
GEOGRAPHY DOCTORAL SCHOOL
Faculty of Science

From consistency to flexibility:
shifting the structure
Towards a new generation of geographical
information systems

Gilles-Antoine Nys

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Science (PhD):
Geography

June 2023

Supervisor:
Prof. R. Billen - ULiège

From consistency to flexibility: shifting the structure

Towards a new generation of geographical information systems

Gilles-Antoine NYS

Examination committee:
Dr. J.-P. Kasprzyk - ULiège, chair
Prof. R. Billen - ULiège, supervisor
Prof. P. Hallot - ULiège
Prof. B. Kuijpers - UHasselt
Prof. H. Ledoux - TU Delft
Prof. C. Debruyne - ULiège

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Science
(PhD): Geography

June 2023

Acknowledgement

My first thoughts can only go to Prof. Roland Billen. For giving me not only
the management but also for the opportunity to prove myself and the number,
too great to count, of opportunities. The cover of this thesis bears my name
but is the result of the work of a duo.

Members of my Thesis Committee (Prof. P. Hallot and Prof. B. Kuijpers) for
their support and the influence they have had on my developments and findings.
I greatly benefited from their experience in writing this document.

Members of my Thesis Jury (Prof. H. Ledoux, Prof. C. Debruyne and Dr. J.-P.
Kasprzyk, as a chair) for taking the time to be interested in this work and their
participation during the examination.

All the members of the "Geomatics Unit" past and present, for the more than
beneficial atmosphere of the daily work.

Among them, the doctoral students, half of which have gone before me and
the other half will go after, for the questions and answers that we have stated
together.

Thanks that are more general will go to all people that I have met during my
years at the University of Liège and in various research projects. Each of them
have indirectly contributed to the experience that a thesis project represents.

Finally, Charlotte, nothing that needs to be said. This document is just
one step in the endless amount of things we will do together.

i

Abstract

Smart Cities, Enhanced 3D city models, Digital Twins, Small scale city models,
Urban Shadows, all combinations of these words, etc. are terms we hear
more and more. No matter what they are called, they can be summarised as
enhanced 3D city models. Behind these names are hidden concepts, algorithms
and systems that focus on opening information and providing smarter tools.
Implemented mechanisms should help people to reach an improved level of
support in decision-making (crosschecking of information, reasoning, machine
learning, etc.). The urban built environment, because of its social, political and
economic components, has so many specificities, that it is necessary to propose
dedicated management tools in addition to a purely geometric management of
the data. The above-mentioned terms translate the increasing need to provide
new solutions for an integrated data management in a digital replica of a city.

Three pillars are mandatory in order to achieve such an integrated basis:
(1) usability, (2) interoperability and (3) maintenance. Things should be
understandable in order to open the use by the greatest number and thus
provide the full potential of shared information. Some elements could still be
considered as advanced and provide additional information and complexity but
the base should be kept simple. The second imposes elements to communicate
in a standardized way: storages and exchanges should follow an unified schema
in order to ease communication between them. Thus, information conveys data
understandable by all, and everyone knows where to find the desired information
in the model. Constituting stacks should be documented so that the standard
can evolve or be modified but still operates in a manner that allows other
application to communicate. External connections should also be made in
a manner that encourages cross-compatibility. Finally, the third focuses on
providing tools that handle data during all its lifecycle and ease its management.
From its creation passing by modifications to its destruction, every single step
should be handled in order to alleviate problems due to complex processing
chains.

iii

iv ABSTRACT

This thesis proposes to renew the model storage from a rigid and consistent
tabular structure, which are relational databases, to a flattened solution
that should improve flexibility (i.e., a document-oriented NoSQL solution).
This ambitious goal is structured in the form of a "three-paper" thesis with
considerations that place them in the main objective. Chapters are thus divided
in three corresponding researches that concern respectively: the data/clients,
the database tier and the server tier. The first contribution proposes a simple
generation process for the creation of CityJSON buildings models. It develops
the benefit of providing a CityJSON model directly and its new supported
features (metadata, etc.). The second chapter discusses the creation of a
document-oriented schema that improves the city objects and features access
thanks to the flattening of the model. A web architecture is proposed enjoying
its flexibility. The last chapter focuses on providing a consistent way of writing
and reading information using the above-mentioned schema. 3D city models
are afterwards seen as a unique integration basis for information coming from
heterogeneous sources. Interactions with this single data storage are locked
through the provision of a middleware, a software that lies between applications
and rules their exchanges.

All of these contributions are packed and staged in a coherent whole that answers
a crucial question: Could a flexible web architecture gather the consistency and
interoperability aspect of the CityGML data model with better flexibility to
cope with a high demand for sharing by applications from different domains?

Finally, the conclusion gives an overview on the results of the thesis. Since this
thesis should be seen as a part of whole that goes toward a new generation
of geographic information systems, research extensions are proposed in order
to make steps towards the accessibility of a digital replica of cities. These
propositions are made based on current knowledge and technologies; they are
part of the present time and cannot assume what will happen next.

Résumé

Smart Cities, Digital Twins, Town Maquettes, Urban Shadows, toutes les
combinaisons de ces mots, etc. Peu importe comment nous les appelons,
derrière ses termes se cachent en réalité des modèles 3D améliorés de villes.
Y sont dissimulés des concepts, algorithmes et systèmes qui se focalisent sur
l’ouverture de l’information et la provision d’outils intelligents. Les nouveaux
mécanismes implémentés devraient aider les gens à atteindre un niveau d’aide à
la décision amélioré (croisement d’information, raisonnement, machine learning,
etc.). L’environnement bâti urbain, de par ses aspects sociaux, politiques et
économiques, a tellement de spécificités qu’il est nécessaire de proposer des outils
de gestion dédiés en plus de la gestion purement géométrique de l’information.
Les termes susmentionnés traduisent le besoin croissant de proposer de nouvelles
solutions pour une gestion intégrée de la donnée dans une réplique numérique
de la ville.

Trois piliers sont nécessaires pour atteindre une telle base d’intégration: facilité
d’utilisation, interopérabilité et maintenance. Le premier point concerne la
facilité d’utilisation par le plus grand nombre qu’ils aient des connaissances ou
de l’expérience. Les choses doivent être compréhensibles de sorte à répandre
l’utilisation et de fournir ainsi tout le potentiel des informations partagées.
Certains éléments peuvent tout de même être considéré comme « avancé » et
fournir de l’information supplémentaire et de la complexité mais la base se doit
de rester simple. Le second point impose les éléments à communiquer d’une
façon standardisée. Les stacks constitutives doivent interopérer de manière
documentée. Les connections externes aussi doivent être faites de façon à
promouvoir l’inter-compatibilité. Enfin, le troisième point s’attache à fournir
des outils qui permettent de manipuler la donnée durant tout son cycle de vie
et d’en faciliter la gestion. Depuis sa création en passant par ses modifications
jusqu’à sa destruction, chaque étape devrait être gérée de façon à réduite les
problèmes dus à de trop complexes chaines de traitement.

Cette thèse décompose une architecture web trois-tiers dans le but d’illustrer le

v

vi RÉSUMÉ

changement de vision pour le stockage des modèles urbains à trois dimensions.
Ce changement renouvelle le mode d’enregistrement en passant d’une structure
tabulaire rigide et consistante, que sont les bases de données relationnelles, vers
une solution aplanie qui devrait améliorer la flexibilité (c.à.d. une solution
NoSQL orientée document). Cet ambitieux objectif est structuré sous forme
d’une thèse « sur articles » agrémentés de considérations qui les replacent dans
le cadre de l’objectif principal. Les différents chapitres sont divisés de façon
à correspondre aux recherches qui concernent respectivement: la donnée et
les clients, la base de donnée et le server. La première contribution propose
un processus allégé de génération pour la création des modèles CityJSON des
bâtiments. Il développe les avantages d’une production directe de modèle
CityJSON et le support de nouvelles fonctionnalités comme les métadonnées.
Le second chapitre discute de la création du schéma de base de données
orientée-document qui améliore l’accès au modèle urbain et à ses entités grâce
à l’aplatissement du modèle. Une architecture web complète est proposée pour
profiter de ce gain de flexibilité. Le dernier chapitre s’occupe de fournir une
méthode consistante d’écriture et de lecture de l’information en utilisant le
schéma susmentionné. Les modèles urbains à trois dimensions peuvent dès
lors être considérés comme une base d’intégration unique pour l’information
venant de sources variées. Les interactions avec cet enregistrement unique de la
donnée sont cadenassées grâce à un middleware, un logiciel qui se place entre
les applications et régit les échanges entre eux.

Toutes ces contributions sont empaquetées et mises en musique dans un tout
cohérent qui répond à la question cruciale : Est-ce qu’une architecture web peut
rassembler les aspect de consistance et d’interopérabilité du modèle de données
CityGML avec une meilleure flexibilité de façon à faire face à une demande
toujours plus importante en termes d’échange entre les applications dans des
domaines variés?

Enfin, les conclusions donnent une synthèse des résultats de la thèse. Etant
donné que la thèse doit être vue comme une partie d’un tout qui va vers une
nouvelle génération de systèmes d’information géographique, des prolongements
de recherche sont proposés de sorte à faire un pas de plus vers l’utopique «
Digital Twin ». Ces propositions sont faites sur base de l’état actuel de nos
connaissances et technologies ; ils font partie du temps présent et ne peuvent
pas présumer de ce qui se passera ensuite.

Contents

Abstract iii

Résumé v

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Preamble . 1
1.2 Context . 4
1.3 Research questions . 7
1.4 Thesis outline . 8

2 Model generation 11
2.1 Introduction . 16
2.2 Related Works . 17

2.2.1 Building generation methods 17
2.2.2 CityGML and CityJSON 18

2.3 Methodology . 20
2.3.1 Introductory comments 20
2.3.2 Point-cloud segmentation 22
2.3.3 Step-by-step geometric modelling 24
2.3.4 CityJSON model building 31

2.4 Discussion . 33
2.4.1 CityJSON improvements 33
2.4.2 Format compliance . 35
2.4.3 Quality control . 36

2.5 Conclusion . 40

vii

viii CONTENTS

3 Database schema 43
3.1 Introduction . 48
3.2 Related work . 49
3.3 Solution description . 52

3.3.1 Schema model . 52
3.4 WebGIS architecture . 56
3.5 Discussion on paradigm shift 59

3.5.1 Structured and unstructured data 60
3.5.2 Stacks communication 62
3.5.3 No joins . 64
3.5.4 Comparison reference with relational solution 65

3.6 Usage scenarios . 67
3.6.1 Urban green infrastructure 67
3.6.2 Energy performance of buildings 69

3.7 Conclusion . 70

4 Consistency guarantee 75
4.1 Introduction . 80
4.2 Related works . 82

4.2.1 Exchanges and standardization 82
4.2.2 Role of the database . 86

4.3 Schemaless database . 88
4.3.1 NoSQL models . 89
4.3.2 Architecture specifications 91
4.3.3 OGC API - Features . 99

4.4 Conclusion . 101

5 Travelogue: usage history 105
5.1 Building the database . 106
5.2 Installation and accessibility . 111

6 Conclusion 117
6.1 Research questions . 118
6.2 Research extensions . 121

Bibliography 123

Curriculum 141

List of publications 143

List of Figures

1.1 Conceptual models . 2
1.2 Articulation of chapters . 9

2.1 General workflow . 21
2.2 ALS noise in roofs . 23
2.3 Parts generation . 24
2.4 Exploded reconstruction geometry 25
2.5 Adjacent segments relationships 26
2.6 Roof skeleton . 28
2.7 Non-intersecting polygon construction 29
2.8 Geometry error (example) . 30
2.9 Levels of details representation 31
2.10 Views comparison . 32
2.11 From point clouds to building models 34
2.12 Translation from CityGML to CityJSON 35
2.13 Proportions of buildings reconstruction 38
2.14 Number of planes per RMSE class 39
2.15 UGI detection process . 42

3.1 Schema flattening . 45
3.2 Schemas inheritance . 54
3.3 Documents structure . 55
3.4 MERN architecture . 57
3.5 Client view of the application 58
3.6 Client-side reconstruction . 63
3.7 Server-side reconstruction . 63
3.8 Summary of new capabilities 66
3.9 UGI module . 68
3.10 EPB module . 70
3.11 Point cloud CityJSON model 73

ix

x LIST OF FIGURES

4.1 Shared architecture . 93
4.2 Tree architecture . 94
4.3 Example of the bi-directional filter 97
4.4 OGC API - Features service . 99

5.1 Illustration of the model generated in Liège, Belgium. 107
5.2 Treemap-like of the needed storage size for PostgreSQL and

MongoDB nodes. 110
5.3 Logo of the Measur3D application on GitHub. 111
5.4 Extract of the Swagger API routes for Measur3D on GitHub. . 112
5.5 Extract of the Swagger documentation for Measur3D on GitHub. 112
5.6 Specialization of an object in JSON-schema and middleware . . 113

6.1 Generations comparisons . 118

List of Tables

2.1 Summarized comparison of results. 38

3.1 Response time for the Buildings queries – repetition x objects
(in milliseconds) . 66

3.2 Response time for the Buildings queries – repetition x objects
(in milliseconds) . 68

5.1 Average database size for various schema and database structure 109

xi

Chapter 1

Introduction

1.1 Preamble

Any good story begins with the presentation of the context, its actors and must
give the reader the main keys to reading. The purpose of this chapter is not
to present an exhaustive state of the art on which the remainder of this thesis
will be built on. It is rather a contextualisation for the reader who does not
have any prior experience or knowledge in 3D city modelling and its standards.
Without going deep into details, it sets out generic principles and best practices
giving the reader insights into what follows. The tone is deliberately more direct
and lighter what will be changed for the rest of the document, and this from
the introduction.

City modelling is the set of processes, models and data that allow representing a
city, its features and the potential relationships between them. Representing and
proposing a digital replica of the urban built environment is nothing new: for a
decade, a large American company with a strong presence in terms of mapping
on the web provides 3D city model as a collection of detailed and textured
triangle networks. Such models allow people to navigate into them and offer the
possibility to travel in photos tunnels to find their bearings: their home, their
favourite bakery, etc. In other terms, such photo-realistic rendering provides
citizens with a pleasant but limited contextualization from the perspective of
operators and stakeholders.

Regarding most analyses, simulations and modifications, such a monolithic
composition of triangles is useless. It is not possible to manage the elements
independently: a house can neither be extracted by itself nor have discrete

1

2 INTRODUCTION

information included in it. By way of example, one can easily imagine the
usefulness of recording the living areas of houses, for the assessment of a property
tax for example, the maximum speeds of road sections, the species of trees, etc.
This hulking copy of real-world assets strongly limits the possibilities offered
by its use in advanced processes. Figure 1.1 depicts the two alternatives: a
huge network of triangles that could be easily created using state-of-the-art
photogrammetry processes and a discrete management of city features that
allows storing information on each of them but comes with several added
challenges.

Figure 1.1: Discrete information management

Discrete management of the city elements should provide opportunities in many
domains and applications given that users have a finer management of objects
and their information. One can, for example, find all the buildings which
have a gable roof, etc. This knowledge can take the form of a geometry (the
physical representation of an entity) and/or a set of attributes (a characteristic
or inherent part of an entity).

Going a little further, these data, and mainly for the geometric part but not only,
concern spatial information on which it could be interesting to build a reflection.
For instance, in such a management regarding spatial queries, some might be
interested in having all the houses that will be affected by a new nightclub
and its noise pollution, the area of fields that should be expropriated if a road
crosses two municipalities, etc. Such examples are limited to two-dimensional
questions but if the data allows it, each response could provide information
about height or elevation: in the event of a flood, where are the building that
will be flooded? Giving that a skyscraper will be built, will not the urban
canyon be too uncomfortable for the city people?

All this seems interesting and the added value of such control is indisputable.
Still, it comes with benefits and drawbacks. By way of technical explanation,
questions on creating these independent elements, to store them in a persistent

PREAMBLE 3

manner and to access them and their related information separately arise. In
other words, there is now a need for tools to take advantage of such individual
and specific administration throughout the entity life cycle.

Thereby, such specific and public utility questions on floods, building projects,
etc. require virtual replicas and an integrated approach that involves many
actors and data sources. The start of a blank page will lead to creating as many
models and querying as many solutions as applications: a standard, something
set up by authority or by general consent as a rule or as a model, should be
assessed. And of course, compromises must be made in this sense. This is the
purpose behind the creation of the CityGML data model (Gröger and Plümer
2012; Kutzner et al. 2020).

Quoting the Open Geospatial Consortium (OGC) website in charge of providing
spatial standards directly:

[. . .] The CityGML 3.0 Conceptual Model Standard describes a common
semantic information model for the representation of 3D urban objects. The
primary function of the model is to define the human interpretation of modelled
data objects as well as their geometric representation and relationships. [. . .]

In other words, this common base provides definitions of abstract city objects
and their potential relations and associations: what is a building exactly? How
do we define a road and its characteristics? Is it possible for a tree to have
an address? All these answers can be found in the CityGML data model. For
instance, an important notion related to CityGML are the levels-of-detail. These
levels define the degree of representation, the amount of elements that will be
represented, generalized, etc. In short, the first level is limited to the building
footprint. The second extrudes this footprint from an arbitrary height. Then,
the roof shapes are represented and finally the openings (doors, windows, etc.).

This data model is a set of conceptual specifications that remain abstract and
not exploitable in this form by "computer processes". Keeping this as is is not
workable beside a support for discussion between designers: it is necessary to
translate this model into something more machine-friendly. Thus, several uses
are made of the OGC urban modelling standard. Two encoding formats and
a database logic schema have been developed for exchanging and making this
information available:

• CityGML: GML encoding of the CityGML data model (they have the
same name). This encoding has been developed at the same time as the
data model. It is the most direct use of the data model. However, as the
reader will understand throughout this document, it ages badly.

• 3DCityDB: a geo-relational database to store, represent, and manage

4 INTRODUCTION

virtual 3D city models. More than a single database schema, a whole
platform for the management of CityGML models is proposed. It is
closely linked to the XML-encoding and suffers of the same drawbacks
while enjoying its benefits (Yao et al. 2018).

• CityJSON: The newcomer: a lightweight alternative to the XML-
encoding which focuses on providing easy-to-use tools and provides a
solution to spread the use of the model. In short, it is a JSON-encoding
of the CityGML data model, or at least a large part of it. It eases
development of applications and provide web-oriented solutions. The web
evolves, it was with this in mind that it was created (Ledoux, K. A. Ohori,
et al. 2019).

These different uses of the CityGML data model will be referenced and discussed
more in details through the chapters of this document. However, it is good to
highlight here the work of the 3D Geoinformation Research Group at the Delft
University of Technology in the Netherlands, especially for CityJSON. Their
work and the resulting tools have marked each step of this thesis. I will mention
in particular: CJIO, a Python Command Line Interface (CLI) to process and
manipulate CityJSON files, CJVAL, a validator for CityJSON files, and their
FME extension for the support of CityJSON.

Many questions have certainly arisen on reading this preamble. The reader
will find partial answers linked to CityJSON, to modelling principles and this
mainly with a view to presenting a new database storage method (see Chapter
3). It is not possible to cover all these subjects. However, asking questions
would at least have the merit of having properly contextualized the subject and
aroused interest.

1.2 Context

The digital transformation and related new technologies increase the use of
3D models of the built environment. In addition to an approach that would
emphasize the establishment of modes of governance, new opportunities open
possibilities for the usage of these models as capabilities are created. The
multiplicity of actors, research applications and uses cases leads to various
models to face built environment modelling challenges. Indeed, the absence of
a generic framework for the creation and management of these models prevents
it to move towards a utopian, shared, interoperable and global modelling.
One trend, however, has attempted to put a name on the process that would
make a city smarter without providing a consistent definition or standardized

CONTEXT 5

requirements: a Smart City. It should be noted, however, that these terms,as well
as variants as "Smart Region" or "Smart Territory", serve more as a sociological
or governance definition than as a real technical solution. The difference is
slight for the uninformed reader but still essential.

Smart cities were the trending topic of the past decade. The idea of having a
so-called smarter municipality has appealed to many actors and stakeholders.
Many trades, such as modellers, policy-makers, etc. have brought their insight in
the development of what these cities should look like. It was first describing the
idea that a city could be enhanced by a myriad of sensors producing consequent
amount of information. The Internet of Things, a system of interrelated
measuring devices, was to embrace the city and allow all aspects of it to be
measured. Still, differences in the language used and the advertising were
observed. In the end, since everyone works in isolation, each research or
development project could bring its own model.

Over time, a shift has taken place in the very expression of the definition
of what Smart Cities are. The definition has finally nothing to do with any
technical aspect. Indeed, while geomaticians, or at least those who come close,
were interested in modeling, generating, storing, etc. city features and their
relationships, a policy-making approach has taken over. In addition, de facto, it
is now in a more "governmental" approach. The illustration of this fact is simple
and direct looking at the European Commission of what a “Smart City”1 is:

A Smart City is a place where traditional networks and services
are made more efficient with the use of digital solutions for the

benefit of its inhabitants and business.

This definition is not a technical definition. And it has not be intended to
be one. Nevertheless, in the scope of this thesis, we will take a look at it by
considering it as such: it demonstrates that "digital solutions" are good umbrella
terms. The common good is obviously at the heart of the definition: responsive
city administration, safer public spaces, needs of an ageing population, etc.
It does not refer to any financial aspect but a managerial and administrative
aspect. Performance improvements are also part of the trend, but these points
are classic in all technological advances and are obviously not related to the
notion of computer performance as computer scientists are used to it. However,
two points should be noted in the scope of any scientific progress: the use
of digital solutions and the shift from traditional solutions to new structures
and technologies. For instance, the management of a cadastral repository in a

1https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-
development/city-initiatives/smart-cities

6 INTRODUCTION

spreadsheet, using proprietary or open source solutions, is a digital solution as
well as taking pictures of a street with a smartphone. It lacks, in our opinion,
of a more reinforced technical point of view. On the other hand, the structure
shift from traditional solutions to more efficient capabilities is large also. What
is efficient? Is it related to performances, capabilities, features, etc.?

Nowadays, "Digital Twins" bring a more technical definition of what a digital
model should be and some starting insight on its requirements. Putting aside
Digital Twins that are not related to the urban environment and since there is
currently no shared definition, this approach can be defined in a first step as:

A City Digital Twin is a virtual representation of a city and
its assets that spans their life cycle, is updated and uses simulation,

machine learning and reasoning to help decision-making.

Just like the definition of Smart Cities given above, the statement of this
definition is nothing more than a support of discussion that emerges from our
participation in different projects related to modelling cities and improving these
models capabilities. Particular attention has been paid workshops organized by
the EuroSDR in early 2022 (Ellul et al. 2022). These meetings gather national
agencies, research centres, universities, etc. around the idea to work all together
on a shared framework for the development of geospatial solutions: business
models, modelling, information usage, education, etc. A common will aims at
proposing a definition that makes consensus on Digital Twins. Nevertheless,
this remains without result after a year of discussions. This kind of issue takes
time and it is imperative to take this time in order not to repeat the mistakes
made in Smart Cities. Moreover, this interpretation has not been validated or
discussed in a research at the time of writing. It is therefore still in the thinking
stage. A trend is emerging and this thesis attempts to provide a vision in line
with it.

Back to the definition, avoiding complex technical aspects, three points should
be noted:

• Sustainability of the representation: modelling the urban environment
should address current needs, from its creation to its deletion and all
events that may occur in between.

• Follow-up of updates: the core model should be modular in order to
address future needs, allow new applications, improvements, manage new
users, etc.

• Enriched with all kind of data and algorithms: people must be able to
appropriate the model, modify it, improve it, etc. Moreover, break it into

RESEARCH QUESTIONS 7

its constituting parts in order to propose new elements. External bindings
and features enhance the model and add value to the decision making.
This must however be made keeping in mind backwards compatibility as
we will see later.

The integrating basis of all these considerations should be a Spatial Data
Infrastructure (SDI) or a Geographical Information System (GIS) no matter
what it is called. As stated by Stoter (Stoter et al. 2020), the upcoming
challenges for offering a wide and open use of 3D city models are their usability,
interoperability and maintenance. Such an architecture, web-oriented in this
case, must be based on a conceptual data model that allows for openness but
also ensures that the exchanges between the different components are consistent.
The purpose of a shared database and its ease of use are undoubtedly linked
to its intrinsic structure. It would not be logical to propose an ultra-complex
structure and think that most people will want to use it. Several intricate use
cases are necessary but the vast majority of users can be satisfied with a relative
use.

Naturally, in the scope of the urban built environment, the choice fell on
CityGML. CityGML is an unavoidable standard in the scope of 3D city modelling.
It allows modelling city objects, their relationships and allows the addition of
features. Several ports of this data model are already in use.

1.3 Research questions

Among all the modelling perspectives, this data model and its associated
relational database model guarantee the consistency and interoperability of
built environment models. However, CityGML is not flexible due to its rigid
tabular storage and XML encoding. The aspect of data maintenance that is
exhausted by Digital Twin application is not encountered well by CityGML.
In a process focused on providing developer-friendly and lightweight solutions,
CityJSON offers an easy-to-use alternative to the GML encoding of CityGML
for the storage and exchange of 3D city models. This OGC community standard
is the starting point of this thesis.

In the continuity of this process that promotes the JSON encoding, the shift
from rigid structure and the openness of models, all of these considerations led
to the definition of a specific research question that structures this thesis:

Could a flexible web architecture gather the consistency
and interoperability aspect of the CityGML data model

8 INTRODUCTION

with better flexibility to cope with a high demand for
sharing by applications from different domains?

This research question, as it represents an ambitious question, has been divided
in multiple questions on specific web-architecture tiers (respectively the client,
the database and the server):

1. By focusing on the geometric generation process, is it not possible to
improve the accessibility, open the use and refine the design avoiding
excessive model complexity? What are the clients’ advantages of generated
CityJSON models for sharing?

2. Does moving from relational databases and their rigidity to document-
oriented NoSQL databases and their flexibility open up data for
modification and sharing? Is the consistency of the data at risk?

3. How to guarantee the consistency of the architecture when the database is
now flexible? What happens if many users access the data from an access
control point of view (versioning, hierarchy, security, etc.)?

This thesis postulates that NoSQL document-oriented and web-related
technologies can lead to a structure shift in the data life cycle management
and its flexibility. The resulting architecture should reconcile the flexibility,
interoperability and consistency of built environment 3D models management.
It therefore proposes answers to these research questions in three separate
chapters: model generation, database schema and consistency guarantee (see
Figure 1.2).

Given that these three chapters are very different in their subjects and
thus also in their writing, the research methodology is presented in each of
them independently. If, however, it should be necessary to define a general
methodology, it would be an "experimental methodology": starting with a
research question, we made hypothesis (for instance, a reviewed objects structure
should improve the model accessibility and ease its use). We then developed
a solution that emphasise this hypothesis and confront it to other well-known
solution in order to state on their respective benefits and drawbacks.

1.4 Thesis outline

These chapters are based on three articles that were reviewed in international
journals throughout the doctoral research project. Since we have had the

THESIS OUTLINE 9

Figure 1.2: Articulation of architecture tiers associated to the thesis chapters

opportunity to modify them within the scope of this document, we propose
a brief review of them in order to facilitate their understanding. They are
therefore not exactly the same as those published. Before these published
contributions, specific preambles introduce each chapter in order to refine the
context of the writing. Subsequent works based on main articles (other papers
and developments as conference papers and related projects in which we were
involved) are also described after each chapter as they strengthen the whole
process and illustrate the new capabilities of the structure shift.

The Chapter 2 develops the methodology that has been implemented to
generate lightweight and consistent CityJSON building models from point
clouds. The answer proposed through this research highlighted the accessibility
and sharing capabilities of a simple but efficient process avoiding common
mistakes made in 3D city modelling such as levels of detail that are not very
expressive or even undefined geometric validation thresholds. It shows new
advantages for the sharing of models thanks to metadata and shared information.

10 INTRODUCTION

The Chapter 3 describes a simplified schema for CityJSON that allows storing
3D city models in a document-oriented NoSQL database. Drawbacks and
benefits regarding differences with relational solutions are evaluated. All the
hypothesis and concerns made around the schema development are discussed
and illustrated thanks to two practical applications. In support of all these
points, a web three-tier architecture is created and documented.

The Chapter 4 focuses on the development of a middleware, a software that
lies between applications, to guarantee the consistency of a city digital model
management and its integrity. It illustrates new capabilities offered by the
coupling of the above-mentioned NoSQL database with CityJSON clients and
applications. Its use is justified due to the needs of various levels of accessibility,
versions, etc. The common thread is the emphasis on flexibility by shifting
the guarantee of consistency to another element of the architecture than the
database (i.e., the consistency is no more guaranteed by the database so it
was mandatory to report it on another stack). Besides this limitless querying
method, a more standardized one is provided to enable interoperability and
allow reaching information: OGC API - Features.

The Chapter 5 summarizes the previous three and provides illustrative
examples of what can be achieved through the structure shift and the supplied
tools. A quick benchmark is also proposed since it has one of the major
advantages of this contribution: ease of access and development. Several
example of queries in both solutions (relational and the current) are proposed.
It highlights the benefits of the contribution without neglecting its drawbacks.

After these three main chapters, which represent the bulk of the contribution,
the Chapter 6 closes on the logical articulation of the three previous chapters.
The connection made between the previous chapters highlights the shift from
consistency to flexibility and try to propose an alternative to what already exist.
This section reviews the answers to the questions stated in the introduction or
at least ways to think about it. It places this research in the current context,
several years after the one presented in the introduction.

Finally, insights into the remaining challenges conclude this thesis. This last
section is a loose closure as the research is still ongoing and will never end. This
thesis is intended to be a punctual element in a coherent evolving trend but
does not represent an end in itself.

Important note: from now on, all words in italics are elements of the CityGML
data model. We will not redefine these terms and refer the reader to the
definition of the terms in the data model.

Chapter 2

Model generation

2.1 Introduction . 16

2.2 Related Works . 17

2.2.1 Building generation methods 17

2.2.2 CityGML and CityJSON 18

2.3 Methodology . 20

2.3.1 Introductory comments 20

2.3.2 Point-cloud segmentation 22

2.3.3 Step-by-step geometric modelling 24

2.3.4 CityJSON model building 31

2.4 Discussion . 33

2.4.1 CityJSON improvements 33

2.4.2 Format compliance . 35

2.4.3 Quality control . 36

2.5 Conclusion . 40

11

Preface

This preamble puts the writing of the second chapter (i.e., the first published
paper) in its context in mid-2019. The basic idea at the start of the thesis
project was to state on modelling cities in three dimensions, the standards and
their related storage modes. Within the framework of a parallel project, our
mission was to make a relevant state of the art in standards related to sensor
data management.

The main objective is to integrate dynamic data (i.e., data that are updated
frequently such as sensor data) in a more static urban model, which update
frequency is much slower. The conclusions are straightforward: the new Open
Geospatial Consortium (OGC) standards focus on a shift from the traditional
XML-encoding to JSON-encoding. It encompasses its lightness, its easier way
to parse and its developer-friendly usage. For instance, the Internet of Things
standards shifted from the Sensor Observation Service (Na and Priest 2007),
which was verbose and not easy to handle, to the smarter SensorThings API
(Liang, C.-Y. Huang, et al. 2016; Liang and Khalafbeigi 2019). The new
Application Programming Interface (API) puts forward its flexibility and its
readability simplifying the conceptual model but also supporting alternate
encoding formats. It demonstrates that the change started towards easier
exchanges and mutualisation of services on the web. Indeed, JSON is a great
exchange format and it felt that it would influence many further developments
in various domains.

At the same time, in the 3D City Modelling scope, CityJSON has just been
made open and its definition article has been published by Prof. Ledoux and its
team (Ledoux, K. A. Ohori, et al. 2019). It renews the CityGML model usage
making a step forward in this dynamic focused on compact and open-source
standards. Not all city elements and CityGML features are yet supported
(several coordinates systems in the same dataset, raster files, etc.). However,
it supports new capabilities such as adding information such as metadata and
refined levels of detail.

Regarding the availibility of CityJSON models at that time, the official site
provided examples of modelled neighbourhoods for big cities (Rotterdam, Vienna,
New York, etc.). In these model extracts, Buildings are available with more or
less details at least. The dummy railway example from CityGML is also on
hand.

A negative point was worth pointing at the time: the available CityJSON models
are translated from original CityGML models conceding a part of information
loss. This point is not really damaging, but in fact, in our opinion, it missed part
of the advantages of CityJSON. A single relevant source talked about generating

MODEL GENERATION 13

CityJSON models that were not translated from CityGML models but created
from “raw” data (Kumar, Ledoux, et al. 2018). It relies on a well-known process
called 3dfier (Ledoux, Biljecki, et al. 2021). This process extrudes polygons
thanks to approximated heights from an airborne LiDAR point cloud (Light
Detection and Ranging). After determining elements heights, it interpolates
vertical planes thanks to predefined rules on object classes. It is still a very
powerful rule-based tool that allows creating many features (not only Buildings
but also nearly all city features). However, no other model generation process or
even a process by which the roof shapes were obtained was yet available. Roofs
were flat surfaces, with more or less details that correspond to LoD 1.x: a single
plan or several parallel plans for the same building. Moreover, semantic surfaces
were not always accessible which could be easily solved in a clever process.

As the list of our publications shows (see List of publications), point clouds
offer new possibilities and a much higher level of detail than was possible at the
time thanks to an upstream segmentation. We thus decided to capitalise on
this foundation and study these capabilities in order to generate roof-shaped
CityJSON buildings models. It has been done with varying degrees of success
using smart point clouds and connected-components segmentation.

Based on article (Nys, F. Poux, et al. 2020)

CityJSON buildings generation from air-
borne LiDAR 3D point clouds
Nys, G.-A., Poux, F., & Billen, R. (2020). ISPRS International Journal of
Geo-Information, 9(9), 521.

Abstract: The relevant insights provided by 3D city models greatly improve
Smart Cities and their management policies. In the urban built environment,
buildings frequently represent the most studied and modelled features.
CityJSON format proposes a lightweight and developer-friendly alternative
to CityGML. This chapter proposes an improvement to the usability of 3D
models providing an automatic generation method in CityJSON, in order
to ensure compactness, expressivity, and interoperability. In addition to a
compliance rate in excess of 92% for geometry and topology, the generated
model allows the handling of contextual information, such as metadata and
refined levels-of-details, in a built-in manner. By breaking down the building
generation process, it creates consistent building objects from the unique source
of LiDAR point clouds.

Keywords: LiDAR; 3D City Models; CityJSON; Smart Cities; Point Cloud;
Segmentation; 3D Modeling.

16 MODEL GENERATION

2.1 Introduction

The relevant insights gained from the use of digital models makes it possible to
manage cities in a smarter way. Due to the significant dynamism of Smart Cities,
considering many factors is essential for environmental diagnostics, urbanism,
etc. Amongst these factors, the 3D representation of the urban fabric has a
particular role to play; it serves as an integration layer for the other factors and
related data (R. Billen, Cutting-Decelle, et al. 2014). In that context, standard
models, such as CityGML, have emerged with a wide variety of linked 3D City
object classes and features (Gröger and Plümer 2012). The usability of a 3D
city model depends on its quality, on the reliability of its 3D city objects (e.g.
semantic, geometrical, topological, and temporal accuracies), on its availability,
and on its degree of versatility: compactness, expressivity, and interoperability.

