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Abstract—Over the past years, the rising penetration of re-
newable energy in power systems has led to the need for more
detailed energy system models. Specifically, spatial and temporal
resolutions have become increasingly important, and multiple
studies have investigated their impact on the optimal solutions
to energy system optimisation problems. However, these studies
have yet to be conducted for near-optimal solutions, which can
provide valuable insights to decision-makers. This paper aims
to initiate this research by examining the effects of spatial and
temporal resolutions on the values of necessary conditions for
near-optimality. In particular, we investigate how spatiotemporal
resolution changes affect minimal capacity investments in the
European electricity grid. Our analysis leads to three key
observations. Firstly, we show that minimal capacities for near-
optimality exhibit similar trends to optimal capacities when each
resolution varies. Secondly, the resolutions that result in higher
optimal capacities are also the ones where minimal capacities
deviate the least from the optimal capacities. Thirdly, as a result
of the second observation, spatial or temporal resolution changes
have a greater impact on minimal capacities for near-optimality
than on optimal capacities. We conclude by suggesting solutions
to expand this research track and gain a deeper understanding of
the impact of spatiotemporal resolution on near-optimal spaces.

Index Terms—spatiotemporal resolution, near-optimal space,
necessary condition, energy system optimisation model, European
power grid

I. INTRODUCTION

Energy system optimisation models (ESOMs) are exten-
sively used to plan the transition to low-carbon power systems
at local, national and international levels [1]. These models al-
low for determining the best system investment and operation
for optimising an objective, typically cost.

However, researchers have recently highlighted the im-
portance of going beyond classic cost-optimal analysis by
studying near-optimal solutions [2]. These solutions, while less
cost-efficient, might be better in terms of other objectives -
e.g. energy efficiency, ecological concerns, or social factors -
which might be challenging to model. Near-optimal solutions
analyses have shown how different the system can become
when allowing for slight deviations in cost [3]–[6].

Antoine Dubois is a Research Fellow of the F.R.S.-FNRS, of which he
acknowledges the financial support.

The results of studies using ESOMs are also affected by
the complexity with which energy systems are modelled. This
complexity depends on the features that are included in the
model. Including more numerous and complex features while
providing more detailed studies leads to more complex models,
which are, in turn, more time-consuming to model and more
challenging to solve. One feature that can easily be modified to
tune the complexity of a model is its spatiotemporal resolution.
This feature has become increasingly important with the
increased penetration of new renewable energy technologies,
such as photovoltaic (PV) panels and wind turbines in energy
systems. Different studies have thus explored the impact of
spatial and temporal resolution on the cost-optimal solution
of ESOMs [7]–[11]. However, the impact of this form of
complexity on near-optimal solutions has yet to be explored. In
this paper, we initiate research in this area by analysing how
spatial and temporal resolution affects necessary conditions
for epsilon-optimality - a concept introduced by [5]. This
analysis is done on a case study whose context is the European
electricity grid modelled using the open-source ESOM PyPSA.

II. LITERATURE REVIEW

An extensive range of ESOMs exhibiting different features
exists [1]. Classical features include the models’ temporal,
geographical and sectoral scopes, the range of modelled
technologies, and the complexity with which they are mod-
elled. Some models implement special features such as price-
responsive demands, endogenous technological learning, or
macroeconomic interactions. The number and sophistication
of these features determine the complexity of each model.
Among those features, the model’s spatiotemporal resolution
is paramount. According to [1], setting it appropriately is the
second key step in any ESOM application. When modelling
energy systems with high renewable energy penetration, a high
- typically hourly - resolution is required to represent the
system dynamics properly. For system models representing
networks, the spatial resolution depends on the number of
modelled nodes. For instance, a spatial resolution of one
node per country is often used to model transnational power
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systems. Still, some representations can be much more pre-
cise, e.g., a thousand nodes for the European power system
represented by PyPSA-Eur [12].

