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a b s t r a c t

The transition between two lactations remains one of the most critical periods during the productive life
of dairy cows. In this study, we aimed to develop a model that predicts the milk yield of dairy cows from
test day milk yield data collected in the previous lactation. In the past, data routinely collected in the con-
text of herd improvement programmes on dairy farms have been used to provide insights in the health
status of animals or for genetic evaluations. Typically, only data from the current lactation is used, com-
paring expected (i.e., unperturbed) with realised milk yields. This approach cannot be used to monitor the
transition period due to the lack of unperturbed milk yields at the start of a lactation. For multiparous
cows, an opportunity lies in the use of data from the previous lactation to predict the expected produc-
tion of the next one. We developed a methodology to predict the first test day milk yield after calving
using information from the previous lactation. To this end, three random forest models (nextMILKFULL,
nextMILKPH, and nextMILKP) were trained with three different feature sets to forecast the milk yield
on the first test day of the next lactation. To evaluate the added value of using a machine-learning
approach against simple models based on contemporary animals or production in the previous lactation,
we compared the nextMILK models with four benchmark models. The nextMILK models had an RMSE
ranging from 6.08 to 6.24 kg of milk. In conclusion, the nextMILK models had a better prediction perfor-
mance compared to the benchmark models. Application-wise, the proposed methodology could be part of
a monitoring tool tailored towards the transition period. Future research should focus on validation of the
developed methodology within such tool.
� 2022 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

In the present study, we explored the potential of historical
milk test day data to predict the individual daily milk yield on
the first test day of the next lactation. The results show that the
utilisation of such historical data seems to allow accurate predic-
tion of production at the start of the next lactation when compared
with benchmark models. These models could ultimately be used in
a wide range of applications, from economic evaluation by expand-
ing the forecast horizon of farmers to the next lactation, to the
implementation as data-driven health monitoring tools by com-
paring the expected production with the realised production.
Introduction

The increase in milk yield of dairy cattle coincides with multiple
challenges imposed on the cows, especially during the transition
period in the six weeks around calving Journal of Dairy Science,
101(10), 9419–9429 (Probo et al., 2018). In literature, the duration
of transition period has been argued in recent years, certain
authors define the transition period from dry off till 6 weeks after
calving (Lopreiato et al., 2020). In this period, 30–50% of the cows
develop metabolic or infectious diseases such as mastitis, metritis,
ketosis, lameness or displaced abomasum (LeBlanc, 2010; Hostens
et al., 2012; Pascottini et al., 2020). To better support animals at
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risk of developing transition problems, identification methods to
date have mainly focused on the laboratory analysis of metabolic
markers as discriminating factor, either requiring milk or blood
samples (Saun and Robert, 2006; De Koster et al., 2019; Grelet
et al., 2019). However, these techniques require action from the
farmer, which may lead to poor identification performance. The
development of an automatic alert system to point out animals
at risk could drastically improve the early identification of sick
animals.

The advent of routine data collection on dairy farms has led to
the opportunity to develop data-driven and automated health
monitoring tools. For example, Adriaens et al. (2021) proposed to
monitor udder health through perturbations in milk yield. A bottle-
neck to this approach is that it requires an accurate estimation of
the expected milk yield in an unperturbed state, typically derived
from a theoretical lactation shape and the production data avail-
able from a certain lactation (Poppe et al., 2020; Adriaens et al.,
2021; Ben Abdelkrim et al., 2021). In this context, multiple data-
based models using high-frequency milk meter data have been
developed to predict the unperturbed milk yield within the same
lactation (Macciotta et al., 2011; Adriaens et al., 2018). Up till
today, these models have had a wide range of applications. They
have, for instance, been used to estimate the expected production
at herd or cow level, as tools to design suitable breeding strategies
or genetic selection criteria, as individual health monitoring algo-
rithms and as tools that estimate the response to management
and environmental changes (Dematawewa et al., 2007; Ehrlich,
2011; Macciotta et al., 2011). Predicting the unperturbed milk pro-
duction in the first weeks of lactation, however, is challenging,
because at that stage, there is too little milk production data to
accuratly fit a lactation curve model on. More specifically, esti-
mates of the unperturbed state based on only the first few days
of milk production are deemed unreliable because health problems
might already have influenced the lactation performance at or even
before the start of the lactation. Therefore, differences between
predicted milk yield and actual milk yield could be low while
health issues remain unnoticed in the transition period.
Nordlund (2006) identified a potential solution which could over-
come the aforementioned issues, by using information from the
previous lactation to make predictions on the milk production of
the next lactation.

