis results. Nine patterns over the 780 exceed the 30-second timeout,
with five being manually analyzed as unsafe and four as safe. Two patterns use
the only opcode that Chaussette does not support: op-roll, one being safe
and the other one unsafe. In total, eleven patterns and the 2,114 related scripts

Chaussette: A Symbolic Verification of Bitcoin Scripts 11

Table 3: Results of the Chaussette analysis over the 780 patterns.
Manual security tag TotalPositive Negative

Positive 176 3 179
Negative 2 588 590
Timeout 5 4 9Chaussette security tag

Not supported 1 1 2
Total 184 596 780

cannot be analyzed by Chaussette. Therefore, Chaussette is able to analyze
98.59% of the patterns discovered and 99.94% of the scripts that relate to these
patterns.

Over the 771 patterns Chaussette manages to analyze within 30 seconds,
we detected three false positives (FP) and two false negatives (FN) for 176 true
positives (TP) and 588 true negatives(TN). Considering only the patterns that
Chaussette is able to analyze within 30 seconds, the recall of Chaussette is
0.9888 and its precision is 0.9832.

The origin of false positives and false negatives can be traced back to our
model that does not always perfectly align with reality. In general, a false positive
arises when the model lacks certain constraints, leading it to be overly permissive
in its formulation of a solution.

To ease reproducibility and future improvement of the current state of the art,
Chaussette is publicly released upon paper acceptance.3 Additionally, access
to the analyzed scripts will be granted on demand to researchers.

4.2 Non-Standard Output Scripts

To perform this attack, the attacker needs to keep up-to-date a real-time
utxo (Unspent Transaction Outputs) set. In April 2023, it is composed of
roughly 88M outputs [25] which is manageable for any decent computer. For
every unspent output, Chaussette will return whether this script can be un-
locked and the values of the constants to include in the input script.

Note that Chaussette does not generate the input script by itself, but this
could be very easily implemented to fully automate the attack.

This attack can even be upgraded to a replay attack. Let us suppose an output
o requires finding a value y such that its sha256 hash is x and does not involve
any signature verification. As stated in the previous section, Chaussette is
designed to assume that preimage attacks are impossible. However, in the very
specific context of Btc, the legit owner must publish the input containing this
value y in a transaction t. This transaction t is broadcasted and is waiting in
the mempool to be included into the blockchain. One could sniff the mempool
very easily, as every full node maintains one. Moreover, most clients propose a

3 See https://gitlab.uliege.be/bitcoin/symbolic_execution

https://gitlab.uliege.be/bitcoin/symbolic_execution

12 Jacquot and Donnet

Table 4: Non-standard output scripts: security analysis results.
Script count Pattern count Total value locked

Vulnerable to symbolic execution 220,554 18 1.946 75 B
Vulnerable to replay attacks 62 11 2.349 736 B
Safe 203,485 39 3962.236 896 B
Unspendable 9,357 16 0.639 538 B

Table 5: Non-standard input scripts: security analysis results.
Script count Pattern count Total value locked

Vulnerable 153, 310 194 51.07 B
Safe 3,281,776 514 2.192923× 106 B

very convenient way to fetch this data [15]. Then, one would publish another
transaction t′ claiming the same output o′, but proposing a higher transaction
fee to incentive miners to include t′ rather than t into the blockchain.

The results in Table 4 summarize the attack’s severity. The 433,458 scripts
can be grouped into 84 distinct patterns. From the Sec. 4.1, it has been shown
that eighteen of them are unsafe, and the 1.947 B protected by the 220,554
scripts derived from them can be unlocked by anyone. On the other hand, the
upgraded version of the attack could have been used to steal 2.35 B from 62
scripts. In total, from the 10.63 vulnerable, 9.62 B have been spent, leaving
1.01 B vulnerable. Finally, 9,357 outputs have been proven to be impossible
to spend and result from either a malformed script or a script designed to be
unspendable [1]. This category also encompasses scripts whose execution was
invalidated because of reserved opcodes [19].

4.3 Non-Standard Redeem Scripts

This second attack involves sniffing the mempool as for the previous replay
attack in order to find inputs spending scripthash and witness_v0_script-
hash outputs. As a reminder from Sec. 2.2, these outputs include a value x and
the miners check that the hash of the redeem script equals to this x.

The attacker only needs to parse the mempool to find a transaction t spending
one scripthash or witness_v0_scripthash output. If the redeem script does
not involve any signature operators, the attacker can just publish a transaction t′

with the same input, a larger transaction fee, and a different output to steal the
money. Because miners tend to include transactions that maximize their profit,
t′ is more likely to be included than t [5, Chapter 2].