Some studies have shown how the spatiotemporal resolution
affects the quality of the system modelling and the analysis
it serves. As highlighted in [7], spatial resolution can impact
the system’s estimated cost. Depending on the grid model,
this cost can be over- or underestimated. Another impact
mentioned by [7] is the sub-optimal capacity investment in
technologies such as wind and solar when using low spatial
resolution. Spatial resolution can also impact the curtailment
of renewable sources [8]. The impact of temporal resolution is
non-negligible, either. Indeed, as mentioned in [9], aggregating
this resolution inappropriately can introduce errors in model
outputs and the derived insights. For instance, as stated in
[10], a simplified resolution implies an under-evaluation of
cost. It can also lead to understating the importance of wind
generation and energy storage while overstating the value
of solar generation. The work of [11] also supports the
underinvestment in wind technology.

Overall, improving spatiotemporal resolution leads to better
estimating the system’s needs. Another way of improving the
quality of insights derived from ESOMs is to look beyond
cost-optimal solutions. This approach was first proposed in a
case unrelated to energy system modelling [13]. It was recently
applied to ESOMs by [2] and has since been used by several
researchers [3]–[5], [14], [15]. These authors have proposed
different approaches for exploring the near-optimal space, i.e.,
the space of solutions with an objective value close to the
optimal objective value. Some propose computing a series of
near-optimal solutions and analysing their properties [3], [14],
[15]. Others are searching for near-optimal solutions exhibiting
specific properties, e.g., those with a minimum capacity in
some renewable technology [4], [5]. Authors of [5] translated
this second approach through the computation of ϵ-optimal
necessary conditions, i.e., conditions which are true for any
solution whose cost is, at most, 1 + ϵ times more expensive
than the cost optimum. More specifically, the methodology
consists of computing an ϵ-optimal space X ϵ defined as:

X ϵ = {x ∈ X | f(x) ≤ (1 + ϵ)f(x⋆)} ∀ϵ ≥ 0 , (1)

where X is the problem feasible space, f : X → R+ an
objective function (e.g., the cost), x⋆ an optimal solution, and ϵ
the suboptimality coefficient that measures the deviation from
the cost-optimal value. This space contains all the solutions
whose objective value does not deviate by more than ϵ from the
optimal objective value. Necessary conditions for ϵ-optimality
can then be computed to derive insights from this space. Those
are conditions (i.e. functions ϕ : X → {0, 1}) which are
true for every element in X ϵ. For instance, using conditions
corresponding to constrained sums of investment variables, the
authors of [5] showed that for a deviation ϵ of 10%, capacity
investment in onshore wind, storage, PV, transmission, and
offshore wind could be reduced to 0%, 0%, 15%, 50%, and
60% of their optimal capacities, respectively.

These studies were performed with a fixed spatiotemporal
resolution and have thus not explored whether increasing it
improves the quality of the insights derived from near-optimal
solutions. In this paper, we take the first step in filling this
gap by exploring how spatial and temporal resolution impacts
necessary capacity investments for near-optimality.

III. CASE STUDY

This case study explores the required minimum investments
in power transmission, generation, and storage capacities
across the European continent to achieve, by 2030, a 99%
reduction in greenhouse gas (GHG) emissions compared to
1990 levels while ensuring near-optimality in cost. The goal
is to analyse the impact of spatial and temporal resolution on
these investments.

To model the European electricity network, the open-source
tool PyPSA (Python for Power System Analysis) [16] is used.
As described in its online documentation [17], PyPSA allows
for “simulating and optimising modern power systems that
include features such as conventional generators with unit
commitment, variable wind and solar generation, storage units,
coupling to other energy sectors, and mixed alternating and
direct current networks”. It is “designed to scale well with
large networks and long time series”. This case study uses
PyPSA to plan capacity expansion, i.e., determine how much
capacity needs to be deployed for each expandable technology
at each network node.