The application of advanced machine-learning techniques to
the increasing amount of data in dairy farming has led to the devel-
opment of new insights into animal welfare and to real-time mon-
itoring possibilities (Hermans et al., 2018). For example, recently,
Liseune et al. (2021) presented a deep-learning model to predict
the unperturbed daily milk yield of the first 305 days in milk
(DIM), using daily milk meter data of the previous lactation in
combination with cow and herd key performance indicators. This
model demonstrated the application of machine learning to predict
milk production of the next lactation. Relying on daily sensor data,
this model excludes a wide range of farms that do not have milk
meters installed. An alternative approach is to use test day records
(TDRs) collected through national dairy herd improvement pro-
grammes. TDRs are recorded with a frequency of four to eight
weeks, but present the advantage of having been collected for
many years on a majority of dairy farms, thus having plenty of his-
torical data readily available.

In the past, models based on TDR have been proposed for the
genetic evaluation of dairy cattle as a replacement for the tradi-
tional 305-d lactation yield. These models typically have the ability
to account for environmental effects occurring on the day of milk
recording (Mayeres et al., 2004). Additionally, random regression
test day models have been developed to predict the future perfor-
mance of animals in the same parity (for example, milk yield in the
ninth month of the lactation based on the performance of animals
2

in the first eight months of the current lactation). To our current
knowledge, no study has evaluated the potential of using TDR of
the current lactation to predict the performance of an animal in a
next lactation. As TDRs are widely available and standardised, they
allow the training of complex machine-learning models. In their
turn, these models can create added value to data that is already
routinely collected on dairy farms.

In the present study, we aimed to combine powerful machine
learning techniques with the idea of using historical data to predict
milk production in the next lactation. To this end, a set of random
forest regression models was developed to predict the expected
milk yield on the first test day of a lactation, based on features
derived from historical TDR of the previous lactation and addi-
tional cow and herd information.
Material and methods

Raw data

The raw dataset was accessed via the MmmooOgleTM platform
(Bovicom, Puurs, Belgium) and originated from 102 herds located
in six countries (BE: n = 74, the NL: n = 16 DE: n = 5, USA: n = 4,
FR: n = 2, IT: n = 1), spanning a period of 20 years between 2000
and 2020. In total, data from83 406 animalswith on average 2.6 lac-
tations per animal were available. These data included TDR and the
corresponding cow information such as cow identifiers, calving
dates, breeding dates and dry-off dates. At herd level, the recording
of data started between 2000 and 2012 and ended between 2007
and 2020, with a median time span of 18.1 years (Q1: 15.8 years,
Q3: 20.1 years). TheTDRs contained the following information: daily
milk yield, test date, parity and DIM. Additionally, the data con-
tained lactation curve parameters of the MilkBot model fitted on
the test day milk yield (Ehrlich, 2011). These MilkBot parameters
(scale, offset, ramp and decay), summarise the shape of the lactation
curve in a standardised way. A general flowchart displaying the dif-
ferent steps presented in this methodology can be found in Fig. 1.
Data selection

All data editing, data processing and the model development
were done using Apache Spark version 3.0.0 (The Apache Software
Foundation, Wakefield, USA) running on the high-performance
computing infrastructure of Ghent University, Belgium.

In order to obtain data suitable for the analysis, e.g. in terms of
completeness, several selection steps were implemented. First, lac-
tations with missing MilkBot parameters were removed. These
parameters were essential to calculate cumulative milk yield at
animal and herd levels. Second, lactations followed by a subse-
quent lactation with at least one TDR were selected, referred to
as lactation X and lactation X + 1, respectively. The milk yield (in
kg) in that first TDR of lactation X + 1 (kgTD1X+1) was defined as
the dependent variable to be predicted.

The second selection step aimed at identifying lactations for
which data quality was sufficient for the analysis. Moreover, lacta-
tions X + 1 where the first test day (TD1X+1) was measured after 60
DIM were excluded. Accordingly, the range for the first test day of
the next lactation for which the model was trained and validated
encompasses the period in which high-producing dairy cows face
major transition challenges (LeBlanc, 2010; Probo et al., 2018;
Lopreiato et al., 2020).

Furthermore, the calving interval in lactation X was at least
300 days and at most 530 days. The minimal and maximal age at
first calving had to be between respectively 20 months and
36 months. Additionally, lactations with less than eight TDR in
lactation X were excluded to ensure having sufficient data to make



Fig. 1. Flowchart displaying the different steps applied in this study to develop the nextMILK models for dairy cows.
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the predictions. When more than eight TDRs were available, the
TDRs after the 8th were excluded from the predictors. The eight
selected TDRs had to be taken regularly throughout the lactation,
for example every 4–8 weeks. Lactations X for which no regularity
between TDR was found were removed from the analysis.