Generating city models from geospatial data in CityGML is a standard procedure
(Wang et al. 2018). However, as it is currently used, CityGML has several
limitations concerning level-of-detail definitions (Biljecki, Ledoux, and Stoter
2016), a lack of standardized and normalized comparison tools (Biljecki, Ledoux,
Du, et al. 2016), and contextual documentation (i.e., metadata) (Labetski et al.
2018).

This chapter is intended to address the automatic generation of compact and
consistent 3D city models using LiDAR point clouds and CityJSON (Ledoux,
K. A. Ohori, et al. 2019), a lightweight alternative to CityGML. The advantages
of using CityJSON have already been demonstrated. Despite this, it is currently
rarely used in practice; one of the reasons for this is the lack of publicly available
CityJSON models (https://www.cityjson.org/datasets/), which is a consequence
of limited CityJSON generation methods. In this research, we propose a new
CityJSON generation method, which relies on state-of-the-art building creation
components from LiDAR data (Tarsha Kurdi and Awrangjeb 2020; Wang et al.
2018).

In addition to the benefit of the compactness involved in using CityJSON,
CityJSON’s direct generation method enables native handling of metadata and
refined levels-of-detail. These two points should improve the usability of 3D
city models and offer the possibility to create them in a consistent and direct
manner. This article is structured as follows. First, we present CityGML and
CityJSON data formats, as well as the main building generation methods from
LiDAR data (Section 2.2). Then, we outline every step of our methodology for
producing CityJSON buildings from 3D point clouds (Section 2.3); namely, PC
segmentation, step-by-step geometric modeling, and CityJSON model formation.
In Section 2.4, we discuss the advantages of directly generated CityJSON models
and assess the quality of the results, using several normalized and formal tools.

RELATED WORKS 17

Finally, we outline our conclusions in Section 2.5.

2.2 Related Works

2.2.1 Building generation methods

Among 3D City objects, buildings are the backbone of many Smart Cities
applications. Undoubtedly, providing a coherent geometric reconstruction
remains a challenge. LiDAR (Light Detection and Ranging) is a valuable method
of data acquisition for 3D modeling. Given that point clouds segmentation and
classification are also becoming increasingly efficient, the use of information
derived from airborne LiDAR data (i.e., Airborne Laser Scanning (ALS))
is overwhelming and prolific. Its use helps in many domains, such as the
reconstruction of 3D city models, hazard assessment, forestry, geological
mapping, watersheds, and river surveys. The large contribution of classified
and semantic information to decision-making is indisputable (F. Poux, Hallot,
et al. 2016).

A classification for urban model reconstruction has been proposed from LiDAR
data (Wang et al. 2018). It classifies methods into three families: (1) data-
driven, (2) model-driven, and (3) hybrid-driven. This allows people to compare
city generation methods. Data-driven methods (prismatic and polyhedral)
produce very accurate representations of urban scenes, especially free-form
rooftop modelling (Lafarge and Mallet 2012). These representations are very
promising for rendering real world scenes, as they consider many classes of urban
objects (buildings, vegetation, and roads). However, when they are exchanged
and used online or via cell phone, their size is often a significant drawback.

Coupled with other sources of information, such as building footprints
and airborne imagery, LiDAR point clouds make it possible to recreate a
representation of reality. However, airborne imagery is not suited to the
generation of accurate and compact models. Hence, LiDAR sensors are more
favorable to the generation of rooftops than imagery sensors. Indeed, many issues
arise from the use of optical imagery: shadows, occlusions, texture problems,
variations in brightness and contrast (disparity and entropy) (Jung and Sohn
2019). LiDAR is less influenced by these external factors (Tarsha Kurdi and
Awrangjeb 2020). Moreover, as terrain relief causes relief displacement and
occlusions in airborne images in oblique imagery, several LiDAR points mean
the height of the same image pixel, depending of its ground-sampling distance.
This consideration leads to complex dense image matching and invariably results
in an additional source of error. Still, imagery is a good source of information

18 MODEL GENERATION

to detect changes and update changed areas (Tarsha Kurdi and Awrangjeb
2020). Recent works, however, are providing enhancements for the accurate use
of LiDAR and imagery fusion (Zhou et al. 2020).

In terms of the data source itself, several efforts are advised to confront the
sparse nature of LiDAR data: in particular, tracing the plane boundaries
from the point clouds directly (Cao et al. 2017). On the other hand, the
two most common existing methods for shape detection are RANdom SAmple
Consensus (RANSAC) (Schnabel et al. 2007) and the Hough transform (Ballard
1987). However, even if the Hough transform could be improved by providing
a dedicated data structure (Borrmann et al. 2010), RANSAC currently runs
quicker (computationally more efficient) and is better tailored for detecting the
shape of roof planes (X. Liu et al. 2019; Tarsha-Kurdi et al. 2007). Furthermore,
RANSAC presents a higher robustness to outliers, as shown in (L. Li et al.
2017).

A major drawback to the use of non-parametric shape-detection algorithms
is the definition of the initial parameters, which restricts the generalization
potential. Due to the sparse point density, the non-deterministic nature of
RANSAC might detect inconsistent shapes. Depending on the starting points,
results may differ. This problem is less common in high density point clouds,
given that cluster junctions are traced more efficiently. Plane detection could
thus lead to false positives and/or false negatives or spurious planes (Xu et al.
2015). To avoid false detections, the tuning of parameters is often entrusted
to an expert, especially in the case of LoD2.x Buildings (Pârvu et al. 2018).
For example, note that a minimum area for the detection of roof planes can be
problematic, since areas under 50 square meters have already showed poorer
quality results (Awrangjeb et al. 2018; Rottensteiner et al. 2014).

Polygon generalization and shape regularization are also a source of errors, a
source which is avoided in the proposed methodology. After discussing the
pipeline, the next section contrasts our methodology and the state-of-the-art
methodology, breaking down every step of the method.

2.2.2 CityGML and CityJSON

The use of a collaborative data format, such as CityGML (Gröger and Plümer
2012), has been widely chosen to model cities. Recently, CityJSON (Ledoux,
K. A. Ohori, et al. 2019), a compact, easy-to-use, and developer-friendly format,
has also offered the possibility to structure city models and to exchange them
over web-based and mobile devices. It provides an interoperable and documented
alternative to CityGML. Indeed, CityJSON is part of the web-oriented evolution
of the CityGML standard. CityJSON respects the same conceptual scheme as

RELATED WORKS 19

CityGML - which means it does not require the reworking of applications from
a conceptual viewpoint - but only in terms of the exchange format. Interfacing
between the two models, therefore, is simple to set up. Furthermore, JSON
is less verbose and eases data exchanges. From the developers’ perspective,
handling information with JSON makes it much easier to read and its structure
easier to understand. From the users’ perspective, no difference should be
encountered, except for applications loading faster and reduced bandwidth
usages.

Due of its lack of versatility, XML is not the best solution for generating compact
information. CityGML files are often large because of their intrinsic XML format.
Therefore, JSON intends to reduce exchanges in easier-to-use ways. Currently,
because it is new, there are not many CityJSON applications, but scientists
intend to study their potential (Kumar, Ledoux, et al. 2018; Kumar, Labetski,
et al. 2019; Vitalis, K. Ohori, et al. 2019). Two open source methods are
already providing solutions for generating CityJSON models: (a) 3dfier makes
it possible to generate city buildings with extruding topographical data sets
(https://github.com/tudelft3d/3dfier). Nevertheless, generated buildings are
limited to LoD 1.x (flat roof planes). (b) The second solution is a command-line
tool that transforms a CityGML model into a CityJSON model and vice-versa
(https://github.com/citygml4j/citygml-tools).

Contextual documentation (i.e., metadata) regarding geoinformation has greatly
improved their interoperability and usability. This general statement also applies
to 3D City models. Unfortunately, CityGML does not offer native handling for
this contextual intelligence. To get contextual metadata, it is necessary to use
additional tools, such as the “metadata Application Domain Extension” (ADE)
(Labetski et al. 2018). This ADE can be incorporated into the core schema of
CityGML, but it imposes ADE support for all applications that use this model.
It also makes it possible to translate the extension into its portable relational
database.

As shown in previous studies (Rottensteiner et al. 2014), most building
generation methods simplify their output by differentiating qualitative
statements, such as the shape of roofs (gabled, sheds, lean-to, etc.), and
quantitative features (metric deviation from the reality on the ground, accuracy
rate, etc.) (H. Huang, Brenner, et al. 2013). Beyond the fidelity indices on planes
interpolation and shape factors, few metrics guide this building reconstruction
(Biljecki, Ledoux, Du, et al. 2016). By limiting the possible deviations during
each stage of the creation process, it is possible to obtain a result that will most
appropriately respond to normative issues. New improvements in CityGML,
especially through the SIG 3D Quality Working Group (OGC 2016), provide
a set of values that can improve the reconstruction quality. Furthermore, the
improved level-of-details proposes sixteen levels to describe and assess the

20 MODEL GENERATION

details of a building (Biljecki, Ledoux, and Stoter 2016). These sublevels are not
supported in the official CityGML specifications and are underused (Biljecki,
Ledoux, Du, et al. 2016).

2.3 Methodology

The purpose of the method developed in this chapter is to break down the
generation of a 3D city model based on the XYZ components of the LiDAR
point cloud, in order to create a normalized city model in CityJSON. The
point cloud ALS classification is assumed to be correct. It makes it possible to
extract the building points independently. We decided not to use other sources
of information, in order to avoid mixing data quality issues and focus on the
LiDAR automatic data extraction workflow. Starting with this assumption,
the following sections break down the generation model systematically after
the introductory comments. Figure 2.1 illustrates the successive steps in the
method: from the raw point cloud to the generated city model. First, the raw
point cloud is segmented into coherent subparts, using a structure-based region
growing algorithm in Section 2.3.2. Once this is done, the cloud subparts (i.e.
points clusters) are then processed individually, in order to generate buildings in
a step-by-step geometric modelling process. In the end, all of the reconstructed
building objects are concatenated into the CityJSON city model in Section
2.3.4.

2.3.1 Introductory comments

This step-by-step method proposes a hybrid form of generation that combines
data-driven and model-driven solutions, such as grammar-guided reconstruction
(Wichmann 2018). The author proposes an approach that is characterized by
a strong integration of building knowledge. This knowledge is modelled on
a separate, multi-scale knowledge graph during this process. The proposed
reconstruction pipeline is also analogous to what is offered by TopoLAP (X. Liu
et al. 2019). Significant differences are noted, however: the reconstructed
geometries try to generate a more detailed representation of buildings, but does
not fulfil any of the CityGML specifications. In addition, airborne LiDAR data
is not the only data source. Both these choices result in the multiplication of
sources errors, which is avoided here.

Where it was necessary to determine certain heuristic values, we used the
recommended geometric and state-of-the-art specifications of revised CityGML
Levels-of-Detail (LoD) (Biljecki, Ledoux, and Stoter 2016). This point strongly

METHODOLOGY 21

Figure 2.1: General data workflow.

distinguishes this work from others and limits the amount of inconsistency.
The redefined levels of CityGML propose splitting the original LoDs into four
different sublevels. The granularity of the details that are gradually added into
these sub-levels provides a discrete categorization. A set of rules for simplifying
3D buildings has been set up, in accordance with these refined models (Fan
and Meng 2012). Illustrated examples of these rules are present throughout
the process. This makes it possible for the method to avoid inconsistencies in
geometric and semantic validation.

We tested the methodology on data provided by an administrative body: the
“Service Public de Wallonie” (Walloon Public Services – WPS). The airborne
data were acquired in the winter of 2012. The referenced point cloud density is
0.78 points per square meter. The restricted test area is in the northern part
of the city of Theux, the chief town in a rural municipality. The buildings are
single-family houses, garages, and warehouses, but also shops and gathering
places (restaurant, sports clubs, supermarkets, etc.) with various roof shapes.
This area counts 464 elements that have been tagged as “Buildings” by the WPS.
Preprocessing was limited to the application of a Statistical Outlier Removal
filter (SOR filter). The filter computed the average distance of each point to its
eight neighbors for each building; it then rejects points that are farther away

22 MODEL GENERATION

than the distance of one standard deviation from the average (Balta et al. 2018).

It is worth mentioning that all vector geometries are built on geometric primitives
that are defined within the ISO19107 standard. Only airborne LiDAR data are
used in their (X, Y, Z) shape. Python has been the preferred choice, because of
its large and robust support for many libraries and its object-oriented paradigm
(i.e., JSON is easier to handle using common Python scripts). It does not rely on
any commercial solutions, which improves its adaptability and openness. Since it
works on a different developing level (i.e., Python is interpreted, not compiled),
Python is less effective than C. The points are manipulated using Python
bindings from the Geospatial Data Abstraction Library (GDAL) and OpenGIS
Simple Features Reference Implementation (OGR) libraries for geospatial vector
data. It should also be noted that the manipulation of geometries is independent
of their coordinate reference system.

2.3.2 Point-cloud segmentation

Point clouds are a simple, yet efficient, way of representing spatial data. However,
despite the ease of capturing point clouds, processing them is a challenging
task. Problems such as incorrectly adjusted density, clutter, occlusion, random
and systematic errors, surface properties, or incorrect alignment are the main
data-driven obstacles to wider adoption, and are often related to their data-
structure or capture-related environmental specificities, as highlighted by F.
Poux (F. Poux 2019). Secondly, structure-related problems usually emerge
due to a lack of connectivity within point ensembles, which can render the
surface information ambiguous (Berger et al. 2017). In order to cope with
the aforementioned problems, and obtain reliable plane estimates, the plane
extraction method should prioritize noise robustness. Indeed, ALS data sets
often present high noise levels, which can become problematic for data-driven
approaches (see figure 2.2). In this example of a projected point cloud on a
vertical plane, two kinds of noise are represented: while the red points over
the roof can be explained by occluded elements (chimneys, vegetation, cables,
etc.), the red points over the roof are the result of walls taken with a low angle
shot. The valid/invalid classification represents the goal of the segmentation. In
order to avoid serialization and add fragility to the proposed approach, we favor
robustness over adding a preprocessing step, such as using Statistical Outlier
Removal filters (SOR filters) to filter noise beforehand.

We aim to provide an unsupervised procedure without injecting prior knowledge
(whether it is from trained data or tweaking parameters). Thus, it initially
focuses on extracting strict planes. In order to assess the impact of the
shape detection approach on our results, we implemented another unsupervised

METHODOLOGY 23

Figure 2.2: ALS noise in roof formation. Green points are points considered as
belonging to the plane. Reds are not part of it under a the tolerance threshold.

approach from (Poux and Billen 2019), which was applied in an archaeological
context in (F. Poux, Neuville, Van Wersch, et al. 2017) and for indoor buildings
in (F. Poux 2019). Its most recent overhaul allows for the fully unsupervised
segmentation of point clouds on low-end devices. The method scales up to
billions of 3D points and targets a low-level grouping, in order to be independent
from any application. It uses a hierarchical, multi-level segment definition
to cope with potential variations in high-level object definitions. The fully
unsupervised segmentation leverages planar predominance in scenes through a
normal-based aggregation. For usage and simplicity, the authors designed an
automatic heuristic definition for the determination of three RANSAC-inspired
parameters, namely the distance threshold for the region growing, the threshold
for the minimum number of points needed to form a valid planar region, and the
decisive criterion for adding points to a region. The robustness of this method
in various scenarios was tested for complex indoor buildings with different
ground sensor platforms (depth sensors, terrestrial laser scanners, hand-held
laser scanners, mobile mapping systems), but not on ALS data sets. It is robust
to noise, incorrectly adjusted density, and provides a clear hierarchical point
grouping, in which fully unsupervised parameter estimations give better results
than "user-defined" parameters.

This process is carried out in order to obtain the nth point clusters, which
will become the nth support for plane estimates. In this context, it is worth
remembering that, besides the use of an innovative method for point clouds
segmentation, the improvement of each reconstruction step makes it possible to
obtain a geometrically and topologically consistent model. Every step in the
method is governed by normalized values and thresholds (Biljecki, Ledoux, Du,
et al. 2016; Biljecki, Ledoux, and Stoter 2016). All these improvements make it
a convincing automatic generator.

24 MODEL GENERATION

2.3.3 Step-by-step geometric modelling

CityJSON makes it possible to structure a Building geometry as a Solid, a
CompositeSolid, or a MultiSurface (compliance with ISO19107 standard). Since
a Building delimits a volume, the Solid primitive is entirely intended to fulfil this
role in this method: a structured set of polygons that contain the closed volume
of a rigid body. Note that a CompositeSolid might be an improvement for
buildings annexes. On the other hand, MultiSurface represent non-volumetric
parts (e.g., the overhang of a roof). The goal of the building reconstruction
process is to determine the bounding polygons and the relationship between
them, in order to produce a consistent model. The reconstruction method starts
from the points, which is the information directly provided by the LiDAR point
cloud. Based on the detected roof planes (in red), the footprint (in blue) is
computed as the projection of roof planes. Finally, the walls (in yellow) are
determined by linking every edge of the roof shape to its corresponding edge
from the footprint. The Figure 2.3 breaks down the successive steps illustrated,
by paralleling the sections and their input data.

Figure 2.3: Succession of the parts generation.

In comparison with other hybrid approaches (Wichmann 2018), the planes are
formed via a data-driven method, but the buildings are constructed based on
a connectivity graph between these planes. However, some differences should
be noted: (a) the buildings are generated following the CityGML format,
but the refined CityGML levels-of-detail were not taken into account in the
reconstruction process (Biljecki, Ledoux, and Stoter 2016); (b) reconstruction
steps do not follow the same phases: the primitive components (small volumes)
are generated based on the roof topology graph, then connected in order to
generate the building model. In terms of the modelling of primitives, model-
driven methods fit models to point clouds, in order to reduce metrics such as
Root Mean Square Error (RMSE), Hausdorff distance (deformed shapes), tuning
function distance (entire shape similarity), angle-based index, or a composition
(Dorninger and Pfeifer 2008; H. Huang and Mayer 2017; Jung, Jwa, et al. 2017;
Kada and McKinley 2009). A particular method implements the automatic

METHODOLOGY 25

production of the CityGML model (Henn et al. 2013). All the surfaces are
semantically consistent and independent of the process (see Figure 2.4).

Figure 2.4: Exploded reconstruction geometry following the modules.

Note that, in CityJSON (because it is semi-structured), users are free to add to
and modify the model, in order to increase its usability in dedicated applications.
Further developments may pertain to the generation of other elements of the
urban built environment (roads, bridges, tunnels, etc.) and the addition of
specialized metadata.

Topology generation

From the formed subsets of points, and this, the topology of the roof shape is
constructed for each building. The roof shape is translated based on connections
between the combinations of subsets. Some generalization - and therefore a
loss of accuracy to the real world - must be accepted. Again, the focus is on
compliance with CityGML specifications (Biljecki, Ledoux, Du, et al. 2016).
Therefore, some thresholds need to be established, as they are provided in the
standard (e.g., minimum slope of 5◦, in order to differentiate planes, and a
minimum area of six square meters for Buildings).

The different subsets of points are projected onto a virtual XY horizontal plane.
The minimum oriented bounding box is computed based on the coordinates
of the points that comprise the subset. This polygon gives us the oriented
sub-footprint determined by the plane (i.e., the oriented envelope that forms the
minimum extent of a two-dimensional set of points). The connections between
the different sub-footprints are considered between pairs: if the intersection line
occurs within the footprint polygon, and if the intersection is consistent with
the connectivity graph, the new connection is added to the topology graph.

26 MODEL GENERATION

The nature of the relationship will influence the connectivity and its physical
representation (valleys, hips, and ridges). The plane relationship (O, S and N)
can be classified into three constrained families and one default one (Verma
et al. 2006):

• O+ planes have normal vectors that, when projected, are orthogonal and
point away from each other.

• O− planes have normal vectors that, when projected, are orthogonal and
point towards each other.

• S+ planes have normal vectors that, when projected, are parallel and
point away from each other.

• N have no constraint.

Note that the notion of the connectivity graph is part of hybrid-driven modelling
(Wang et al. 2018): the Roof Attribute Graph (RAG) (Hu et al. 2018), the
Region Adjacency Graph (Milde et al. 2008), or the Roof Topology Graph
(Xiong et al. 2015). The main difference with these graphs lies in the handling
of parallelism: The S+ class, which is not present in other methods, provides
additional information. To determine orthogonality and parallelism, the normal
vectors are projected onto the XY plane. Based on a threshold of 5◦, the angle
between them determines the relationships (Biljecki, Ledoux, Du, et al. 2016).
We assume that the method provides a good balance between the flexibility
of the reconstruction methods and the quality of the reconstructed building
models. The different families are illustrated in Figure 2.5.

Figure 2.5: Relationships between slopes of adjacent planar roof segments,
based on Verma et al. 2006.

Since the N family, planes that do not have constraint, does not provide any
information, it is not stored. The assumption is made based on the absence

METHODOLOGY 27

of information. From here, the relationship can be used to determine what
this relationship consists of, materially speaking. For instance, from a S+

relationship, one can state that the roof skeleton comprises at least one line
segment and two points. Conversely, O+ relationships provide a point for the
roof skeleton. This information will be further used in the roof reconstruction
process. Note that an empty graph will lead to a composition of flat or lean-to
roofs. Breaking down the graph can also be easily used to simplify shapes or
extract a subpart of a building. The connectivity information is computed on
a couple of planes. As a result, this information can easily be stored in two
matrices:

• An adjacency matrix (i, j), which contains the ID of j planes connected
to the i plane.

• A relationship matrix, which contains the nature of the connectivity
between the i and j planes.

From the connectivity graph, if two planes are connected, the footprint is, at
least, the union of both. The process loops iteratively above the upper diagonal
of the adjacency matrix and constructs the footprint. Once the graph has
been travelled, the polygon is generalized by computing the concave hull of the
various elements to get a coherent polygon. The concave hull is significant, given
that L, U , etc. shaped buildings should not be closed. Thresholds that comply
with CityGML specifications are applied, in order to ensure the consistency of
the footprint and clean potential errors (Fan and Meng 2012).

The result provides a flying footprint (i.e., the projected envelope of the building,
without elevation). This envelope is part of the 3D bounding box of the building.
The lowest Z limit can be determined, thanks to the Digital Elevation Model
(DEM) generated from the airborne point cloud. It is provided with the point
cloud and the results of the triangulation of the “ground” points from the LAS
classification. This elevation model has an altimeter accuracy of 0.12 m and a
spatial resolution of 1 meter. The last coordinate of the box, i.e., its elevation,
is calculated as part of the roof generation.

Roof generation

Unless planes are perfectly parallel, two planes always intersect somewhere.
This connection needs to be within the footprint, in order to be part of the
skeleton. Otherwise, it could cause inconsistencies: irrelevant rupture lines will
degrade the representation of the roof shape. Afterwards, all combinations of
lines are computed travelling along the topology graph. For S+ relationships

28 MODEL GENERATION

(and only S+ relationships), the intersection points for these lines with the
footprint are also determined. For instance, this is the case for the ridge of gable
roofs, as shown by the yellow plane in Figure 2.6. According to the CityGML
specifications (Biljecki, Ledoux, Du, et al. 2016), a threshold of two meters snaps
the rupture points to those that have previously extruded from the footprint.
This perfect snapping tolerance increases confidence in the model topology.
Hence, it prevents holes (see the introduction for an explanation). The rupture
points form the outline of the roof. The lines and rupture points are stored in a
rupture matrix, similar to the adjacency and relationship matrices.

Figure 2.6: Representation of the roof skeleton in bold black. The rupture
points form the ridge and the other points are snapped to each other at the
corners.

Finally, the points of intersection between the rupture lines are determined and
added to the rupture points. Their heights are interpolated afterwards. Note
that, in cases where there is no intersection between roof planes in the footprint
polygon, this means that the roof is flat or lean-to shaped. In this case, the
building model cannot be refined further. Only the LoD 1.x will be generated
for these buildings. Even if this kind of shape has already been detected, a
second filter is applied in order to ensure they are detected. Roof planes are
built while travelling segment-by-segment through the footprint. For each point,
the orthogonal distances to the roof planes are computed through the normal
vectors. Since a point from the outline of a roof is part of two roof planes,
the two lesser distances determine the plane to which they belong. After this,
the non-intersecting polygon is computed for each roof plane, by considering
these points and the results stored in the rupture matrix. This polygon results
from sorting two subsets of points and drawing the line that links the left-most
and right-most point. The non-intersecting polygon is the concatenation of
the points that are higher than the line and those that are lower, sorted from
left to right and vice versa (see Figure 2.7 for an illustration). It should be
mentioned that the concave hull of a set of points tends to determine the

METHODOLOGY 29

smallest polygon that links all the points. This smallest polygon is not always
the correct representation of the wall in cases with very sharp angles.

Figure 2.7: Non-intersecting polygon construction.

To conclude with roof planes, the height of the points is calculated according to
the plane to which they belong. Since each vertex belongs to several planes,
an arithmetic formula gives its height. Note that this operation corrupts the
planarity of the different planes. An issue with non-planarity could lead to
problems when calculating surface areas, for instance. However, this operation
distributes the errors evenly. The denser and less noisy the point cloud, the
more accurate the reconstruction. Finally, the highest point of the LoD 2.x
building model gives the height of its 3D bounding box.

Wall generation

This module is simpler than the two previous modules, as it only binds results
to results. As well as roof planes, walls are generated while travelling segment-
by-segment through the footprint. The intersections of segments with projected
roof planes are computed. The vertices of the intersection, and those that are
extracted from the footprint segment, give the points that delimit the wall.
Once more, the non-intersecting polygon is determined and provides the sorted
vertices that draw the wall parts.

A general remark concerns all three modules. When rendering the rigid body via
back-face culling, a single rule is applied: the normal vector should point towards
the outside of the volume. In this way, the exterior face is the one pointing
outside of the box. This translates into the order of vertices for each surface.
This needs to be counter-clockwise and ordered from an exterior viewpoint. All
faces are controlled under these conditions. Otherwise, the volumes are closed,
but their display, among other things, may appear problematic. This depends
on the viewer and the application (see Figure 2.8 for an illustration).

30 MODEL GENERATION

Figure 2.8: Example of a geometry in which planes are not correctly oriented.
One face is inverted and therefore is represented as transparent to allow viewing
the outside from the inside (back-face culling).

Building assembly

A building comprises a Solid bounding a closed volume. Again, the nature of
the surfaces is not inferred from their slope, orientation, or position, but by the
process: the footprint is always the first element generated, then roof planes, and
walls close the 3D geometry (Refer to Figure 2.9 for the construction order: red,
then blue, then yellow). The three possibilities (GroundSurface, WallSurface,
or RoofSurface) are listed and mapped into an array, which corresponds to the
order of the different planes. This information is stored within the JSON objects
as the semantics JSON key within each building object. The polygons that
define the different planes are stored as sorted arrays of the vertices’ identifiers.
They constitute the boundaries (the subobject giving the frontiers of the Solid)
of the JSON object.

CityJSON allows objects to be represented in concurrent levels-of-detail. Since
not all applications need a detailed level of design, the three levels-of-detail
are produced. They represent stages from the footprint to the roof-shaped
geometries (see Figure 2.9 for an illustration). The sub-levels (LoD 0.x and
LoD 1.x) do not require additional processing: the footprint and the bounding
box are already determined beforehand. Those are stored as the 0.1 and 1.1
level of the building (Biljecki, Ledoux, Stoter, and J. Zhao 2014), respectively.
Note that there are multiple ways to determine the elevation of the extruded
solid: minimum, maximum, mean, and median. In this case, however, using the
maximum elevation seems to be the most conservative approach for defining a

METHODOLOGY 31

volume.

Figure 2.9: Schema representation of the different levels-of-detail for the same
building.

2.3.4 CityJSON model building

The CityJSON model is created on an iterative basis through this process.
The specifications require some JSON keys to be present in every file: type,
version, CityObjects, and vertices. While type and version are easily created,
CityObjects and vertices require an explanation. CityObjects represents the
concatenation of all Building objects created in the previous section, with their
own boundaries, semantics, etc. Next to this, the coordinates for the vertices are
stored in bulk at the end of the CityModel file. They are stored in the order of
their identifiers (i.e., their successive creation). This method makes it possible
to reduce the size of the model and avoid redundant information, even if this
redundancy is still allowed in the CityJSON specifications. Nonetheless, it is an
additional, necessary condition for building a compact city model. Moreover,
the optional transform JSON key allows the coordinates of the vertices to be
decompressed, in order to improve the compactness of the model, as is already
done in TopoJSON.

Another important element pertains to metadata. Due to their importance and
the impact of their support, this element will be extensively discussed in the
next section.

An example of a CityJSON-generated model is shown in Figure 2.10. The point
cloud and the reconstruction are displayed one after another in the CloudCom-
pare viewer, in the open-source viewer developed at the 3D GeoInformation
group from TUDelft (https://github.com/tudelft3d/CityJSON-viewer/) and an
open-source extension of Cesium (https://github.com/limyyj/cesium-cityjson).

32 MODEL GENERATION

A quick glance shows that pyramidal and more complex shapes are represented
within the data, even if gable roof shapes represent the majority.

Figure 2.10: Results from the city of Theux in CloudCompare and CityJSON
viewers.

DISCUSSION 33

2.4 Discussion

This section discusses the advantages of directly generating CityJSON models
and assesses the quality of the results using several normalized and formal tools.
While the first part of this section develops the research contribution of this
chapter, the second section makes it possible to rule on the validity of the
geometrical reconstruction in comparison with the state-of-the-art approach.
Firstly, compliance with CityGML/CityJSON specifications is evaluated; the
geometric validity of every building is also studied.

2.4.1 CityJSON improvements

On a global level, the construction of a model could be done in parallel for
both formats. A geometry comprising edges and vertices can be formatted in
either CityGML or CityJSON without any loss or inaccuracy. Consequently,
the translation between them both is not a problem, but it is not as easy
as a one-to-one mapping. Even if they share the same conceptual schema,
several notable differences exist in their descriptive components. For instance,
CityJSON makes it possible to manage two additional elements in particular: (a)
the ability to handle metadata natively (Labetski et al. 2018) and (b) the refined
levels-of-detail (Biljecki, Ledoux, and Stoter 2016). By providing a method that
breaks down geometric reconstruction, and working on improvements to every
constituent part, we manage both (a) and (b) points during the process.

CityJSON offers the ability to handle metadata natively. Conversely, CityGML
requires the use of an extension for managing metadata (Labetski et al. 2018).
For that reason, translation from CityGML to CityJSON, and vice versa, cannot
occur without a loss of information. Taking the example of the command-line
translator from CityGML to CityJSON, the information is simply neglected if
it is not part of the destination format. The proposal of a generation method
that directly offers a CityJSON model responds to this problem. It makes it
possible to avoid such a loss.

On one hand, the refined level-of-detail definitions, and their related metrics,
are managed. Throughout the generation process, thresholds are provided
and we guarantee compliance with specifications. In this case, we managed to
create 0.1, 1.1, and 2.1 levels-of-detail in parallel (Biljecki, Ledoux, and Stoter
2016). A related benefit is that we are able to store all of the levels at the
same time. Moreover, these levels are interdependent, since the footprint - the
actual 0.1 LoD - is the foundation of the 1.1 and 2.1 LoDs. These improved
definitions provide important information about the form factor of the building,
which is not allowed in common LoDs. The refined LoDs do not only show

34 MODEL GENERATION

individual and large building parts, but also small building parts, recesses, and
extensions. Figure 2.11 depicts a comparison between common LoDs, which
provide minimal specs, and refined LoDs, which provide improved conception
of details. Therefore, it allows applications to make the choice of the more
relevant level for their scope of interest. From a user perspective, i.e., fluid-flow
simulations, this level of detail in building has an important impact (Kumar,
Labetski, et al. 2019).

Figure 2.11: From point clouds to building models. Depending on the LoD,
different outputs can be generated from the same data source.

In terms of contextual information, it is possible to compute and handle metadata
during the process. Among other things, CityJSON makes it possible to manage
the geographical extent of the city. In addition to the geometry of a building,
its geographical extent is computed simultaneously (i.e., the minimum oriented
and bounding cuboid). The choice has been made to consider the maximum
height of the building, in order to be on the safe side and not underestimate
the influence of elements on their built environment. Finally, the extent of
buildings can be aggregated to determine the geographic extent of the whole
city model. This extent is then stored in the model metadata, which is not
available in a built-in manner in CityGML (see Figure 2.12). Moreover, the
lack of CityGML ISO19115 support is detrimental when it comes to exchanging
information, comparing concurrent models for the same element, or keeping
a record of the model versioning. As a reminder, the starting hypothesis is
to provide a compact model that allows easy online exchanges. Thanks to
CityJSON and this method, ambiguity is no longer possible.

DISCUSSION 35

Figure 2.12: Translation from CityGML to CityJSON.

2.4.2 Format compliance

CityJSON specifications provide a subset of the CityGML data model (Ledoux,
K. A. Ohori, et al. 2019). JSON, as opposed to XML, has the advantage of
not using end tags, which reduce format redundancies; it does not require the
repetition of information for each element when handling arrays; etc. However,
both share many similarities, which make them primary formats for exchanging
data online: (i) they are both self-describing, (ii) hierarchical, and (iii) fetched
within HTTP requests. The JSON hierarchy is structured as nested and
embedded key-value pairs (i.e., a map that allows horizontal and cross-levels
links), while CityGML is structured as a tree. This is the main reason why
trees can be tedious and time-consuming to parse. In short, XML is better for
storing information - thanks to namespaces - and JSON is better for delivering
data, thanks to its compactness.

From a format point of view, it is therefore important for the generated
model to be compliant with the official CityJSON schemas (compliance is
the state of being in accordance with established guidelines or specifications).
To ensure this compliance, a Command-Line Interface (CLI) provided
by TUDelft makes it possible to validate and transform CityJSON files
(https://github.com/cityjson/cjio). No error has been detected through our
various tests with the CLI (vertex indices coherent, specifics for CityGroups,
semantic arrays coherent with geometry, root properties, empty geometries,
duplicate vertices, orphan vertices, CityGML attributes). This is easily explained
as follows: every individual inconsistency is handled upstream within our
software.

36 MODEL GENERATION

2.4.3 Quality control

Every individual vertex could lead to local singularities in the topological
consistency during the reconstruction process. Two sub-processes prevent this
from happening and ensure that buildings are closed: vertices generalization and
perfect snapping tolerance (Biljecki, Ledoux, Du, et al. 2016). Both methods
are informed by the geometric specifications of the refined LoDs in CityGML
(Biljecki, Ledoux, and Stoter 2016), which state that building parts that are
smaller than two square meters wide should be generalized and that two vertices
that are less than two meters apart are considered to be the same vertex
on the XY plane. Note that the generalization happens during the footprint
establishment, when vertices do not yet exist, but the snapping happens later,
during the creation of the wall, roof, and footprint, when vertices do exist.