PyPSA has been used to model the European network
through the PyPSA-Eur project [12]. This model has already
been used and validated in a series of studies [5], [18], [19].
In this case study, the default version of the model [20] is
used with a few modifications. In addition to onshore and
offshore wind, capacities of PV, CCGT (combined cycle gas
turbine), OCGT (open cycle gas turbine), transmission, and
storage can be extended. The power density of offshore wind
is set to 10 MW/km2 [21] instead of the default 2 MW/km2.
A limit of two times the existing capacity is set on link and
line capacities. We consider it a reasonable upper bound on
what is possible to build in less than ten years. Finally, nuclear
power plants can produce at nominal capacity but have a
ramping limit of 10% of nominal capacity per hour, upwards
and downwards.

The modelled network contains 6763 lines and 3642 substa-
tions [20], and time series for electrical demand and variable
renewable generators are available at an hourly resolution.
However, the model can be clustered to decrease the number
of substations - also referred to as nodes - and, therefore, the
number of lines. The temporal resolution can also be reduced
by averaging over every n snapshot, where n is a positive
integer. This paper studies the following level of clustering:
100, 200, and 400 nodes for spatial resolution and 2, 4 and 6
hours for temporal resolution. The lower limit of a six-hourly
resolution was set as decreasing the temporal resolution further
led to unreliable storage behaviour.

The cost-optimal network configurations are first computed
for all combinations of these resolutions. For each of these
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optimal configurations, we analyse the sums of new capacities
installed for PV panels, wind turbines (i.e., the sum of new
capacities of onshore and offshore wind), and transmission
(i.e., the sum of new capacities of lines and links) across
the European network. Mathematically, we can denote these
sums by dTxI with xI a vector of size |I| that collects the
different investment variables and d ∈ {0, 1}|I|. For instance,
the only values equal to 1 in d could correspond to the
investment capacities in wind turbines. The sum would then
equal the sum of wind capacities across the network. By
changing the values in d, we can obtain investment capacities
for different technologies. These sums take different values
for each solution to the problem. We denote the value of these
sums at the optima by c∗n,h where n and h represent the spatial
and temporal resolution of the model, counted respectively in
nodes and hours.

Once the optima are computed, the methodology developed
in [5] allows determining the minimum new capacity invest-
ment needed in PV, wind and transmission to ensure cost ϵ-
optimality. To compute the minimum new capacity required in
renewable technologies to stay ϵ-optimal, we use conditions
of the form ϕ(xI) := dTxI ≥ c with c ∈ R+. If we minimise
this sum over X ϵ, we obtain a value cϵn,h equal to the minimal
new capacity that needs to be deployed to be ϵ-optimal (see
[5] for a proof). These values depend on the model’s spatial
and temporal resolution and the sub-optimality coefficient. In
this case study, we limit our analysis to an ϵ of 10%.

IV. RESULTS

We first analyse the optimal values c∗n,h of new capacities
for PV, wind and transmission to see how the system behaves
at the optima when changing the resolution. We then analyse
how near-optimal solutions are impacted by looking at the
minimal new capacities cϵn,h for these technologies and how
these impacts compare to the ones on the optimal capacities.

A. Analysis of optimal solutions

The optimal solutions are computed for time resolutions
of 6, 4, and 2 hours and spatial resolutions of 100, 200,
and 400 nodes (in order from the least complex system to
the most complex). Table I shows the optimal costs for all
combinations of resolutions. The values range between 64.4
and 69.8 BC/y, and there is a clear trend: the more complex
the network, the higher the cost. Rising investment costs
primarily drive the increases. Indeed, increasing the temporal
resolution from 6 hours to 2 hours adds between 1 to 2 BC/y
in generation capacity investment. This rise is linked to the

TABLE I: System costs [BC/y] at the optimal solutions for
different spatial and temporal resolutions.

hours [h]
nodes [n] 6 4 2

100 64.4 67.4 68.4
200 64.7 67.8 68.7
400 65.9 68.8 69.8

switch from solar to wind capacity, as shown in Table II. While
the added wind capacity is only half that removed for PV, the
average wind capital cost is around four times more expensive,
explaining the overall rise in investment cost. Improving the
temporal resolution decreases the importance of PV because
it reveals the mismatch between solar production and demand
peaks, making this technology less attractive as it needs to
be combined with storage. The increase in storage observed
when moving from six to two-hourly resolution confirms
this and explains the additional 1.7 to 2.3 BC/y increase
in cost. As shown in Table II, transmission investment also
increases with the temporal resolution, allowing the absorption
of unsmoothed production peaks.