Table 5 contains the results of the analysis on the 3,435,086 non-standard
redeem scripts we found. 51.07 B have been spent with an input that could have
been attacked, i.e., the redeem script does not involve any signature. While, this
only represents an insignificant percentage (0.0023289%) of the total money that
has flown through these outputs, it still represents a decent incentive for hackers.

Chaussette: A Symbolic Verification of Bitcoin Scripts 13

There are exactly 16.4M unspent scripthash and witness_v0_script-
hash outputs, and they lock a total value of 5.46M B. This value is provided by
TRM Labs4, as it was faster to ask them rather than set up a UTXO set. This
represents the only third-party data we used in this paper. Thus, it represents
26% of the 21M B that will ever be mined [5, Chapter 1]. Unless they are
including an x value already encountered in the blockchain, the corresponding
redeem script is unknown. Thus, it is unfortunately impossible to know for every
one of them if they are safe or not.

But, the presence of 153,310 vulnerable scripts over the 641.9M spent
scripthash and witness_v0_scripthash outputs, gives a vulnerability ratio
of 0.000238838. Assuming the same ratio holds for the 16.4M unspent outputs,
we are able to provide an estimation of 1,304 B that might be stolen.

5 Attempts to secure Btc

This section starts with recommendations to secure the future published
scripts against the attacks we have just described (Sec. 5.1). Then, a discussion
on how to secure scripts that are already published is proposed (Sec. 5.2).

5.1 Recommendations

At first, companies and individuals should consider if they really need to use
non-standard scripts because innovation introduces new risks as demonstrated in
Sec. 4. In case the need is real, the use of tools such as Chaussette is necessary
to assert the security.

As a rule of thumb, script developers should ensure that every possible path
involves at least one signature operation. Moreover, they should keep in mind
that relying only on pre-image hashes is not sufficient to guarantee security.
Indeed, a transaction containing a secret is going to be made public before being
included in the blockchain.

5.2 Securing Published Scripts

Unfortunately, there is no perfect solution for the published scripts that are
currently vulnerable. However, this section explores a potential solution.

Let us consider the following context. Bob owns some B in a scripthash
output. To spend it, Bob needs to publish the redeem script in an input in
a transaction t and suppose this script is vulnerable as described in Sec. 4.
From that moment, this transaction t is broadcasted, but not yet included in
the blockchain as it is waiting for a miner to include it in a block. As far as
we know, there is no mechanism implemented to prevent an attacker (Alice)
performing a replay attack as described in Sec. 4.

Such a situation has already been discussed in 2013 by the Btc community
as they faced the same issue [45]. A few outputs (see 37k7toV1Nv4DfmQbmZ8K
4 https://www.trmlabs.com/

https://www.blockchain.com/explorer/addresses/btc/37k7toV1Nv4DfmQbmZ8KuZDQCYK9x5KpzP
https://www.blockchain.com/explorer/addresses/btc/37k7toV1Nv4DfmQbmZ8KuZDQCYK9x5KpzP
https://www.trmlabs.com/

14 Jacquot and Donnet

uZDQCYK9x5KpzP) were designed to be awarded to the first person finding a
collision for sha1. The redeem script did not involve any signatures, thus making
an attack possible.

By applying the same solution suggested in the thread, Bob would not broad-
cast t, but instead he would mine a block by itself and include t in it. The redeem
script would become public at the same time as the output will be spent. At-
tacking this vulnerable output would require rewriting Btc history which is
computationally impossible unless Alice owns 51% of the computation power [5,
Chapter 10].

Unfortunately, this solution is impractical nowadays as the amount of com-
puting resources to mine a block is greatly higher than in 2013 [24]. As an
alternative, Bob could reach out to a known B mining company [6] and provide
them with proof of ownership. The mining company would not broadcast t and
would include the transaction moving Bob’s fund to a secured address directly
in a block. The downside of this solution is that it relies on the ability to trust
the mining company. From the moment this company is in possession of t, they
could simply modify it to steal the money.

6 Related Work

Blockchain security has attracted the attention of the research community
those last years. Numerous tools, such as Mythril [29], Securify [48], Manti-
core [46], and Oyente [30] have been developed to analyze and report security
issues in Ethereum smart contracts. These tools also employ some symbolic anal-
ysis of the code.

To the best of our knowledge, no tool designed for Btc exists. A prototype
tool [34] has been developed, but it only covers a portion of Script language
and was tested on two real Btc scripts.