Spatio-semantic evaluation

Semantic validity is crucial: little room is left for semantic uncertainty. Again,
the nature of the surfaces is not inferred from the normal orientation or relative
positions, but during the process: the footprint is always the first element
generated; roof planes are generated from their connectivity graph and, finally,
wall planes are created. Spatio-semantic validity is therefore easy to obtain.

Given that CityGML has become the de facto standard for spatio-semantic
city modeling, the Interoperability Experiments Joint Activity between OGC,
SIG3D, and EuroSDR defined some requirements in order to normalize its use.
The OGC IEJA group conducts research and provides tools to carry out quality
assurance on the data, including data used in this research. Their discussions
about issues relating to CityGML data quality has led to usage guidelines (OGC
2016) (i) a definition of data quality, (ii) data quality requirements and their
specification, (iii) a quality checking process for CityGML data, and (iv) a
description of validation results.

Geometric evaluation

The main idea is to simplify validation by cascading it: we must validate the
previous steps before proceeding to the next step. Therefore, if a critical
geometric inconsistency has been detected, no semantic validation should
be carried out (Wagner et al. 2013). Recently, new tools are proposing the
management of more discrete levels-of-detail: previous tools were limited at
levels close to LoD1.x (flat roofs and vertical walls). A standard error taxonomy
is necessary to help structure the evaluation. From the intrinsic features of

DISCUSSION 37

the models, errors can be detected using a supervised classifier (e.g., random
forest) (Ennafii, Bris, et al. 2018; Ennafii, Le Bris, et al. 2019). However, this
does not support CityJSON. Our methodology was validated with the versatile
val3dity tool (Ledoux 2018). Complex geometries are systematically broken
down into their constituent parts: the integrity of buildings is processed, then
every 3D primitive is validated. Here, it is worth mentioning that overlapping
- as it is implemented in val3dity - considers relations between BuildingParts
and not between Buildings and each other. This is an important point with
regard to computation time, as overlapping greatly slows down the process: the
Minkowski sum is used to assess overlaps. It has O(n3m3) runtime complexity,
where n is the number of objects and m the number of constituent parts therein
(Hachenberger et al. 2007). As is the case for CityGML, only planar and
linear primitives are allowed: cylinders, spheres, or other curved, parametrically
modelled primitives are not supported. The validation parameters in the val3dity
tool are as follows (Ledoux 2018):

• Snap tolerance: 0.001 m – if two points are closer than this value, then
they are assumed to be the same.

• Planarity tolerance: 0.05 m – the maximum distance between a point and
a fitted plane.

• Overlap tolerance: 0.01 m – the tolerance used to validate adjacency
between different solids.

Figure 2.13 provides a graphical overview of the results for the city of Theux
in Belgium. Note that the definition of Building itself might differ between
standards and applications, especially for LiDAR point clouds, since they are
not initially intended to suit CityGML definitions. Hence, some elements do
not belong to the CityGML definition. For the remainder, the footprint of a
Building element needs to be greater than six square meters. The red buildings
in Figure 2.13 represents these elements scaled onto one hundred buildings. This
proportion represents forty-five buildings from the complete set (464 elements).
On the other hand, 65 buildings are classified as flat or lean-to roofs (green
buildings on the right of Figure 2.13). They are thus not included in the LoD2.x
reconstruction benchmark. Finally, the buildings that correspond to complex
roof shapes are validated. In the end, thirty-one buildings are not validated from
the 355 remaining buildings (yellow buildings in Figure 2.13). This corresponds
to 91.26% validity for the LoD2.x objects, i.e. the vast majority of the data set
is valid. The Buildings that could not be reconstructed in LoD2.x are instead
generated as LoD0.x and LoD1.x (footprint and extruded volumes).

The results provided by our methodology have been compared to open data
sets (see Table 2.1) (ibid.). Overall, the proposed methodology provides a ratio

38 MODEL GENERATION

Figure 2.13: Proportions of buildings reconstruction from Theux, Belgium.

of valid/invalid geometries of over 90%. Note that the other benchmarked data
concern CityGML files. No other information about the source and/or creation
of the data was given. The increasing validity from Buildings to Primitives is
explained by the fact that lower LoDs are easier to generate.

Table 2.1: Summarized comparison of results.
City (Method) Size Buildings Valid Primitives Valid
Berlin 933MB 22.771 74% 89.736 90%
Den Haag 22MB 844 61% 1.990 85%
Montréal 125MB 581 76% 1.744 88%
NRW 16MB 797 83% 928 77%
Theux (UR) 689KB 420 92% 1.198 97%
Theux (RG) 656KB 400 93% 1053 96%

The difference in building numbers between the unsupervised RANSAC (UR)
and the region-growing (RG) stems from preprocessing (removal of statistical
outliers, clustering, etc.). Indeed, the point cluster does not always satisfy
the requirements to be considered as Buildings, as per CityGML specifications.
Here, the assumption that segmentation is effective shows its limitations: if
planes are not detected, or they overlap too much, the connectivity graph will
not be correct. The proposed methodology partially relies on the restrictive
hypothesis that the segmentation properly detects the planes. When analyzing
the results, the main source of errors currently stems from the segmentation
methods and the low point density. The val3dity tool provides a taxonomy
of errors that could be encountered during a geometric evaluation (Ledoux
2018). In the successive development phases, only one recurrent subset of these
errors was detected - non-planar polygon distance - since the algorithm already
prevents many of them.

DISCUSSION 39

Nevertheless, the distribution of these errors only deviates slightly from the
theoretical threshold of 5 cm. Only a few of them stand out. It is also essential
to mention that the plane-interpolation algorithms are different between val3dity
(least mean squares) and the methodology (RANSAC) (L. Li et al. 2017). In
order to assess the quality of the plane interpolation, the Root Mean Square
Error (RMSE) of each roof plane for the Z-axis is computed (see Figure 2.14
for error classes). As can be seen, the distribution of errors tends to be close to
3 cm (median: 0.028 m, 95th percentile: 0.039 m). Only eight of the 644 planes
have an RMSE greater than 5 cm (these are actually outliers greater than 2
meters).

Figure 2.14: Number of planes per RMSE class.

However, one negative point should be noted: even if the number of buildings
affects the processing time on a linear basis, RANSAC is still the primary
source of time complexity. Taking this consideration into account, two features
influence the processing time: the ratio of points within the subset and the total
number of points (Raguram et al. 2013). Therefore, filtering the point cloud is
mandatory. We tested filtering versus not filtering the data provided. The use
of the Statistical Outlier Removal (SOR) filter corresponds to an improvement
of 30% to the computation time. Another improvement of our method is the use
of a k-d tree index, rather than an octree, for identifying point neighbors. This
was done in order to reduce the number of spurious planes during segmentation
(L. Li et al. 2017).

Buildings are not always made up of a single volume: some have annexes
and outbuildings. Considering these additional parts in the reconstruction

40 MODEL GENERATION

could greatly enhance the applicability of the models. In particular, this could
improve land administration and cadastre applications. In light of this, a further
interesting development could use a CompositeSolid construction (i.e. the
aggregation of one or more Solids - a non-empty set of Solids). Special attention
will need to be paid to the topology of Solids. Independent management of
stories could also be considered in line with this new management of parts.

Currently, if an LoD2.x geometry is deemed inconsistent, the generation is
limited to lower levels. It could be interesting to fill the potentially detected
holes, rather than treating the geometry as corrupted. For example, one can
use a top-down, shrink-wrapping process to re-mesh the polygonal surfaces
(Z. Zhao et al. 2013), or reconstruct these missing planes directly within the
connectivity graph (Hu et al. 2018). As this makes it possible to repair common
errors and fill holes (windows and doors), the integrity of LoD 2.x objects would
be respected, although this envelope might smooth geometric details.

2.5 Conclusion

This chapter aims to respond to the lack of availability and versatility of 3D
city models, by providing a method for generating city buildings. Besides this,
thanks to the use of CityJSON and the break-down of reconstruction methods,
the integration of metadata and refined levels-of-detail are now supported
within the generation process. The presented methodology does not rely on
commercial or proprietary solutions. We believe that the opening up of our
straight-generation method will help to disseminate the use of CityJSON. It
will also facilitate further related works in the context of the urban built
environment. The evaluation and comparison, which is based on the validity
rate of the geometries generated (format, semantic, and topologic validity),
showed that it is possible to automatically reconstruct LoD2.x buildings based
on LiDAR data and CityGML/CityJSON specifications.

In terms of format and semantic validity, no error has been encountered.
The provided city models are consistent, in every respect, with the standard
specifications. Two methods were tested for plane detection: an unsupervised
RANSAC and an unsupervised, normal-vector-based region-growing algorithm.
A significant ancillary result of this work is the use of indoor point-cloud
segmentation in an outdoor context. As it pertains to geometries, the quality
is assessed on a normalized basis, thanks to formal tools such as CJIO and
val3dity. The ratio of valid/invalid buildings varies between 92% and 97%,
depending on the segmentation method. Several improvements are considered,
including the addition of elements of urban landscapes (roads, etc.).

CONCLUSION 41

Subsequent works

The opening and availability of the generation process have been used in support
of other researches some of which we were invested in. The generation process
was built as to provide its constituting elements as independent to one another.
Those have thus have been used to make the most of the benefit of each of them
(model writing, roofs shapes statistics, etc.).

Green roofs, "contained" green space on top of a human-made structure, are
often discussed in the context of smart and sustainable cities as they present a
multi-functional and solution-oriented approach (Joshi et al. 2020). They are
an effective heating moderation tool. They reduce temperature of roof surfaces
and their surrounding air due to the vegetation cover but also provide shade.
Such kind of infrastructure requires a specific threshold of plane horizontality
to be installed on the load-bearings structures. This is mainly due to the water
flows.

Computation of potential power generated and the detection of empty roofs on
which Urban Green Infrastructure (UGI) could be installed are the results of
the paper. The subsequent result, which has been made possible because of our
work, is the detection of what are considered to be flat roofs. Computed metrics
were the number, the position, the general orientation and the specific areas
of classified roof shapes. Coupled with cadastral and material information, it
allowed determining the potential of roofs for greening at the whole city scale
(see Figure 2.15). Outputs of the conference paper have been used to illustrate
the integration capabilities of the web architecture proposed in the third chapter
of this document.

The study of roof shapes thanks to the added details brought by point clouds
also gave information on the buildings potential covering. Indeed, the geometry
of the roof is one of the parameters that are taken into consideration when
determining the roof covering. The modelled roof-shaped buildings were used
in order to classify elements and determine their covering in a medium-sized
European city (Wyard et al. 2022). Besides the benefit brought by the number,
the area and orientation of roofs for each building, modelled elements were used
as a source of validation data in support of the machine learning process.

It is here worth mentioning that this generation process, even if it was a state-
of-the-art process, is no more relevant in 2023. An improved modelling method
has been published and made available open source. Geoflow3D is a tool for
reconstructing 3D building models from point clouds with high-detail (Peters
et al. 2022). The output results of Geoflow are unbeatable in terms of quality.
Therefore, we consider Geoflow to be the best source of information and have
replaced its use in every stage of our projects. Only negative point in this shift:

42 MODEL GENERATION

Figure 2.15: Methodology for identifying the potential of green roofs (Joshi
et al. 2020)

actual Belgian data sources do not fulfil the basic requirements for generating
consistent LoD 2.2 Buildings due to its sparse point density.

Chapter 3

Database schema

3.1 Introduction . 48

3.2 Related work . 49

3.3 Solution description . 52

3.3.1 Schema model . 52

3.4 WebGIS architecture . 56

3.5 Discussion on paradigm shift 59

3.5.1 Structured and unstructured data 60

3.5.2 Stacks communication 62

3.5.3 No joins . 64

3.5.4 Comparison reference with relational solution 65

3.6 Usage scenarios . 67

3.6.1 Urban green infrastructure 67

3.6.2 Energy performance of buildings 69

3.7 Conclusion . 70

43

Preface

In the life-cycle of the modelling process that we follow out this document, once
that the first step on model generation has been tackled, we got our hands
on a lightweight and semantic 3D city model that follows the JSON encoding
portage of the CityGML data model. Respecting the same conceptual data
definitions, the addition of a simplistic roads network, a digital elevation model
and some sparse vegetation was not a problem. This could be achieved by
using an Extract Transform Load process (ETL) from the same dataset (i.e.
the sparse point cloud) and some additional layers provided by the regional
cartographic agency (i.e. vegetation location, elevation profiles, etc.). We had
a starting and contextualised digital replica of the urban built environment
constituted of various object classes.

The first question has been answered: a generation solution has been proposed
to obtain simple models in CityJSON. The next logical step is the exploitation of
these generated models. Without going towards complex computations and use
cases, many possibilities of using city models could be handy. Still, it is important
to propose a generic solution that covers basics but allows improvements and
extensions following the trend. For the reminder, the objective of the project is
to study the decomposition of a GIS web-architecture in its constituting tiers
in order to tackle new capabilities: flexibility, openness, availability, etc. While
keeping in mind the current needs and the state of our knowledge, the point of
view must be ahead of time. Then comes the time to take care of the storage of
the CityJSON models, the second tier.

Once more, this question had too few answers at the time. A single database
distribution proposed a solution for the storage of these standardized models:
3DCityDB (Yao et al. 2018). The storage of CityJSON models in 3DCityDB,
the relational model of CityGML imposes to translate models in the so-called
CityGML XML encoding before storage. During the translation, information,
among others, such as metadata and refined levels of detail (whose advantages
have been discussed in the previous chapter) are lost. Moreover, besides its
complexity and the great difficulty that people have to understand its UML
scheme, storing city models in a relational database do not allow enjoying the
fundamentals of CityJSON: its lightweight and developer-friendly format.

Nevertheless, the worst reason of all is the loss of flexibility that CityJSON
initially provided: its flattened schema. In CityJSON, city objects are stored as a
list of elements in which cross-references are allowed (children/parents relations,
groups, etc.). In CityGML, the city objects respect a tree-hierarchy and all the
subsequent constraints. Associations and tables of relational databases suit the
translation of the tree-hierarchy but does not offer a convenient solution for the

DATABASE SCHEMA 45

CityJSON models because of the flattening of the schema (see Figure 3.1).

Figure 3.1: CityJSON flattens the CityGML data model compared to its XML-
encoding.

Undoubtedly, relational databases have deep roots in many places. However,
among other projects related to the Semantic Web and the study of the NoSQL
storage, we had the opportunity to handle information using different storage
solutions other than the relational mode. NoSQL databases, although this term
is used to describe a large number of solutions, offer in particular a storage
method called "documents". One of these distributions in particular caught our
attention: MongoDB. Documents can be defined as nested or embedded objects
in which other documents can be referenced without having to respect a vertical
structure. An important additional point is worth specifying looking at the
storage design: MongoDB encodes elements in binary JSON format (BSON).
BSON is a binary-encoded serialization of JSON documents that improves
scan-speed and storage space. One of the ideas developed in this chapter is
the isomorphism: avoiding format translation, and thus keeping everything as
we use (i.e., in JSON), allows consistency guarantee as elements should not be
manipulated. This point concerns the data format in addition to their design.

This chapter studies the schema definition for the storage of CityJSON models in
a document-oriented database. Besides, the XML encoding, the JSON encoding
and its relational model in 3DCityDB, it is the fourth usage of the CityGML
data model from a technical perspective. All developments are encapsulated
in a complete web architecture that encompasses its flexibility and provided
insights on future possibilities. Performance tests have been conducted in order
to better highlighting these new storage capabilities compared to relational
databases.

Based on article (Nys and R. Billen 2021)

From consistency to flexibility: a simplified
database schema for the management of
CityJSON 3D city models
Nys, G.-A., & Billen, R. (2021). Transactions in GIS, 25, 3048–3066.

Abstract: The use of 3D city models is now common practice; many large cities
have their own digital model. Resilient and sustainable management of these
models is necessary in many cases, where an application could evolve over its life
cycle. The complexity of generic modelling standardization is often a limitation
for a light and user-friendly usage and further developments. This paper aims to
propose an alternative providing a simplified database schema implemented in
a document-oriented store. Thanks to the use of the NoSQL store, the focus is
on flexibility of the data schemas. In order to aim attention at the compactness
in web development, CityJSON has been chosen for the encoding of the 3D city
models. Finally, a full-stack application (persistent storage, consistent edition
and visualization of 3D city models) has been developed to handle the simplified
schema and illustrates its capabilities in two practical use cases.

Keywords: CityJSON, NoSQL, 3D City Models, Data Schema, Data
Architecture.

48 DATABASE SCHEMA

3.1 Introduction

Nowadays, many large cities have usage of their own 3D digital model (Biljecki,
Stoter, et al. 2015). These 3D city models are the integrating base for urban
management tools such as fluid flows simulations, cadastral operations, urbanism,
etc. In the context of urban built environment, the use of CityGML as the data
model and encoding standard is now a common practice (Gröger and Plümer
2012). CityGML provides a data exchange format for the structuring of urban
and landscape objects. It stores objects in multi levels-of-detail and structures
their attributes, their relationships and their features on a normalized basis.
Its support of an increasing number of extensions allows dealing with more
and more issues: energy, noise, land administration, etc. (Biljecki, Kumar,
et al. 2018; Floros and Dimopoulou 2016). From a conceptual viewpoint, these
Application Domain Extensions (ADE) extend the supported features and
properties of the CityGML core module. These added elements are necessary
to perform computations or to store their results in simulations and analysis.

Recently, 3DCityDB, an open-source 3D geodatabase solution, has been
proposed to handle city models (Yao et al. 2018). The tool proposes a system for
the management, analysis, and visualization of large 3D city models according
to the CityGML standard. It relies on a relational database and provides
well-known tools such as Web Feature Service (WFS), the support of 3D scenes
(Keyhole Markup Language (KML), COLLADA, etc.), the streaming of these
formats thanks to the WFS capabilities, etc. The major drawback highlighted
by the author states that the lack of flexibility of the 3DCityDB relational
solution could limit its usability; even if ADEs are supported, maintaining
them natively could be troublesome. Besides, the intrinsic management of a
oversimplified object-oriented solution might impose to make a large number
of recursive joins to represent the aggregation and inheritance hierarchies of
the object-oriented data model. Moreover, to support new features, it might
be necessary to add tables, which always results in an additional demand for
resources and complexity of use.

This chapter aims to provide an alternative to the relational database
management of 3D city model and traditional tools (SQL, CityGML, etc.).
It relies on a simplified data schema for the storage of city model in a
document-oriented NoSQL store. A web three-tier architecture (client, server
and database), in which JavaScript articulates all the operations, illustrates the
use of the derived CityJSON schema, the JSON encoding of the CityGML data
model (Ledoux, K. A. Ohori, et al. 2019).

NoSQL databases offer the possibility to improve the storage flexibility by
reforming the tabular structure. Besides their reorganization of their intrinsic

RELATED WORK 49

structure, this stores family puts forward the plasticity of the schema model
(Weglarz 2004). On the other hand, CityJSON proposes a lightweight and
compact alternative to the CityGML XML-encoding. Following the same
conceptual model as the XML-encoding, the JSON-encoding offers the possibility
to ease development of web applications. The conceptual similarities between
CityJSON and document-oriented management, which stores information as
document in BSON-encoding, could provide an answer to the lack of flexibility.

This chapter is divided as follows: the Section 3.2 contextualizes this research in
related works on Web Geographic Information Systems architecture (Web GIS)
and the trend towards an increasing use of the web (Mobasheri et al. 2020). It
highlights the major drawbacks of the current relational management and put
it in parallel with the current state of alternate developments. Then, Section
3.3 describes the simplified data schema and its implementation in a document-
oriented store. The illustrating application architecture is decomposed in its
three constituting parts: client, server and database. Section 3.5 develops the
new data management concerning the modifications provided by the NoSQL
database storage and several improvements on other tiers. A response is
proposed and documented in order to shed light on its new capabilities. From a
network load viewpoint, performances tests compare architecture capabilities in
order to ensure exchanges compactness. A benchmark with a relational solution
is presented. Finally, two examples of use cases illustrate these capabilities
in practical situations in the section 3.6. Before considering future works, we
conclude on the principal benefits of the new generation application and its
advances.

3.2 Related work

A geographic information system (GIS) gathers and manages geospatial data
(Tomlinson 1968). In the urban built environment, besides the management
of 3D models and geometries, the specific attributes and semantic information
impose their own definition: Urban GIS (Blaschke et al. 2011). From a technical
viewpoint, a web-based GIS application is divided into three interdependent
constituting parts at least: (1) a client, which is a consumer of spatial
information; (2) a server, which is a GIS processing system; and (3) a database,
which is a storage solution that deals with spatial formats, spatial indexing
and/or data processing functions. In short, a Web GIS is a type of distributed
information system in which components manage spatial information on the
web.

Nowadays, leveraging client capabilities and thus using its resources, the browser

50 DATABASE SCHEMA

is no longer simply a static window on a set of data: it can also perform a set of
processes (Toschi et al. 2017). The browser-based applications should outstrip
standalone software thanks to their multi-user characteristics and dynamic
elements. It will result in cost savings from the server without negative impact
on the user experience (Kulawiak et al. 2019). Indeed, the number of clients
can also increase without limiting the server performances, as it is used as a
simple gateway and no longer as a computation centre.

Due to their mature support of spatial functions, indexes and storage capabilities,
relational databases often represent the core base of web applications (Mobasheri
et al. 2020; Zlatanova and Stoter 2006). Besides the data-modelling functions,
the transactional databases can handle data processing in an efficient way
(Obe and Hsu 2015). Several integrated solutions have been proposed for the
management of digital city models. The majority of these solutions are based
on a relational database: (a) DB4GeO is a web service-based geo-database
architecture for geo-objects (Breunig et al. 2016). It relies on an object-oriented
database. Nevertheless, its development is no longer maintained. (b) 3DCityDB
provides a spatial relational database schema for semantic 3D city models
(Yao et al. 2018). It proposes an important number of key features and
functionalities for CityGML models management (Pispidikis and Dimopoulou
2016). It is interesting to note that, among other functionalities, 3DCityDB
allows the streaming of CityJSON features thanks to the OGC WFS 2.0. (c)
A NoSQL solution relies on a document-oriented storage and provides a 3D
web-rendering tool (Doboš and Steed 2012). However, these tools used in this
architecture were not as efficient as nowadays: many current libraries were
unavailable (HTML5, ThreeJS, etc.), the browsers capabilities were not as
efficient as today; the focus was made on the dataset and did not consider
the architecture as a whole; etc. Moreover, the solution developers criticized
the lack of validation on elements import in the document-oriented solutions.
(d) Another NoSQL-solution development states that the document-oriented
stores lacks on consistency (Višnjevac et al. 2019). The problem here is that
the database cannot itself provide a sufficient guarantee of consistency. (e) The
storage and manipulation of heterogeneous data sources arises problems due to
the differences in data structure: sensors data, 3D city models, BIM models,
etc. have a different update rate, a different representation scale, etc. Even
then, in GIS applications where sensors data, 3D city models and BIM models
coexist, the relational databases are preferred (Aleksandrov et al. 2019).

It is here worth mentioning that the dichotomy in which relational databases do
not support JSON insertion and document does is no longer true (Chasseur et al.
2013). Relational databases have been refactored to handle JSON (Z. H. Liu
et al. 2014). However, it still imposes the use of an additional mapping layer
and thus does not provide a solution to the lack of flexibility. For instance, it is

RELATED WORK 51

the case for 3DCityDB, which translates the CityJSON in CityGML encoding
before storing it into the relational database thanks to the citygml4j software.

Developments on features visualisation have recently made progress on the
client side (Lim et al. 2020). They provide a comparison on web-based viewers
and their specific capabilities at the building scale. However, the conclusions
still draw the disadvantages of ADE modelling and the complexity raised by
relational database management. Working on the storage tier, a composition of
SQL/NoSQL allows enjoying advantages of both solution (Holemans et al. 2018;
F. Poux, R. Billen, et al. 2020). While the relational database is still mandatory
for its data-processing capabilities, the document-oriented database is useful
thanks to its storage flexibility. It can be done without replication or complex
mapping between the two stores since the metadata and geo-registration are
handled on server side. The geospatial capabilities of the document-oriented
stores bring more and more solutions to spatial-related problematics (Costa
Rainho and Bernardino 2018; Lopez et al. 2016; Zhang et al. 2014). However, it
shows that even if performances are overall improved with document-oriented
store, it is not yet always true (Makris et al. 2019). Sometimes, relational
database ranks ahead of document-oriented stores (Bartoszewski et al. 2019),
sometimes it is the inverse in terms of loading (Laksono 2018) or heterogeneous
sources handling (Sveen 2019).

From a technical viewpoint and in a more precisely way, MongoDB, a cross-
platform document-oriented database, has already been used in several "geo"
architectures. Constituting part of what is called a MERN stack (MongoDB -
Express - React - NodeJS), MongoDB is acknowledged for powerful way to store
and retrieve data that allows developers to move fast: MongoDB’s horizontal,
scale-out architecture can support huge volumes of both data and traffic. Thanks
to the flexibility of its schema, this distribution has proved its usefulness in
spatial 2D (Ðuric 2018; Voutos et al. 2017) and 3D visualization applications
(Trubka et al. 2016). The management of multiple representation structure
can be visualized using such a storage in the backend (Mao and Harrie 2016).
However, its limited capabilities to strict visualization could not set apart the
document-oriented storages and its features.

About the stored data and the city modelling, CityJSON proposes to renew the
CityGML schema and provides a lightweight alternative to the XML encoding
(Ledoux, K. A. Ohori, et al. 2019). Its improved support of levels-of-detail
and metadata make it a good substitute to CityGML (Nys, F. Poux, et al.
2020). However, its usage is still limited to specific applications and data
encoding (Kumar, Ledoux, et al. 2018; Nys, R. Billen, and F. Poux 2020;
Virtanen et al. 2021). Besides it, the new support of 3D models in QGIS should
improve its usability thanks to the development of a CityJSON plugin (Vitalis,
Arroyo Ohori, et al. 2020). Extensions of the core module are also promising

52 DATABASE SCHEMA

way to improve the CityJSON usability and its update to the 3.0 CityGML
version (Nys, Kharroubi, et al. 2021). In summary, nowadays, the storage of
the CityJSON models are limited to files. There is currently no solution for
storing and making models available in a collaborative and open manner.It is
here worth mentioning that the dichotomy in which relational databases do not
support JSON insertion and document does is no longer true (Chasseur et al.
2013). Relational databases have been refactored to handle JSON (Z. H. Liu
et al. 2014). However, it still imposes the use of an additional mapping layer
and thus does not provide a solution to the lack of flexibility. For instance, it is
the case for 3DCityDB, which translates the CityJSON in CityGML encoding
before storing it into the relational database thanks to the citygml4j software.

3.3 Solution description

This section is divided in two subsections: a description of the simplified
data schema for a document-oriented store and a description of the proposed
architecture to demonstrate the usefulness of the proposed schema. While the
first justify our choices on an efficient data accessibility and document nesting,
the second is a short technical description of all the improvements made by an
up-to-date WebGIS architecture.

3.3.1 Schema model

In a document-oriented database, the records are stored as documents that
follow non-mandatory and semi-structured implicit schemas (Olivera et al. 2015).
All the documents respecting the same pre-established and semi-opened schema
are gathered in a collection. These sets of documents allow the access and
the indexing on the records or on a group of them. It is the primitive of the
database query engine: everything revolves around this notion of collection. We
note that, some efforts have been put to handle geospatial functions already
but remain limited (Boaventura Filho et al. 2016). This section develops the
various steps that led to enhance and modify the CityJSON encoding into a
simplified database schema.

The bulk storage of a CityJSON city model in a single document without
decomposing it in different collections is possible but limits the possibilities
afterwards. A single collection storing all city models should therefore be queried
as the document store works around this notion. Queries and indexing need to
be complex to travel the embedded objects structure (an attribute is part of an
object, which is itself part of the model). Even if compound indexing is possible

SOLUTION DESCRIPTION 53

(i.e., successive levels of indexing on several attributes), this is not recommended
for efficient queries (Reis et al. 2018). Moreover, updating a sub-object in the
model without mobilizing the whole database become complex as it imposes
to go deep in the non-dependent objects embedding, get the object and then
insert the modified version in the model.

Next to secondary elements such as metadata and appearances, a city model is
made of CityObjects. Those objects are natively embedded in the city model in
a CityJSON file as JSON objects. However, this data structure is not efficient
enough for a dynamic use. According to the benchmark (Olivera et al. 2015),
the referred models are more efficient but impose developers to build dedicated
queries. Consequently, once elements are created and stored in collections, the
link to referenced city objects need to be accessible from the city model in a
smart way.

We propose to create different collections in order to handle elements and
ease their access. Hence, we decompose the city model in five independent
parts: CityModel, Texture, Material, AbstractCityObject and Geometry. All
imported records inherit their characteristics from these five collections as their
models are derived from these five top-schemas from the CityJSON specifications
(e.g. of a Building which is a specific AbstractCityObject with an address, a
measuredHeight, a roofType, a specific set of allowed geometries, etc.). These
alternate schemas are the second-order schemas (according to CityJSON) or
discriminated schemas (according to this contribution). In the core application,
the five first-order collections are defined dynamically by the database and the
server at start (see Figure 3.2 for inheritance relationships with second-order
objects). Note that the CityModel collection represents the models metadata
only. A CityJSON model, as a file, is thus made of the gathering of its sub-
collections. Different models can be concurrently stored in the same database
and the same collections. Thanks to the database smart allocation of space, if
a collection is empty, no record is stored (i.e. collection does not exist at all,
which implies that space is used). If a modification is made afterwards, a new
collection is created on the fly if necessary.

While importing the city model in the database, the city objects are stored as
independent objects in the AbstractCityObjects collection with a permanent link
to their relative CityModel document. Looping iteratively on the CityObjects
array from the CityJSON file, we create a new document for each new element
and validate it depending on the city object type (i.e., the validators are
built on discriminated schemas independently according to the CityJSON
specifications and thus the CityGML data model). All elements are then stored
in the CityObjects collection whether it is a Building, one of its constituting
BuildingParts, a SolitaryVegetationObject, etc. In short, the schema imposes the
necessary basis for files to be correctly managed by the database and to follow

54 DATABASE SCHEMA

Figure 3.2: CityJSON objects schemas and inheritance. Discriminated objects
are the "second-order" objects according to CityJSON.

the CityJSON core specification. However, the management of this schema in a
NoSQL solution does not limit the insertion of extended attributes. We note
that these extended attributes must still be coherent from a format perspective:
no special characters, no insertion functions, etc. Once a document is saved,
its corresponding document is afterwards referenced in the CityModel as a
simple object stating on the type and the unique ID of the document in the
AbstractCityObject collection (see Figure 3.3).

SOLUTION DESCRIPTION 55

As stated above, every object is referred with a unique identifier specific to
its life-cycle in the database (thanks to the special data type ObjectID). It
is automatically generated and indexed by the database. This integrated
management allows concurrent users to create objects at the same time but
without any inconsistency insertion (i.e., users need to be aware that two
modifications can be made concurrently without any guarantee of consistency
in a NoSQL store). Note that the differences between the CityJSON
discriminated schemas are sometimes very subtle but this substructure allow
further development in a convenient manner: modification to the schema are
easily made so that everything is decomposed, normalized and structured. The
addition of extensions takes direct advantage of this flexibility as it might
concern only a sub-schema or a part of it.

Concerning the insertion validation, during the model life-cycle, the CityObjects
field can therefore either be an entire object as in a file, either a reference
or unique identifier to the specific CityObject document. In order to prevent
users to alter the consistency of the database, it is thus important to provide a
pivot element which can take one or the other value without allowing too much
deficiency (Diogo et al. 2019). It imposes the use of the Mixed datatype to
validate the imported models. This pivot type is reused one more time for the
CityObjects to geometries relation (1-N relation). The Figure 3.3 illustrates the
referenced structure of the first-order schemas in the production phase; once
documents have been created and referenced (i.e., value is fixed to ObjectID and
a string specifying the type of the object). In order to handle spatial indexing
and thus filtering queries responses spatially, a geographicalExtent attribute
in computed based on the geometry of every document. It corresponds to
the smallest rectangular bounding box enveloping the object geometries. This
affects performances on model import.

Figure 3.3: Referred documents structure in production.

All geometries, and thus the fine and complex representation of the objects,
are stored in the same collection regardless of their type as has been the
case with the city objects. Here, it is not about a spatial management of
elements (i.e., spatial functions and indexes are not being used in the geometries
collections) but about a management of elements of a spatial nature (i.e.,
documents are actually real 3D objects following the standardized geometry
types). The geometries are complied with the ISO191607 standard according to

56 DATABASE SCHEMA

the CityJSON specifications. One more time, several discriminated schemas
derive from the first-order Geometry schema: Solid, MultiSolid, MultiSurface,
MultiLine and MultiPoint (see Figure 3.2). Note that the "composite" geometries
being structurally similar to the "multi" ones, no new schema is created. They
are managed as their "multi" equivalent with the difference that their type is
composite and not multiple. As a reminder, the difference between the two is
whether the constituent elements are contiguous or not.

As in the CityJSON files (i.e. the Wavefront .obj file structure), the object
boundaries are stored as a list of vertices and arrays of pointers to vertices
coordinate triplets in this list. However, the referenced vertices triplets for every
object are stored in bulk within the CityObject document not in the whole
CityModel one. This point set apart the database schema with the common
CityJSON files since the vertices should be stored in the CityModel according to
the specifications. In the direction of a wider support of spatial functions within
the application and the streaming of features, this storage method improves
an independent objects management: the spatial indexes and the consecutive
references are suited for an optimized spatial function support. Note that this
discrete handling of vertices affect the CityModel upload performances also.
The support of spatial functions and tools represent an important future work.
Without tackling the database, it would also be interesting to consider both
server-side and client-side for spatial analysis.

Concerning the support of schema extensions, an important benefit of the
application relates to the semi-openness of CityJSON specifications. While our
motivation is to increase flexibility, we would not limit the possibilities offered
by the semi-open schemas. Hence, the schema structure is not locked. It allows
the addition of attributes and/or properties and new CityObjects type. We
believe that CityJSON approach allow people to think about many solutions
in this way and ease their development. This point on total openness goes
against the 1.0.1 CityJSON specifications in which additional properties are
not allowed in some CityObjects definitions. Hence, some drawbacks might be
encountered: an exported model from the application might not be compliant
with other tools in which specifications limit the model to the strict conditions
of the specifications. Efforts from the developers need to be made in order to
guarantee this interoperability.

3.4 WebGIS architecture

In the context of web development, when compactness and lightness are concerns,
the creation of a full-stack MERN (MongoDB - Express - React - NodeJS)

WEBGIS ARCHITECTURE 57

application facilitates a smart deployment. MERN web applications ensure
convenience for web applications that have a large amount of interactivity
built into the front-end (i.e., the JavaScript clients). The following paragraphs
describe the constituting components of a MERN application and decomposes its
architecture in order to develop its benefits. Those benefits are mainly discussed
concerning their answer to the lack of flexibility of previous architecture and
the availability of a database support for CityJSON models.