PV and wind capacities increase when using a better spatial
resolution. This increase can be explained by the better spatial
representation of renewable sources linked to the increased
number of nodes in the model. Indeed, in the PyPSa-Eur
model, wind and PV capacity can be installed at each node and
are associated with a node-specific capacity factor time series.
When aggregating nodes to reduce the spatial resolution, the
capacity factors of different nodes are averaged, leading to
losing some of the better capacity factor signals. This increase
in renewable generation again implies greater needs in storage
capacity which adds between 1.3 to 1.9 BC/y to the total
cost. To finish this analysis, let us note that there is no
clear tendency when looking at the evolution of transmission
capacity with spatial resolution. Indeed, the capacity rises from
100 to 200 nodes before dropping again when reaching 400
nodes. This behaviour is difficult to analyse as topological
changes, impacting the total length of the lines and, thus,
their capacities in TWkm, occur when modifying the number
of nodes in the network. Thus, in the rest of the paper, the
analysis of transmission capacity is limited to its evolution
with temporal resolution.

B. Analysis of necessary conditions

This section analyses how temporal and spatial resolutions
affect the necessary conditions corresponding to the minimal
new capacities in PV, wind and transmission and how these
impacts compare to the ones on the optimal new capacities.
This analysis is divided into three observations derived the
results shown in Tables II to IV.

Observation 1: Optimal and minimal capacities follow the
same trends when modifying spatial and temporal resolutions.

The values cϵn,h for ϵ = 10% are shown in Table II. The
effect of spatiotemporal resolution on these values is similar
to its impact on optimal values c∗n,h. Firstly, increasing the
temporal resolution decreases the minimal PV capacities while
increasing wind and transmission capacities. Secondly, an
increase in spatial resolution increases PV and wind capacities.
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TABLE II: New capacities c∗n,h at the optima, minimum new capacities cϵn,h with ϵ = 10%, and ratio cϵn,h/c
∗
n,h.

PV Wind Transmision
n\h 6 4 2 6 4 2 6 4 2
100 488 399 388 297 342 346 76.0 80.3 81.7

c∗n,h 200 498 410 395 [GW] 312 356 363 [GW] 76.6 81.7 83.6 [TWkm]
400 513 429 416 324 365 371 70.9 75.5 76.4
100 125 85.8 79.8 128 160 163 11.9 14.8 15.2

cϵn,h 200 130 92.9 85.8 [GW] 146 178 182 [GW] 13.7 16.2 16.7 [TWkm]
400 144 109 102 157 189 193 11.6 13.9 14.2
100 25.6 21.5 20.5 43.0 46.9 47.0 15.7 18.4 18.7

cϵn,h/c
∗
n,h 200 26.2 22.6 21.8 [%] 46.8 50.0 50.1 [%] 17.9 19.8 20.0 [%]

400 28.2 25.5 24.5 48.4 51.7 52.1 16.4 18.4 18.6

Observation 2: A resolution leading to a higher optimal
capacity than another resolution also leads to a smaller
deviation of the minimal capacity from this optimal capacity.

