
ABSTRACT

This study aimed to perform genome-wide associa-
tion study to identify genomic regions associated with 
milk production and cheese-making properties (CMP) 
in Walloon Holstein cows. The studied traits were 
milk yield, fat percentage, protein percentage, casein 
percentage (CNP), calcium content, somatic cell score 
(SCS), coagulation time, curd firmness after 30 min 
from rennet addition, and titratable acidity. The used 
data have been collected from 2014 to 2020 on 78,073 
first-parity (485,218 test-day records), 48,766 second-
parity (284,942 test-day records), and 21,948 third-par-
ity (105,112 test-day records) Holstein cows distributed 
in 671 herds in the Walloon Region of Belgium. Data 
of 565,533 single nucleotide polymorphisms (SNP), 
located on 29 Bos taurus autosomes (BTA) of 6,617 
animals (1,712 males), were used. Random regression 
test-day models were used to estimate genetic param-
eters through the Bayesian Gibbs sampling method. 
The SNP solutions were estimated using a single-step 
genomic BLUP approach. The proportion of the total 
additive genetic variance explained by windows of 50 
consecutive SNPs (with an average size of ~216 KB) 
was calculated, and regions accounting for at least 
1.0% of the total additive genetic variance were used 
to search for positional candidate genes. Heritability 
estimates for the studied traits ranged from 0.10 (SCS) 
to 0.53 (CNP), 0.10 (SCS) to 0.50 (CNP), and 0.12 
(SCS) to 0.49 (CNP) in the first, second, and third 
parity, respectively. Genome-wide association analyses 
identified 6 genomic regions (BTA1, BTA14 [4 regions], 
and BTA20) associated with the considered traits. 
Genes including the SLC37A1 (BTA1), SHARPIN, 
MROH1, DGAT1, FAM83H, TIGD5, MROH6, NAPRT, 
ADGRB1, GML, LYPD2, JRK (BTA14), and TRIO 
(BTA20) were identified as positional candidate genes 

for the studied CMP. The findings of this study help to 
unravel the genomic background of a cow’s ability for 
cheese production and can be used for the future imple-
mentation and use of genomic evaluation to improve 
the cheese-making traits in Walloon Holstein cows.
Key words: milk composition, cheese-making, genomic 
association, Holstein

INTRODUCTION

The cheese-making properties (CMP) of bovine milk 
are economically important for the dairy industry since 
a significant and growing fraction of the milk produced 
worldwide is used to make cheese (Wedholm et al., 
2006; Cassandro et al., 2008; Food and Agriculture 
Organization of the United Nations, 2015; The World 
Dairy Situation, 2016). Milk coagulation is a key step 
that strongly influences the efficiency of cheese produc-
tion. Furthermore, the composition, in particular casein 
and fat, and physicochemical properties of milk have 
considerable effects on its processing properties and 
the quality of resulting dairy products (Walstra et al., 
2005; Visentin et al., 2017b; Nilsson et al., 2019). The 
coagulation ability of milk is also associated with the 
pH of milk, protein composition, SCC, milk fatty acids 
(FA), and milk calcium content (CC) (Bencini, 2002; 
Pastorino et al., 2003; Wedholm et al., 2006; Bobbo 
et al., 2016). The coagulation ability of milk can be 
evaluated using developed milk coagulation properties 
such as rennet coagulation time (RCT, min), which is 
the time from the addition of coagulant to milk to the 
beginning of coagulation, the time to a curd firmness 
of 20 mm, and curd firmness at 30 min after coagulant 
addition (a30, mm) (De Marchi et al., 2007; Bittante, 
2011; Visentin et al., 2015). It has been documented 
that the CMP can be affected by environmental fac-
tors such as feeding, udder health, season, and physi-
ological stage (e.g., parity, lactation stage), but they 
are also genetically influenced (De Marchi et al., 2007; 
Cassandro et al., 2008; Visentin et al., 2017a; Atashi 
et al., 2022a). Therefore, genetic selection can be used 
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to improve cheese-making traits, and consequently, to 
improve the quality and the amount of cheese yield per 
volume of milk.