The third and final selection step was applied at the lactation
level and aimed at identifying lactations from which the first test
day yield potentially belonged to a milk yield perturbation using
characteristics of the dependent variable kgTD1X+1. Because the
aim of the model is to predict the expected milk yield of healthy
cows in the beginning of lactation X + 1, all ’unhealthy’ lactations
X + 1were removed from the dataset. Because detailed health infor-
mation of the cows is not available for this dataset, a lactationX + 1 is
’unhealthy’ if it is perturbed on the first test day relative to theMilk-
Bot lactation model fitted to the milk yield data of the entire lacta-
tion X + 1. Moreover, if the actual daily milk production on the first
test day of lactation X + 1 was more than 6 kg below the expected
milk yield according to the MilkBot model, then this lactation was
identified as being ’unhealthy’ and thus rejected. The 6 kg threshold
corresponds with the reported RMSE performance of the MilkBot
model in second and greater parities (Cole et al., 2012). In Fig. 2, a
flowchart shows the effect of all these data selection steps on the
number of lactations and animals present in the final dataset.
Feature description

Several features at different levels (test day, lactation, cow or
herd) were available or could be calculated from the available data
to enter into the prediction models. In this section, an overview of
these features is given. These features included the DIM and corre-
sponding milk yields at each test day of lactation X and the DIM of
TD1X+1. Features at the lactation level were parity number, the lac-
tation length, days open for lactation X, the calving interval and
days dry between lactation X and X + 1. Parity number was consid-
ered as an ordinal categorical variable; parity number 5 and above
were grouped in the same category. The age at first calving was
considered as a cow-specific feature.

A set of additional features were derived from the features pre-
sented above. At the lactation level, six seasons of calving classes
3

were defined by the month of calving to take into account the sea-
sonality of a lactation. The first class was attributed to December
and January; the next classes were attributed to each consecutive
pair of months. The season of calving was defined for both lactation
X and lactation X + 1. The cumulative milk yield at 21 DIM (M21),
75 DIM (M75) and 305 DIM (M305) of each lactation X was calcu-
lated by summing the daily milk yields for the different time spans
using the MilkBot equation and parameters.

Some additional features describing the herd performance were
calculated, including the average cumulative milk yields (M21,
M75, M305), average age at first calving, average calving interval,
days dry, lactation length, days open and the maximal and minimal
daily milk production during the lactation. To account for different
production levels in different lactations, these herd averages were
stratified for each parity. Furthermore, to account for evolutions in
production in a herd over time, the averages were also calculated
in function of time using a sliding window of two years. The result-
ing herd average features were used to compute absolute differ-
ences of a cow in comparison with the herd accounting for the
respective herd, year and parity number. Year was defined as the
year in which lactation X started.
Data splicing

The aforementioned final dataset was randomly spliced into a
test set (20%) and a training set (80%). Data were split before any
model development was done to create an independent test data-
set to evaluate the final model. The data splicing was performed
randomly at animal level, preventing the inclusion data of the
same cow in both test set and training set. The usage of absolute
differences with regard to the herd performances described in
the previous section preserves the independence between both
sets.
Model development

In the present study, we developed a random forest regression
model to predict the first test day milk yield in lactation X + 1 from



Fig. 2. Graphical representation of the effects of each filtration step on the number of lactation and the number of distinct cows. This in order to construct the final dataset.
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the above-mentioned features. The following paragraphs describe
the steps taken to train and evaluate the model.
Model description

The random forest regression models were trained on the train-
ing set using the native MLlib library function of Apache Spark (The
Apache Software Foundation, Wilmington DE, USA). Random forest
regression is a supervised ensemble learning method proposed by
Breiman (2001). These models consist of multiple decision trees,
where the prediction of each constituting decision tree is com-
bined to create a final prediction. Random forest models can be
used in classification or regression applications. When the random
forest is used for regression, the predictions of the individual deci-
sion trees are averaged to obtain the final estimation. Individual
decision trees have an inherent tendency to overfit training data,
random forest models mitigate this by combining the prediction
of a multitude of individual decision trees reducing the overfitting
problem (James et al., 2013). Additionally, when compared to black
box models such as artificial neural networks, where gathering
insights on the model’s functioning is rather difficult, random for-
est provides the possibility to extract feature importance metrics.
These metrics represent the relative importance of a feature nor-
malised to sum to 1 calculated by the method presented in
Hastie et al. (2009). In dairy research, random forest models have
been mainly used as a classifier (Walsh et al., 2007; Shahinfar
et al., 2014; Parker Gaddis et al., 2016; Borchers et al., 2017; De
Koster et al., 2019). However, in recent years, the usage of random
forest models in regression applications for livestock data has
increased (Dallago et al., 2019; van der Heide et al., 2019). The
development of the random forest regression model consisted of
the following steps: feature selection, defining the optimal hyper-
parameters, training of the model to obtain model parameters and
evaluation of the final model.
Feature set selection