Such kind of application is made up of a minimum of four technological stacks
(ReactJS, NodeJS, ExpressJS and MongoDB) as shown in Figure 3.4. The
increase of flexibility and resilience is demonstrated and put in parallel with
the architecture components.

Figure 3.4: Architecture schema of a full stack MERN application.

The four open-source constituting stacks of the core application are the following:

• MongoDB – the document-oriented NoSQL database.

• ExpressJS – a minimalist web framework for NodeJS.

• ReactJS – the Facebook MVC library (Model–View–Controller).

• NodeJS – a JavaScript runtime environment.

The client tier is built based on the ReactJS library (see Figure 3.5 for
illustration). ReactJS gave us the modularity necessary for the development of
a new research tool as it does not dictate a pattern. We thus focused on the
data architecture and the application consistency. It allows the construction
of specific components and their reusability on a normalized basis. Note that
the rendering scene is an extension of the NINJA viewer (Vitalis, Arroyo Ohori,
et al. 2020). It is itself based on the ThreeJS library (the WebGL cross-browser
JavaScript library for 3D manipulation and display). Nevertheless, the inserted

58 DATABASE SCHEMA

value during updates and objects modifications are tested in conformance with
the CityObject schema and common insertion rules (i.e. no special characters,
no injections, etc.). The client tier allows all the common CRUD operations
(Create, Read, Update and Delete) on both CityModels and CityObjects.

The components communication is built on an event-driven paradigm: the
components subscribe to particular messages on an events bus. They then react
to their subscription whenever an update is published. The messages could carry
information and/or simple messages. It allows decoupling components in order
to increase performance, reliability and scalability (Allah Bukhsh et al. 2015).
Following this, all components can be dismounted just as new components can
be added modularly to open the application possibilities. Hence, two panels
are left open to integrate new modules for dedicated functions: secondary view,
tables, embedded objects, etc. Use cases of these panels are presented in the
end of this chapter according to schema modifications during the production
phase.

Figure 3.5: Client view of the application – the rendered model is the dummy
Railway.json file provided by the 3D GeoInformation research group from
TUDelft.

The server is a NodeJS JavaScript runtime environment that allows performing
JavaScript code on server side (following the ECMAScript2015 specifications
(International 2015)). It follows an asynchronous, event-driven, non-blocking
input/output (I/O) model. These two last properties make it a very fast and
resilient web server (Westerholt and Resch 2015).

DISCUSSION ON PARADIGM SHIFT 59

Along with that, ExpressJS is a JavaScript library that simplify the task of
writing web server code for NodeJS. Relying on HTTP requests (i.e., a RESTful
application), it allows people to set up middleware function calls on a server:
Cross-Origin Resource Sharing, rate limiter, cache, compression, authentication,
etc. Currently, the REST API performs basic functions for CityJSON models
and its features management such as CRUD functions. The communication
layer follows the HTTP/1.1 requests specifications. We point out that the non-
successful responses are possible but non-response are avoided in conformity
with the BASE properties of the database. This property has been generalized
to the server application. Moreover, the server tier and thus the API ensure the
application consistency as the database itself does not provide any guarantee of
it (Diogo et al. 2019).

The database tier is a document-oriented NoSQL store: MongoDB. Overall,
the document-oriented solutions tend to improve the performances and the
storage volume for dynamic data management. Despite many advantages, it is
good remembering that the responsibility to maintain the data sanity is no role
of the NoSQL database (ibid.). The indexing method takes advantage of the
metadata of each record. The choice of a document-oriented solution has been
made because of the schema flexibility and its native JSON support (database
object are BSON document of Binary-JSON object).

Unlike the English-like SQL, the dedicated MongoDB query language performs
CRUD functions but also aggregation, text search and a small number of
geospatial queries. The functions take JSON objects as parameters. Besides
referenced relationships, the collections are independent from one another. To
make the comparison with relational databases, "joins" are not allowed between
collections. This point will be discussed in Section 3.5.3.

3.5 Discussion on paradigm shift

Apart from the schema model and the proposed architecture, which have been
discussed on a technical aspect, several conceptual points need an explanation:
the use of NoSQL was not done without reason and some modifications to the
CityGML/CityJSON conceptual schema had to be made. The decomposition of
the CityJSON files in documents and collections schemas make up the structure
of the database to perform normalized API calls. This section comments the
contribution of the simplified schema in order to open its reuse in future works.

60 DATABASE SCHEMA

3.5.1 Structured and unstructured data

In this chapter, we propose to shift the database archetype from relational
solutions to a NoSQL document-oriented store. This conversion should make
it possible to open up possibilities and ease schema modifications. While
structured data (i.e. relational solutions) promote a consistent data storage,
unstructured data stores (i.e. NoSQL stores) intend to enhance flexibility and
availability (Weglarz 2004). The relational databases represent the more rigid
storage structure. It imposes a static tabular representation of the data (i.e. the
data are imposed to follow a structure formatted as rows and columns). The
consistency of relational databases is especially ensured by the respect of the
ACID properties: Atomicity, Consistency, Isolation and Durability. The regard
of these properties results in the guarantee of avoiding insertion of inconsistencies
in the database. Conversely, the principal drawback of the relational family
comes from the same reason: the data querying and thus its availability can be
inflexible because of all the conditions imposed by ACID properties. Moreover,
the table joins imposed by most queries can make them cumbersome and result
in complicated processes.

For instance, in the context of urban modelling, DB4GeO provides a solution
relying on an Object-Oriented Database (OODB) (Breunig et al. 2016). Focusing
on the data integrity, an OODB follows the ACID properties. Even if the data
structure established on objects is similar to NoSQL stores, we find here the
disadvantages of the relational model mentioned above. In addition, it is difficult
to make changes to an application that has been in production for some time.
It imposes to rework the database structure upstream, before any use. Section
3.5 illustrates examples of how relational solutions need to be updated in order
to handle new attributes and/or new features using new associations.

Oppositely, in contrast with the rigid tabular models of relational databases,
a document-oriented store proposes to modify the data structure and open
it. The NoSQL solutions do not follow the ACID properties but the BASE
properties (Basically Available, Soft state and Eventual consistency). It results
in a system in which denormalization is encouraged. The horizontal scalability
is improved (i.e., the replication of the system across n-databases):

• Basically Available: the data are guaranteed as always available in terms
of CAP theorem (Brewer 2000). For the reminder, this theorem states
that any distributed data store can provide only two of the following three
guarantees: consistency, availability and partition tolerance. Whether it is
successful or not, there is always a response to any request: "non-response"
are not possible from the store.

DISCUSSION ON PARADIGM SHIFT 61

• Soft state: the state of the system could change over time. This can
be possible even without input. This is due of the eventually consistent
property.

• Eventual consistency: the system will eventually become consistent
once it stops receiving input.

The document-oriented stores are composed of key-value pairs in which values
can be records such as XML, JSON objects or even other documents. For
instance, sets of semi-structured data might be deeply embedded and even
recursive (i.e., chain references are possible). Nevertheless, the management of
records and lack of standardized schemas improve their flexibility. It assumes
a loss of records consistency to improve the database flexibility because of
the BASE properties. The consistency insurance is thus carried over to
server and client tiers and above all by the simplified schema. Here, the
purpose is not the database consistency. A document-oriented store supports
hierarchical documentation of data, which is akin to CityJSON models and
objects management. Every single records is described by its own metadata. It
uses agile and dynamic schemas without previously defined structure.

In summary, the alternative provided by the simplified database schema and
its implementation in document-oriented stores allow users to ensure data
availability and the flexibility of their application in a simplified manner. It is not
a solution that would go beyond relational solutions but offers an opportunity
to develop new functionalities. OGC API – Features should indeed be an
important improvement. It would take advantage of the CityObjects collection,
which corresponds to the notion of the standard: a set of features from a dataset.
Besides, the CityObjects are themselves abstractions of real world phenomena
and thus can be served as feature following the standard [ISO 19101-1:2014].
A discussion should take place around these considerations and state on how
CityJSON and the proposed application can demonstrate it.

It is here worth mentioning that the dichotomy in which relational databases do
not support JSON insertion and document does is no longer true (Chasseur et al.
2013). Relational databases have been refactored to handle JSON (Z. H. Liu
et al. 2014). However, it still imposes the use of an additional mapping layer
and thus does not provide a solution to the lack of flexibility. For instance, it is
the case for 3DCityDB, which translates the CityJSON in CityGML encoding
before storing it into the relational database thanks to the citygml4j software.

62 DATABASE SCHEMA

3.5.2 Stacks communication

During the development of the application, while the client was hosted on a
remote machine, the application server and the database were hosted on the
same machine. This design allowed us to test server load, response time and
response mode from a client/server perspective. In order to assess on the best
communication mode, we conducted tests on a city model loading. The web
GIS client capabilities becoming greater and greater (Agrawal and Gupta 2017),
we wanted to provide a benchmark of current objects managements possibilities
for a unique client (i.e., Chrome’s V8 JavaScript engine in both server and client
sides). Tests in which n-clients query the same API has also been made (see
section 3.5.4). Downloading the objects from the backend layer can be made in
several ways:

• (a) Discrete requests: the server get all objects one by one from the
database and send them to the client as soon as something is loaded. The
city model reconstruction is carried by the client. It is characterised by a
"flickering" apparition of elements in the rendering scene. It is a common
asynchronous loading method.

• (b) Bulk requests: get all objects from the database then send them
to the client in one aggregated object as a city model. The city model
reconstruction is carried by the server. The model appears at once, in its
entirety. It may take some time before seeing a result as all queries need
to be resolved in order to response to the client.

We note that all exchanges are simplified thanks to the isomorphism of the
application: all data are formatted as JSON objects in both back-end and
front-end stacks. There is no need of translation or restructuration for the
exchanges and the object management given that CityObjects are stored as they
stand. In short, "what you store is what you access". The Figure 3.6 and Figure
3.7 represent the sequence diagrams for both solutions: continuous and bulk
requests. They depict the succession of queries between the three-tier (client,
server and database) and their responses.

The clients open a connection whenever they initialise themselves. The server
and the database keep the connection open for future calls thanks to a NodeJS
middleware. Hence, the client/server connection is made only once. Even if a
client closes its connection, the database and the server keep a connection open
for a limited amount of time in order to facilitate new connections. It is done
given that opening a new connection takes a bit of time.

DISCUSSION ON PARADIGM SHIFT 63

Figure 3.6: (a) Discrete loading (sequence diagram) - client-side reconstruction.

Figure 3.7: (b) Bulk loading (sequence diagram) - server-side reconstruction.

While the continuous loading allows diminishing the size of the bandwidth,
the bulk loading allows making a single request on the network and reducing
the global data transfer (i.e. fewer queries also means less redundancy in the
formalization of query headers.). Moreover, caching the response of the bulk
loading will improve performances as the model reconstruction is only made
once. The tests were conducted on a small dataset, which numbers 120 Building
objects and a TINRelief object. Note that, thanks to asynchrony from the
NodeJS stack, the requests in the continuous loading were not stalled (i.e., no
time were spent waiting because of proxy or ports negotiation before responses
could be sent - the Time To First Byte (TTFB) represents very little). On the
other hand, TTFB represented 99,6% of the bulk request time. It corresponds
to the time for the server to process the database requests and reconstruct
the whole city model before sending it. It is also important to note that time
has been saved as CityModels are stored as they stand and thus the database
does not need to formalize its responses. The whole process took twice as long

64 DATABASE SCHEMA

for the continuous loading for a total amount of data exchanged four times
greater (each request have a header and thus multiply the size). Note that this
consideration is only valid as long as the database structure does not change.

3.5.3 No joins

Within a relational database, the objects are often split in several tables. Many
associations, which may be 1-1 but also 1-N and N-N cardinalities, link these
tables together, making it difficult to access the data. Modifying the stored
objects, the number of relations results in the modification of a potentially
important number of tables. Moreover, this should be done cascading in a
specific order: first tables referred by foreign keys are modified, and then tables
linked with these specific keys. Hence, it is important to have a strong knowledge
of the database structure and provide guidelines and documentation to simplify
developers work.

On the other side, MongoDB retains the JSON objects structure and does not
limit insertions. For the reminder, this is not possible with a relational database
that imposed the use of conversion tools for native JSON file management.
These tools often imply the creation of many tables, many joins and thus the
formalisation of complex queries. Such queries and updates increase the time-
consummation of processes due to the important number of joins needed. Hence,
if the conceptual model is complicated, it ends up with a lot of complexity.
A version attribute is modified on-the-fly allowing users to track elements.
The CityGML encoding is a perfect example of a high complexity structure
(Yao et al. 2018). For instance, in the 3DCityDB schema, sixty six tables
are used to handle CityGML models in a relational database (against three
collections in our simplified mapping and the use of the Mixed datatype). The
addition of modules increases this complexity but also might imply to rework the
database structure upstream. For instance, 3DCityDB and its import/export
tools allow creating new tables and associations in a convenient manner during
the database setup. Besides the addition of tables, it is worth specifying that
these tables might be empty or not use in practice: given that ADE are generic,
all information might not exist or not be relevant for the users’ needs. This
might be an additional source of bad resources consummation. This is not
the case in document-oriented solutions: empty fields simply does not exist
and documents structure evolves in accordance with the database lifecycle.
In summary, the repetitive joins, which are the main drawbacks of relational
databases, are avoided. This occurs in a more effective way to query, insert and
store information whose structure is assumed to change frequently. To compute
results on several collections at the same time, all collections need to be queried
independently. The results are then gathered by the client (e.g. of MapReduce

DISCUSSION ON PARADIGM SHIFT 65

processing techniques). As a reminder, the denormalization is encouraged so
reference and links can be done cleverly depending on the use of the product.

3.5.4 Comparison reference with relational solution

To illustrate the disadvantage of the relational joint, we conducted a benchmark
on several queries to 3DCityDB and our schema model. In order to perform
these tests, we simulated two remote JavaScript clients conducting queries on
one side on a PostgreSQL with the 3DCityDB model and on the other side
on a MongoDB structured following our schema. Both databases included
the same three city datasets that counts 3471 objects in total (3353 among
them are Buildings). The query intends to get a random Building object with
its attributes (roofType, function, etc.), its unique ID and one of its Solid
geometries.

Some elements need to be discussed before any statement. Before the
instantiation, both databases have a far different usage of memory. While
3DCityDB imposes the storage of 66 tables in 23Mb, our schema and its basic
structure only takes 12Kb to create the three empty collections. The collection
schemas and the validation of an insertion are handled by the server and not the
database itself. It allows storage to be reduced and thus improves performances.
Once instanced, the relational solution is 149 Mb wide against 87Mb for our
schema (58%).

We have tested different interrogation methods by varying independently both
the number of requests and the number of requested items. Note that the
connection pool size of the database have an important impact on performances
(a hundred was used). It is important to prepare it and to provide the same
number of potential connections on both databases (by default, MongoDB allows
only five concurrent connections. PostgreSQL allows hundred connections
by default). It allows also to measure load under many clients querying
asynchronously the databases. About the architecture scalability, there is
still room for improvement by multiplying the number of replicated databases
(W. Schultz et al. 2019). The balance should be determinate between the
number of replications (n-databases), performance and the required consistency
(Haughian et al. 2016). Nevertheless, MongoDB offers already the possibility to
create replications in a native way, which should facilitate future work.

As stated before, the relational schema imposes to inner join three tables. Our
schema simply queries an object from the CityObjects collection specifying that
the type of the queried object is "Building". Then it queries the related unique
ID of the geometry in the Geometries collection. Since a document-oriented
store is built and indexed on such relations and nested elements, this two steps

66 DATABASE SCHEMA

retrieval seems to be more efficient. This hypothesis is directly reflected in the
Table 3.1, which shows the databases response time.

Table 3.1: Response time for the Buildings queries – repetition x objects (in
milliseconds)

1x1 1x10 10x1 1x100 100x1 1x3353 (1xall)
Simplified schema 48 53 76 125 297 6678
3DCityDB 83 86 191 163 379 38089

These tests were conducted independently of the MERN application develop-
ments. In the application, a server cache avoids processing every query as some
might be retained in the cache memory. In summary, this section offers an
illustration of what is possible in the matter of response time thanks to the
new schema, the document-oriented storage and the resilience of the MERN
components. For the reminder, its contribution is a first answer to the lack of
flexibility of relational databases used in traditional architecture and the support
of CityJSON in a database. Hence, a convenient management of CityJSON
models is thus facilitated by the simplified schema, its three collections and
the "what you store is what you access". A common base is given without
limiting the usefulness of the schema to a particular domain or specific end.
These overall improvements of the schema and its dedicated architecture can
be summarized in three points (see Figure 3.8):

Figure 3.8: Summary of new capabilities.

USAGE SCENARIOS 67

3.6 Usage scenarios

Now that the schema has been presented and the database solution has been
compared with a relational solution on a comparison between them, we will
state on the schema flexibility through qualitative use cases. We have developed
two simple extended schemas and two modules to demonstrate the usefulness
and the flexibility of the schema. It is illustrated in situation of dynamic changes
in the storage model during the production phase. The first one is interested in
the visualization of flat roofs and their potential for the installation of green
roofs. The second module concerns the management of the energy performance
of buildings certification and the updating of its calculation method. As a
reminder, the structure of the database is not modulated as the city objects
are themselves not modified (collections are not altered). However, the objects
schemas allow the addition, the deletion and modification of attributes in the
stored records in a consistent way (see section 3.5.1).

3.6.1 Urban green infrastructure

Urban green infrastructures (UGIs) are part of the nature-based solutions for
sustainable urban development. In a previous research, we took part in the
development of a simple method for identifying the potential of green roofs
along with identification of priority regions in city centers (Joshi et al. 2020). In
order to estimate the potential roof surfaces of buildings, we interpolate planes
based on a LiDAR point cloud and create building geometries (Nys, F. Poux,
et al. 2020). Once planes have been interpolated, we extract their metrics such
as the average heights of planes, their slope, their area, the number of planes
per buildings, etc.

During the method development, some limitations were noticed in a 2D
framework (Joshi et al. 2020): for instance, the obstructions are not considered
(chimneys, elevator shafts, etc.). Taking into account a greater level of detail for
the roof representation should therefore improve the conclusion and catch the
user’s eye. As preparatory work for this new study, we proposed to integrate
the urban model into the application and add information as it goes.

Therefore, we developed an extension that handles the relevant information
for UGIs installations. All information is attached to buildings geometries
and integrated into the CityJSON city model as object attributes. Besides, a
modified version of the simplified schema is hosted on the database. It validates
the new attributes and guarantee the consistency of the application through its
different usages.

68 DATABASE SCHEMA

It was possible to add information relating to these levels of detail, whether
purely geometric or semantic, without modifying the work already done: the
levels-of-detail refinement were added to the model, even if it was already used
by project partners. There was no need to create an additional collection. The
visual report gives users a quick glance on the zone and future development
solutions (see Figure 3.9). As stated in (Joshi et al. 2020), the method can still
be improved considering more socio-economic factors. Hence, the application
will allow handling the modifications easily and provides a convenient integrator
basis for further developments.

Figure 3.9: UGI module for the visualization and computation of green roofs.

For comparison purpose, the Table 3.2 has been updated to present response
time of the Building query on the relational enhanced solution. In order to
store the new information related to UGI, we added a table associated with the
building one. Queries therefore impose the use of an additional join and thus
affect performances, what we expected. Changes for the simplified queries in
the NoSQL store are about the millisecond sometimes more, sometimes less. It
has thus been not added to the table.

Table 3.2: Response time for the Buildings queries – repetition x objects (in
milliseconds)

1x1 1x10 10x1 1x100 100x1 1x3353 (1xall)
Simplified schema 48 53 76 125 297 6678
3DCityDB 83 86 191 163 379 38089
3DCityDB + UGI 88 91 252 172 412 41374

USAGE SCENARIOS 69

3.6.2 Energy performance of buildings

The European Directive 2010/31/EU of 19 May 2010 on the Energy Performance
of Buildings (EPB) requires Member States to set up a system of certification.
In addition to setting EPB requirements related to construction, it also imposes
renovation work. The energy performance certification of buildings consists of
an overall assessment of the energy performance of a building according to a
defined calculation method.

In Belgium, this directive has been translated in an order of the regional
government. This order reviews the calculation method on occasion and
makes changes at both the semantic and conceptual levels. Depending on
the modifications, the calculation of the energy potential of buildings can
change: new parameters can be included, some can be deleted, new statistics
and intermediate values can be useful or neglected, etc. In an EPB dedicated
application based on a storage solution, all these statements result either in a
structure modification for new features either storing redundant, unnecessary or
incomplete information. As stated in the previous section, the usage of a NoSQL
document-oriented solution allows adapting the object attributes without any
condition and storing them within the same documents. This can be made
without altering the database structure and frees unused space as it goes.

The use of an architecture presented in this chapter offers a flexible tool that
can be easily improved through different changes in methods and legislation.
Without going into details of the EPB calculation, we developed a module
allowing calculating its value based on buildings attributes and metrics. It is
computed on the fly and changes buildings colour following the normalised EPB
scale (on the bottom left of Figure 3.10 - version updated on January 1, 2019).
The Figure 3.10 illustrates a simulation on 2369 buildings in the centre of Liège,
Belgium. The EPB module computes and stores the performance value based
on attributes such as the type of heating, the coefficient of thermal transmission
of a wall, etc. We simulated a modification in the EPB computation by taking
into account the over-ventilation by manual opening of doors and windows (in
accordance with the decree of 11 April 2019). It was thus sufficient to save the
value but without modifying the database query mode using the REST API.
The database has thus added key/value pairs to the schema and the required
documents in the Buildings documents of the AbstracCityObjets collections.

The use of the tool proposes to handle both energy consumption data and 3D
city models. Rather than manage the certification on an individual basis, we
offer the possibility to build an energy cadastre at the neighbourhood scale
but also of the city. The tool can be used by communities for managing their
energy consumption and perhaps optimizing them: highlighting heat islands,

70 DATABASE SCHEMA

heat plant installation, real estate renovation campaign, etc.

Figure 3.10: Illustration of the EPB module.

3.7 Conclusion

This chapter presents a simplified schema for the storage of 3D city model in a
document-oriented store. It illustrates new capabilities in a dedicated application
that allows the storage, management and visualization of CityJSON models. The
JSON-encoding provided by the CityJSON specifications has been opened and
partially reworked in order to extend possibilities of management. The different
collections bring together the three main elements of city models (CityModel,
CityObjects and Geometries) and ensure data access. The simplifications brought
by this new model ease the accessibility and storage volume.

Besides, in order to demonstrate the capabilities of this simplified schema,
we developed an application based on JavaScript technological stacks and a
NoSQL database. This database shift proposes to go from a solution that
ensure consistency (i.e. the ACID properties of the relational databases) to
a solution that improves the application flexibility (i.e. the semi-openness of
NoSQL schemas). The benchmark of this solution with the state of the art
is convincing in terms of response time and storage weight. We believe that
this application will improve the usage of CityJSON and web-based tools in
urban built environment modelling. The usability of the application has been
illustrated in two use cases of common practice: the visualization and the
storage of urban green infrastructures and the energy performance of buildings

CONCLUSION 71

certification. The application allows users managing the diverse data sources
and structural changes during the production phase in a convenient manner.

Future works will study the implementation of spatial functions support for the
application. An important discussion will take place on the choice between the
three possibilities of spatial support: database, client-side or server-side. While
the former could not be done without a deep rework of the database management,
the proposed architecture may have a place in the demonstration of spatial
client/server capabilities enhancements. Nevertheless, such improvements should
keep an eye on the implementation of the OGC API - Features standard in
order to allow features fetching. A major improvement of this kind will improve
the user-friendliness and the dissemination of CityJSON models.

72 DATABASE SCHEMA

Subsequent developments

In addition to the scientific publication of the results and the conceptual
idea, the whole architecture and its code have been published on a public
Git repository. It is available at https://ganys.github.io/Measur3D/. This
repository is updated according to the progress of its different components and
related research results. For instance, the use of the MixedType presented in the
published paper, which allows storing mixed documents in the same attribute,
has been modified to an embedded reference system. It allows gathering of
constituting features among all database collections before sending it to clients
as a consistent CityJSON model or features in an optimized way. The schema
has also been updated to comply with the recently published CityJSON 1.1
version (i.e. the compliance with the 3.0 CityGML data model). Once more,
the modularity and the interoperability of the architecture components allowed
improving them independently.

This chapter represents the core of the thesis project: it is its major contribution
as will be demonstrated in chapter 6. It links all developments and represents a
sandbox for future researches and teaching. The architecture modularity and
its independent components provide a great tool to build up proof of concepts
for CityJSON extensions (as for the extension relating to point clouds (Nys,
Kharroubi, et al. 2021)), to test 3D city modelling processes, to propose new
solutions for future needs, etc. Significant optimization and documentation
work should be done to get the most out of it. However, the simple fact that
this alternative is proposed (and it is still only the only alternative at this stage),
justifies its creation and study.

The development of our own architecture allowed us to perform many tests, tasks
and experiences thanks to the flattening of the data schema. In the document
database, we enjoy the loss of tree-hierarchy and constraints. Decomposing the
web-architecture in its three constituting parts supports us to manage each
aspect of the data lifecycle. First, we dealt with the generation of models to
allow their storage in a second step. The server still has a role to play in the
story we wanted to tell. Thanks to the provided tools, Master theses are in
progress and should be successfully completed: the first proposes the complete
workflow from a raw point cloud to CityJSON Transportation features. Point
clouds are acquired by mobile mapping. The focus is made on the automation
of the process. Models are stored and visualised in the architecture. It is mainly
used in the end of the processing chain to make the models shareable.

The second thesis develops all the capacities of the architecture: it provides a
first approach for the extension of CityJSON for the support of Dynamizers
(Chaturvedi and Kolbe 2015). It extends the feature representations of city

CONCLUSION 73

models to support variations of individual feature properties and associations
over time. Extensions are easily added to the core schema and stored in
the database. The client viewer is then upgraded to support such dynamic
information (smarter objects design, charts, etc.). Usability, flexibility and
maintenance are one more highlighted.

Having such a sandbox also offers the possibility to handle "mutated" models.
For example, it allowed managing point clouds in CityJSON models. The
principle was to open a bit further the definition of the CityObjects in order to
represent them as raw sets of points (Nys, Kharroubi, et al. 2021). Interesting
results of this idea provide CityModels that are fully represented as point clouds.
It is a direct mapping from the segmented point cloud file to the semantic
CityModel and its features. Point clouds could also be used bringing added
levels of detail for vegetation, interior of buildings, etc.

Figure 3.11: Visualization of an urban model CityJSON in point cloud only.

Chapter 4

Consistency guarantee

4.1 Introduction . 80

4.2 Related works . 82

4.2.1 Exchanges and standardization 82

4.2.2 Role of the database . 86

4.3 Schemaless database . 88

4.3.1 NoSQL models . 89

4.3.2 Architecture specifications 91

4.3.3 OGC API - Features . 99

4.4 Conclusion . 101

75

Preface

The flattening of the city objects structure within a model has been proposed
by CityJSON. Storing the city elements in a bulk in a dedicated key CityObjects
of the model object, the weight of the files is reduced but it is not the only
benefit. Indexing this collection based on the object value (i.e., its unique
identifier), it allows retrieving elements fast in the document-oriented schema
without traversing a tree hierarchy structure as in CityGML. These new models
capabilities have been exploited by storing them, respecting their form, in a
document-oriented database rather than transcript them in a relational model.
This transcription is still the only method for storing CityJSON models in a
database nowadays.

The database schema has been improved in order to optimize models accessibility
in the process. The shift from a rigid tabular structure to linked collections
of documents (CityObjects, Geometries, etc.) enjoys an important gain of
flexibility conceding a loss of consistency due to the BASE characteristics of
NoSQL solutions. The features access is improved and the storage is simplified
in the same way. However, the consistency of the architecture should not suffer
of a too lax management. The data and its quality remain at the centre of all
the proposed evolutions through these chapters; this must not change with the
next contribution.

The MERN Measur3D architecture has been published and its code it publicly
available on GitHub 1. People have started using it and developing new features:
Dynamizers, enhanced Transportation module, point clouds support, educational
material, etc. In the meantime, it has been updated to support CityJSON 1.1.2.
Among the improvements proposed by this new version, the typos in version
1.1. were already corrected in the previous chapter outputs. The majority
of improvements from CityJSON 1.1 in specifications definitions are not the
schemas. Therefore, we must not modify our contributions and it was indeed
not complicated to switch to this version. The OGC API - Features capabilities
have also been augmented in order to follow a part of recent developments.

Still, at this moment, the database itself does not provide any guarantee on data
consistency; the focus is made on the flexibility and accessibility of the stored
data. Since documents are not supposed to respect any predefined schema, the
stored elements can take any shape, be consistent or not, refer to any other
document or collection without any limitation on hierarchy and filiation, etc. We
have proposed a structure but there is no technical architecture component that
governs this scheme. Moreover, besides any additional security layer, people
can access whatever they want on the database without worrying about access

1https://ganys.github.io/Measur3D/

CONSISTENCY GUARANTEE 77

rights, etc. In a shared and semi-open management of a unique city model,
such loss must be compensated somewhere. Otherwise, some might as well not
use a standard and thus not promote interoperability of the data that would be
shared. One can, for example, imagine a filter that explains the errors, allows
several coexisting versions of it, etc. Providing a schema in the last chapter,
we have a basis to build such filter. This filter would act like Cerberus was
guarding the underworld to keep access to the database. Each application must
then be served by one of the heads of the dog depending on the version, the
access rights, etc.

Putting the database completely aside, the postponement of the validation must
be done on one of the two remaining tiers: the clients or the server. In our
vision of the web servicification and its related-applications, it imposes that
clients must stay "passive". They are consumers of data and thus must not
assess on their quality, format, etc. Therefore, the only remaining possibility is
the server. We wanted to provide a solution that works in both ways: writing
and reading information. The creation of a middleware seemed coherent. This
chapter develops the establishment of a new architecture layer that will envelop
the server in order to shift the data consistency from the database to the server.
Since the consistency provided by the relational database has been replaced using
a NoSQL solution, the consistency guarantee should be postponed elsewhere:
on the server. This filter should not be an added tier but rather a layer, as
would a permeable membrane. Some Cerberus heads will be created in order to
provide a proof of concept.

Based on article (Nys and R. Billen 2022)

From consistency to flexibility: Handling
spatial information schema thanks to a
middleware in a 3D city modelling context
Nys, G.-A., & Billen, R. (2022). Transactions in GIS, 26.

Abstract: Twinning elements of reality gains a growing interest in support of
decision-making, learning and simulations: a single and shared model should
provide a unique integrative basis for managing assets of any replica of the real
world. From a technical viewpoint, sharing and opening information requires
both an exchange format and a high degree of freedom and flexibility. It should
allow an important number of users to manage this information, to modify it,
etc. Storing and manipulating spatial information concerning the urban built
context currently focuses on ensuring consistency thanks to relational databases
and predefined schemas. Following a solution shift from a relational database
to a NoSQL database, a schema validation middleware is proposed to improve
the flexibility storage by conceding a share of its consistency. The flexibility
improvements thus provide users a common basis that is able to evolve all along
the lifecycle of their models and applications as required for twinning things. It
allows users and their applications to take advantage of new storage features
such as common: versioning, partitioning, prioritization, applications profiles,
etc. The middleware and their new capabilities are illustrated thanks to the
CityJSON encoding and its simplified schema for a document-oriented database.

Keywords: Schemaless database, NoSQL, middleware, 3D city model, Digital
Twin, CityJSON

80 CONSISTENCY GUARANTEE

4.1 Introduction

The digitization of real world elements improves activities and applications
in many domains. This could be achieved, for example, through the creation
of a digital model providing a single integration basis for all these activities.
However, in practice, even if a conceptual schema allows structuring elements
around a common base, different competing models might exist and provide a
different representation of the same reality: not all users are interested in the
same aspect or the same details.

The design of a digital model is a long and difficult process that requires
compromises. As the needs of each application are not the same, one often
prefers to use a specific model, close to the needs of the application, which itself
is also specific. It is often the reason that does not allow the implementation
of a shared digital model: what is the vision of reality that is necessary but
also sufficient regarding all the users’ activities around the model? Should
applications that are considered more complex make concessions by using a
generic model or should we impose complexity on applications that can be
limited to something simpler? This would lead to a potential disconnection
with reality on the one hand due to a loss of information in a generalization.
On the other hand, situations where interactions would be cumbersome and
too expensive in terms of resources without reason can appear.

Therefore, several questions remain unanswered and requires a response whether
it can be illustrated in a storage shift in the management of the data, in the
technique and its applications or by using the new capabilities offered by the
recent technological advances in hardware:

1. Is this choice still relevant nowadays?

2. Given that there is only one ground truth but an infinite number of
potential digital models, why should there be any compromise?

3. Could we not propose a solution that would allow storing a unique digital
reality while making the representation we make of it dynamic according
to our needs?

In addition to the substantial investment involved in designing a digital model,
saving the model, often in relational mode, seems to explain some of the
compromises made. In a web application, the server, which allows exchanges
and a part of the processing, and the client, which is the data consumer, do not
impose any concrete limitation. Structured beforehand and thus guarantying
the application consistency, the rigidity and inertia of the relational model

INTRODUCTION 81

make it a change-resistant solution (complicated addition of heterogeneous
data, modifications of the basic schema are always at the expense of some
performance, difficult maintenance, complex horizontal scalability, etc.).

Would it not be possible to propose a storage solution that allows various
independent applications to store and search relevant information in a single
place? The guarantee on consistency would then be carried over to the server and
the interoperability would be ensured using exchange standards. In this type of
architecture, a document-oriented NoSQL database would allow completely free-
shared storage of information without prior structuring. Besides the definition
in collections (set of documents), the form of the documents is left completely
free: even the attributes can change types without prior condition. The server
would then be responsible for the information structure by filtering it during
exchanges with the various clients (both for storage but client requests).

The contribution of this paper is twofold. On the one hand, from a purely
technical point of view, it provides a middleware, which acts as a bi-directional
filter on server queries and would then filtrate information following CityJSON
semi-structured schemas. Added to the simplified database schema for the
storage of CityJSON models in a document-oriented database, it provides the
core basis of an accessible storage solution. Provided in a convenient and well
document framework, it should allow people developing their own use keeping
in mind standardization. This flexible but still consistent data management
helps developers to make bridges between the constituting parts of much greater
city models management platforms.

On the other hand, in a dynamic that is always moving towards greater openness
and information sharing, a new solution is proposed as an alternative to
traditional solutions. Digital Twinning, a unique and digital 3D replica of
a city, is now possible by using this first assumption. It is illustrated relying
on a storage still too little used in our opinion: NoSQL databases. NoSQL
databases and web-related technologies gained interest in the scope of 3D city
modelling. However, most of the time, the new propositions are framed in a
succession of improvements of a recognized tools limited to the purpose they
had when they were set up. The new solutions are still too often neglected in
favor of traditional solutions without addressing the problem from the start:
the design of the tool.