Table II shows the ratios cϵn,h/c
∗
n,h between minimal and

optimal new capacities. The first observation is that these
ratios vary within narrow ranges. For transmission capacity,
the ratios vary between approximately 15% and 20%. This
result means that there exist near-optimal solutions costing
at most 10% more than the optimal cost and where there is
only 15 to 20% of the new transmission capacity installed
at the optimum. For PV capacity, these ratios are contained
in the range [20 : 30]%; for wind capacity, the range is
approximately [40 : 50]%. However, these percentages exhibit
structured differences: their variations follow the same trends
as optimal capacities. Indeed, the resolutions that lead to
higher percentages for each technology have larger optimal
capacities. This result can be explained as follows. If the
capacity of a technology is larger at the cost optimum for
a given resolution, it implies that this technology is more
economically valuable at this resolution. When computing the
minimum capacity for ϵ-optimality, the model searches for
alternative solutions using other technologies for a cost close
to the optimum. If the minimised technology is economically
advantageous, finding economically attractive alternatives to
replace it is challenging, which makes this technology difficult
to minimise. Therefore, if a technology is more advantageous
at one resolution than another, it has a larger optimal capacity
at this resolution and leads to a smaller deviation from this
optimum when trying to minimise this technology under a
constrained cost deviation. Mathematically, if for resolutions
na and resolution nb, we have c∗na,h

> c∗nb,h
(which, following

observation 1, also implies cϵna,h
> cϵnb,h

), then observation 2
states that the following inequality is respected:

cϵna,h/c
∗
na,h > cϵnb,h

/c∗nb,h
. (2)

This statement is also true if the resolution variation is
temporal instead of spatial.

Observation 3: Modifying the spatial or temporal resolution
has more impact on minimal than optimal capacities.

This statement means that the relative difference between
the minimal capacities at two different resolutions is greater
than the relative difference between the optimal capacities
associated with these same resolutions. Mathematically, let n1

and n2 be two different spatial resolutions, with n1 being the
higher of the two (e.g. n1 = 400 and n2 = 100), we have:

|cϵn2,h/c
ϵ
n1,h − 1| > |c∗n2,h/c

∗
n1,h − 1| (3)

where the first term and second term represent the relative
difference between the minimal and optimal capacities, respec-
tively. This result is a consequence of the previous observation
and can be proven using (2) where na is a resolution with
higher optimal and minimal new capacities than nb. We
differentiate between two cases.

Case 1: The higher resolution corresponds to the one with the
higher capacity, i.e., n1 = na and n2 = nb. Ineq. (2) becomes:

cϵn1,h/c
∗
n1,h > cϵn2,h/c

∗
n2,h (4)

⇔ c∗n2,h/c
∗
n1,h > cϵn2,h/c

ϵ
n1,h (5)

⇒ |c∗n2,h/c
∗
n1,h − 1| < |cϵn2,h/c

ϵ
n1,h − 1| (6)

where (5) ⇒ (6) as cϵn1,h
> cϵn2,h

and c∗n1,h
> c∗n2,h

.

Case 2: The higher resolution corresponds to the one with the
lower capacity, i.e., n1 = nb and n2 = na. Ineq. (2) becomes:

cϵn2,h/c
∗
n2,h > cϵn1,h/c

∗
n1,h (7)

⇔ cϵn2,h/c
ϵ
n1,h > c∗n2,h/c

∗
n1,h (8)

⇒ |cϵn2,h/c
ϵ
n1,h − 1| > |c∗n2,h/c

∗
n1,h − 1| (9)

where (8) ⇒ (9) as cϵn1,h
< cϵn2,h

and c∗n1,h
< c∗n2,h

.

We obtain the same conclusion, which is also valid if the
temporal resolution varies. In our case study, case 1, where the
better resolution corresponds to the higher optimal capacity,
is valid for wind and transmission capacity for both types
of resolutions. It is also valid for PV capacity for spatial
resolution, while the variation of PV with temporal resolution
corresponds to case 2.

This observation is illustrated by comparing capacities at
lower resolutions to those at the case study’s best temporal and
spatial resolutions, i.e., h0 = 2 and n0 = 400. Table III thus
contains the deviations of optimal (or minimal) new capacities
at lower temporal resolutions (i.e., h = 6 and h = 4) from
the optimal (or minimal) new capacities at the best temporal
resolution h0 = 2, i.e., |c∗n,h/c∗n,h0

− 1| (or |cϵn,h/cϵn,h0
− 1|).