The full feature set comprised all 40 features described above.
We defined three feature categories within this final feature set:
(1) the individual production features, (2) herd-level production
features and (3) reproduction-derived features (age at first calving,
calving interval, days dry, days open, lactation length and the abso-
lute difference of those features with the herd average). From this
point on, three sets of features were used: only the production fea-
tures (P), production and herd features (PH) and finally the full fea-
ture set (FULL). A graphical representation of those three sets and
their composing features is provided in Fig. 3.
Hyperparameter tuning

In this step, for each feature set, the optimal pair of hyperpa-
rameters was established, which consists of the number of com-
posing trees (5, 25, 125, 250 and 500 trees) and the maximal
depth of those trees (5, 10, 15, 20, 25 and 30 levels deep). A subset
of the random forest models was trained by using a random 5-fold
cross-validation on the training set.
4

The model performance was evaluated using the error with
which the model is able to predict kgTD1X+1. For this, RMSE is best
suited, with lower RMSE being better. This performance metric is
calculated by taking the square root of the average squared differ-
ence between the actual kgTD1X+1 (yi) and the predicted kgTD1X+1
(byi). The RMSE is expressed as seen in Eq. (1), with N the total num-
ber of predicted values:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 yi � byi

� �2
N

s
ð1Þ

The RMSE represents an absolute error with a clear unit (kg of
milk) and the interpretation is straightforward: RSME is a positive
value, where the closer to 0, the better the model is able to predict
the dependent variable. During this step, the best hyperparameter
set model was defined by the lowest RMSE in the cross-validation.
Statistically significant differences between the best-performing
hyperparameter set and the other sets were calculated on the
squared value of the residuals by applying one-sided paired t-
tests using SparkR. If multiple models had squared residuals that
were not statistically higher than the best-performing model, the
least complex structure of these models was chosen.

Final models

This optimal set of hyperparameters was then used to train the
final random forest models, referred further as nextMILKFULL,
nextMILKPH, nextMILKP models using the respective feature set.
They were trained with the full training set (80% of the lactation
pairs) and evaluated by predicting the kgTD1X+1 for the test set.
The feature importance in function of the predicted kgTD1X+1
was also analysed, to identify any biases or inconsistencies in the
model performances. Ultimately, a set of model performance indi-
cators were computed, to complete the evaluation of the nextMILK
models.

Model evaluation

Model performance indicators
The performance of the final nextMILK models was evaluated

on the test set using four Model Performance Indicators (MPIs)
commonly used in similar studies, including the RMSE. In addition,
mean absolute error (MAE), mean percentage error (MAPE) and R2

were also used to evaluate the final model.
The MAE represents the average absolute difference between

the actual kgTD1X+1 (yi) and the predicted kgTD1X+1 (byi), repre-
sented in Eq. (2):

MAE ¼ 1
N

XN�1

i¼1
yi � byi

�� �� ð2Þ

Even though the definition and interpretation of MAE are simi-
lar to RMSE, MAE is less influenced by outliers in the residuals.
More concretely, in addition to identifying the model with lower
errors overall, RMSE provides a better view on which model is less
sensitive to extreme values in the prediction errors. For this reason,
MAE will always be lower than RMSE, which could lead to overes-
timations of model performance in the case of large variation in the
residuals.



Fig. 3. Graphical representation of the cow features within their classes and the three feature sets created with each of those classes. Abbreviations: DIM = days in milk,
TD = test day, M = cumulative milk yield, X = lactation X, X + 1 = lactation X + 1.
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The MAPE is calculated as the difference between actual
kgTD1X+1 (yi) and the predicted kgTD1X+1 (byi), divided by the actual
kgTD1X+1 as shown in Eq. (3):

MAPE ¼ 1
N

XN�1

i¼1

yi � byi

�� ��
yi

ð3Þ

This MPI is a relative value between 0 and 1, where lower values
indicate better predictions. It has the advantage of displaying
errors in function of the actual value. However, MAPE penalises
negative errors more than positive errors, causing it to be a metric
biased to favour models which underestimate the dependent
variable.