All the principles and ideas developed in this paper are illustrated in the
context of three-dimensional urban modelling and city digital twinning. The
contribution is therefore not about the concept of middleware itself, but also in
the answers to the recent questions formulated above.

The chapter is structured as follows: the main topics studied are the exchanges

82 CONSISTENCY GUARANTEE

standards and the role of the database in a GIS architecture. First, the various
standardized way of querying and accessing geographical information, the city
modelling standards, their semantic data model (CityGML and CityJSON)
and the usage of these standards in shared or unshared web architectures are
presented. The state of the art is assessed to frame this research in storing
3D city models in databases and deliver them on the web. Then, after a
quick presentation on what NoSQL databases are and their differences with
relational databases, the solution shift to a NoSQL database and its basic
specifications are evaluated. The principle and benefits of a schemaless database
are discussed afterwards. Insights are also given concerning the usage of
middleware in geospatial data management. Different methods of accessing
information through features query services are presented in parallel with the
major contribution of this paper: a bi-directional filter that simplifies the
recording of information but guarantees the consistency of exchanges. Finally,
future developments are considered as improvements and new possibilities that
can be developed thanks to this new storage solution and the middleware.

4.2 Related works

Related works are divided in two different but interconnected parts: "Exchanges
and standardization" and "Role of the database". While the first presents
standards for structuring information in the urban built environment, the
second part is a focus on the role of the database and its various shapes. The
logical articulation of this part goes from a more general section to a more
specific section that places our contribution in its context.

4.2.1 Exchanges and standardization

A "Digital Twin" is defined as "a virtual representation of a physical asset enabled
through data and simulators for real-time prediction, monitoring, control and
optimization of the asset for improved decision making throughout the life cycle
of the asset and beyond" (Rasheed et al. 2019). On a conceptual level, especially
in city modelling, the prospective potential of reality twinning is large (Shahat
et al. 2021). Even if a wholly mirrored city is yet not available, improvements
are relatively fast. In particular, improved data processing would make it
easier to use the models and find information, but also to share it. Above all,
the pooling of information from all kinds of sources is the main advantage of
twinning. At this stage, all these considerations are anticipated to accurately
reflect and affect the city and model’s functions: data management, visualization,
situational awareness, planning and prediction, integration and collaboration.

RELATED WORKS 83

Consequently, the search and processing of data must be simple and attractive
(Schrotter and Hürzeler 2020). Indeed, supporting decision processes should be
made in a comprehensible way all along the lifecycle management. The focus
is made on the contrast between the static of the relational databases and the
continuous evolution of users’ needs. Behind the idea that the digitalization
enhances the communication, The World Avatar (TWA) is a project led by
the CARES center of the University of Cambridge in Singapore (Mei Qi et al.
2021). The TWA intends to capture the idea of representing every aspect of
the real world in a digital model. It is thus a large-scale project gathering
various researchers in a wide range of research areas. In concrete terms, it
takes the form of a dynamic Knowledge Graph (dKG) that should improve the
interoperability between heterogeneous data formats, software and applications
(Chadzynski et al. 2021).

In GIS architecture, many efforts have been made on the database tier (Zlatanova
and Stoter 2006). However, there is still much room for improvement. For
instance, relational databases do not support co-existing schema versions natively.
It is thus complex to develop tools without imposing them to be created prior
of any production launch. Smart solutions need to be found in order to allow
concurrent versioning. Among these solutions, a bidirectional database evolution
language provides a solution for the co-existence of schema versions using delta-
code (Herrmann, Voigt, Behrend, et al. 2017). This language allows increasing
the freedom to easily change the physical table schema but at the expense
of some performance. Once the schema of a relational database has evolved,
the stored data should also comply with the new structure. It imposes to
guarantee the usability of the newly ordered database but also its completeness.
A formal basis, which helps developers with the expensive and error-prone task
of manual co-evolution (of both schema and data) is compulsory (Herrmann,
Voigt, Rausch, et al. 2018).

The consumption of performance is highlighted in comparison between the
features of the relational versus the NoSQL databases. An empirical comparison
of their average execution times gives insight on their specific advantages (Baralis
et al. 2017). The number of concurrent users and data set cardinalities have been
also considered as they represent the great advantages of NoSQL. Among all the
NoSQL database variations that exist, the document-oriented databases allow a
great flexibility regarding the information structuration and their modifications.
It allows storing documents in many convenient ways without imposing any
predefined and strict schema, as would a relational database. Research is being
carried out on the automatic creation of structures based on UML diagrams.
However, it ensures the storage flexibility as it is the main asset of these NoSQL
stores. A validation scenario presents the creation, its complexity metrics and
states on the NoSQL assets (Gómez et al. 2021).

84 CONSISTENCY GUARANTEE

Indeed, modelling a relational database might become a tremendous process:
all requirements must be assessed beforehand in order to build an application
that meets all user needs. In the NoSQL environment, there is no equivalent
to the Unified Modelling Language (UML) used by relational databases. Some
could use new notation based on UML or Entity Relationship (ER), eXtensible
Markup Language (XML), etc. (Vera-Olivera et al. 2021). A systematic review
on NoSQL databases explores the current state of research regarding their design
methods (Roy-Hubara and Sturm 2020). One of its findings states that database
design should meet non-functional requirements. It means that database design
should not state on what to do or must do but how to do things: in other words,
the absence of predefined schema is an opportunity and must be taken to its
advantage.

A middleware is a piece of software that implements communication solutions for
an operating system. It is commonly used in distributed architecture to support
input/output between stacks. In the scope of GIS architecture, it allows merging
multiple and heterogeneous data sources (Cha et al. 1999) and multi-storage
architectures (D. Li et al. 2018; Wong et al. 2002). Handling inputs and outputs
also favors data integration without impacting on performance (Haas et al.
1999). For example, some propose to facilitate the merging of city modelling
and building information modelling standards through a dedicated middleware
(C. Schultz and Bhatt 2013).

Looking at the large family of NoSQL databases, the validation of exchanges
using schemas is nothing new. For example for knowledge graphs such as
these based on the RDF model uses the Shapes Constraint Language (SHACL)
(Knublauch and Kontokostas 2017). In the context of spatial validation, it
emphasizes recursive filtering and validation (Corman et al. 2018) and the
reusability of validation schemes (Debruyne and McGlinn 2021). Such a technical
solution is one of the basic pillars of the work towards a global European
infrastructure (W. Huang et al. 2019). These principles are commonly called
"application profiles".

In the same way but at a different level of the web architecture and a more
global ingestion process, GraphQL is an API layer that allows people querying
and mutating already existing data. It is the closest thing to a universal
method of questioning. The request defines itself the desired structure of the
answer. Recent improvements on GraphQL demonstrate their usage in network
bandwidth optimization (Brito et al. 2019). However, like any new technology,
it comes with drawbacks (Hartig and Pérez 2018; Wittern et al. 2019). There is
however no official spatial features nor capabilities.

Geospatial data is data about objects, events, or phenomena that have a
location on the surface of the earth. It combines location information, which

RELATED WORKS 85

can be static or dynamic (usually coordinates or combinations and complex
arrangements of them) and attribute information (characteristics and knowledge
of the object). Given all these considerations, the exchange and the storage
of such information imposes the usage of dedicated tools: spatial standards
and spatial databases. The Open Geospatial Consortium (OGC) has a mission
to improve geodata accessibility providing standards and normative exchange
formats. These standards are global resources that are publicly available
and free to use. Among others, the Web Features Service (WFS) Interface
Standard provides an interface allowing requests for 2D geographical features.
A new version has recently been published in a legacy review (Clemens et al.
2019). It has been done as to allow platform-independent calls across the web.
This review is part of a new bigger family: "OGC APIs". These APIs are
developed in order to make it easy for anyone to provide geospatial data on
the web but in a standardized way. The different APIs are meant to provide
building blocks that can be used to build APIs that are novel and more complex.
Along with the maps, coverage and processing services, the features are part
of the improvements brought in this new standards family. The "OGC API -
Features - Part 1: Core" is restricted to read-access and describes the mandatory
capabilities to implement a data access interface (ibid.). Future capabilities such
as creation and modification of existing features but also additional coordinate
references should be developed in future parts. Alongside, 3D Tiles is designed
for streaming and rendering of massive 3D content (Patrick et al. 2019). It
should not be confused with the OGC API - Features as the second concerns a
way to serve information on a specific element and all its semantic information:
attributes, versioning, etc.

In addition to the exchange protocols, the OGC standards also provide standards
for the exchanges and representation of knowledge. CityGML is the most
widely used standard for 3D city modelling (Gröger and Plümer 2012). Recent
developments are related to extending the standard features: linking with other
common standards (Biljecki, Lim, et al. 2021), wind simulations (Deininger
et al. 2020), heating demand prediction (Rossknecht and Airaksinen 2020),
etc. Among other solutions, 3DCityDB is a software package that consists of a
database schema for spatially enhanced relational databases. It improves the
database with a set of procedures and software tools allowing to import, manage,
analyze, visualize, and export CityGML models (Yao et al. 2018). Another
CityGML data model usage consists of a compact and developers-friendly
encoding alternative of this data model: CityJSON (Ledoux, K. A. Ohori, et al.
2019). Besides its simplicity and easiness to handle city models, many advantages
derive from the JSON encoding and its semi-opened structure: native support
of metadata and refined levels-of-detail (Nys, F. Poux, et al. 2020), easier
integration in common GIS tools (Vitalis, Arroyo Ohori, et al. 2020), lightweight
and scalable base to support complex web applications (Virtanen et al. 2021),

86 CONSISTENCY GUARANTEE

usage of combinatorial maps in topology structure (Vitalis, K. Ohori, et al.
2019), etc. This new encoding solution opens possibilities by reducing the cost
of modifying data but also facilitates its exchange. It is part of a dynamic that
is increasingly focused on the web and the pooling of knowledge: servicification.
This dynamic is the process to migrate code and applications to a modular
and service-oriented architecture. This results in the production of reusable
and decoupled components while also reducing duplication. It finally results
in a better usage of resources and the sharing of capabilities and information.
Servicification in geographical systems is well illustrated in SOA architecture
(Service-Oriented Architecture) (Allah Bukhsh et al. 2015; Nys and R. Billen
2021). A flexible architecture allows the composition and sequencing of data
processing. The geospatial intelligence provided by such services is a proper
solution to most of the geospatial application problems (Fricke et al. 2018).

4.2.2 Role of the database

It is understood that 3D city models are great integrating bases for complex
studies in various fields. This can be seen from the ever-increasing number
of application domains extensions (ADEs) for CityGML (Biljecki, Kumar,
et al. 2018): energy, noise, 3D cadaster, etc. However, even if the semantic
information is well integrated in such models, their usability in simulations is
not straightforward: this kind of linkage is often studied by the actors in the
field of 3D modelling and not simulation experts. The method of storage is
not necessarily responsible (Widl et al. 2021). One is proposing to review the
way in which the information, recorded in a relational database, is accessed and
thus linked to the simulation tools (Yao et al. 2018). Without modifying the
base, this solution makes it possible to spread the use of city models and their
linked information.

The management of versions and history within 3D city modelling, which can
be generalized by allowing different views on the same information, can be done
through the use of an ADE of CityGML (Chaturvedi, Smyth, et al. 2017). This
independent extension considers new aspects as managing multiple temporal
interpretations of a city and its features. It is now part of the CityGML 3.0 data
model and should thus be implemented in its various uses (Kutzner et al. 2020).
Despite the proposed solutions for versioning, several issues remain (Kutzner
et al. 2020; Vitalis, Labetski, et al. 2019). Six issues were evaluated and
discussed among the data providers’ incentives, the database implementation,
etc. but more specifically: the need to collect additional lifecycle and versioning
information (Eriksson and Harrie 2021). The problem highlighted on the
additional information is that it requires a substantial restructuring of the
technical solution and work processes. In addition, the increasing complexity of

RELATED WORKS 87

the database implementation increases with the number of versioning features
included (Eriksson, Sun, et al. 2021).

Besides the relational databases, the vast panel of NoSQL databases offer
complementary solutions. NoSQL databases propose to review the storage
structure of relational database. Among others, when the links between the
elements are preponderant, graph databases are the most suitable. For instance,
thanks to the graph isomorphism tools, even if they are resources consuming,
change detection is made between versions of CityGML models (Nguyen and
Kolbe 2020). Moreover, a much precise definition of the change types is given
based on the graph structure. As it has been said, the graphs are useful
for modelling the relationships between the city features. More precisely,
the translation of these relations in Resource Description Framework (RDF)
triples structures the semantic information of the urban built environment: the
only inconvenient is that the geometric information is neglected (Malinverni
et al. 2020). It is worth mentioning that ontologies are preserved during
data conversions and can therefore be queried afterwards. It opens up fusion
possibilities for city models with various sources using a NoSQL graph database:
IFC, IndoorGML, etc. Structuring information in graphs also provide solution
for bi-directional transformations. It allows deriving models from real CityGML
models and instrument modelling and analysis facilities for digital models
(Visconti et al. 2021).

Document-oriented NoSQL databases offer interesting possibilities. Besides any
processing efficiency, the whole data structure has been reformed. It is much
simpler than relational databases that use joint keys for example (Bartoszewski
et al. 2019). Changing the users’ perspective on data can improve and even
rethink the basic idea of relational databases. The database design itself gives an
answer to the multi-purpose needs for WebGIS (Sutanta and Nurnawati 2019).
Without providing a complete solution compared to what relational solutions
offer, the NoSQL databases offer premises of spatial data management on the
web (Costa Rainho and Bernardino 2018). Especially in 3D city modelling, the
shift from consistency to flexibility opens many possibilities (Nys and R. Billen
2021). In this research, a combination between CityJSON and the NoSQL
document-oriented database provides an alternative to the traditional geodata
management. The parallel can be drawn with 3DCityDB, which proposes a
data schema for storage in a relational database. The comparison between
the two tools was made in terms of performance but also in terms of their
capabilities. In short, it improves the modularity of information thanks to the
lack of schema for the database. Gains of performances and capabilities are
remarkable kiss-cool effects too. For instance, proposing new extensions, and
thus improving and adding features to the schema, is easier and supported in
a convenient way thanks to the schema and its translation in the semi-open

88 CONSISTENCY GUARANTEE

database structure (Nys and R. Billen 2021).

4.3 Schemaless database

This definition of Rasheed et al. 2019 for "Digital Twin", even if it remains
vague on the "virtual representation" term, focuses on the long-term usage and
lifecycle of the information. This representation should therefore be required
to be modular and flexible in order to adapt to current but also future needs.
Without going for a complete avatar, a digital replica whose main characteristic
is its shared uniqueness is a point worth studying. Even if relational databases
provide solutions and capabilities, those are not suited for development in line
with modifications in usage needs and horizontal scaling. It can therefore be
considered that they do not address the root of the problem: the flexibility of
schemes and thus the whole architecture modularity.

Tacking a step back, a webGIS architecture is constituted of three components:
(1) a client, (2) a server and (3) a database. While there is no limitation on the
number for each tier, it should be at least one element for each. Thus, a wide
range of combinations is possible. Moreover, the elements are not always parts
of the same whole; they might be under responsibility of different organization,
located in various places, etc. Most of the time, the server and the database
are closely linked and why not installed on the same physical machine (the
architecture thus become a "two-tier architecture"). A brief explanation of the
usefulness of each tier provides a better understanding of the shift proposed
started in previous research in which this contribution fits (Nys and R. Billen
2021).

The client is the consumer of the data. It can be a viewer, a GIS standalone
software, a web application, etc. Since the "frontend’s" capabilities are evolving,
clients support more and more processing. For instance, the web browsers,
thanks to the creation of the V8 JavaScript Engine (Chromium Project of
Google), handle more and more capabilities (Kulawiak et al. 2019): heavy
graphics computations, graphs manipulation, etc.

The server takes care of the processing part, or at least part of it, as the frontend
improves as mentioned above. It manages the database connections and receive
the clients’ queries (Wagemann et al. 2018). It is possible for a client to query
a database directly, but the presence of a server makes it possible to improve
security, set up statistics, structure and guarantee the consistency of exchanges.
With the database, it is part of what is called "backend".

The database saves information, it structures the data and allows its accessibility.

SCHEMALESS DATABASE 89

For example, the relational mode structures information in tables and defines the
relationships between them thanks to associations and cardinalities. Therefore,
a predefined schema is mandatory so that the defined boxes and their links
can be filled in later. It is the main advantage of using relational databases:
the guarantee of consistency. Still, one can suffer of the predefinition of such
framework. The users’ needs and applications capabilities might evolve and no
longer fit this schema. It could then be interesting to provide an alternative that
concedes a loss of consistency to improve the architecture flexibility. A partial
answer to this problem is to shift the use of a traditional database and move
towards a NoSQL solution (Nys and R. Billen 2021). This contribution is in
line with this answer and proposes to make a step further from the consistency
to the flexibility of databases in the scope of modeling urban environments.

4.3.1 NoSQL models

Before considering NoSQL solutions, attempts to improve the relational model
are worth mentioning. One of these is the BiDEL language (Herrmann, Voigt,
Behrend, et al. 2017). However, these solutions gets around the problem without
tackling its root. The language acts like an additional layer that improve the
relational database capabilities. The database itself is not adequate to handle
specific features. For instance, thanks to BiDEL, the versioning is simplified
but it imposes to manage a new technology that adds complexity and potential
problems. Tackling the rigid structure of the relational databases is avoided
but not solved. It would be more interesting to find an integrated solution.

The research topics of the TWA project study the formalization, the evaluation
and the repair of ontologies based on the CityGML and many other data
models (in field such as environment, weather, etc.) (Mei Qi et al. 2021). Their
integrated and dynamic knowledge graph structures information from a semantic
point of view at least. As a complementary layer, the 3D geometric information
brings unavoidable information concerning urban management. Undoubtedly, it
should find an interest in developing a geometry support, if not at the beginning
at least at some point. This project nevertheless illustrates an important need:
NoSQL databases not only offer new capabilities but also provide a very new
storage and many advantages. Subsequent to it, it is not only the arrangement
of the data that changes; it is the whole perception of it.

At this point, an explanation on the NoSQL storage should be given. NoSQL
solutions (Not Only SQL) are defined as "everything that is not relational".
In fact, it is much more complex than that. The NoSQL family responds
to capabilities that are indeed different from the relational databases but
still correspond to a set of definitions. The main difference between relational

90 CONSISTENCY GUARANTEE

databases and NoSQL solutions lies in the management of their schemes. NoSQL
databases, without going into the details of their various families, do not limit
the data to be filled in predefined boxes. In other words, the database does
not impose a schema for the data to be stored. NoSQL databases are "schema
less databases". Besides the ACID characteristics of traditional databases
(Atomicity, Consistency, Isolation and Durability), the NoSQL databases follows
the BASE principles:

• Basically Available: the data are always available; there is no downtime
despite any network failure or temporary inconstancies. A "non-response"
is impossible from the store. Whether it is a success or an error, there is
always an answer to every request.

• Soft state: even without any input, the system state could change
over time. This characteristic is required for the following "eventually
consistent" property.

• Eventual consistency: if no further updates are made to an item for
a long enough period, all users will see the same value for the updated
item. In the meantime, anything can happen. The system will eventually
become consistent once it stops receiving input.

The "eventual consistency" characteristic is the linchpin. The soft state
characteristic is one of its requirements and the availability is a quality of life
asset but does not have any link with the consistency. The third characteristic
is indeed the most interesting one: the eventual consistency means that the
consistency is not set by the database itself and might not be always guaranteed.
The database could deliver different information to various users in some state.
The compromises made on consistency and the above-mentioned responses’
heterogeneity can be considered as potentially harmful. This is true if the
database is considered as an isolated component. The server, and why not, the
clients, might have a role to play in the consistency assessments.

As they have been defined in the previous section, clients are passive consumers
and thus free regarding the data structure. Both databases and clients should be
independent services but clients must be able to work with what the databases
provide, as they are more flexible. Even if they can support a part of the
computations, clients should not require to control and validate the server
responses. They just visualize or process the data but does not restructure or
modify it. Otherwise, they will become an active component and the server
may have neglected some of its responsibility.

The key idea of this contribution is to take the opposite view of the "schema
less" database and to take advantage of this actual flexibility. Since no schema

SCHEMALESS DATABASE 91

is mandatory by the database, the opportunity is to store data without any
restrictions beside technical constraints: format, encoding, etc. Any shape of
information can thus be stored in the same place. Taking the assumption that
an important number of record variants can be stored in a unique database, one
can consider that some records will share a common basis or correspond to a
common structure. Where several pieces of information relate to the same real
object, the use of a single and unequivocal identifier should allow connecting
these pieces. Moreover, each element might have common attributes and/or
ways of representation with one another (versions, extensions, etc.). They are
actually different copies or views of the same entity. Stating on a common
basis and referring to real objects uniquely, one can consequently define the
foundation of a shared but limitless model.

Every city is unique. It has its own history, its specific space, its citizens and
their own lifestyles, etc. Many public services and stakeholders have their own
views of the city and its assets. However, they should not be allowed to harm
or modify those of others. In addition, if interactions should be possible, they
should be done at least under pre-established conditions.

Back to the data store framework and its infinite theoretical set of city models,
a common basis should determine the constituting elements of a city and
their relationships: it is the main purpose of standards such as the CityGML
data model. Since CityGML is a semi-open standard, it consist not only
of a shared ground for city modelling but also for extensions and future
applications. It thus offers the possibility to reuse the compliant data in
different fields and applications that are themselves compliant to the data
model. However, the majority of recent developments in 3D city modelling
accept the relational storage mode and its advantages without questioning its
initial capabilities. Hence, they focus on developing extensions proposing new
features, new attributes and new relationships without considering any use of a
unique and common digital model. Such a model, whose core can itself evolve
as improvements are made, has been little studied. Among others, the ACID
characteristics are part of these limitations.

4.3.2 Architecture specifications

Before presenting the architecture capabilities and the benefits of the new
component, a specific point of its features should be discussed regarding the
storage shift. As defined in the previous sections, its groundwork relies on
three things: the usage of a NoSQL database that improves flexibility at the
expense of some consistency, the usage of a common definition basis such as the
CityGML data model and finally a new component that filtrates information.

92 CONSISTENCY GUARANTEE

These specifications are available thanks to the simplified database schema for
the management of CityJSON 3D city models in a document-oriented store
(Nys and R. Billen 2021).

Thence, a first step towards ensuring consistency is done by implicitly choosing
that all applications must be standard compliant. In the case of urban modelling
and JSON-related technologies, CityJSON 1.1 is unavoidable. It is here worth
mentioning that it remains an unspoken consensus for some tier: the database
itself is not structured following any schema. No conditions are set during
creation and modification on records about any cardinalities, document structure,
document size limitations, etc. This is the role of the proposed component,
which is mounted on the existing application server, and only it. The server
can thus be used to lock users’ exchanges and structure queries on the server
but nowhere else.

While the current applications developed around this simplified database schema
of CityJSON concerned the storage of multiple city models in a unique store,
the new architecture will make an additional hypothesis: the store remains
unique but the unicity is now generalized to the stored model also. Note that
the number of frontend elements is still limitless. In summary, one database is
shared by several server or Application Programming Interfaces (APIs), that
are themselves receiving queries from an unlimited number of clients on the
web. All this is done under the assumption that the hardware is not a limited
resource. The figure 4.1 illustrates the architecture of the shared database.

Two requirements depicted in the Figure 4.1 need an explanation: accordingly,
in the simplified schema, a document, or record, corresponds to a model of a city
or to an element of the urban built environment (i.e., an AbstractCityObject).
Hence, in order to be able to refer to the correct record, a document stored in
the database must be defined by a unique way of identification. For example
the "name" attribute in each level of the architecture should be formatted in a
similar manner. Secondly, a Class, which specifies the city object family, might
also be given to objects in order to simplify the various queries. These classes
are used to manage the different schemes by the server. Examples of Classes are
CityModel, Buildings, SolitaryVegetationObject, etc. according to the CityGML
model specifications. Other parameters (Param_1, Param_2, etc.) might also
be defined in the core specification but also come from extensions. For instance,
since the stored documents should implicitly comply with the specifications
of CityJSON, it is thus possible for an application to query a Building object
knowing beforehand some of its attribute: address, roofType, etc.

These considerations are generic to any number of clients and applications. As
a result, information can be derived from a theoretically important number of
architecture elements except for the database, which is deliberately intended

SCHEMALESS DATABASE 93

Figure 4.1: Architecture of a shared and unique database.

to be unique. Hence, the whole architecture can be abstracted by a tree, so
that the database would be the trunk and the clients the leaves. The servers
will then be the tree branches (see Figure 4.2). For the growth of the tree,
the only limitations are network and hardware considerations since the data is
constrained.

Besides the semantic formalization of the shared information, this component
could be the basis of more complex mechanisms. One can imagine that the
unique model is used by various users from the same city government. While
each city service is working on its specific aspect of the city model, details can
be brought thanks to the filters (and thus versions, extensions, etc.). Besides,
the security issues of a non-strict user, several concurrent schemas might be
used by the same user community limiting accessibility in respect of the grade
or hierarchy like applications profiles do. This choice is left to the developers,

94 CONSISTENCY GUARANTEE

Figure 4.2: Abstraction of the architecture in tree form.

as they may be interested in developing stand-alone applications or in routing
users through a larger application.

Concerning the versioning, the new architecture not only ease data versions
management but also the data model versioning. It is customary that a database
and thus the stored information comply with a unique data model version.
Updating the data when a new version of the data model is released can lead
to the database becoming obsolete if there has been no insight on backwards
compatibility. As a result, in this architecture, there is no need for data update
in the database, only technical maintenance is mandatory. The filter will then
serve information in respect of the desired version picking relevant information
from the semi-structured whole. The same information can therefore be easily
shared by different versions or different applications.

Thanks to the BASE characteristics of the NoSQL databases, the data are
always available. This means that the database should always be operational
and able to respond at any time. As the server component is independent of
the database, any maintenance on a specific application will not limit the usage
of the others. It therefore improve the flexibility of the whole architecture and
provides a modularly solution for further developments.

As a comparison with a current good practice, GraphQL is an API layer that

SCHEMALESS DATABASE 95

lies between a server and clients. It allows querying and mutating data in
a generalized way (Wittern et al. 2019). Several notable differences are to
be noted: first, GraphQL only allows a single endpoint on a database and
imposes developing new features in the same way. Server functions and data
manipulation are limited (Brito et al. 2019). Such a limitation would have
limited us in the development of the application clients and especially with its
links to the OGC API. Moreover, the document collections in the predefined
simplified schema are built keeping in mind performances and most common
queries. Staying with the development of advanced capabilities, GraphQL
lacks of temporal and spatial features (Hartig and Pérez 2018). Such features
are mandatory in the scope of city modelling. Mutations have another major
concern because the tool was not originally created for this purpose: mutating
functions are not conducted in parallel: each change waits until the previous
one is finished. It is a major drawback when it comes to open the architecture
to the many. It affects users experience in a very negative way. Finally, errors
handling can become tremendous for developers since HTTP requests only serve
200 status queries(or 5xx if the server is not available at all). Avoiding these
drawbacks and allowing developers to create the best endpoints they need is an
imperative.

Since maintaining the data consistency is no more the responsibility of the
database, it is now the role of another architecture tier: the server. In
the proposed architecture, because of the storage shift, this guarantee is
transferred to the server or at least to one of its components. The present
improvements are made in line with the previous: it proposes a proof of
concept using JavaScript libraries. The new component is hosted on a NodeJS
server, a JavaScript runtime environment. The component is built on the
mongoose library, an open source solution that provides built-in type casting,
schema validation, query formalization and building, business logic hooks,
etc. (https://www.npmjs.com/package/mongoose). Among these features,
formalizing a query and the built-in type casting do not concern any aspect of
storage consistency. By contrast, the schema validation is the cornerstone of the
proposed improvement. In practical terms, mongoose acts like a bi-directional
coat that filtrates information between the client, the server and the database. It
acts both as a mediator and as a wrapper (i.e., in both directions). A predefined
schema on the server maps a requested resource to a collection of documents in
the database and serves relevant information to client and vice versa. It also
allows verifying the format and encoding of any exchanged resource. This second
feature does not play a role in the consistency of schemes besides technical
considerations.

As far as semantic information is concerned, thanks to the discriminated schemas
of the middleware and its inheritance capabilities (which are not possible

96 CONSISTENCY GUARANTEE

in JSON schemas); some variations can be added to the schema definitions
without having to modify the initial requirements. For instance, a Building is
nothing more than an AbstractCityObject with an address, a roofType, etc. The
added information is still compliant with the AbstractCityObject schema. A
SolitaryVegetationObject is an AbstractCityObject that might have a specie, a
trunkDiameter, etc. Nevertheless, there is no requirement for each application
to have the same exact definition of what a type of feature exactly is. It is
a matter of agreeing on the common basis from the CityJSON specifications.
The notion of hierarchy being absent from JSON schemas, this point reinforces
the demonstration of the architecture flexibility as it simplify modifications
without damaging the already existing schemas. Note that JSON schemas
require checking several concurrent schemas rather than offering the possibility
to specialize them.

By going further into the technical definition of the architecture: such a filter
stands as a middleware. A middleware is a software that lies between an
operating system (i.e. the server) and the applications running on it. Common
middleware provide security layers (limiting the number of request, cryptography,
etc.), cross-origin requests managers (accessing restricted resources from a
remote domain), authentication layers (checking tokens and/or registered users,
etc.), etc.

Beside these technical features, it also allows for the removal of excess
information sent by clients or delivered to them but also the databases. The
component filters information and maps it to the documents collection in the
document-oriented database. This is done so that the semi-structured database
is not polluted by incorrectly structured or unwanted information. This mapping
consist of a collection of features schemas (not JSON schemas), themselves
built on the CityJSON specifications. In addition to the schemas, inheritance
is added between collection elements thanks to the mongoose features. In the
proposed architecture, all the capabilities of a middleware are used such as it
acts like a bidirectional filter:

(a) In one direction, based on the queries made by the clients (i.e., in a writing
way), it filters the city objects and their attributes before any storage and/or
potential updates. For the reminder, every API might be independent and built
in such a way as to allow flexibility. They offer several different types of requests
with different accesses, different connections, and different schemas as a result.
For instance (see figure 4.3), the application #2 is not allowed to modify (and
perhaps damage) the objects and attributes handled by the application #1. Be
aware, however, that some objects might be shared by several applications and
the same thing for the attributes of shared objects. The value of a common
standardized and documented basis is again demonstrated here. It is a major
prerequisite.

SCHEMALESS DATABASE 97

(b) In the other direction, for the documents queried by the clients from the
database, the filter works exactly the same way. There are not only the format
and the encoding that are verified but also the semantic information thanks
to the schema specifications. It is retrieved from the database given that the
attributes are checked and validated by the application-related schema. No
feature object or attribute that has not been defined beforehand in the schema
will be served as a response. It is important to note that while format consistency
can easily be checked, logical consistency, i.e. the compliance of values with
their semantics, cannot be verified regarding coherent meaning. This could
limit the applications interaction and information retrieving but it is part of the
responsibility of each data producer and its policy on whether or not to open
the data and document it. In this context, the technical elements necessary for
this sharing are provided without taking a position on this last aspect.

Figure 4.3: Illustrated example of the bi-directional filter principles.

In the figure 4.3, the example represents two applications that want to register
and retrieve information on the same object of the same class. Considering
that both the unique identifiers are the same (whether they are URIs (Uniform
Resource Identifier), UUID (Universally Unique Identifier), etc.), the object is
defined by four attributes: two attributes handled by each applications. Some
points are noticeable:

• The attribute_2 is not stored in the database because it is not allowed in
the server schema of the first application. As it does not pass the filter

98 CONSISTENCY GUARANTEE

in a writing way, the information is not sent to the database and thus
cannot be queried afterwards.

• The attribute_4 is not stored because it is not properly formatted with
respect to what is required in the second application’s schema. If this
attribute has been correctly formatted, it will be stored in the database
and made searchable by clients.

• Both attribute_1 and attribute_3 are stored in the database but their
use is limited to the separate framework of the two applications.

In the example above, the attributes are "basic and common" data types: string,
integer, float32, etc. In the context of spatial information, and in the even more
specific 3D city modelling, "spatial" data types require a dedicated management
to handle their specificities. In addition to the complex representation of the
built environment, the formatting of geographical information and features
geometries imposes conditions. It should be noted that geometries must follow
well-defined patterns most of which are defined by international standards.
Among others, the concept of level of detail needs to be discussed and addressed
(Biljecki 2013).

As defined in the simplified CityJSON schema for document-oriented databases,
the geometries are managed in a dedicated mass-collection regardless of their
type, the number per element and their level of detail (Nys and R. Billen 2021).
For the reminder, every type of geometry has its own validation schema whether
it is a Solid, a MultiSurface, etc. They all share a common basis but some
specificities are brought in their specific sub-schema definitions by inheritance.
It works the same way as the AbstractCityObject and the Buildings schemas.
The schemas are independent of any level of detail and all types of geometries
can be arranged to create various types of levels of detail. A unique identifier
refers these geometry documents, one for each level of detail, to their related
feature documents in the city objects collection. While storing and thus writing
a geometry in the database, each element and level are checked against their
scheme. On the contrary, in order to optimize and better adapt to the users’
needs, querying a specific geometry can be done specifying the desired level-of-
detail. All attributes of the geometry are served since it is a feature in its own
right.

In practice, given that CityJSON handles the "refined levels-of-detail" (Biljecki,
Ledoux, and Stoter 2016), the geometries can be queried in a compound manner.
Either, the specified LoD is itself a refined one and thus can be retrieved if
it exists. Either, if it does not exist or is a broader one: the most detailed
one is recovered while remaining in a coherent level order. For instance, for a
geometry stored in 2.1 and 2.2 levels, querying a unique geometry for the 2nd

SCHEMALESS DATABASE 99

level will respond with only the 2.2 document. Besides it, one cannot retrieve a
LoD greater than the expected. It is done in way to reduce exchange weight
and providing redundant information.

4.3.3 OGC API - Features

Besides the operations presented above and their request mode, it could be
interesting for the users to handle features in a more standardized way. It is
important to allow every user to have a view of what is stored in the database.
It must be done in a reading-limited way so as not to compromise the database.
Therefore, the new OGC API - Features has been implemented in order to
provide a normalized and convenient way to do so (Clemens et al. 2019). It thus
guarantees the consistency of the database keeping things secure and avoiding
data mutation. Again, this could be done not through the database itself but
thanks to the middleware. It is worth mentioning that not all information
should be requested by everyone: the idea is to "see" what can be obtained.
This must of course be done within the access limitation, security, hierarchy,
etc.

The Figure 4.4 depicts how the OGC API service is connected to the architecture.
While all the other well-separated applications are limited to their own part of
the data (and to the shared parts), the OGC API – Features service has access
to everything (under conditions of safety, regulations, etc.). It is important to
clarify that this service is a read-only protocol and should be considered as a
view on the stored model.

Figure 4.4: Implementation of the OGC API - Features service.