Then, Table IV shows the same type of deviations but from
the capacities at the best spatial resolution n0 = 400, i.e.,
|c∗n,h/c∗n0,h

− 1| and |cϵn,h/cϵn0,h
− 1|.
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TABLE III: Deviations |c∗n,h/c∗n,h0
− 1| of optimal new ca-

pacities and deviations |cϵn,h/cϵn,h0
− 1|, with ϵ = 10%, of

minimal new capacities from best temporal resolution h0 = 2.
Abbreviation: Transmission (Trans.).

PV [%] Wind [%] Trans. [%]
n\h 6 4 6 4 6 4
100 25.7 2.85 13.9 1.07 6.94 1.79

|c∗n,h/c
∗
n,h0

− 1| 200 26.3 3.95 14.0 1.74 8.41 2.22
400 23.4 3.28 12.8 1.73 7.29 1.22
100 56.6 7.60 21.3 1.28 21.8 1.98

|cϵn,h/c
ϵ
n,h0

− 1| 200 51.8 8.20 19.6 1.99 17.7 2.99
400 41.7 7.22 19.0 2.27 18.3 2.11

By analysing the values of these two tables, the third
observation is obvious: deviations are more significant for
minimal new capacities for ϵ-optimality than for optimal new
capacities.

V. CONCLUSION

In this paper, we initiate the research on the impact of
spatial and temporal resolutions on necessary conditions for
near-optimality of energy system optimisation models. This
new research track starts with the analysis of the expansion
planning of the European power grid and necessary conditions
for ϵ-optimality corresponding to the minimal new PV, wind
and transmission capacities. The impact of spatial and tempo-
ral resolution on these values is explored and compared to the
impacts on cost-optimal new capacities for these technologies.
Three key observations are derived from this analysis. Firstly,
the results show that minimal and optimal capacities exhibit
the same behaviour when resolutions are modified. In particu-
lar, PV, wind and transmission capacities increase with better
spatial resolution, while a higher temporal resolution positively
impacts only the capacity for wind and transmission. A second
observation is that the resolutions for which more capacity
is installed at the optimum correspond to the ones where it
is the hardest to minimise this capacity when allowing for a
constrained cost deviation. Thirdly, we show that temporal and
spatial resolution variations impact minimal capacities more
than optimal ones.

This study provides a first insight into the impacts of
spatial and temporal resolution on near-optimal solutions. This
research track could be continued in the following ways. First,
analysing the optimal and near-optimal solutions for higher
and lower resolutions might increase the reliability of our three
observations. Similarly, necessary conditions for different val-
ues of ϵ could be evaluated to see if these observations hold
for other levels of near-optimality. Secondly, we chose to study
the effect of spatiotemporal resolution on near-optimal space
using necessary conditions. However, other methods have
been developed to analyse near-optimal solutions. A natural
extension of this paper is to study the impact of resolution on
the insights obtained with these methods. Finally, we tested
the resolutions’ impacts on a specific case study using one
ESOM. Studies using different models must be performed to
understand those impacts holistically.

TABLE IV: Deviations |c∗n,h/c
∗
n0,h

−1| of optimal new capaci-
ties and deviations |cϵn,h/c

ϵ
n0,h

− 1|, with ϵ = 10%, of minimal
new capacities from best spatial resolution n0 = 400.

PV [%] Wind [%]
n\h 6 4 2 6 4 2

|c∗n,h/c
∗
n0,h − 1| 100

200
4.77
2.82

6.97
4.46

6.58
5.08

8.11
3.66

6.31
2.39

6.93
2.38

|cϵn,h/c
ϵ
n0,h − 1| 100

200
13.6
9.79

21.5
15.0

21.8
15.8

18.3
6.77

15.1
5.82

16.0
6.10
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