The R2 is calculated as shown in Eq. (4). The upper term repre-
sents the residual sums of squares, where difference between the
actual kgTD1X+1 (yi) and the predicted kgTD1X+1 (byi) is squared.
The lower term represents the total sum of squares, which is the
difference between the actual kgTD1X+1 (yi) and the overall mean

of the actual kgTD1X+1 (y
�
i):

R2 ¼ 1�
PN�1

i¼1 yi � byi

� �2PN�1
i¼1 yi � y

�
i

� �2 ð4Þ
Model benchmarking
Besides the evaluation of prediction performance, benchmark-

ing a newly developed ML model (i.e., the ones developed by us)
against simpler methods can help to assess the added value of this
work. To this end, we defined expert-based benchmark models
that predict the kgTD1X+1 from (1) herd averages, and (2) the lacta-
tion curve of lactation X. The herd average milk yield for a certain
test day was calculated at year-parity level, using information from
the two previous years. For example, if lactation X started in 2012,
the data from 2010 to 2011 of that herd were used. More specifi-
5

cally, two types of benchmark models were defined, the HERD-
HERD and ANIMAL-HERD models.

– For the ‘‘HERD-HERD” benchmarkmodels, the kgTD1X+1was pre-
dicted fromtheherdmilk yield, taking thedifference inmilkyield
between parities during (1) the first 75 days of lactation; HERD-
HERD-75 or (2) during 305 days of lactation; HERD-HERD-305
into account. For example, if the relative milk yield for parity 2
was on average 20% higher compared to parity 1 for a herd-
year and the MilkBot model estimated that a cow produced
20 kg ofmilk onDIM of TDX during the first lactation, the kgTDX+1

for that lactation was predicted as 20 kg � 120% = 24 kg.
– For the ANIMAL-HERD models, also the performance of the ani-
mal compared with the contemporary herd mates was included.
More specifically, when the animal produced e.g. 30% less than
the contemporary herd mates in lactation X on TDX, this factor
was taken into account for the ANIMAL-HERD benchmark mod-
els. For example, a cow producing 20 kg of milk in lactation X for
which the herd produced on average 22 kg on that same test
day, and for which parity 2 of the herd produced on average
25%more compared to the first parity, was predicted to produce
20/22 * 1.25 * 20 kg = 22.7 kg. For the herd effect, also here two
distinct models were defined, taking either the first 75 DIM of
lactation (ANIMAL-HERD–75) and 305 DIM (ANIMAL-HERD–
305) into account.

The benchmark models and the nextMILK model were used to
predict the kgTD1 X+1 on the same test set. From these models,
the residuals between predictions and actual kgTD1X+1 were calcu-
lated to evaluate the model performance using the MPI. To com-
pare the nextMILK and benchmark models statistically, the
squared residuals were compared using ANOVA followed by a
Benjamini & Yekutieli (2001) corrected paired one-sided t-test, sig-
nificance was defined by P < .05.
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Results

Data descriptive

After the data selection steps, the dataset comprised 102 dis-
tinct herds with in total of 37 369 unique cows and 69 014 lacta-
tion pairs. A general descriptive summary of the dataset after
selection can be found in Table 1, together with an overview of
general production and reproduction characteristics. The average
kg of milk produced at TD1X+1 was equal to 38.4 ± 8.6
(mean ± SD). The median DIM at which the TD1X+1 took place
was 21 (Q1: 13 days, Q3: 29 days). Fig. 4a shows the distribution
of DIM at TD1X+1, demonstrating that the number of X + 1 lactations
with TD1x+1 after 30 DIM is drastically reduced. In Fig. 4b, the aver-
age milk production in function of the DIM at TD1 is plotted, from
which the low typical production at the start of the lactation can be
seen. The split of the final data set yielded a training set and test set
counting respectively 57 282 lactations and 11 732 lactations.

Hyperparameter tuning

A total of 450 (five composing trees * six maximal depth of
trees * five cross-validation steps * three feature sets) subset mod-
els were trained for hyperparameter tuning. The performances of
each of those models are displayed in Fig. 5 for each of the three
feature sets. When analysing the performances for the P feature
set, the hyperparameter combination which yielded the best per-
formance was 500 trees with a maximal depth of 30. The one-
sided t-tests pointed out the optimal feature set as the combina-
tion of 125 trees with a maximal depth of 20. This combination
showed no significant difference with the best-performing hyper-
parameter set. Similar results were found for the PH feature set
and the FULL feature set, where in both cases, the best-
performing model was constructed by 500 trees with a maximal
depth of 30. The optimal combination was found by the t-tests to
be 125 trees and a maximal depth of 15. These optimal hyperpa-
rameters were used in the rest of this study.