100 CONSISTENCY GUARANTEE

A problem arises from the fact that most of the exchange standards, protocols
and OGC services (Web Features Service, Web Map Service, etc.) are suited
for two-dimensional geodata. CityJSON, as a 3D modelling standard, cannot
be queried in a convenient way using the standards with a few exceptions.
Moreover, the document-oriented database does not support any 3D indexing
methods. It was thus necessary to build workaround solutions in order to allow
spatial filtering at least in two dimensions.

Initially, OGC standards serve features with a single geometry. However, a
CityJSON object can have an undefined number of geometries. These geometries
provide a wide range of information corresponding to various levels-of-detail. An
alternative is proposed to limit misunderstandings. Besides the limit, offset and
bounding boxes parameters already used in the specifications, a new attribute
is added to the query parameters: the lod (level-of-detail). As a reminder, the
geometries are stored independently of any feature as a bulk in a dedicated
collection. The simplified schema separates them in several documents even if
they concern the same object. This is justified by the fact that the level of detail
plays an important and very specific role in urban information management
but also because of the spatial indexing capabilities of the database. The lod is
thus introduced as a parameter in its own right in requests. In any case, where
this parameter is not supported by an application, it is simply neglected and it
is the greatest lod that is served.

In the official schema of the AbstractCityObject, the geographicalExtent attribute
stores the 3D boundary box of the distinct features. Projecting the 3D box, a
new 2D attribute bbox is created on the fly during the storage process. This new
spatial extent is then used to build the spatial indexing in the database. This
extent is also created for the whole city model itself. An important condition is
imposed by MongoDB or spatial indexing: the coordinate of the any spatial
information should be expressed as a GeoJSON object (RFC 7946). It thus
imposes the use of the World Geodetic System 1984 (WGS84 - EPSG:4326) and
thus the projection of the bbox attribute. If no reference system is provided in
the model, it is considered as already expressed in WGS84 by default. This is a
major drawback for the management of spatial information in document-oriented
databases.

Future work should include the improvements brought by the added parts of
the OGC API – Features family: Coordinate Reference Systems by Reference,
Filtering and the Common Query Language and the Simple Transactions. This
should be handled by the middleware, as it is neither the responsibility of the
database provider.

Second possible improvement coming from the semantic web, the Uniform
Resource Identifier (URI) is a great candidate for the unique identifier format.

CONCLUSION 101

This URI identifier is a unique sequence of characters that identifies a logical or
physical resource used by web technologies. While the purpose of the URI is to
allow data extracted from various databases to be linked and to be identified
unambiguously, it could also improve the management of the legitimacy of
data. Such an identifier could be part of a certification process in which the
responsibility of the city objects is part of the prerogatives of the city services.
Its identity and its responsibility can thus be translated in the URI syntax in
one way or another.

4.4 Conclusion

This chapter makes a step towards a shift for the storage of geographical
information: it provides a technical component and insights that concedes a loss
of consistency in favor of more flexibility. It is illustrated in the context of 3D
city modelling thanks to the implementation of a schema validation middleware.
This could be done performed, among other approaches, with the replacement
of a relational database by a NoSQL document-oriented database. The main
characteristic of the database considers that it does not handle any data schema.
It therefore does not require filling in predefined boxes or meeting non-technical
requirements as does relational. Conversely, the logical, conceptual and physical
models are not prerequisites. The consistency management is then shifted to the
server and more specifically to a filter layer: a schema validation middleware.

With a more focused view to this new architecture, the database can be
considered as the principal foundation of a more complex whole: the database is
unique but allows an undefined number of applications to retrieve information.
A condition is however imposed in order to shift the consistency guarantee
from the database to the server: exchanges should comply with a common
standard. In the particular context of 3D city modelling, and keeping in mind the
simplicity of use, applications and their exchanges should favor the CityJSON
specifications.

Technically, the server filters all requests in both directions: from clients to
the database and from the database to clients. This bi-directional filter allows
storing and updating elements on the database by restricting them to predefined
semantic information. The other way, it limits the information requested from
the database depending on the users’ right access, versions, etc. A view on the
actual state of the database can be given thanks to the OGC API – Features
exchange standard. Restricted to the read access, this view allows users to get
generic information on the models elements. In summary, such type of filter

102 CONSISTENCY GUARANTEE

can be used in order to implement security layers, versioning and above all to
enclose the users’ possibilities.

The consistency counterbalanced by the middleware implementation will open
many possibilities in application development and digital twining. City
stakeholders should benefit from a single data store that can be shared
across all their activities and responsibilities. Without any limitations or
compromises made on previous storage capabilities, the city models will become
real integrating bases for all the city services activities.

Back to the introduction, the answer to the first question on the relevancy of a
new generation is nuanced. It is important to provide a new solution for the
management of a "unique and digital 3D replica of a city" that improves the
applications flexibility but the usage of the traditional solutions is not outdated.
An ecosystem based on several solutions should provide a relevant answer. At
the same time a document-oriented solution for its flexibility and accessibility, a
knowledge graph solution for the support of contextualization and semantic both
linked to a relational solution, which has already demonstrated its capabilities
in handling spatial methods, should meet current requirements and tackle future
needs. The product resulting from the fusion of these storage modes could
ideally take advantage of the benefits of each while attempting to offset their
disadvantages. Therefore, few compromises should be made considering them in
the very beginning of the conception rather than providing partial solutions on
a succession of choices. We believe that this contribution makes a step further
towards such a hybrid architecture. Shifting the storage solution should then
not be seen as a complete reverse but rather as a more global vision that would
allow reaching a better management of what "digital twins" are intend to be.

Remaining challenges could also be divided in improvements specific to the
middleware and improvements specific to the vision of a unique replica and
its contextualization. Developments should concern the identity of a feature
through its lifecycle (creation, modifications, etc.). The middleware and its
various schemas could suffer from a lack of management added to the unicity of
the stored information. A dedicated study thus need to be conducted on the
optimized way to identify city models and their elements. While CityJSON
features are commonly identified by UUID or GML_ID, the Uniform Resource
Identifier is freer in its use. However, it should be considered as a very relevant
solution since an URI can take whatever shape needed as long as it provides
a means of locating (on the web, not spatial). One can for instance create
a formatted URI translating the identity of the data provider. The data
responsibility could then be established and both documentation and support
could be released in a very convenient manner.

Since we considered GraphQL and SHACL as related works, specific access

CONCLUSION 103

methods could be developed to propose them as alternatives to our middleware
and the OGC API services. Just like the latter, it would be normalized
windows on the data stored by the provider no matter the users’ habits. This
consideration, alongside with the proposed usage of URIs, could lead to a hybrid
storage solution based on document and graph oriented databases in which the
identification of an object and its uniqueness would be guaranteed. We assume
it will consist a good base to climb the Semantic Web Stacks: in our opinion, the
principal requirement to reach the dreamed "Digital Twins". Finally, still with
this objective in mind, data integration should also be one of the main future
developments following this contribution. Regardless of the access method
chosen, different levels of integration must be considered: Does the base model
need to be enhanced? Should new attributes be created? Is this part of the
data model’s mission or should applications handle the integration themselves?

Chapter 5

Travelogue: usage history

5.1 Building the database . 106

5.2 Installation and accessibility . 111

6.1 Research questions . 118

6.2 Research extensions . 121

105

106 TRAVELOGUE: USAGE HISTORY

This thesis is based on three articles published in international journals with a
reading committee of academics. They follow rules of presentation, formalism,
rule on points known to people familiar with the field, etc. This leads to a
heavy and undoubtedly complicated reading. For an uninitiated reader, and
even scholars, this can represent a difficulty and lead to missing the purpose
of a thesis: presenting original work and ideas in an expert field and advertise
it: in this case, providing an alternate viewpoint on 3D city modelling data
management. Since the primary goal of a thesis is not to lose the reader but to
provide a means of communication on an original reflection, this last chapter
intends to give keys of understandings. The inter-texts between the different
chapters (introduction, subsequent work, etc.) make it possible to contextualize
their writing but do not take up their shared ideas.

However, even if the articulation between the chapters is trivial ranging from
creation of a model through the accessibility of cities modelled through their
storage, a lack of global narration affects its impact. This section focuses on
the creation of this story. It is written in the same way as the preamble, which
intends to provide people with the key to understanding: to use short, direct
and simple declarations. Therefore, there will be no reference or use of tools
and concepts related to other researches. We will keep it to illustrations and
examples on this contribution and its benefits, drawbacks, improvements, etc.

In concrete terms, due to the advances in modelling, it is the third chapter on
the database pseudo-schema which deserves an explanation. The fourth chapter
is never more than the extension of this central chapter and the pooling of
these principles. It is therefore more conceptual and difficult to illustrate and
measure.

5.1 Building the database

As part of an illustration, it is interesting to test the hypotheses developed in
the previous chapters using a real use case and propose short example of the
new capabilities. even if examples have already been provided in the various
chapters, repeating the explanations and providing additional information a
few years later can only help the reader’s understanding. The idea is not to
make a marketing presentation of a solution either, but the money will still be
approached quickly.

For this purpose, a generic model has been generated using real data for a
neighbourhood in the city of Liège, Belgium. In this specific area, we find: the
district of Hors-Chateau, the mountain of Buren as well as the surroundings
of the hospital of the Citadel. There are buildings and large administrative

BUILDING THE DATABASE 107

buildings, the Meuse (one of the main rivers in Belgium), roads, bridges and
tunnels, as well as a forest and many isolated trees. This area has been chosen
for its heterogeneity in city objects types.

Two different datasets were used: (1) PICC of the SPW ("Projet Informatique
de Cartographie Continue", in French, "Continuous Mapping Computer Project",
badly translated in English), which provides vector data on the inventory of
Wallonia, Belgium; (2) the LiDAR campaign provided by the same office (see
Chapter 2 for more information on point cloud, their density, etc.).

In the scope of the project, the modelled entities were limited to the buildings
(for a total of 2777), the roads (total of 314), the relief (limited to a single
Triangulated Irregular Network (TIN)) and isolated trees (total of 218) (see
Figure 5.1). It counts a total of 3310 city features in a single CityJSON file (v.
1.1.3). This file size is 29.29 Mb and is valid under cjval 0.5.0. and val3dity
2.3.1. Speaking of model size, its equivalent stored in CityGML XML-encoding
is 254.43 MB large (or 8.68 times its CityJSON version!). This model is the
result of a master student project on developing the complete modelling pipe
from the airborne point cloud to the final city features (the students were L.
Paques, C. Petit, Q. van den Spiegel and C. Wilkin in 2022 - they gave their
agreement for the use of the model built together).

Figure 5.1: Illustration of the model generated in Liège, Belgium.

A few remarks are worth noting:

• Given that for the students, the goal was to provide the complete chain, it
was necessary to limit the complexity of each link: buildings are depicted
in LoD 1.2. and roads are not perfectly applied to the relief. Another

108 TRAVELOGUE: USAGE HISTORY

project uses Geoflow with enormous success to have the forms of roofs in
addition and to rebuild larger models but we did not have the rights to
share the results.

• The trees share a replicated template according to the CityJSON
specifications (i.e., unlike CityGMLs ImplicitGeometries).

• The process was carried out on FME which is more ergonomic than coding
the whole thing but limited to the software capabilities.

All these specifications allow to get an idea of what can be found in the illustrative
file. Next step is to store it in various database solutions and compare them:
both on storage size, in the current section, and then on accessibility in the
next section.

First, both databases were installed empty. Using the 3DCityDB tools,
the CityGML schema is imported on a PostgreSQL and tables, views, etc.
were deployed. Considering the document-oriented schema installation, it is
established on-the-fly during the application server start (Measur3D in this
case) and might be updated by the application at every start. For the reminder,
it allows updating it in a very convenient way given that the NoSQL database
itself has no schema and accepts any shape of object. In line with Chapter
5, several servers (understand applications) can be installed using the same
database due to this lack of imposed Caneva: everything is modular and open
to change.

Once that the relational database structure has been set, importing the model
can be made using the 3DCityDB tools. An importer/exporter allows people
to handle their city models and provides integrated ways to manage their
extensions. Afterwards, developers can query the features using classic SQL
commands and PostGIS functions (the spatial extension of PostgreSQL).

Using Measur3D (the application developed in Chapter 4), the database is
completely schema-less. It is the role of the server to handle the data structure
and its accessibility. In other terms, in this case, the database is the slave and
the server is the master. In this way, it is the server, and why not the client,
who will be responsible for handling the information. The database, due to its
BASE characteristics, is simply the backer of storage, and absolutely nothing
else.

This point sets both solutions apart given that NoSQL oriented-document
are limited in their spatial management. It is the major drawback of letting
relational structure on the side: even if they are simple spatial functions in
MongoDB, it is not yet ready for advanced spatial processing. For instance,
spatial indexing allowed providing the OGC API Features filters on spatial

BUILDING THE DATABASE 109

queries but advanced 3D processing is impossible within the scope of a MongoDB
query. However, is that really a problem? The flexibility and modularity of
applications can only be increased if the data is not constrained upstream. This
is the whole point of Chapter 4. The access to the ThreeJS engine (the basis of
the Measur3D viewer) already allows many analyses to be carried out (collisions,
cut slices, etc.).

As it improves model usability and access, it is worth mentioning that both
solutions, relational and NoSQL, should be seen as complementary. Given that
the relational model is older and more standardized, it also means that it is
stabler and more time has been put into developments and improvements. We
note that, at the time of this writing, TUDelft is developing a relational solution
for the support of CityJSON and its specificities. It will be important in the
future to follow their work.

Focusing back on the illustration and what can be built with the tools presented
in this document, this table summarises the necessary space for different state of
the database in both solutions: relational solution using the 3DCityDB schema
and a document-oriented solution using the schema provided in Chapter 4.

Given that the database and the data schema have an intrinsically linked shape
(mainly the JSON-encoded city features that are stored as Binary JSON object
in the database), these numbers are proportional to their file-equivalent. Most
of the added necessary space is due to the indexes (alphanumeric and spatial).

Table 5.1: Average database size for various schema and database structure
PostgreSQL empty: 15.8 Mb
PostgreSQL + 3DCityDB empty: 24.27 Mb
PostgreSQL + 3DCityDB + Model: 280.68 Mb
MongoDB empty: 24.58 Kb
MongoDB + Model: 39.09 Mb
MongoDB + Model + compressed: 14.57 Mb

We remind the reader that the MongoDB + schema has no reason to be. While
the relational database is focused on providing advanced functionalities and
computations, the document-oriented solution provides a lighter storage and
more accessible querying methods. We note that the last line (MongoDB +
Model + compressed) is the actual size taken by the model as handled on
the machine formatted in BSON (binary-encoded serialization of JSON-like
documents).

These numbers count the size of the storage itself but also the indexes. However,
even if one knows that a megabit represents nearly one million of bits, great
numbers remain little perceptible and comparable. Another view, removing

110 TRAVELOGUE: USAGE HISTORY

the units, allows representing them relatively in a representation close to a
Treemap (see Figure 5.2). A bit remains a bit in both solutions so things should
be seen in perspective: it is not less than a factor of 20 which is in favour
of the document-oriented solution. However, this occupied place comes with
conditions.

Figure 5.2: Treemap-like of the needed storage size for PostgreSQL and
MongoDB nodes.

In the previous chapters, the cost of things has not been discussed. A nevertheless
important metric is the price represented by these different solutions. This
point should not be addressed when comparing things from a functional and
non-functional point of view as has been done in the previous chapters. However,
whatever one may say, this is often how development projects in the industry
are synthesized balanced with their risks. We therefore take advantage of this
lighter chapter to discuss it.

In order to compare comparable elements, we decided to price both solution
on a global cloud platform which saves costs compared to own hosting. By
chance, our comparison was done on Microsoft’s Azure because of our current
professional position, but the other platforms are also quite valid: Amazon Web
Services, Google Cloud, etc.

On the Azure platform, we choose Azure Cosmos DB, the fully managed NoSQL
and relational database for modern app development, because both PostgreSQL
and MongoDB nodes are available. Obviously, other solutions are possible in the
wide range of services but Cosmos simple pre-sets also offer an easy modulable
setup.

INSTALLATION AND ACCESSIBILITY 111

The node configuration is the following (these requirements are common for
both relational and NoSQL document-oriented):

• Location: German West (Frankfurt, Germany).

• Single node without replications (no replication intra/extra region).

• No reservation, which means that we did not get savings on long
subscriptions

• No specific service-level agreement (SLA) or uptime.

Prices were obtained the 1st April 2023 without any affiliation plan (and no
savings on large-scale partnership). In the end, the price does not matter since
both solutions have the same price no matter the storage size. But what matters
here is that the ratio between the two solutions is therefore the same for the
size of the storage as for the price. This point alone will be enough to convince
most project managers and sponsors.

5.2 Installation and accessibility

Now that the database is installed, the question that arises is how can we best
take advantage of the tools offered?

First, the entire code is openly available on GitHub:

Figure 5.3: Logo of the Measur3D application on GitHub.

https://ganys.github.io/Measur3D/

It includes the schema management application server, the client for data
manipulation as well as the definition of schemas (outside the database for the
reminder). People are invited to modify it, customize it, propose improvements,

112 TRAVELOGUE: USAGE HISTORY

etc. An installation guide is provided which allows running both backend (a
basic server is provided and open doors to other developments are proposed) and
frontend stacks (API calls for the management of city features, etc.). The only
prerequisite is the access to a MongoDB instance, either in the cloud or local.
All the techno-bricks (i.e., JavaScript libraries for the majority) are downloaded
and updated via the installer.

In addition, once the backend has been installed and started, a Swagger API
documentation is generated on-the-fly while parsing the different API routes
and their capabilities automatically (see Figure 5.4): the OGC API - Features
and Measur3D dedicated routes are thus defined in details in several formats
(HTTP pages for humans, JSON objects for automated parsers, etc.). The
access protocols and the pseudo-database schemas are given and open to any
changes. Once again, people are invited to improve it and build their own
application on top of it, at least on a technical level.

Figure 5.4: Extract of the Swagger API routes for Measur3D on GitHub.

Figure 5.5: Extract of the Swagger documentation for Measur3D on GitHub.

Parallel to this, the discussion around the data schema is not long: the data
schema used is based on the CityGML data model which is itself well-known
since 2012. Even if a third version has recently been published, the various
developments all along this journey have rigorously followed the evolutions of
CityJSON. Just as 3DCityDB follows the evolutions of CityGML, Measur3D

INSTALLATION AND ACCESSIBILITY 113

(or whatever will be its name in the future) should follow the improvements
and modifications of CityJSON. There should not be any problem of retro-
compatibility since Measur3D follows the changes of CityJSON, which itself
guarantees such a compatibility. Regression tests should not be a big part of any
new development or integration based on this. Be careful, however, that this is
not a reason not to follow a coherent and well-thought-out testing strategy.

An improvement has been proposed though the use of mongoose and the
middleware compared to the JSON-schema: objects can be defined as specialized
version of one another. This represents an important difference with common
JSON-schema which imposes a concurrent validation to specialise JSON objects:
specialised objects then should to comply a set of schemas (allOf), any of a set
of schemas (anyOf) or at least one of the objects in a set (oneOf) according to
the JSON-Schema specification v2020-12. In our case, the improvement allows
discriminating objects types one another. Therefore, an object can be defined
as the refinement of an object but allowing updates on its previously defined
attributes also. The Figure 5.6 presents the two methods of specializing objects:
the JSON-schema on the left, which imposes independent conditions on an object,
and on the right, our solution which allows updating the previous attributes
and providing new ones. Once again, this point leads to easier maintenance of
the model by taking advantage of an already widespread technical advance.

Figure 5.6: Specialization of an object in JSON-schema and middleware

In this picture, on the left for JSON-Schema, the SpecializedObject is the fusion
of two objects definitions. And thus, the new provided attribute should be
defined in another object. In the end, both attributes are valid but it imposed
the coexistence (and therefore the renaming of the attribute) of attributes giving
the same information but formatted differently. On the right, in the scope of
discriminated objects, the update is simple applied on the original object.

114 TRAVELOGUE: USAGE HISTORY

The provided architecture should be seen as a sandbox giving people basic
stacks for the building of their own application. It was used by students but
also by us to illustrate basic principles and test hypotheses.

While there are many functions for deleting and getting the objects envelopes
proposed in 3DCityDB (those are advanced functions that goes beyond asking
the content of a table), it is surprising that there are no formalized views for
common queries like getting an object, all its attributes and its geometries.
There is no view, no procedure, no trigger nor materialized views after the
3DCityDB import. As a reminder, the idea here is to simplify access to
information for as many developers as possible: there is no external admin
table handled independently by MongoDB. At the end, for the end users, it
does not change anything: all these points are DBA considerations but a simple
view should improve the features accessibility without complexifying something
that is already wide. This point demonstrates a certain frustration with the
provision of a very complex model that does not take full advantage of the
relational model and its functionality.

Here are examples of tables (set of elements in a relational SQL database) and
collections (set of elements in a document-oriented database) creation for both
solutions. The idea is to create a simple table that stores additional information
on a Building (an object type that is already well defined in the data model).

Listing 5.1: SQL creation of a table
CREATE TABLE bu i ld ing_arch i t e c t_ in fo rmat ion (

id MEDIUMINT NOT NULL
AUTO_INCREMENT,

c i t yob j e c t_ id Number,
s ty le_type char (1) ,

PRIMARY KEY (id)
)

Listing 5.2: SQL creation of an instance
INSERT INTO bu i ld ing_arch i t e c t_ in fo rmat ion (

c i tyob j ec t_ id , s ty le_type)
VALUES (" abc123 " , 1) ;

We note here that the style types enumeration imposes to create another table
that stores the various style types (contemporary, modern, etc.) if you want
to limit the possible values to an enumeration. The style type attribute then
stores the key of the desired type from this second table. Binding the Building
information to the legacy cityobject table imposes also the creation of a foreign
key to connect both tables. To then request the style information, all these

INSTALLATION AND ACCESSIBILITY 115

tables must be joined. We note that another solution could prefer to add a new
attribute to the cityobjects directly using an "alter table" SQL command but it
opens the possibility to add a style type to any city objects. Creating a new
table allows increasing the number of additional information afterwards and
keeping it away of the CityGML core model. It is also why the association goes
from the Building information to the Building and not from the cityobjects that
is defined as a Building to its information: limiting modification of the standard
model to promote interoperability of the implementation.

For storing additional information to a Building in the document-oriented
solution, we have nothing to do. The new attribute is simply added while
creating the instance (or updating it) and the information will be added to the
good document. All the other Building elements are not modified as this new
attribute has not been set creating them.

Listing 5.3: MongoDB Query Language (MQL) updating of a document
c i tymodel . c i t y o b j e c t s . updateOne ({ _id : " abc123 " , s t y l e :

" modern " })

Flexibility of this solution creates possibilities while limiting the added
complexity.

Nevertheless, an illustrated example of a common query expressed in both
solutions should demonstrate the specific "ease to use for developers". The scope
here is not to propose a very complex query highlighting the completeness of the
CityGML data model. For the sake of the demonstration and more in particular,
keeping in mind the reader who is not a SQL expert nor a MongoDB aficionado,
the first proposed query searches all Buildings and their attributes (address,
function, etc). As a first step, geometries have been skipped. Here are other
examples of simple queries on "Building" city objects from the above-mentioned
city model stored on both a relational and NoSQL document-oriented solution:

Listing 5.4: Mongoose populate command example
SELECT

co . id
FROM c i t y o b j e c t co

JOIN bu i l d ing b ON b . id = co . id
JOIN o b j e c t c l a s s oc ON co . o b j e c t c l a s s _ i d = oc . id

AND oc . c lassname : : t ex t = ’ Bui ld ing ’ : : t ex t

This query took 54 milliseconds on average using pgadmin once the query buffer
has been set. It took 300 milliseconds on first try on a "common" laptop on

116 TRAVELOGUE: USAGE HISTORY

which the databases are both running. The example above only returns the
identifiers of city objects that are "Buildings", nothing more. Its equivalent in
MQL is written as follows:

Listing 5.5: Mongoose populate command example
c i tymodel . c i t y o b j e c t s . f i n d ({ type : ’ Bui ld ing ’ })

This query took averagely 4 milliseconds on 100 repetitions on the same machine
using MongoDB Compass, the equivalent of pgadmin for MongoDB. It is
mainly because the language used follows the structure of the stored JSON
and its embedded/nested elements. Moreover, the expressivity of the query is
strengthened: it follows a cascading path and provide smart elements of filtering.
In the end, getting the geometries can be achieved in a very convenient way
using the populate mechanism of mongoose (the JavaScript library that allows
handling MongoDB instances). Under the condition that a reference to another
collection is provided within a document (which is the case in the proposed data
model in Chapter 4), this mechanism nests elements inside each other using the
path proposed in the request.

Listing 5.6: Mongoose populate command example
c i tymodel . c i t y o b j e c t s . f i n d ({ type : ’ Bui ld ing ’ }) . populate (’

geometry ’)

In the same way a model can be reconstructed entirely using an embedded sets
of objects and references. The mechanism then cascading populate the model:
the model is getting the objects, the objects are getting their geometries, the
geometries are getting their templates if relevant, etc. Since the elements are
stored as they are accessed/formatted in the CityJSON file, it provides a very
convenient query engine using the three collections from Chapter 4.

On a non-functional analysis, the NoSQL document-oriented solution, keeping
in mind that the model accessibility and flexibility are the focus, is unbeatable.
Afterwards, if a real comparison had to be made on a functional level, many
efforts should still be invested in developing spatial capabilities. However, this
is dependent of the MongoDB providers and get out the scope of this study. It
was nevertheless necessary to specify it.

Chapter 6

Conclusion

This chapter reviews the different objectives and research questions that have
been discussed in this document but also proposes some research extensions
that could represent a logical continuation. Through this document, we tried
to give answers to three research questions proposing new methods and models
that better suits what we consider the future needs of users in 3D city modelling.
It is proposed as a complementary solution that does not pretend to be the sole
and mandatory solution. It is part of a trend without being its main spearhead.
These successive explanations are given corresponding to the three tiers of a
common web architecture. They are actually parts of a much bigger question
that will be detailed and discussed at the end of this conclusion. The much
bigger picture goes toward the implementation of a unique and faithful digital
representation of the real cities and their assets. Such a Digital Twin intend to
provide an integrating basis in which every city actors could find an added-value,
an improved decision-making tool or simply a virtual representation of a tangible
reality. The paradigm shift can be summarized in the following picture that
encompasses the three improvements (see Figure 6.1). In short, the problem
concerned the study of giving up a part of database consistency for the benefit
of schema model flexibility and its report on another stack: the application
server.

The current chapter, i.e. the conclusion, is the counterpart of the first, i.e. the
introduction, and thus follows the same structure. It contextualizes the thesis
in its writing context before developing the partial answers given to the four
questions asked in the introduction. Some research extensions giving insights
on what could come next are discussed in a chronological order.

117

118 CONCLUSION

Figure 6.1: Illustration of the paradigm shift for the three-tier architecture.

6.1 Research questions

The main objective of this thesis is to propose a new generation of geographic
information systems that provides increased schema flexibility for the CityJSON
data it manages. However, it should not arm the data consistency that is the
main advantage of using a standardized design model. The shift decomposes a
traditional web architecture in its three constituting parts in order to tackle
their data management in a flexible but still consistent way. The main
purpose is to provide a solution that improves usability (i.e., ease of use and
learning), interoperability (i.e., ease of exchanging through standardization of
communications and storage processes) and maintenance (i.e., ease of managing
the data all along its lifecycle).

It order to focus the developments, it has been summarized in a general research
question as follows:

Could a flexible web architecture gather the consistency and
interoperability aspect of the CityGML data model with better
flexibility to cope with a high demand for sharing by applications
from different domains?

In itself, the answer is obviously true: considering the added features and

RESEARCH QUESTIONS 119

capabilities of new technologies, it is obvious that things should be improved.
Whether the architecture is based on new elements or uses old ones, any form of
progress will always bring a gain of something: time, consumption of resources,
money, etc. What is important to conclude is rather in the additional capabilities
that are now possible.

The data consistency (i.e. the confidence that one can have in the information
handled and exchanges by the architecture) is usually managed through database
rules, relational associations, etc. However, it lacks of adaptability and resilience
to modifications. In a dynamic that evolves quickly and aim attention at
potential new needs, this mode of structuring has some flaws: we have listed
them more or less exhaustively in chapter 3 on the database schema. The
NoSQL databases are complementary solutions to relational databases, their
tables, their associations and their hierarchies. For the reminder, as stated in the
third chapter, the flattening of the CityGML schema thanks to the CityJSON
encoding is its main improvement. It was thus important to propose a solution
that enjoys this advance. It is indeed the main goal of the proposed architecture
and the database schema. The contribution of a fourth use of the CityGML
data model is itself a major step forward an increased use of document-oriented
databases in 3D city modelling. We hope that this will also give a place to
NoSQL in geographic information systems. This is not about performances and
efficiency but rather about things made possible: metadata support, storage
isomorphism, no joins, information filtering, etc.

The urban built environment offers a great showcase that gathers complex
features, relationships between them, three-dimensional information, etc. The
integration of heterogeneous information sources and their cross-checking
illustrates the new abilities and allows understanding the differences between
the two modes while making parallels with things that everyone knows (i.e.
Buildings, Roads, etc.). For instance, since a Building is a CityObjects with an
address. It illustrates objects hierarchy, their specifications and finally a discrete
management by object. Moreover, the relations between the city elements
and their semantic are easily understandable on a semantic level since it is a
well-known environment for the most part. In a teaching and academic context,
it offers a great sandbox for developments.

By taking up the elements, chapter by chapter, the thesis asks the following
questions. The successive summaries reply to them and provide observations
on their answers contributions.

By focusing on the geometric generation process, is it not possible to
improve the accessibility, open the use and refine the design avoiding
excessive model complexity? What are the clients’ advantages of
generated CityJSON models for sharing?

120 CONCLUSION

The light buildings generation process that follows from the second chapter
develops new features of CityJSON: native support of metadata, refined levels of
detail, etc. Providing a direct CityJSON model generation process simplify its
storage in a dedicated storage solution since it does not impose its translation
upstream. We take advantage of the simplicity of the model without having to
complicate it before registration in a relational database. It was, at this time,
a good generation process in terms of speed, accuracy and fidelity. However,
in 2022, its results, speaking of performances, geometric errors and building’s
roof shapes complexity, is no more a good solution. The answer can thus be
expressed as: it simplified and opened the usage of CityJSON models and thus
improves their sharing but on a performance level, it is outdated.

Does moving from relational databases and their rigidity to document-
oriented NoSQL databases and their flexibility open up data for
modification and sharing? Is the consistency of the data at risk?

This chapter proposes the fourth usage of the CityGML data model: the
definition of a document-oriented database schema. The modifications and
the possibilities it has to be modified on the fly, thanks to its links with
the CityJSON encoding, simplifies not only the users understanding but also
their use. The proposed web architecture allows people developing their own
applications in a convenient way constituting it with supplied stacks or modified
versions of their own elements in an interoperable base. The schema flexibility
benefit has been demonstrated in two specific applications: a cadaster of urban
green infrastructure and a cadaster of the energy performance of buildings. The
reply to the chapter query can be formulated as follows: the document-oriented
databases suits the flattening of the data model proposed by CityJSON. It
optimizes its storage and querying. The data consistency should then be shifted
on the server stack in order to keep the confidence in the data management.

How to guarantee the consistency of the architecture when the
database is now flexible? What happens if many users access the data
from an access control point of view (versioning, hierarchy, security,
etc.)?

The proposed solution relies on a middleware that filters queries and thus
exchanges between application stacks. The core schema of the middleware is
the CityJSON specifications but can be modified in such a way that handles
both server and database consistency. Updates and modifications can easily be
made and thus allow extending the schema in order to support new capabilities:
versioning, hierarchy, etc. This chapter answers the question asked providing a
solution to create a unique integrating basis for as many applications as possible.
Under the condition that they all respect a set of predefined rules and filter
their exchanges, they could connect to a single digital replica of real objects.

RESEARCH EXTENSIONS 121

Such definition refers to a concept that have been exposed from the very first
lines of this document: a Digital Twin. We believe that providing a flexible
architecture, from the beginning of its creation, should facilitate and therefore
improve the creation of such replicas. Proposals for research extensions should
provide a clear vision of what we could expect after this thesis and what could
be done in short or medium term.

These different explanations encompass a more ambitious answer that has been
divided in the three chronological but also logical papers. Has it has been said in
the beginning of this chapter: yes, flexibility can be improved without arming its
consistency. However, this should be done in such a way that respect conditions.
This point could be seen as contradictory with the notion of flexibility. Still,
the flexibility we speak about in the thesis is the data model flexibility, not
the architecture flexibility nor the possibility to create completely independent
and erratic stacks. Developers must still work under requirements that respect
basics.

Subsequent works and findings conclude each chapter and place the thesis in a
much general context. It illustrates that this thesis is not isolated and does not
result of the work of a sole researcher: it is in line with the state of the art and
new users’ needs. As researchers (i.e. people who are paid by public bodies), it
is our duty to propose new solutions by taking the time to propose a new way
of thinking. This comfort must be appreciated and used to its full potential
given that the industry must always go for profit.

6.2 Research extensions

The potential of the architecture and the data model flexibility have already been
showed in subsequent works of the third and fourth chapter. Extensions of the
CityJSON core model are easily developed and tested, not only validating the
extended schemas but also illustrating the new provided capabilities. Dedicated
tools are added in the same way modularizing the viewer interface and the API.
For instance, the expansion of the module support to Dynamizers required the
creation of components that handle time series data and specific connections
to sensors mock servers. This demonstrates that the interoperability and the
usability of the provided architecture offers a great sandbox for the future works.
We believe that its potential has however not been promoted or tested. Still,
an important work on the architecture should be done and some mistakes need
to be corrected (i.e. it is a good proof of concept but should remain humble on
code quality). This point does not concern any great modification but rather
maintenance and production.

122 CONCLUSION

The middleware should be improved in order to handle filters that are more
detailed and complex. It has for now only be used to limit access writing
and reading access of information of CityJSON features. Besides following
the progress of the various OGC standards, a proposition could be made on
a better integration of the SensorThings API (standard dedicated to sensors
and Internet of Things) as was done for the Dynamizers. Moreover, all the
supported standards of the Features and Geometries JSON working group could
be integrated. It could be made exactly as we integrated the middleware (i.e.
providing a different API route).

Enjoying the NodeJS server, its capabilities, its online repository for the
publishing of open-source projets (i.e. npm), its important community and its
improved flexibility, many improvements could be made in order to open its
use. For instance, data analysis could be implemented on the server-side thanks
to all these elements. Spatio-temporal reasoning and machine learning stacks
could be added to the API capabilities and thus integrated in a much greater
design. Once more, the architecture could be used as an integration basis to
create improved decision-making tools.