Bartoletti and Zunino [10] define a theory of liquidity and a verification
technique for contracts expressed in BitML, a high level DSL (Domain Specific
Language) for smart contracts that compile into Btc transactions.

Finally, Andrychowicz et al. [4] discuss a framework for modeling the Btc
contracts using timed automata. They provide two Btc contracts that are mod-
eled manually as an example. Unfortunately, no automation process has been
provided yet.

7 Conclusion

While Btc is considered safe by most people, this paper highlighted vulner-
abilities in non-standard scripts written in Script that could have led to the
theft of 55.36 B, 1.57M US dollars worth on April, 26th 2023 [23]. A compre-
hensive guide on Script and its role in securing B and the detailed attacks was
provided. Moreover, a proposal to secure the B that might still be vulnerable
has been given.

https://www.blockchain.com/explorer/addresses/btc/37k7toV1Nv4DfmQbmZ8KuZDQCYK9x5KpzP
https://www.blockchain.com/explorer/addresses/btc/37k7toV1Nv4DfmQbmZ8KuZDQCYK9x5KpzP

Chaussette: A Symbolic Verification of Bitcoin Scripts 15

The Btc blockchain was parsed up to block 775,000 and 3,868,544 non-
standard scripts have been found. These scripts can be grouped into 780 patterns.

Chaussette, our symbolic execution tool, is capable of analyzing 99.94% of
the Btc scripts within 30 seconds with a precision and a recall of respectively
0.9832 and 0.9888. Moreover, Chaussette highlights the presence of numerous
insecure patterns used to secure B.

Potential future works include, but are not limited to, the application of
Chaussette to assert other utxo blockchains’ security which are also using
Script [21,22] or the application of symbolic execution techniques to account-
based blockchains.

Ethical Considerations

The researches discussed in this paper have been conducted in accordance
to ethical considerations in blockchain network measurements [44]. Further, to
avoid any security issue, the vulnerable scripts are not released publicly. Finally,
Chaussette must be seen as a tool for also assessing vulnerability risks in using
non-standard scripts.

References

1. Andresen, G.: Bitcoin core release notes 0.9.0, https://github.com/bitcoin/
bitcoin/blob/master/doc/release-notes/release-notes-0.9.0.md, last Ac-
cessed: 20.04.2023

2. Andresen, G.: Pay to script hash. BIP 16, Bitcoin (January 2012)
3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party

computations via bitcoin deposits. In: Proc. Financial Cryptography and Data
Security (FC) (March 2014)

4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Modeling bit-
coin contracts by timed automata. In: Proc. Formal Modeling and Analysis of
Timed Systems (FORMATS) (September 2014)

5. Antonopoulos, A.: Mastering Bitcoin. O’Reilly Media, Inc. (2014)
6. Arrieche, A., Henn, P.: Who are the biggest bit-

coin mining companies?, https://capital.com/
biggest-global-crypto-bitcoin-mining-companies-ranking-btc#:~:
text=What%20are%20the%20famous%20bitcoin,according%20to%20data%
20from%20CompaniesMarketCap., last Accessed: 08.05.2023

7. Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., Zunino, R.: Sok: Unraveling bitcoin
smart contracts. In: Proc. Principles of Security and Trust (POST) (April 2018)

8. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: Proc. European Symposium on
Research in Computer Security (ESORICS) (September 2016)

9. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on bitcoin. In:
Proc. Financial Cryptography and Data Security (FC) (April 2017)

10. Bartoletti, M., Zunino, R.: Verifying liquidity of bitcoin contracts. In: Proc. Prin-
ciples of Security and Trust (POSRT) (April 2019)

https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.9.0.md
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.9.0.md
https://capital.com/biggest-global-crypto-bitcoin-mining-companies-ranking-btc#:~:text=What%20are%20the%20famous%20bitcoin,according%20to%20data%20from%20CompaniesMarketCap.
https://capital.com/biggest-global-crypto-bitcoin-mining-companies-ranking-btc#:~:text=What%20are%20the%20famous%20bitcoin,according%20to%20data%20from%20CompaniesMarketCap.
https://capital.com/biggest-global-crypto-bitcoin-mining-companies-ranking-btc#:~:text=What%20are%20the%20famous%20bitcoin,according%20to%20data%20from%20CompaniesMarketCap.
https://capital.com/biggest-global-crypto-bitcoin-mining-companies-ranking-btc#:~:text=What%20are%20the%20famous%20bitcoin,according%20to%20data%20from%20CompaniesMarketCap.