Model performances

The MPI values of the final models computed for the complete
test set are summarised in Table 2. The full feature set yielded
the lowest RMSE, MAE and MAPE and the highest R2, though the
residuals were not significantly different. In Fig. 6, the phe-
nomenon of regression to the mean represented by all the next-
Table 1
Overview of available dairy cow data in the final dataset after the data selection step.

Item Number for the whole dataset

Number of herds 102
Number of cows 37 369
Number of lactation 69 014
Parity 1 26 097
Parity 2 19 280
Parity 3 11 778
Parity 4 6 268
Parity 5+ 5 559

Age at first calving (years)
Interval between TD (days)
Calving interval (days)
305d milk yield (kg)
Parity 1
Parity 2
Parity 3
Parity 4
Parity 5+

Dependent variable: kgTD1X+1 (kg)

Abbreviations: TD = test day, kgTD1X+1 = milk yield of the first test day in lactation X +

6

MILK models is shown. The SD of the dependent variable
kgTD1X+1 in the test set is equal to 8.79 kg while for the models,
a SD of 5.97, 5.88 and 6.04 kg was found for respectively
nextMILKFULL, nextMILKPH, nextMILKP. In Fig. 7, the performance
of the nextMILK models is plotted in function of DIM TD1X+1. It dis-
plays an aspect of the models’ performances, where fewer observa-
tions of lactations within the range 0–5 DIM TD1X+1 and 50–60
TD1X+1 presented in Fig. 4a seem to result in a higher variation in
RMSE.

The feature importance has been extracted for each of the final
models; the top 10 most important features are displayed in
Table 3. The consistent presence of the same top five features in
all the feature importance lists combined with their high impor-
tance score emphasises the importance of these features. The most
important feature is DIM TD1X+1 in all the three feature sets, fol-
lowed by the M305 of the lactation X. The milk production at the
4th and 5th TD is also found to be consistently present in the top
five of most important features. It can be noted that for those
TDX production features, the corresponding DIMX represents the
tail of the feature importance list in all three final models. Further-
more, the herd and reproduction parameters generally have a rel-
atively low importance in the respective nextMILK models.

Model benchmarking

We identified that each of the benchmark models had signifi-
cantly higher (P < .05) residuals (and thus, a lower prediction per-
formance) compared to the three nextMILK models. Additionally,
no significant difference in residuals between the nextMILKmodels
was found. These results show the added value of our method com-
pared to less complicated benchmark models. These results are
summarised in Table 2 presenting also the MPI of both benchmark
and nextMILK models. The difference in RMSE between the next-
MILK models and the benchmark models ranges from 1.65 to
1.26 kg; in percentage, this difference ranges from 23 to 15%. This
difference is not present in MAE where nextMILKP and nextMILKPH

had similar MAE to benchmark HERD-HERD – 75, ANIMAL-HERD –
75 and ANIMAL-HERD – 305.

Discussion

Overall, the calculated performance of the nextMILK models
demonstrates the potential of using historical production data to
predict milk production in the early stage of the next lactation.
The consistent importance of DIM TD1X+1 seem to indicate that
Mean ± SD over herds Range over herds [minimum; maximum]

366 ± 365 [3; 2 254]
677 ± 654 [4; 4 361]
256 ± 285.0 [2; 1 726]
189 ± 189 [2; 1 285]
117 ± 104 [1; 649]
65 ± 54 [1; 327]
56 ± 55 [1; 285]
2.1 ± 0.2 [1.7; 3.0]
33.5 ± 5.1 [23; 56]
397.5 ± 49.1 [300; 529]

8 489 ± 1 732 [3 034; 17 916]
9 835.0 ± 2 034 [2 676; 22 030]
10 304 ± 2 039 [2 628; 20 920]
10 294 ± 2 034 [3 179; 20 326]
9 971 ± 1 923 [3 194 22 403]
38.4 ± 8.6 [3.74; 75.32]

1.



Fig. 4. Descriptive plots of TD1X+1, in panel A the distribution of the records in function of DIM, where we can see a clear plateau in the number of cow records between 7 and
30 DIM. In panel B, an overview of the evolution of milk production during the first test day is plotted. This average reaches a plateau around days 30 DIM. Abbreviations:
DIM = Days in milk, TD1X+1 = first test day in lactation X + 1.

Fig. 5. The RMSECV plotted for each of the hyperparameter set for each of the three feature sets extracted from dairy cows. On the x-axis, the max depth of the trees trained in
the random forest is shown. Each line representing a number of trees of those random forest models. Abbreviations: RMSECV = RMSE in cross-validation, PH = production and
herd, P = production.
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Table 2
Model performance indicators of the nextMILK models and benchmark models in dairy cows.