The semantic web and its related standards (RDF, OWL, SPARQL, etc.) are
bases of shared machine-readable but also human-readable interlinked data
on the web: the Linked Open Data cloud. Every single concept defined in
the LOD-cloud is identified by a unique key called Internationalized Resource
Identifier. Even if city features are stored in a document-oriented database
instead of a proper RDF graph-oriented one, links can be established by using
these non-equivocal IRIs. These features references allow defining elements in
a univocal way and reach a perfect crosschecking of information. Better than
UUID, because of the semantic that these URL-like id carry, the IRI could
provide information on the data owner, the version, etc. It should be, without a
doubt, a constituting technological stack to implement such a LOD-proof Digital
Twin. By going further, but really far this time, we can dream and imagine
integrating all this in a blockchain and reach the utopian “truth”. Keeping
things simple, the idea is to provide a shared solution to guarantee the storage
of shared information (agreeing and sharing information is called "truth" in web
semantic). Semantic of the 3D city models can thus be trusted thanks to the
blockchain verifications and its sharing is guaranteed by the RDF/IRI solutions.

These last points might seem fuzzy or unrealizable but we believe they will be
partial answers to what we expect as future needs. This represent as comforting
point since all these technologies already exist, at least in early stages.

Bibliography

Agrawal, S. and R. D. Gupta (Dec. 2017). “Web GIS and its architecture: a
review”. en. In: Arabian Journal of Geosciences 10.23, p. 518. issn: 1866-7511,
1866-7538. doi: 10.1007/s12517-017-3296-2.

Aleksandrov, M., A. Diakité, J. Yan, W. Li, and S. Zlatanova (Sept. 30, 2019).
“SYSTEMS ARCHITECTURE FOR MANAGEMENT OF BIM, 3D GIS
AND SENSORS DATA”. en. In: ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences IV-4/W9, pp. 3–10. issn: 2194-9050.
doi: 10.5194/isprs-annals-IV-4-W9-3-2019.

Allah Bukhsh, Z., M. van Sinderen, and P. M. Singh (2015). “SOA and EDA:
A Comparative Study - Similarities, Differences and Conceptual Guidelines
on their Usage”. In: [Online; accessed 2019-01-10]. International Conference
on e-Business. Colmar, Alsace, France: SCITEPRESS - Science, pp. 213–220.
isbn: 978-989-758-113-7. doi: 10.5220/0005539802130220.

Awrangjeb, M., S. Gilani, and F. Siddiqui (Sept. 21, 2018). “An Effective Data-
Driven Method for 3D Building Roof Reconstruction and Robust Change
Detection”. en. In: Remote Sensing 10.10, p. 1512. issn: 2072-4292. doi:
10.3390/rs10101512.

Ballard, D. (1987). “GENERALIZING THE HOUGH TRANSFORM TO
DETECT ARBITRARY SHAPES”. en. In: Readings in Computer Vision.
DOI: 10.1016/B978-0-08-051581-6.50069-6. Elsevier, pp. 714–725. isbn: 978-
0-08-051581-6.

Balta, H., J. Velagic, W. Bosschaerts, G. De Cubber, and B. Siciliano (2018).
“Fast Statistical Outlier Removal Based Method for Large 3D Point Clouds
of Outdoor Environments”. en. In: IFAC-PapersOnLine 51.22, pp. 348–353.
issn: 24058963. doi: 10.1016/j.ifacol.2018.11.566.

Baralis, E., A. Dalla Valle, P. Garza, C. Rossi, and F. Scullino (Dec. 2017). “SQL
versus NoSQL databases for geospatial applications”. In: [Online; accessed

123

https://doi.org/10.1007/s12517-017-3296-2
https://doi.org/10.5194/isprs-annals-IV-4-W9-3-2019
https://doi.org/10.5220/0005539802130220
https://doi.org/10.3390/rs10101512
https://doi.org/10.1016/j.ifacol.2018.11.566

124 BIBLIOGRAPHY

2018-06-27]. IEEE, pp. 3388–3397. isbn: 978-1-5386-2715-0. doi: 10.1109/
BigData.2017.8258324.

Bartoszewski, D., A. Piorkowski, and M. Lupa (2019). “The Comparison of
Processing Efficiency of Spatial Data for PostGIS and MongoDB Databases”.
en. In: Beyond Databases, Architectures and Structures. Paving the Road
to Smart Data Processing and Analysis. Ed. by S. Kozielski, D. Mrozek,
P. Kasprowski, B. Malysiak-Mrozek, and D. Kostrzewa. Vol. 1018. Cham:
Springer International Publishing, pp. 291–302. isbn: 978-3-030-19092-7.

Berger, M., A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud,
J. A. Levine, A. Sharf, and C. T. Silva (Jan. 2017). “A Survey of Surface
Reconstruction from Point Clouds”. In: Computer Graphics Forum 36.1,
pp. 301–329. issn: 14678659. doi: 10.1111/cgf.12802.

Biljecki, F., H. Ledoux, X. Du, J. Stoter, K. H. Soon, and V. H. S. Khoo
(Oct. 5, 2016). “The most common geometric and semantic errors in CityGML
datasets”. en. In: ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences IV-2/W1, pp. 13–22. issn: 2194-9050. doi:
10.5194/isprs-annals-IV-2-W1-13-2016.

Biljecki, F., K. Kumar, and C. Nagel (Dec. 2018). “CityGML Application
Domain Extension (ADE): overview of developments”. en. In: Open Geospatial
Data, Software and Standards 3.1, p. 13. issn: 2363-7501. doi: 10.1186/
s40965-018-0055-6.

Biljecki, F., H. Ledoux, and J. Stoter (Sept. 2016). “An improved LOD
specification for 3D building models”. en. In: Computers, Environment
and Urban Systems 59, pp. 25–37. issn: 01989715. doi: 10 . 1016 / j .
compenvurbsys.2016.04.005.

Biljecki, F., H. Ledoux, J. Stoter, and J. Zhao (Nov. 2014). “Formalisation of
the level of detail in 3D city modelling”. en. In: Computers, Environment and
Urban Systems 48, pp. 1–15. issn: 01989715. doi: 10.1016/j.compenvurbsys.
2014.05.004.

Biljecki, F., J. Lim, J. Crawford, D. Moraru, H. Tauscher, A. Konde, K. Adouane,
S. Lawrence, P. Janssen, and R. Stouffs (Jan. 2021). “Extending CityGML
for IFC-sourced 3D city models”. en. In: Automation in Construction 121,
p. 103440. issn: 09265805. doi: 10.1016/j.autcon.2020.103440.

Biljecki, F., J. Stoter, H. Ledoux, S. Zlatanova, and A. Çöltekin (Dec. 18, 2015).
“Applications of 3D City Models: State of the Art Review”. en. In: ISPRS
International Journal of Geo-Information 4.4, pp. 2842–2889. issn: 2220-9964.
doi: 10.3390/ijgi4042842.

https://doi.org/10.1109/BigData.2017.8258324
https://doi.org/10.1109/BigData.2017.8258324
https://doi.org/10.1111/cgf.12802
https://doi.org/10.5194/isprs-annals-IV-2-W1-13-2016
https://doi.org/10.1186/s40965-018-0055-6
https://doi.org/10.1186/s40965-018-0055-6
https://doi.org/10.1016/j.compenvurbsys.2016.04.005
https://doi.org/10.1016/j.compenvurbsys.2016.04.005
https://doi.org/10.1016/j.compenvurbsys.2014.05.004
https://doi.org/10.1016/j.compenvurbsys.2014.05.004
https://doi.org/10.1016/j.autcon.2020.103440
https://doi.org/10.3390/ijgi4042842

BIBLIOGRAPHY 125

Billen, R., A.-F. Cutting-Decelle, O. Marina, J.-P. de Almeida, C. M., G. Falquet,
T. Leduc, C. Métral, G. Moreau, J. Perret, G. Rabin, R. San Jose, I. Yatskiv,
and S. Zlatanova (2014). “3D City Models and urban information: Current
issues and perspectives: European COST Action TU0801”. In: ed. by R. Billen,
A.-F. Cutting-Decelle, O. Marina, J.-P. de Almeida, C. M., G. Falquet,
T. Leduc, C. Métral, G. Moreau, J. Perret, G. Rabin, R. San Jose, I. Yatskiv,
and S. Zlatanova. [Online; accessed 2019-03-08]. 3D City Models, urban
information: Current issues, and perspectives – European COST Action
TU0801. Liège, Belgium: EDP Sciences, pp. I–118. isbn: 978-2-7598-1153-3.
doi: 10.1051/TU0801/201400001.

Billen, R., B. Jonlet, A. L. Jancsó, R. Neuville, G.-A. Nys, F. Poux, M. V.
Ruymbeke, M. Piavaux, and P. Hallot (2018). “La transition numérique dans
le domaine du patrimoine bâti: un retour d’expériences”. In: Bulletin de la
Commission royale des Monuments, Sites et Fouilles 30, pp. 119–146.

Blaschke, T., G. J. Hay, Q. Weng, and B. Resch (Aug. 19, 2011). “Collective
Sensing: Integrating Geospatial Technologies to Understand Urban Systems–
An Overview”. en. In: Remote Sensing 3.8, pp. 1743–1776. issn: 2072-4292.
doi: 10.3390/rs3081743.

Boaventura Filho, W., H. V. Olivera, M. Holanda, and A. Favacho (Oct. 2016).
“Geographic Data Modelling for NoSQL Document-Oriented Databases”. In:
GEOProcessing 2015 : the Seventh International Conference on Advanced
Geographic Information System, Applications and Services. Lisbon, Portugal.

Borrmann, D., J. Elseberg, K. Lingemann, and A. Nüchter (2010). “A Data
Structure for the 3D Hough Transform for Plane Detection”. en. In: IFAC
Proceedings Volumes 43.16, pp. 49–54. issn: 14746670. doi: 10 . 3182 /
20100906-3-IT-2019.00011.

Breunig, M., P. V. Kuper, E. Butwilowski, A. Thomsen, M. Jahn, A. Dittrich,
M. Al-Doori, D. Golovko, and M. Menninghaus (July 2016). “The story
of DB4GeO – A service-based geo-database architecture to support multi-
dimensional data analysis and visualization”. en. In: ISPRS Journal of
Photogrammetry and Remote Sensing 117, pp. 187–205. issn: 09242716. doi:
10.1016/j.isprsjprs.2015.12.006.

Brewer, E. A. (2000). “Towards robust distributed systems”. In: Proceedings of
the nineteenth annual ACM symposium on Principles of distributed computing
- PODC ’00. the nineteenth annual ACM symposium. Portland, Oregon,
United States: ACM Press, p. 7. isbn: 978-1-58113-183-3. doi: 10.1145/
343477.343502.

Brito, G., T. Mombach, and M. T. Valente (Feb. 2019). “Migrating to GraphQL:
A Practical Assessment”. In: [Online; accessed 2022-05-20]. 2019 IEEE 26th

https://doi.org/10.1051/TU0801/201400001
https://doi.org/10.3390/rs3081743
https://doi.org/10.3182/20100906-3-IT-2019.00011
https://doi.org/10.3182/20100906-3-IT-2019.00011
https://doi.org/10.1016/j.isprsjprs.2015.12.006
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502

126 BIBLIOGRAPHY

International Conference on Software Analysis, Evolution and Reengineering
(SANER). Hangzhou, China: IEEE, pp. 140–150. isbn: 978-1-72810-591-8.
doi: 10.1109/SANER.2019.8667986.

Cao, R., Y. Zhang, X. Liu, and Z. Zhao (July 3, 2017). “3D building roof
reconstruction from airborne LiDAR point clouds: a framework based on a
spatial database”. en. In: International Journal of Geographical Information
Science 31.7, pp. 1359–1380. issn: 1365-8816, 1362-3087. doi: 10.1080/
13658816.2017.1301456.

Cha, S. K., K. H. Kim, C. B. Song, J. K. Kim, and Y. S. Kwon (1999). “A
Middleware Architecture for Transparent Access to Multiple Spatial Object
Databases”. In: Interoperating Geographic Information Systems. Ed. by M.
Goodchild, M. Egenhofer, R. Fegeas, and C. Kottman. Boston, MA: Springer
US, pp. 267–282. isbn: 978-1-4613-7363-6.

Chadzynski, A., N. Krdzavac, F. Farazi, M. Q. Lim, S. Li, A. Grisiute, P.
Herthogs, A. von Richthofen, S. Cairns, and M. Kraft (Dec. 2021). “Semantic
3D City Database - An enabler for a dynamic geospatial knowledge graph”.
en. In: Energy and AI 6, p. 100106. issn: 26665468. doi: 10.1016/j.egyai.
2021.100106.

Chasseur, C., Y. Li, and J. Patel (June 2013). “Enabling JSON Document
Stores in Relational Systems”. In: WebDB 2013. New York, NY, USA.

Chaturvedi, K. and T. H. Kolbe (2015). “Dynamizers - Modeling and
Implementing Dynamic Properties for Semantic 3D City Models”. In: The
Eurographics Association. doi: 10.2312/udmv.20151348.

Chaturvedi, K., C. S. Smyth, G. Gesquière, T. Kutzner, and T. H. Kolbe (2017).
“Managing Versions and History Within Semantic 3D City Models for the
Next Generation of CityGML”. In: Advances in 3D Geoinformation. Ed. by
A. Abdul-Rahman. Cham: Springer International Publishing, pp. 191–206.
isbn: 978-3-319-25689-4.

Clemens, P., V. Panagiotis, and H. Charles (Oct. 2019). OGC API - Feature -
Part 1: Core.

Corman, J., J. L. Reutter, and O. Savković (2018). “Semantics and Validation of
Recursive SHACL”. In: The Semantic Web – ISWC 2018. Ed. by D. Vrandečić,
K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou,
L.-A. Kaffee, and E. Simperl. Vol. 11136. Series Title: Lecture Notes in
Computer Science. Cham: Springer International Publishing, pp. 318–336.
isbn: 978-3-030-00670-9 978-3-030-00671-6. doi: 10.1007/978-3-030-00671-
6_19.

https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.1080/13658816.2017.1301456
https://doi.org/10.1080/13658816.2017.1301456
https://doi.org/10.1016/j.egyai.2021.100106
https://doi.org/10.1016/j.egyai.2021.100106
https://doi.org/10.2312/udmv.20151348
https://doi.org/10.1007/978-3-030-00671-6_19
https://doi.org/10.1007/978-3-030-00671-6_19

BIBLIOGRAPHY 127

Costa Rainho, F. da and J. Bernardino (June 2018). “Web GIS: A new system to
store spatial data using GeoJSON in MongoDB”. In: [Online; accessed 2019-04-
18]. 2018 13th Iberian Conference on Information Systems and Technologies
(CISTI). Caceres: IEEE, pp. 1–6. isbn: 978-989-98434-8-6. doi: 10.23919/
CISTI.2018.8399279.

Debruyne, C. and K. McGlinn (June 7, 2021). “Reusable SHACL Constraint
Components for Validating Geospatial Linked Data”. In: Reusable SHACL
Constraint Components for Validating Geospatial Linked Data. CEUR.

Deininger, M. E., M. von der Grün, R. Piepereit, S. Schneider, T. Santhana-
vanich, V. Coors, and U. Voß (Oct. 31, 2020). “A Continuous, Semi-Automated
Workflow: From 3D City Models with Geometric Optimization and CFD
Simulations to Visualization of Wind in an Urban Environment”. en. In:
ISPRS International Journal of Geo-Information 9.11, p. 657. issn: 2220-
9964. doi: 10.3390/ijgi9110657.

Diogo, M., B. Cabral, and J. Bernardino (Feb. 14, 2019). “Consistency Models
of NoSQL Databases”. en. In: Future Internet 11.2, p. 43. issn: 1999-5903.
doi: 10.3390/fi11020043.

Doboš, J. and A. Steed (2012). “3D revision control framework”. en. In:
[Online; accessed 2019-07-09]. the 17th International Conference. Los Angeles,
California: ACM Press, p. 121. isbn: 978-1-4503-1432-9. doi: 10 . 1145 /
2338714.2338736.

Dorninger, P. and N. Pfeifer (Nov. 17, 2008). “A Comprehensive Automated 3D
Approach for Building Extraction, Reconstruction, and Regularization from
Airborne Laser Scanning Point Clouds”. en. In: Sensors 8.11, pp. 7323–7343.
issn: 1424-8220. doi: 10.3390/s8117323.

Ðuric, M. (June 7, 2018). “GEOPORTAL FOR SEARCHING AND VISUAL-
IZATION OF CADASTRAL DATA”. In: 13.1. [Online; accessed 2020-11-05].
issn: 2566-4484. doi: 10.7251/STP1813687A.

El Yamani, S., R. Hajji, G.-A. Nys, M. Ettarid, and R. Billen (Mar. 5, 2021).
“3D Variables Requirements for Property Valuation Modeling Based on the
Integration of BIM and CIM”. In: Sustainability 13.5, p. 2814. issn: 2071-1050.
doi: 10.3390/su13052814.

Ellul, C., J. Stoter, and B. Bucher (Oct. 2022). “Location-enabled Digital Twins
– Understanding the Role of NMCAS in a European Context”. In: ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences X-4/W2-2022, pp. 53–60. doi: 10.5194/isprs-annals-X-4-W2-
2022-53-2022.

https://doi.org/10.23919/CISTI.2018.8399279
https://doi.org/10.23919/CISTI.2018.8399279
https://doi.org/10.3390/ijgi9110657
https://doi.org/10.3390/fi11020043
https://doi.org/10.1145/2338714.2338736
https://doi.org/10.1145/2338714.2338736
https://doi.org/10.3390/s8117323
https://doi.org/10.7251/STP1813687A
https://doi.org/10.3390/su13052814
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-53-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-53-2022

128 BIBLIOGRAPHY

Ennafii, O., A. L. Bris, F. Lafarge, and C. Mallet (2018). “Semantic evaluation
of 3D city models”. en. In: Unpublished. [Online; accessed 2019-03-05]. doi:
10.13140/rg.2.2.15922.45765.

Ennafii, O., A. Le Bris, F. Lafarge, and C. Mallet (Dec. 1, 2019). “A Learning
Approach to Evaluate the Quality of 3D City Models”. en. In: Photogrammetric
Engineering & Remote Sensing 85.12, pp. 865–878. issn: 0099-1112. doi:
10.14358/PERS.85.12.865.

Eriksson, H. and L. Harrie (Jan. 28, 2021). “Versioning of 3D City Models for
Municipality Applications: Needs, Obstacles and Recommendations”. en. In:
ISPRS International Journal of Geo-Information 10.2, p. 55. issn: 2220-9964.
doi: 10.3390/ijgi10020055.

Eriksson, H., J. Sun, V. Tarandi, and L. Harrie (Feb. 2021). “Comparison of
versioning methods to improve the information flow in the planning and
building processes”. en. In: Transactions in GIS 25.1, pp. 134–163. issn:
1361-1682, 1467-9671. doi: 10.1111/tgis.12672.

Fan, H. and L. Meng (June 2012). “A three-step approach of simplifying 3D
buildings modeled by CityGML”. en. In: International Journal of Geographical
Information Science 26.6, pp. 1091–1107. issn: 1365-8816, 1362-3087. doi:
10.1080/13658816.2011.625947.

Floros, G. and E. Dimopoulou (Oct. 5, 2016). “Investigating the enrichment of a
3D city model with various CityGML modules”. en. In: ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XLII-2/W2, pp. 3–9. issn: 2194-9034. doi: 10 . 5194 / isprs -
archives-XLII-2-W2-3-2016.

Fricke, A., J. Döllner, and H. Asche (2018). “Servicification – Trend or Paradigm
Shift in Geospatial Data Processing?” In: Computational Science and Its
Applications – ICCSA 2018. Ed. by O. Gervasi, B. Murgante, S. Misra,
E. Stankova, C. M. Torre, A. M. A. Rocha, D. Taniar, B. O. Apduhan, E.
Tarantino, and Y. Ryu. Vol. 10962. Cham: Springer International Publishing,
pp. 339–350. isbn: 978-3-319-95167-6.

Gómez, P., C. Roncancio, and R. Casallas (July 2021). “Analysis and evaluation
of document-oriented structures”. en. In: Data & Knowledge Engineering 134,
p. 101893. issn: 0169023X. doi: 10.1016/j.datak.2021.101893.

Gröger, G. and L. Plümer (July 2012). “CityGML – Interoperable semantic 3D
city models”. en. In: ISPRS Journal of Photogrammetry and Remote Sensing
71, pp. 12–33. issn: 09242716. doi: 10.1016/j.isprsjprs.2012.04.004.

https://doi.org/10.13140/rg.2.2.15922.45765
https://doi.org/10.14358/PERS.85.12.865
https://doi.org/10.3390/ijgi10020055
https://doi.org/10.1111/tgis.12672
https://doi.org/10.1080/13658816.2011.625947
https://doi.org/10.5194/isprs-archives-XLII-2-W2-3-2016
https://doi.org/10.5194/isprs-archives-XLII-2-W2-3-2016
https://doi.org/10.1016/j.datak.2021.101893
https://doi.org/10.1016/j.isprsjprs.2012.04.004

BIBLIOGRAPHY 129

Haas, L., R. J. Miller, B. Niswonger, M. Roth, P. Schwarz, and E. Wimmers
(Mar. 1999). “Transforming heterogeneous data with database middleware:
beyond integration”. In: IEEE Data Engineering Bulletin 22, pp. 31–36.

Hachenberger, P., L. Kettner, and K. Mehlhorn (Sept. 2007). “Boolean
operations on 3D selective Nef complexes: Data structure, algorithms,
optimized implementation and experiments”. en. In: Computational Geometry
38.1-2, pp. 64–99. issn: 09257721. doi: 10.1016/j.comgeo.2006.11.009.

Hartig, O. and J. Pérez (2018). “Semantics and Complexity of GraphQL”. en.
In: [Online; accessed 2022-05-20]. the 2018 World Wide Web Conference.
Lyon, France: ACM Press, pp. 1155–1164. isbn: 978-1-4503-5639-8. doi:
10.1145/3178876.3186014.

Haughian, G., R. Osman, and W. J. Knottenbelt (2016). “Benchmarking
Replication in Cassandra and MongoDB NoSQL Datastores”. In: Database
and Expert Systems Applications. Ed. by S. Hartmann and H. Ma. Vol. 9828.
Cham: Springer International Publishing, pp. 152–166. isbn: 978-3-319-44405-
5.

Henn, A., G. Gröger, V. Stroh, and L. Plümer (Feb. 2013). “Model driven
reconstruction of roofs from sparse LIDAR point clouds”. en. In: ISPRS
Journal of Photogrammetry and Remote Sensing 76, pp. 17–29. issn: 09242716.
doi: 10.1016/j.isprsjprs.2012.11.004.

Herrmann, K., H. Voigt, A. Behrend, J. Rausch, and W. Lehner (May 9,
2017). “Living in Parallel Realities – Co-Existing Schema Versions with a
Bidirectional Database Evolution Language”. In: Proceedings of the 2017
ACM International Conference on Management of Data. arXiv: 1608.05564,
pp. 1101–1116. doi: 10.1145/3035918.3064046.

Herrmann, K., H. Voigt, J. Rausch, A. Behrend, and W. Lehner (Feb. 2018).
“Robust and simple database evolution”. en. In: Information Systems Frontiers
20.1, pp. 45–61. issn: 1387-3326, 1572-9419. doi: 10.1007/s10796-016-9730-
2.

Holemans, A., J.-P. Kasprzyk, and J.-P. Donnay (2018). “Coupling an
Unstructured NoSQL Database with a Geographic Information System”.
In: The Tenth International Conference on Advanced Geographic Information.
Rome, Italy, pp. 23–28.

Hu, P., B. Yang, Z. Dong, P. Yuan, R. Huang, H. Fan, and X. Sun (July 17,
2018). “Towards Reconstructing 3D Buildings from ALS Data Based on
Gestalt Laws”. en. In: Remote Sensing 10.7, p. 1127. issn: 2072-4292. doi:
10.3390/rs10071127.

https://doi.org/10.1016/j.comgeo.2006.11.009
https://doi.org/10.1145/3178876.3186014
https://doi.org/10.1016/j.isprsjprs.2012.11.004
https://doi.org/10.1145/3035918.3064046
https://doi.org/10.1007/s10796-016-9730-2
https://doi.org/10.1007/s10796-016-9730-2
https://doi.org/10.3390/rs10071127

130 BIBLIOGRAPHY

Huang, H., C. Brenner, and M. Sester (May 2013). “A generative statistical
approach to automatic 3D building roof reconstruction from laser scanning
data”. en. In: ISPRS Journal of Photogrammetry and Remote Sensing 79,
pp. 29–43. issn: 09242716. doi: 10.1016/j.isprsjprs.2013.02.004.

Huang, H. and H. Mayer (2017). “Towards Automatic Large-Scale 3D Building
Reconstruction: Primitive Decomposition and Assembly”. In: Societal Geo-
innovation. Ed. by A. Bregt, T. Sarjakoski, R. van Lammeren, and F. Rip.
Cham: Springer International Publishing, pp. 205–221. isbn: 978-3-319-56758-
7.

Huang, W., S. A. Raza, O. Mirzov, and L. Harrie (July 19, 2019). “Assessment
and Benchmarking of Spatially Enabled RDF Stores for the Next Generation
of Spatial Data Infrastructure”. In: ISPRS International Journal of Geo-
Information 8.7, p. 310. issn: 2220-9964. doi: 10.3390/ijgi8070310.

International, E. (June 2015). ECMAScript 2015. Tech. rep. Geneva, Switzer-
land.

Joshi, M. Y., W. Selmi, M. Binard, G.-A. Nys, and J. Teller (Sept. 15, 2020).
“POTENTIAL FOR URBAN GREENING WITH GREEN ROOFS: A WAY
TOWARDS SMART CITIES”. en. In: ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences VI-4/W2-2020, pp. 87–94.
issn: 2194-9050. doi: 10.5194/isprs-annals-VI-4-W2-2020-87-2020.

Jung, J., Y. Jwa, and G. Sohn (Mar. 19, 2017). “Implicit Regularization for
Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data”.
en. In: Sensors 17.3, p. 621. issn: 1424-8220. doi: 10.3390/s17030621.

Jung, J. and G. Sohn (Mar. 2019). “A line-based progressive refinement of 3D
rooftop models using airborne LiDAR data with single view imagery”. en. In:
ISPRS Journal of Photogrammetry and Remote Sensing 149, pp. 157–175.
issn: 09242716. doi: 10.1016/j.isprsjprs.2019.01.003.

Kada, M. and L. McKinley (Sept. 2009). “3D Building reconstruction from
LiDAR based on a cell decomposition approach”. In: vol. XXXVIII. City
Models, Roads and Traffic 09. Paris, France: International Archives of
Photogrammetry and Remote Sensing, pp. 47–52.

Knublauch, H. and D. Kontokostas (July 2017). Shapes constraint language
(SHACL). W3C.

Kulawiak, M., A. Dawidowicz, and M. E. Pacholczyk (Aug. 2019). “Analysis of
server-side and client-side Web-GIS data processing methods on the example
of JTS and JSTS using open data from OSM and geoportal”. en. In: Computers
& Geosciences 129, pp. 26–37. issn: 00983004. doi: 10.1016/j.cageo.2019.
04.011.

https://doi.org/10.1016/j.isprsjprs.2013.02.004
https://doi.org/10.3390/ijgi8070310
https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-87-2020
https://doi.org/10.3390/s17030621
https://doi.org/10.1016/j.isprsjprs.2019.01.003
https://doi.org/10.1016/j.cageo.2019.04.011
https://doi.org/10.1016/j.cageo.2019.04.011

BIBLIOGRAPHY 131

Kumar, K., H. Ledoux, and J. Stoter (Sept. 12, 2018). “Dynamic 3D
Visualization of Floods: Case of the Netherlands”. en. In: ISPRS -
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XLII-4/W10, pp. 83–87. issn: 2194-9034. doi: 10.5194/
isprs-archives-XLII-4-W10-83-2018.

Kumar, K., A. Labetski, K. A. Ohori, H. Ledoux, and J. Stoter (Dec. 2019).
“The LandInfra standard and its role in solving the BIM-GIS quagmire”. en.
In: Open Geospatial Data, Software and Standards 4.1, p. 5. issn: 2363-7501.
doi: 10.1186/s40965-019-0065-z.

Kutzner, T., K. Chaturvedi, and T. H. Kolbe (Feb. 26, 2020). “CityGML
3.0: New Functions Open Up New Applications”. en. In: PFG – Journal
of Photogrammetry, Remote Sensing and Geoinformation Science. [Online;
accessed 2020-02-28]. issn: 2512-2789, 2512-2819. doi: 10.1007/s41064-020-
00095-z.

Labetski, A., K. Kumar, H. Ledoux, and J. Stoter (Dec. 2018). “A metadata
ADE for CityGML”. en. In: Open Geospatial Data, Software and Standards
3.1, p. 16. issn: 2363-7501. doi: 10.1186/s40965-018-0057-4.

Lafarge, F. and C. Mallet (Aug. 2012). “Creating Large-Scale City Models from
3D-Point Clouds: A Robust Approach with Hybrid Representation”. en. In:
International Journal of Computer Vision 99.1, pp. 69–85. issn: 0920-5691,
1573-1405. doi: 10.1007/s11263-012-0517-8.

Laksono, D. (Aug. 2018). “Testing Spatial Data Deliverance in SQL and NoSQL
Database Using NodeJS Fullstack Web App”. In: [Online; accessed 2020-11-
05]. 2018 4th International Conference on Science and Technology (ICST).
Yogyakarta: IEEE, pp. 1–5. isbn: 978-1-5386-5813-0. doi: 10.1109/ICSTC.
2018.8528705.

Ledoux, H. (Dec. 2018). “val3dity: validation of 3D GIS primitives according
to the international standards”. en. In: Open Geospatial Data, Software and
Standards 3.1, p. 1. issn: 2363-7501. doi: 10.1186/s40965-018-0043-x.

Ledoux, H., F. Biljecki, B. Dukai, K. Kumar, R. Peters, J. Stoter, and T.
Commandeur (Jan. 26, 2021). “3dfier: automatic reconstruction of 3D city
models”. In: Journal of Open Source Software 6.57, p. 2866. issn: 2475-9066.
doi: 10.21105/joss.02866.

Ledoux, H., K. A. Ohori, K. Kumar, B. Dukai, A. Labetski, and S. Vitalis
(Feb. 25, 2019). “CityJSON: A compact and easy-to-use encoding of the
CityGML data model”. In: arXiv:1902.09155 [cs]. arXiv: 1902.09155.

Li, D., W. Chen, M. Pan, H. Li, H. Liu, and Y. Tang (2018). “DBHUB: A
Lightweight Middleware for Accessing Heterogeneous Database Systems”.

https://doi.org/10.5194/isprs-archives-XLII-4-W10-83-2018
https://doi.org/10.5194/isprs-archives-XLII-4-W10-83-2018
https://doi.org/10.1186/s40965-019-0065-z
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.1186/s40965-018-0057-4
https://doi.org/10.1007/s11263-012-0517-8
https://doi.org/10.1109/ICSTC.2018.8528705
https://doi.org/10.1109/ICSTC.2018.8528705
https://doi.org/10.1186/s40965-018-0043-x
https://doi.org/10.21105/joss.02866

132 BIBLIOGRAPHY

In: Cloud Computing and Security. Ed. by X. Sun, Z. Pan, and E. Bertino.
Vol. 11063. Cham: Springer International Publishing, pp. 408–419. isbn:
978-3-030-00005-9.

Li, L., F. Yang, H. Zhu, D. Li, Y. Li, and L. Tang (May 3, 2017). “An
Improved RANSAC for 3D Point Cloud Plane Segmentation Based on Normal
Distribution Transformation Cells”. en. In: Remote Sensing 9.5, p. 433. issn:
2072-4292. doi: 10.3390/rs9050433.

Liang, S., C.-Y. Huang, and T. Khalafbeigi (2016). SensorThings API - Part 1:
Sensing.

Liang, S. and T. Khalafbeigi (2019). SensorThings API - Part 2: Tasking Core.

Lim, J., P. Janssen, and F. Biljecki (Sept. 3, 2020). “VISUALISING DETAILED
CITYGML AND ADE AT THE BUILDING SCALE”. en. In: ISPRS -
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XLIV-4/W1-2020, pp. 83–90. issn: 2194-9034. doi:
10.5194/isprs-archives-XLIV-4-W1-2020-83-2020.

Liu, X., Y. Zhang, X. Ling, Y. Wan, L. Liu, and Q. Li (June 8, 2019). “TopoLAP:
Topology Recovery for Building Reconstruction by Deducing the Relationships
between Linear and Planar Primitives”. en. In: Remote Sensing 11.11, p. 1372.
issn: 2072-4292. doi: 10.3390/rs11111372.

Liu, Z. H., B. Hammerschmidt, and D. McMahon (2014). “JSON data
management: supporting schema-less development in RDBMS”. en. In:
[Online; accessed 2020-07-15]. the 2014 ACM SIGMOD international
conference. Snowbird, Utah, USA: ACM Press, pp. 1247–1258. isbn: 978-1-
4503-2376-5. doi: 10.1145/2588555.2595628.

Lopez, M., S. Couturier, and J. Lopez (Dec. 2016). “Integration of NoSQL
Databases for Analyzing Spatial Information in Geographic Information
System”. In: [Online; accessed 2019-11-12]. 2016 8th International Conference
on Computational Intelligence and Communication Networks (CICN). Tehri,
India: IEEE, pp. 351–355. isbn: 978-1-5090-1144-5. doi: 10.1109/CICN.2016.
75.

Makris, A., K. Tserpes, and D. Anagnostopoulos (2019). “Performance
Evaluation of MongoDB and PostgreSQL for spatio-temporal data”. In:
Workshops of the EDBT/ICDT 2019 Joint Conference. Lisbon, Portugal:
CEUR-WS.org, p. 8.

Malinverni, E. S., B. Naticchia, J. L. Lerma Garcia, A. Gorreja, J. Lopez Uriarte,
and F. Di Stefano (Aug. 24, 2020). “A semantic graph database for the
interoperability of 3D GIS data”. en. In: Applied Geomatics. [Online; accessed

https://doi.org/10.3390/rs9050433
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-83-2020
https://doi.org/10.3390/rs11111372
https://doi.org/10.1145/2588555.2595628
https://doi.org/10.1109/CICN.2016.75
https://doi.org/10.1109/CICN.2016.75

BIBLIOGRAPHY 133

2021-08-30]. issn: 1866-9298, 1866-928X. doi: 10.1007/s12518-020-00334-
3.

Mao, B. and L. Harrie (Oct. 10, 2016). “Methodology for the Efficient Progressive
Distribution and Visualization of 3D Building Objects”. en. In: ISPRS
International Journal of Geo-Information 5.10, p. 185. issn: 2220-9964. doi:
10.3390/ijgi5100185.

Mei Qi, L., W. Xiaonan, I. Oliver R., and K. Markus (2021). The World Avatar
- a world model for facilitating interoperability. Tech. rep.

Milde, J., Y. Zhang, C. Brenner, L. Plümer, and M. Sester (Jan. 2008). “Building
reconstruction using a structural description based on a formal grammar”. In.