16 Jacquot and Donnet

11. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Proc.
Advances in Cryptology (CRYPTO) (August 2014)

12. Binance: Binance Coin Whitepaper, https://www.exodus.com/assets/docs/
binance-coin-whitepaper.pdf, last Accessed: 02.05.2023

13. Bistarelli, S., Mercanti, I., Santini, F.: An analysis of non-standard bitcoin trans-
actions. In: Proc. Crypto Valley Conference on Blockchain Technology (CVCBT)
(June 2018)

14. Bitcoin Community: Bitcoin improvement proposals, https://github.com/
bitcoin/bips, last Accessed: 30.03.2023

15. Bitcoin Community: getrawmempool - bitcoin, https://developer.bitcoin.org/
reference/rpc/getrawmempool.html, last Accessed: 01.06.2023

16. Bitcoin Community: Op checksig, https://en.bitcoin.it/wiki/OP_CHECKSIG,
last Accessed: 07.08.2023

17. Bitcoin Community: RPC API reference, https://developer.bitcoin.org/
reference/rpc/, last Accessed: 11.04.2023

18. Bitcoin Community: Running a full node, https://bitcoin.org/en/full-node,
last Accessed: 30.03.2023

19. Bitcoin Community: Script, https://en.bitcoin.it/wiki/Script, last Accessed:
30.03.2023

20. Bitcoin Core developers: Bitcoin Core - interpreter.cpp, https://github.com/
bitcoin/bitcoin/blob/80f4979322b574be29c684b2e106804432420ebf/src/
script/interpreter.cpp#L412, last Accessed: 28.04.2023

21. Bitcoin Core developers: Dogecoin - script.cpp, https://github.com/dogecoin/
dogecoin/blob/master/src/script/script.cpp, last Accessed: 02.05.2023

22. Bitcoin Core developers: Litecoin - script.cpp, https://github.com/
litecoin-project/litecoin/blob/master/src/script/script.cpp, last Ac-
cessed: 02.05.2023

23. blockchain.com: Bitcoin price, https://www.blockchain.com/explorer/assets/
btc, last Accessed: 26.04.2023

24. blockchain.com: Total hash rate (TH/s), https://www.blockchain.com/fr/
explorer/charts/hash-rate, last Accessed: 26.04.2023

25. blockchain.com: Unspent transaction outputs, https://www.blockchain.com/fr/
explorer/charts/utxo-count, last Accessed: 18.04.2023

26. Buterin, V.: Ethereum Whitepaper, https://ethereum.org/en/whitepaper/, last
Accessed: 02.05.2023

27. Chainalysis: 60 % of bitcoin is held long term as digital gold.
what about the rest?, https://blog.chainalysis.com/reports/
bitcoin-market-data-exchanges-trading/, last Accessed: 13.04.2023

28. CoinMarketCap: Coinmarketcap, https://coinmarketcap.com/fr/, last Ac-
cessed: 26.04.2023

29. ConsenSys: Mythril, https://github.com/ConsenSys/mythril, last Accessed:
12.04.2023

30. Enzyme Finance: Oyente, https://github.com/enzymefinance/oyente, last Ac-
cessed: 12.04.2023

31. Kalodner, H., Möser, M., Lee, K., Goldfeder, S., Plattner, M., Chator, A.,
Narayanan, A.: Blocksci, https://github.com/citp/BlockSci, last Accessed:
07.08.2023

32. Kalodner, H., Möser, M., Lee, K., Goldfeder, S., Plattner, M., Chator, A.,
Narayanan, A.: BlockSci: Design and applications of a blockchain analysis plat-
form. In: Proc. USENIX Security Symposium (August 2020)