Model RMSE MAE R2 MAPE Significant difference1

nextMILKFULL 6.08 4.56 0.52 0.1327
nextMILKPH 6.24 4.68 0.49 0.1369
nextMILKP 6.18 4.58 0.51 0.1339
Benchmark I – HERD-HERD – 75 7.48 5.64 0.27 0.1608 #, y, ¢
Benchmark I – HERD-HERD – 305 7.89 6.59 0.09 0.1807 #, y, ¢
Benchmark II – ANIMAL-HERD – 75 7.37 5.50 0.30 0.1585 #, y, ¢
Benchmark II – ANIMAL-HERD – 305 7.40 5.59 0.29 0.1608 #, y, ¢

Abbreviations: MAE = mean absolute error, MAPE = mean absolute percentage error.
1 #, y, ¢ indicate that the squared residuals of the models were significantly higher (P < 0.05) when compared with respectively nextMILKFULL, nextMILKPH and nextMILKP.

Fig. 6. Distribution of the dependent variable kg produced by the dairy cow for the complete test set in panel A, in the three other panels, the predictions of all nextMILK
models are plotted for the test set. Abbreviations: TD1X+1 = first test day in lactation X + 1, PH = production and herd, P = production.
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the models are based on biological process such as the steep incline
of the lactation curve at the start of lactation.

In 2012, Cole et al. described a theoretical minimum RMSE of
6 kg for predicting daily milk productions in cows, which is due
to the variability resulting from changes in environment and
health. The RMSE of the nextMILK models indicates that the next-
MILK models are performing in the same order of magnitude as
this described theoretical minimum. Furthermore, the comparison
of residuals and MPI between the benchmark models and the next-
MILK puts these MPIs in perspective of more simple approaches. In
all cases, the nextMILK models showed significantly lower residu-
als and better MPI.

A possible explanation of the small difference in MPI over all the
nextMILK models could be found in the feature importance vec-
tors. The low importance of the reproductive and herd features
indicates their limited contribution to the prediction, hence the
8

absence of substantial differences between models. In terms, the
comparison of these models with even smaller models should be
made to evaluate from which point a real difference can be
observed.

The absence of a high-quality disease registration dataset was
one of the biggest limitations of the present study. It would have
allowed us to select unperturbed lactations in a more objective
way. Nevertheless, the applied data selection steps are set up to
exclude abnormal lactations (in length, number of records) and
possibly perturbed lactations. As a filtering step was applied to
obtain high-quality data, it should be further investigated how this
affects the model performance for an extensive dataset with qual-
itative disease registration.

The creation of three distinct feature sets was motivated by the
variation in quality and ease of collection of the three types of
features. The individual and herd-level production features are



Fig. 7. In this figure, the RMSE is plotted for the test set in function of the DIM of TD1X+1 for the nextMILK models for dairy cows. Of note: the lower number of TD1X+1 records
within the range 0–5 DIM and 40–60 DIM is displayed in Fig. 4A. Seems to be linked with a high variation of the RMSE in the same region of DIM. Abbreviations: DIM = Days in
milk, TD1X+1 = first test day in lactation X + 1, PH = production and herd, P = production.

Table 3
Top 10 feature importance extracted from the nextMILK models for dairy cows.1

Importance

Feature FULL PH P

DIM TD1X+1 0.185 0.187 0.193
M305X 0.129 0.117 0.128
kgTD5X 0.060 0.057 0.065
kgTD4X 0.046 0.060 0.065
Milk MaximumX 0.030 0.038 0.040
kgTD6X 0.030 0.038 0.039
Days DryX 0.027
SeasonX+1 0.026 0.033 0.037
D Herd Average Days DryX 0.025
kgTD3X 0.023 0.028 0.031

Abbreviations: DIM = days in milk, X = lactation X, X+ 1 = lactation X + 1, TD1 = first
test day, TD3 = third test day, TD4 = fourth test day, TD5 = fifth test day, TD6 = sixth
test day, M305 = cumulative milk yield after 305 days, PH = production and herd,
P = production

1 The table with the 40 features used in the models can be found in Supple-
mentary Table S1.
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routinely collected with a high-quality standard, whereas the
reproduction-derived features are considered poor in quality and
challenging to collect on farms, because they often require manual
inputs from the farmer.