Mobasheri, A., H. Mitasova, M. Neteler, A. Singleton, H. Ledoux, and M. A.
Brovelli (Oct. 2020). “Highlighting recent trends in open source geospatial
science and software”. en. In: Transactions in GIS 24.5, pp. 1141–1146. issn:
1361-1682, 1467-9671. doi: 10.1111/tgis.12703.

Na, A. and M. Priest (2007). Sensor Observation Service.

Nguyen, S. H. and T. H. Kolbe (Sept. 3, 2020). “A MULTI-PERSPECTIVE
APPROACH TO INTERPRETING SPATIO-SEMANTIC CHANGES OF
LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE”.
en. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences VI-4/W1-2020, pp. 143–150. issn: 2194-9050. doi:
10.5194/isprs-annals-VI-4-W1-2020-143-2020.

Nys, G.-A. and R. Billen (July 16, 2021). “From consistency to flexibility:
A simplified database schema for the management of CityJSON 3D city
models”. en. In: Transactions in GIS, tgis.12807. issn: 1361-1682, 1467-9671.
doi: 10.1111/tgis.12807.

– (Dec. 28, 2022). “From consistency to flexibility: Handling spatial information
schema thanks to a middleware in a 3D city modeling context”. en. In:
Transactions in GIS, tgis.12807. issn: 1361-1682, 1467-9671. doi: 10.1111/
tgis.13014.

Nys, G.-A., R. Billen, and F. Poux (Aug. 12, 2020). “AUTOMATIC 3D
BUILDINGS COMPACT RECONSTRUCTION FROM LIDAR POINT
CLOUDS”. en. In: ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences XLIII-B2-2020, pp. 473–478.
issn: 2194-9034. doi: 10.5194/isprs- archives- XLIII- B2- 2020- 473-
2020.

Nys, G.-A., J.-P. Kasprzyk, P. Hallot, and R. Billen (Sept. 19, 2018). “Towards
an ontology for the structuring of remote sensing operations shared by different

https://doi.org/10.1007/s12518-020-00334-3
https://doi.org/10.1007/s12518-020-00334-3
https://doi.org/10.3390/ijgi5100185
https://doi.org/10.1111/tgis.12703
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-143-2020
https://doi.org/10.1111/tgis.12807
https://doi.org/10.1111/tgis.13014
https://doi.org/10.1111/tgis.13014
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-473-2020
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-473-2020

134 BIBLIOGRAPHY

processing chains”. In: ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences XLII-4, pp. 483–490. issn:
2194-9034. doi: 10.5194/isprs-archives-XLII-4-483-2018.

Nys, G.-A., J.-P. Kasprzyk, P. Hallot, and R. Billen (June 5, 2019). “A
Semantic Retrieval System in Remote Sensing Web Platforms”. In: ISPRS -
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XLII-2/W13, pp. 1593–1599. issn: 2194-9034. doi:
10.5194/isprs-archives-XLII-2-W13-1593-2019.

Nys, G.-A., A. Kharroubi, F. Poux, and R. Billen (July 2021). “AN EXTENSION
OF CITYJSON TO SUPPORT POINT CLOUDS”. en. In: vol. XLIII-B4-
2021. Nice, France, pp. 301–306. doi: 10.5194/isprs-archives-XLIII-B4-
2021-301-2021.

Nys, G.-A., F. Poux, and R. Billen (Aug. 31, 2020). “CityJSON Building
Generation from Airborne LiDAR 3D Point Clouds”. en. In: ISPRS
International Journal of Geo-Information 9.9, p. 521. issn: 2220-9964. doi:
10.3390/ijgi9090521.

Nys, G.-A., M. Van Ruymbeke, and R. Billen (Oct. 2018). “Spatio-Temporal
Reasoning in CIDOC CRM: An Hybrid Ontology with GeoSPARQL and OWL-
Time”. In: Proceedings of the 2nd Workshop On Computing Techniques For
Spatio-Temporal Data in Archaeology And Cultural Heritage. COARCH2018.
Vol. 2230. Melbourne, Australia: CEUR-WS.org, pp. 37–50.

Nys, G.-A., C. Dubois, C. Goffin, P. Hallot, J.-P. Kasprzyk, M. Treffer, and
R. Billen (2022). “Geodata quality assessment and operationalisation of the
INSPIRE directive: feedback”. In: Bulletin de la Société Géographique de
Liège. issn: 2507-0711, 0770-7576. doi: 10.25518/0770-7576.6698.

Obe, R. O. and L. S. Hsu (2015). PostGIS in action. Second edition. OCLC:
ocn872985108. Shelter Island, NY: Manning. isbn: 978-1-61729-139-5.

OGC (2016). CityGML quality interoperability experiment 16-064r1. Tech. rep.

Olivera, H. V., M. Holanda, V. Guimarâes, F. Hondo, and W. Boaventura
Filho (2015). “Data Modeling for NoSQL Document-Oriented Databases”.
In: SIMBig’15 Annual International Symposium on Information Management
and Big Data. Cusco, Peru.

Pârvu, I. M., F. Remondino, and E. Ozdemir (Dec. 1, 2018). “LoD2 Building
Generation Experiences and Comparisons”. In: Journal of Applied Engineering
Sciences 8.2, pp. 59–64. issn: 2284-7197, 2247-3769. doi: 10.2478/jaes-
2018-0019.

Patrick, C., L. Sean, and G. Gabby (Jan. 2019). 3D Tiles Specification 1.0.

https://doi.org/10.5194/isprs-archives-XLII-4-483-2018
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1593-2019
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-301-2021
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-301-2021
https://doi.org/10.3390/ijgi9090521
https://doi.org/10.25518/0770-7576.6698
https://doi.org/10.2478/jaes-2018-0019
https://doi.org/10.2478/jaes-2018-0019

BIBLIOGRAPHY 135

Peters, R., B. Dukai, S. Vitalis, J. van Liempt, and J. Stoter (2022). “Automated
3D Reconstruction of LoD2 and LoD1 Models for All 10 Million Buildings
of the Netherlands”. English. In: Photogrammetric Engineering and Remote
Sensing 88.3, pp. 165–170. issn: 0099-1112. doi: 10 . 14358 / PERS . 21 -
00032R2.

Pispidikis, I. and E. Dimopoulou (Oct. 5, 2016). “DEVELOPMENT OF A 3D
WEBGIS SYSTEM FOR RETRIEVING AND VISUALIZING CITYGML
DATA BASED ON THEIR GEOMETRIC AND SEMANTIC CHARAC-
TERISTICS BY USING FREE AND OPEN SOURCE TECHNOLOGY”.
en. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences IV-2/W1, pp. 47–53. issn: 2194-9050. doi: 10.5194/
isprs-annals-IV-2-W1-47-2016.

Poux and Billen (May 7, 2019). “Voxel-Based 3D Point Cloud Semantic
Segmentation: Unsupervised Geometric and Relationship Featuring vs Deep
Learning Methods”. en. In: ISPRS International Journal of Geo-Information
8.5, p. 213. issn: 2220-9964. doi: 10.3390/ijgi8050213.

Poux, F., P. Hallot, R. Neuville, and R. Billen (Oct. 5, 2016). “SMART POINT
CLOUD: DEFINITION AND REMAINING CHALLENGES”. en. In: ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences
IV-2/W1, pp. 119–127. issn: 2194-9050. doi: 10.5194/isprs-annals-IV-2-
W1-119-2016.

Poux, F. (Oct. 2019). “The Smart Point Cloud: Structuring 3D intelligent point
data”. en. DOI: 10.1201/9781351018869-9. PhD thesis, pp. 127–149. isbn:
9789463754224.

Poux, F., R. Billen, J.-P. Kasprzyk, P.-H. Lefebvre, and P. Hallot (Oct. 7, 2020).
“A Built Heritage Information System Based on Point Cloud Data: HIS-PC”.
en. In: ISPRS International Journal of Geo-Information 9.10, p. 588. issn:
2220-9964. doi: 10.3390/ijgi9100588.

Poux, F., R. Neuville, G.-A. Nys, and R. Billen (Sept. 5, 2018). “3D Point Cloud
Semantic Modelling: Integrated Framework for Indoor Spaces and Furniture”.
In: Remote Sensing 10.9, p. 1412. issn: 2072-4292. doi: 10.3390/rs10091412.

Poux, F., R. Neuville, L. Van Wersch, G.-A. Nys, and R. Billen (Sept. 30, 2017).
“3D Point Clouds in Archaeology: Advances in Acquisition, Processing and
Knowledge Integration Applied to Quasi-Planar Objects”. en. In: Geosciences
7.4, p. 96. issn: 2076-3263. doi: 10.3390/geosciences7040096.

Raguram, R., O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm (Aug. 2013).
“USAC: A Universal Framework for Random Sample Consensus”. In: IEEE

https://doi.org/10.14358/PERS.21-00032R2
https://doi.org/10.14358/PERS.21-00032R2
https://doi.org/10.5194/isprs-annals-IV-2-W1-47-2016
https://doi.org/10.5194/isprs-annals-IV-2-W1-47-2016
https://doi.org/10.3390/ijgi8050213
https://doi.org/10.5194/isprs-annals-IV-2-W1-119-2016
https://doi.org/10.5194/isprs-annals-IV-2-W1-119-2016
https://doi.org/10.3390/ijgi9100588
https://doi.org/10.3390/rs10091412
https://doi.org/10.3390/geosciences7040096

136 BIBLIOGRAPHY

Transactions on Pattern Analysis and Machine Intelligence 35.8, pp. 2022–
2038. issn: 0162-8828, 2160-9292. doi: 10.1109/TPAMI.2012.257.

Rasheed, A., O. San, and T. Kvamsdal (Oct. 3, 2019). “Digital Twin: Values,
Challenges and Enablers”. In: arXiv:1910.01719 [eess]. arXiv: 1910.01719.

Reis, D. G., F. S. Gasparoni, M. Holanda, M. Victorino, M. Ladeira, and
E. O. Ribeiro (2018). “An Evaluation of Data Model for NoSQL Document-
Based Databases”. In: Trends and Advances in Information Systems and
Technologies. Ed. by Á. Rocha, H. Adeli, L. P. Reis, and S. Costanzo. Vol. 745.
Cham: Springer International Publishing, pp. 616–625. isbn: 978-3-319-77702-
3.

Rossknecht, M. and E. Airaksinen (Oct. 12, 2020). “Concept and Evaluation
of Heating Demand Prediction Based on 3D City Models and the CityGML
Energy ADE–Case Study Helsinki”. en. In: ISPRS International Journal of
Geo-Information 9.10, p. 602. issn: 2220-9964. doi: 10.3390/ijgi9100602.

Rottensteiner, F., G. Sohn, M. Gerke, J. D. Wegner, U. Breitkopf, and J. Jung
(July 2014). “Results of the ISPRS benchmark on urban object detection and
3D building reconstruction”. en. In: ISPRS Journal of Photogrammetry and
Remote Sensing 93, pp. 256–271. issn: 09242716. doi: 10.1016/j.isprsjprs.
2013.10.004.

Roy-Hubara, N. and A. Sturm (Mar. 2020). “Design methods for the new
database era: a systematic literature review”. en. In: Software and Systems
Modeling 19.2, pp. 297–312. issn: 1619-1366, 1619-1374. doi: 10 . 1007 /
s10270-019-00739-8.

Ruymbeke, M. v. and G.-A. Nys (2022). “SEEING OR BEING SEEN: VISIBIL-
ITY ANALYSES FROM THE CHÈVREMONT SITE (MUNICIPALITY OF
CHAUDFONTAINE, BELGIUM)”. In: Bulletin de la Société Géographique
de Liège. issn: 2507-0711, 0770-7576. doi: 10.25518/0770-7576.6674.

Schnabel, R., R. Wahl, and R. Klein (June 2007). “Efficient RANSAC for Point-
Cloud Shape Detection”. en. In: Computer Graphics Forum 26.2, pp. 214–226.
issn: 0167-7055, 1467-8659. doi: 10.1111/j.1467-8659.2007.01016.x.

Schrotter, G. and C. Hürzeler (Feb. 2020). “The Digital Twin of the City
of Zurich for Urban Planning”. en. In: PFG – Journal of Photogrammetry,
Remote Sensing and Geoinformation Science 88.1, pp. 99–112. issn: 2512-2789,
2512-2819. doi: 10.1007/s41064-020-00092-2.

Schultz, C. and M. Bhatt (2013). “InSpace3D: A Middleware for Built
Environment Data Access and Analytics”. en. In: Procedia Computer Science
18, pp. 80–89. issn: 18770509. doi: 10.1016/j.procs.2013.05.171.

https://doi.org/10.1109/TPAMI.2012.257
https://doi.org/10.3390/ijgi9100602
https://doi.org/10.1016/j.isprsjprs.2013.10.004
https://doi.org/10.1016/j.isprsjprs.2013.10.004
https://doi.org/10.1007/s10270-019-00739-8
https://doi.org/10.1007/s10270-019-00739-8
https://doi.org/10.25518/0770-7576.6674
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1007/s41064-020-00092-2
https://doi.org/10.1016/j.procs.2013.05.171

BIBLIOGRAPHY 137

Schultz, W., T. Avitabile, and A. Cabral (Aug. 2019). “Tunable consistency in
MongoDB”. en. In: Proceedings of the VLDB Endowment 12.12, pp. 2071–2081.
issn: 2150-8097. doi: 10.14778/3352063.3352125.

Shahat, E., C. T. Hyun, and C. Yeom (Mar. 18, 2021). “City Digital Twin
Potentials: A Review and Research Agenda”. en. In: Sustainability 13.6,
p. 3386. issn: 2071-1050. doi: 10.3390/su13063386.

Stoter, J., K. Arroyo Ohori, B. Dukai, A. Labetski, K. Kavisha, S. Vitalis,
and H. Ledoux (Apr. 9, 2020). “State of the Art in 3D City Modelling:
Six Challenges Facing 3D Data as a Platform”. In: GIM International: the
worldwide magazine for geomatics 34.

Sutanta, E. and E. K. Nurnawati (Nov. 2019). “The Design of Relational
Database for Multipurpose WebGIS Applications”. In: Journal of Physics:
Conference Series 1413, p. 012029. issn: 1742-6588, 1742-6596. doi: 10.1088/
1742-6596/1413/1/012029.

Sveen, A. F. (Dec. 2019). “Efficient storage of heterogeneous geospatial data in
spatial databases”. en. In: Journal of Big Data 6.1, p. 102. issn: 2196-1115.
doi: 10.1186/s40537-019-0262-8.

Tarsha Kurdi, F. and M. Awrangjeb (June 17, 2020). “Automatic evaluation
and improvement of roof segments for modelling missing details using Lidar
data”. en. In: International Journal of Remote Sensing 41.12, pp. 4702–4725.
issn: 0143-1161, 1366-5901. doi: 10.1080/01431161.2020.1723180.

Tarsha-Kurdi, F., T. Landes, and P. Grussenmeyer (Sept. 2007). “Hough-
Transform and Extended RANSAC Algorithms for Automatic Detection of
3D Building Roof Planes from Lidar Data”. In: ISPRS Workshop on Laser
Scanning 2007 and SilviLaser 2007. Espoo, Finland, pp. 407–412.

Tomlinson, R. (Aug. 1968). “Geographic Information System for Regional
Planning”. In: CSIRO Symposium. GA Stewart.

Toschi, I., E. Nocerino, F. Remondino, A. Revolti, G. Soria, and S. Piffer
(May 31, 2017). “GEOSPATIAL DATA PROCESSING FOR 3D CITY
MODEL GENERATION, MANAGEMENT AND VISUALIZATION”. en.
In: ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences XLII-1/W1, pp. 527–534. issn: 2194-9034.
doi: 10.5194/isprs-archives-XLII-1-W1-527-2017.

Trubka, R., S. Glackin, O. Lade, and C. Pettit (July 2016). “A web-based 3D
visualisation and assessment system for urban precinct scenario modelling”. en.
In: ISPRS Journal of Photogrammetry and Remote Sensing 117, pp. 175–186.
issn: 09242716. doi: 10.1016/j.isprsjprs.2015.12.003.

https://doi.org/10.14778/3352063.3352125
https://doi.org/10.3390/su13063386
https://doi.org/10.1088/1742-6596/1413/1/012029
https://doi.org/10.1088/1742-6596/1413/1/012029
https://doi.org/10.1186/s40537-019-0262-8
https://doi.org/10.1080/01431161.2020.1723180
https://doi.org/10.5194/isprs-archives-XLII-1-W1-527-2017
https://doi.org/10.1016/j.isprsjprs.2015.12.003

138 BIBLIOGRAPHY

Van Ruymbeke, M., P. Hallot, G.-A. Nys, and R. Billen (Feb. 2, 2018).
“Implementation of multiple interpretation data model concepts in CIDOC
CRM and compatible models”. In: Virtual Archaeology Review 9.19. issn:
1989-9947. doi: 10.4995/var.2018.8884.

Vera-Olivera, H., R. Guo, R. C. Huacarpuma, A. P. B. Da Silva, A. M. Mariano,
and H. Maristela (July 2021). “Data Modeling and NoSQL Databases - A
Systematic Mapping Review”. en. In: ACM Computing Surveys 54.6, pp. 1–26.
issn: 0360-0300, 1557-7341. doi: 10.1145/3457608.

Verma, V., R. Kumar, and S. Hsu (2006). “3D Building Detection and Modeling
from Aerial LIDAR Data”. In: vol. 2. [Online; accessed 2019-12-20]. 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
- Volume 2 (CVPR’06). New York, NY, USA: IEEE, pp. 2213–2220. isbn:
978-0-7695-2597-6. doi: 10.1109/CVPR.2006.12.

Virtanen, J.-P., K. Jaalama, T. Puustinen, A. Julin, J. Hyyppä, and H. Hyyppä
(Mar. 4, 2021). “Near Real-Time Semantic View Analysis of 3D City Models
in Web Browser”. en. In: ISPRS International Journal of Geo-Information
10.3, p. 138. issn: 2220-9964. doi: 10.3390/ijgi10030138.

Visconti, E., C. Tsigkanos, Z. Hu, and C. Ghezzi (Dec. 2021). “Model-driven
engineering city spaces via bidirectional model transformations”. en. In:
Software and Systems Modeling 20.6, pp. 2003–2022. issn: 1619-1366, 1619-
1374. doi: 10.1007/s10270-020-00851-0.

Višnjevac, N., R. Mihajlovic, M. Šoškic, Ž. Cvijetinovic, and B. Bajat (May 10,
2019). “Prototype of the 3D Cadastral System Based on a NoSQL Database
and a JavaScript Visualization Application”. en. In: ISPRS International
Journal of Geo-Information 8.5, p. 227. issn: 2220-9964. doi: 10.3390/
ijgi8050227.

Vitalis, S., A. Labetski, K. Arroyo Ohori, H. Ledoux, and J. Stoter (Sept. 23,
2019). “A DATA STRUCTURE TO INCORPORATE VERSIONING IN 3D
CITY MODELS”. en. In: ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences IV-4/W8, pp. 123–130. issn: 2194-
9050. doi: 10.5194/isprs-annals-IV-4-W8-123-2019.

Vitalis, S., K. Arroyo Ohori, and J. Stoter (June 24, 2020). “CityJSON in QGIS:
Development of an open-source plugin”. en. In: Transactions in GIS VI-4/W1-
2020, tgis.12657. issn: 1361-1682, 1467-9671. doi: 10.1111/tgis.12657.

Vitalis, S., K. Ohori, and J. Stoter (Aug. 1, 2019). “Incorporating Topological
Representation in 3D City Models”. en. In: ISPRS International Journal of
Geo-Information 8.8, p. 347. issn: 2220-9964. doi: 10.3390/ijgi8080347.

https://doi.org/10.4995/var.2018.8884
https://doi.org/10.1145/3457608
https://doi.org/10.1109/CVPR.2006.12
https://doi.org/10.3390/ijgi10030138
https://doi.org/10.1007/s10270-020-00851-0
https://doi.org/10.3390/ijgi8050227
https://doi.org/10.3390/ijgi8050227
https://doi.org/10.5194/isprs-annals-IV-4-W8-123-2019
https://doi.org/10.1111/tgis.12657
https://doi.org/10.3390/ijgi8080347

BIBLIOGRAPHY 139

Voutos, Y., P. Mylonas, E. Spyrou, and E. Charou (Nov. 21, 2017). “A Social
Environmental Sensor Network Integrated within a Web GIS Platform”. en.
In: Journal of Sensor and Actuator Networks 6.4, p. 27. issn: 2224-2708. doi:
10.3390/jsan6040027.

Wagner, D., M. Wewetzer, J. Bogdahn, N. Alam, M. Pries, and V. Coors
(2013). “Geometric-Semantical Consistency Validation of CityGML Models”.
In: Progress and New Trends in 3D Geoinformation Sciences. Ed. by J. Pouliot,
S. Daniel, F. Hubert, and A. Zamyadi. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 171–192. isbn: 978-3-642-29792-2.

Wang, R., J. Peethambaran, and D. Chen (Feb. 2018). “LiDAR Point Clouds to
3D Urban Models: A Review”. In: IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 11.2, pp. 606–627. issn: 1939-1404,
2151-1535. doi: 10.1109/JSTARS.2017.2781132.

Weglarz, G. (2004). “Two Worlds of Data – Unstructured and Structured”. In:
DM Review.

Westerholt, R. and B. Resch (June 2015). “Asynchronous Geospatial Processing:
An Event-Driven Push-Based Architecture for the OGC Web Processing
Service: Push-Based Async Geo-Processing with the OGC WPS”. en. In:
Transactions in GIS 19.3, pp. 455–479. issn: 13611682. doi: 10.1111/tgis.
12104.

Wichmann, A. (2018). “Grammar-guided reconstruction of semantic 3D building
models from airborne LiDAR data using half-space modeling”. en. In: [Online;
accessed 2020-01-30]. doi: 10.14279/DEPOSITONCE-6803.

Widl, E., G. Agugiaro, and J. Peters-Anders (Aug. 5, 2021). “Linking Semantic
3D City Models with Domain-Specific Simulation Tools for the Planning and
Validation of Energy Applications at District Level”. en. In: Sustainability
13.16, p. 8782. issn: 2071-1050. doi: 10.3390/su13168782.

Wittern, E., A. Cha, J. C. Davis, G. Baudart, and L. Mandel (2019). “An
Empirical Study of GraphQL Schemas”. en. In: Service-Oriented Computing.
Ed. by S. Yangui, I. Bouassida Rodriguez, K. Drira, and Z. Tari. Vol. 11895.
Cham: Springer International Publishing, pp. 3–19. isbn: 978-3-030-33701-8.

Wong, S., S. Swartz, and D. Sarkar (June 2002). “A middleware architecture
for open and interoperable GISs”. In: IEEE Multimedia 9.2, pp. 62–76. issn:
1070986X. doi: 10.1109/93.998065.

Wyard, C., B. Beaumont, T. Grippa, G.-A. Nys, H. Fauvel, and E. Hallot (May
2022). “Mapping roof materials using WV3 imagery and a state-of-the-art
OBIA processing chain: application over Liège, Belgium”. In: Proceedings

https://doi.org/10.3390/jsan6040027
https://doi.org/10.1109/JSTARS.2017.2781132
https://doi.org/10.1111/tgis.12104
https://doi.org/10.1111/tgis.12104
https://doi.org/10.14279/DEPOSITONCE-6803
https://doi.org/10.3390/su13168782
https://doi.org/10.1109/93.998065

140 BIBLIOGRAPHY

of esa Living Planet Symposium 2022. esa Living Planet Symposium 2022.
Bonn, Germany. doi: 10.13140/RG.2.2.19567.51363.

Xiong, B., M. Jancosek, S. Oude Elberink, and G. Vosselman (Mar. 2015).
“Flexible building primitives for 3D building modeling”. en. In: ISPRS Journal
of Photogrammetry and Remote Sensing 101, pp. 275–290. issn: 09242716.
doi: 10.1016/j.isprsjprs.2015.01.002.

Xu, B., W. Jiang, J. Shan, J. Zhang, and L. Li (Dec. 23, 2015). “Investigation
on the Weighted RANSAC Approaches for Building Roof Plane Segmentation
from LiDAR Point Clouds”. en. In: Remote Sensing 8.1, p. 5. issn: 2072-4292.
doi: 10.3390/rs8010005.

Yao, Z., C. Nagel, F. Kunde, G. Hudra, P. Willkomm, A. Donaubauer, T.
Adolphi, and T. H. Kolbe (Dec. 2018). “3DCityDB - a 3D geodatabase solution
for the management, analysis, and visualization of semantic 3D city models
based on CityGML”. en. In: Open Geospatial Data, Software and Standards
3.1. [Online; accessed 2019-03-13]. issn: 2363-7501. doi: 10.1186/s40965-
018-0046-7.

Zhang, X., W. Song, and L. Liu (June 2014). “An implementation approach to
store GIS spatial data on NoSQL database”. In: [Online; accessed 2019-04-24].
2014 22nd International Conference on Geoinformatics. Kaohsiung, Taiwan:
IEEE, pp. 1–5. isbn: 978-1-4799-5714-9. doi: 10.1109/GEOINFORMATICS.
2014.6950846.

Zhao, Z., H. Ledoux, and J. Stoter (Sept. 13, 2013). “AUTOMATIC REPAIR
OF CITYGML LOD2 BUILDINGS USING SHRINK-WRAPPING”. en. In:
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences II-2/W1, pp. 309–317. issn: 2194-9050. doi: 10.5194/isprsannals-
II-2-W1-309-2013.

Zhou, K., R. Lindenbergh, B. Gorte, and S. Zlatanova (Apr. 2020). “LiDAR-
guided dense matching for detecting changes and updating of buildings in
Airborne LiDAR data”. en. In: ISPRS Journal of Photogrammetry and Remote
Sensing 162, pp. 200–213. issn: 09242716. doi: 10.1016/j.isprsjprs.2020.
02.005.

Zlatanova, S. and J. Stoter (2006). “The role of DBMS in the new generation GIS
architecture”. en. In: Frontiers of Geographic Information Technology. Ed. by
S. Rana and J. Sharma. Berlin/Heidelberg: Springer-Verlag, pp. 155–180.
isbn: 978-3-540-25685-4.

https://doi.org/10.13140/RG.2.2.19567.51363
https://doi.org/10.1016/j.isprsjprs.2015.01.002
https://doi.org/10.3390/rs8010005
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.1109/GEOINFORMATICS.2014.6950846
https://doi.org/10.1109/GEOINFORMATICS.2014.6950846
https://doi.org/10.5194/isprsannals-II-2-W1-309-2013
https://doi.org/10.5194/isprsannals-II-2-W1-309-2013
https://doi.org/10.1016/j.isprsjprs.2020.02.005
https://doi.org/10.1016/j.isprsjprs.2020.02.005

Curriculum

Gilles-Antoine Nys (1992) was born in Saint-Ghislain, Belgium. He obtained a
Bsc and Msc in Industrial Engineering, land-surveying orientation, from the
Haute Ecole de la Province de Liège, Belgium. During his master, he had the
chance to do an internship at the Geomatics Unit of the University of Liège.
He then began working in the same research unit as a Research Engineer at the
end of this internship.

During his PhD research, he thus worked on several projects for public services
as well as for private companies. Projects were related to NoSQL databases,
data quality assessment, Semantic Web, etc. He then moved on to a position
as a Teaching Assistant in GIS and Remote Sensing courses. Logically in the
trend of his PhD thesis, he supervised the WebGIS and GIS Project courses.
He has also been involved in Msc thesis supervision at the University of Liège
but also at the Agronomic and Veterinary Institute Hassan II, Rabat, Morocco.
In parallel with this technical and teaching work, he served the University
community as a representative to the Geography Department Council, the
SPHERES Research Unit Council and the Geography Doctoral College. He was
also elected to represent the doctoral students in Science and Technology on
the Doctoral Office, a transversal university body.

He now works as a Consultant Business Analyst for major Belgian companies
managing various networks: electricity, optical fibre. Due to his status as
"Scientific Collaborator", he maintains a strong link with the research group
and still follows several ongoing research projects related to urban 3D modeling
and CityJSON.

141

List of publications

International Journal Papers (ISI)

F. Poux, R. Neuville, L. Van Wersch, et al. (Sept. 30, 2017). “3D Point Clouds
in Archaeology: Advances in Acquisition, Processing and Knowledge Integration
Applied to Quasi-Planar Objects”. en. In: Geosciences 7.4, p. 96. issn:
2076-3263. doi: 10.3390/geosciences7040096

M. Van Ruymbeke et al. (Feb. 2, 2018). “Implementation of multiple
interpretation data model concepts in CIDOC CRM and compatible models”.
In: Virtual Archaeology Review 9.19. issn: 1989-9947. doi: 10.4995/var.
2018.8884

R. Billen, B. Jonlet, et al. (2018). “La transition numérique dans le domaine
du patrimoine bâti: un retour d’expériences”. In: Bulletin de la Commission
royale des Monuments, Sites et Fouilles 30, pp. 119–146

F. Poux, R. Neuville, G.-A. Nys, et al. (Sept. 5, 2018). “3D Point Cloud
Semantic Modelling: Integrated Framework for Indoor Spaces and Furniture”.
In: Remote Sensing 10.9, p. 1412. issn: 2072-4292. doi: 10.3390/rs10091412

G.-A. Nys, F. Poux, et al. (Aug. 31, 2020). “CityJSON Building Generation
from Airborne LiDAR 3D Point Clouds”. en. In: ISPRS International Journal
of Geo-Information 9.9, p. 521. issn: 2220-9964. doi: 10.3390/ijgi9090521

S. El Yamani et al. (Mar. 5, 2021). “3D Variables Requirements for
Property Valuation Modeling Based on the Integration of BIM and CIM”.
in: Sustainability 13.5, p. 2814. issn: 2071-1050. doi: 10.3390/su13052814

G.-A. Nys and R. Billen (July 16, 2021). “From consistency to flexibility: A
simplified database schema for the management of CityJSON 3D city models”.
en. In: Transactions in GIS, tgis.12807. issn: 1361-1682, 1467-9671. doi:
10.1111/tgis.12807

143

https://doi.org/10.3390/geosciences7040096
https://doi.org/10.4995/var.2018.8884
https://doi.org/10.4995/var.2018.8884
https://doi.org/10.3390/rs10091412
https://doi.org/10.3390/ijgi9090521
https://doi.org/10.3390/su13052814
https://doi.org/10.1111/tgis.12807

144 LIST OF PUBLICATIONS

M. v. Ruymbeke and G.-A. Nys (2022). “SEEING OR BEING SEEN: VISI-
BILITY ANALYSES FROM THE CHÈVREMONT SITE (MUNICIPALITY
OF CHAUDFONTAINE, BELGIUM)”. in: Bulletin de la Société Géographique
de Liège. issn: 2507-0711, 0770-7576. doi: 10.25518/0770-7576.6674

G.-A. Nys, C. Dubois, et al. (2022). “Geodata quality assessment and
operationalisation of the INSPIRE directive: feedback”. In: Bulletin de la
Société Géographique de Liège. issn: 2507-0711, 0770-7576. doi: 10.25518/
0770-7576.6698

G.-A. Nys and R. Billen (Dec. 28, 2022). “From consistency to flexibility:
Handling spatial information schema thanks to a middleware in a 3D city
modeling context”. en. In: Transactions in GIS, tgis.12807. issn: 1361-1682,
1467-9671. doi: 10.1111/tgis.13014

International Refereed Conferences

G.-A. Nys, M. Van Ruymbeke, et al. (Oct. 2018). “Spatio-Temporal Reasoning
in CIDOC CRM: An Hybrid Ontology with GeoSPARQL and OWL-Time”.
In: Proceedings of the 2nd Workshop On Computing Techniques For Spatio-
Temporal Data in Archaeology And Cultural Heritage. COARCH2018. Vol. 2230.
Melbourne, Australia: CEUR-WS.org, pp. 37–50

G.-A. Nys, J.-P. Kasprzyk, et al. (Sept. 19, 2018). “Towards an ontology for the
structuring of remote sensing operations shared by different processing chains”.
In: ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences XLII-4, pp. 483–490. issn: 2194-9034. doi:
10.5194/isprs-archives-XLII-4-483-2018

G.-A. Nys, J.-P. Kasprzyk, et al. (June 5, 2019). “A Semantic Retrieval System
in Remote Sensing Web Platforms”. In: ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-
2/W13, pp. 1593–1599. issn: 2194-9034. doi: 10.5194/isprs-archives-
XLII-2-W13-1593-2019

G.-A. Nys, R. Billen, and F. Poux (Aug. 12, 2020). “AUTOMATIC
3D BUILDINGS COMPACT RECONSTRUCTION FROM LIDAR POINT
CLOUDS”. en. In: ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences XLIII-B2-2020, pp. 473–478.
issn: 2194-9034. doi: 10.5194/isprs-archives-XLIII-B2-2020-473-2020

G.-A. Nys, A. Kharroubi, et al. (July 2021). “AN EXTENSION OF CITYJSON
TO SUPPORT POINT CLOUDS”. en. In: vol. XLIII-B4-2021. Nice, France,

https://doi.org/10.25518/0770-7576.6674
https://doi.org/10.25518/0770-7576.6698
https://doi.org/10.25518/0770-7576.6698
https://doi.org/10.1111/tgis.13014
https://doi.org/10.5194/isprs-archives-XLII-4-483-2018
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1593-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1593-2019
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-473-2020

LIST OF PUBLICATIONS 145

pp. 301–306. doi: 10.5194/isprs-archives-XLIII-B4-2021-301-2021

M. Y. Joshi et al. (Sept. 15, 2020). “POTENTIAL FOR URBAN GREENING
WITH GREEN ROOFS: A WAY TOWARDS SMART CITIES”. en. In: ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences
VI-4/W2-2020, pp. 87–94. issn: 2194-9050. doi: 10.5194/isprs-annals-VI-
4-W2-2020-87-2020

https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-301-2021
https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-87-2020
https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-87-2020

FACULTY OF SCIENCE
DEPARTMENT OF GEOGRAPHY

GEOMATICS UNIT
Quartier Agora, B5a - Liège, Belgium

B-4000 Liège

	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Introduction
	Preamble
	Context
	Research questions
	Thesis outline

	Model generation
	Introduction
	Related Works
	Building generation methods
	CityGML and CityJSON

	Methodology
	Introductory comments
	Point-cloud segmentation
	Step-by-step geometric modelling
	CityJSON model building

	Discussion
	CityJSON improvements
	Format compliance
	Quality control

	Conclusion

	Database schema
	Introduction
	Related work
	Solution description
	Schema model

	WebGIS architecture
	Discussion on paradigm shift
	Structured and unstructured data
	Stacks communication
	No joins
	Comparison reference with relational solution

	Usage scenarios
	Urban green infrastructure
	Energy performance of buildings

	Conclusion

	Consistency guarantee
	Introduction
	Related works
	Exchanges and standardization
	Role of the database

	Schemaless database
	NoSQL models
	Architecture specifications
	 OGC API - Features

	Conclusion

	Travelogue: usage history
	Building the database
	Installation and accessibility

	Conclusion
	Research questions
	Research extensions

	Bibliography
	Curriculum
	List of publications