https://www.exodus.com/assets/docs/binance-coin-whitepaper.pdf
https://www.exodus.com/assets/docs/binance-coin-whitepaper.pdf
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://developer.bitcoin.org/reference/rpc/getrawmempool.html
https://developer.bitcoin.org/reference/rpc/getrawmempool.html
https://en.bitcoin.it/wiki/OP_CHECKSIG
https://developer.bitcoin.org/reference/rpc/
https://developer.bitcoin.org/reference/rpc/
https://bitcoin.org/en/full-node
https://en.bitcoin.it/wiki/Script
https://github.com/bitcoin/bitcoin/blob/80f4979322b574be29c684b2e106804432420ebf/src/script/interpreter.cpp#L412
https://github.com/bitcoin/bitcoin/blob/80f4979322b574be29c684b2e106804432420ebf/src/script/interpreter.cpp#L412
https://github.com/bitcoin/bitcoin/blob/80f4979322b574be29c684b2e106804432420ebf/src/script/interpreter.cpp#L412
https://github.com/dogecoin/dogecoin/blob/master/src/script/script.cpp
https://github.com/dogecoin/dogecoin/blob/master/src/script/script.cpp
https://github.com/litecoin-project/litecoin/blob/master/src/script/script.cpp
https://github.com/litecoin-project/litecoin/blob/master/src/script/script.cpp
https://www.blockchain.com/explorer/assets/btc
https://www.blockchain.com/explorer/assets/btc
https://www.blockchain.com/fr/explorer/charts/hash-rate
https://www.blockchain.com/fr/explorer/charts/hash-rate
https://www.blockchain.com/fr/explorer/charts/utxo-count
https://www.blockchain.com/fr/explorer/charts/utxo-count
https://ethereum.org/en/whitepaper/
https://blog.chainalysis.com/reports/bitcoin-market-data-exchanges-trading/
https://blog.chainalysis.com/reports/bitcoin-market-data-exchanges-trading/
https://coinmarketcap.com/fr/
https://github.com/ConsenSys/mythril
https://github.com/enzymefinance/oyente
https://github.com/citp/BlockSci

Chaussette: A Symbolic Verification of Bitcoin Scripts 17

33. Kessler, S.: Axie infinity’s ronin blockchain overhauls tech,
expands to new game studios a year after $625m hack.
https://www.coindesk.com/tech/2023/03/30/axie-infinitys-ronin-blockchain-
overhauls-tech-expands-to-new-ip-on-anniversary-of-600m-hack/, last Accessed:
02.05.2023

34. Klomp, R., Bracciali, A.: On symbolic verification of bitcoin’s script language. In:
Proc. Data Privacy Management, Cryptocurrencies and Blockchain Technology
(DPM) (September 2018)

35. Korn, J.: Another crypto bridge attack: Nomad loses $190 million in chaotic hack,
https://edition.cnn.com/2022/08/03/tech/crypto-bridge-hack-nomad/
index.html, last Accessed: 02.05.2023

36. Li, Y., Liu, F., Wang, G.: New records in collision attacks on RIPEMD-160 and
SHA-256. In: Proc. International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT) (April 2023)

37. Lombrozo, E., Lau, J., Wuille, P.: Segregated witness (consensus layer). BIP 141,
Bitcoin (December 2015)

38. Maxwell, G.: The first successful zero-knowledge contin-
gent payment, https://bitcoincore.org/en/2016/02/26/
zero-knowledge-contingent-payments-announcement/, last Accessed:
12.04.2023

39. Miller, A.K., Bentov, I.: Zero-collateral lotteries in bitcoin and ethereum. Proc.
IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)
(April 2016)

40. Monniaux, D.: A survey of satisfiability modulo theory. In: Proc. Computer Algebra
in Scientific Computing (SASC) (September 2016)

41. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (March–April 2008)

42. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), http://www.
bitcoin.org/bitcoin.pdf

43. Perry, D., Mattavelli, A., Zhang, X., Cadar, C.: Accelerating array constraints in
symbolic execution. In: Proc. ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA) (July 2017)

44. Tang, Y., Li, K., Wang, Y., Chen, J.: Ethical challenges in blockchain network mea-
surement research. In: Proc. Workshop on Ethics in Computer Security (EthiCS)
(February 2023)

45. Todd, P.: Topic: REWARD offered for hash collisions for SHA1, SHA256,
RIPEMD160 and other, https://bitcointalk.org/index.php?topic=293382.0,
last Accessed: 26.04.2023

46. Trail of Bits: Manticore, https://github.com/trailofbits/manticore, last Ac-
cessed: 12.04.2023

47. TRM Labs: Looking back at 2022 and towards 2023 to see what the future holds
for digital assets policy. https://www.trmlabs.com/post/looking-back-at-2022-
and-towards-2023-to-see-what-the-future-holds-for-digital-assets-policy (December
2022), last Accessed: 26.04.2023

48. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev, M.:
Securify: Practical security analysis of smart contracts. In: Proc. ACM SIGSAC
Conference on Computer and Communications Security (CCS) (October 2018)

https://edition.cnn.com/2022/08/03/tech/crypto-bridge-hack-nomad/index.html
https://edition.cnn.com/2022/08/03/tech/crypto-bridge-hack-nomad/index.html
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://bitcointalk.org/index.php?topic=293382.0
https://github.com/trailofbits/manticore

	Chaussette: A Symbolic Verification of Bitcoin Scripts