To our current knowledge, only three studies with a comparable
research question have been published. In his initial publication,
Nordlund (2006) described the development of the Transition
Cow Index (TCI), a tool to evaluate the success of the transition
of individual animals. The TCI uses a mixed model composed of
14 parameters such as DIM on the first test day, previous 305d
9

milk yield, lactation length of the prior lactation, SCC log score
on the last test day of the prior lactation, days dry and the milking
frequency of the current lactation to predict the first test day pro-
duction and the 305-day milk production of the next lactation. The
publication provides an extensive validation and performance of
the TCI, while remaining elusive on the MPI of the model providing
the TCI. This makes it impossible to compare the nextMILK models’
performance with Nordlund’s model.

The study of Dallago et al. (2019) focuses on predicting the pro-
duction on the first test day of first lactation animals only. The
authors explored three different modelling techniques: multivari-
ate linear regression, random forest and an artificial neural net-
work. The RMSE reported in that study ranges from 5.02 to
5.10 kg of milk, whereas their MAE ranges from 3.9 to 4.0 kg and
the R2 from 0.30 to 0.32 across the three modelling techniques.
In this study, the author states that the artificial neural network
model performed consistently better than the other ones. Using
the MPI reported by the authors, compared to the ones of next-
MILK, it seems the RMSE, the MAE and R2 are respectively lower,
lower and higher in their study. We believe that the usage of fea-
tures collected on the 1st test day of the 1st lactation as inputs
for the models such as %fat; % protein, SCC could be the reason
for the better performances of the models presented by Dallago
et al. (2019) compared to the nextMILK models and even to the
theoretical minimum RMSE described by Cole et al. (2012).

In the present study, we chose to not include information of the
TD we predict in the feature set, to (1) keep our predictors inde-
pendent of the outcome variable, and (2) because we aim at pre-
dicting the production when no health problems influence the
production. If for example composition of the predicted TD would
be included, this would affect these estimations.
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The SLMYP model presented by Liseune et al. (2021) predicts
the 305 productions of the next lactation using daily milk meter
data. Even though the forecasting horizon of this model and next-
MILK models differ, the author provides MPI in function of differ-
ent forecasting horizons allowing their comparison. They
reported an MAE for the 0–60 DIM time window of 5.8 kg, which
is higher than the MAE calculated for the nextMILK models
(4.56–4.68 kg). Moreover, the nextMILK model is designed to pre-
dict the daily milk production on the first test day, between 0 and
60 days after calving, whereas the model of Liseune et al. (2021)
aimed at predicting the sequence of individual daily productions
for the entire 305 days, including the transition from an increasing
milk production in the first part of the lactation to a decreasing
milk production after peak lactation.

The nextMILK models could be used on farms as a data-driven
monitoring tool providing information in the short, medium and
long term. In the short term, the nextMILKmodels could be utilised
at animal level, providing ad hoc decision support for the farmer
around the transition period. In the medium term, the nextMILK
models could be applied to identify the generally expected produc-
tion at the start of a lactation within the farm and assess any dif-
ferences over different groups (e.g. age, pens) or time.
Additionally, aggregating the transition failures over time at herd
level could also provide a tangible tool for the farmer with which
they could assess their transition management. In the long term,
the nextMILK models could be used as part of breeding pro-
grammes, to evaluate consistency over lactations or the general
tendency to transition success. Although all these potential appli-
cations seem promising, intensive validation is needed to investi-
gate the extent to which the nextMILK models could fulfil these
expected goals. In particular, it is challenging to estimate the effect
of animals culled before the first TD due to transition-associated-
diseases on the monitoring capabilities of the nextMILK models.
Furthermore, the performance increase between the nextMILK
model and the benchmark may be significant, but the biological
relevance of this reduction in RMSE should be investigated when
validating these models.

The usage of TDR in this research on the one hand provides a
wide application basis by allowing these models to be run on all
farms that participate in milk recording programmes. Additionally,
these programmes are a familiar resource for the farmer where a
benchmark of the herd and individual performance is regularly
provided, even though the exact details on the benchmark calcula-
tion in these programmes remain largely unknown and dependent
on the milk recording companies. On the other hand, TDRs are
intrinsically limited in views of the possible implementation men-
tioned hereabove. These limitations are due to the interval with
which TDRs are recorded, which could cause the TDR to be
recorded too late. Nevertheless, if during validation the power of
predicting transition failure is proven, an altered way of recording
production in the early stages of lactation could be envisaged.

In their current state, the nextMILK models do not utilise all the
data traditionally being collected on a TDR such as milk fat and
milk protein content, as not for all TDRs, this information was
available. Not using the milk constituents allows to, in the future,
use a similar modelling approach with data collected automatically
by on-farmmilk meters. Still, for the development of future models
and when the additional information such as fat%, protein% or SCC
is available and reliable, we consider it interesting to consider
them as new features for the nextMILK models.
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