There are different laboratory methods developed for 
direct recording of individual milk coagulation proper-
ties (Pretto et al., 2011; Bittante et al., 2012; Bobbo 
et al., 2016); however, they are time consuming and 
expensive to implement on a large scale; then, genetic 
selection based on direct measures of milk coagulation 
properties is limited (Sanchez et al., 2018, 2019). Fou-
rier-transform mid-infrared (MIR) spectroscopy has 
been proposed as an alternative method for prediction 
of various milk characteristics, including fractions of 
protein, fat, casein, minerals, and milk FA contents (De 
Marchi et al., 2009, 2014; Soyeurt et al., 2009, 2011; 
Visentin et al., 2015). The MIR technology also is con-
sidered as a cheap method to measure individual CMP 
on a large scale, which is needed for breeding programs 
in dairy cattle (De Marchi et al., 2009, 2014; Sanchez 
et al., 2018).

However, enough knowledge on the genetic back-
ground of cheese-making traits is needed before they 
are included into the breeding program. Furthermore, 
identification of genomic regions and individual genes 
responsible for genetic variation in CMP will improve 
our understanding about the biological pathways in-
volved and can be used for improving cheese-making 
traits. Atashi et al. (2022a) investigated the genetic pa-
rameters and genomic regions associated with selected 
infrared-predicted cheese-making traits in the Dual-
Purpose Belgian Blue (DPBB) population, which is 
the second important cattle breed reared by dairy 
farmers in the Walloon Region of Belgium. However, 
to the best of our knowledge, no comprehensive study 
has been performed to investigate genetic background 
and the genetic architecture of cheese-making traits 
in Walloon Holstein cows. Therefore, the aim of this 
study was to estimate genetic parameters and identify 
genomic regions associated with milk production and 
selected infrared-predicted cheese-making traits in Wal-
loon Holstein cows.

MATERIALS AND METHODS

Phenotypic Data

No human or animal subjects were used, so this anal-
ysis did not require approval by an Institutional Ani-
mal Care and Use Committee or Institutional Review 
Board. The data used consisted of test-day records of 
traits including milk yield (MY), SCC, MIR predicted 
fat percentage (FP), protein percentage (PP), casein 
percentage (CNP), CC, coagulation time (CT), a30, 

and titratable acidity (TA). The FP and PP records 
were generated by the official milk recording in the 
Walloon Region of Belgium using MIR spectrometry 
and commercially available instruments and calibra-
tions from FOSS (Foss Electric A/S). Test-day SCC 
records were log-transformed to SCS based on the fol-
lowing equation: SCS = log2(SCC/100,000) + 3.

The MIR prediction equations used to predict CNP, 
CC, CT, a30, and TA were obtained from various stud-
ies (Soyeurt et al., 2009; Colinet et al., 2010, 2013, 
2015). Table 1 shows the calibration and the cross-
validation statistics of the used MIR prediction equa-
tions. Milk MIR spectra were obtained by the analysis 
of individual milk samples on MilkoScan FT6000 spec-
trometer (Foss, Hillerød, Denmark). The MIR spectra 
were preprocessed to remove baseline variation and 
then were standardized. The MIR prediction equations 
were applied on standardized spectra from individual 
milk samples collected in the frame of the Walloon milk 
recording scheme. Full cross-validation was performed 
to assess the accuracy of the developed equations. The 
cross-validation coefficients of determination were 0.95, 
0.82, 0.63, 0.42, and 0.68 for CNP, CC, CT, a30, and 
TA, respectively. The ratio performance/deviation of 
cross-validation, the ratio of standard deviation (SD) 
to standard error of cross-validation, was 4.47, 2.34, 
1.64, 1.31, and 1.77 for CNP, CC, CT, a30, and TA, 
respectively.

Data were edited to include only cows with known 
birth date, calving date, and parity number. Only re-
cords from the first 3 parities that had data for all 
included traits on a given test-day were kept. Records 
from DIM lower than 5 d and greater than 365 d were 
eliminated. Age at the first calving was calculated as 
the difference between birth date and first calving date 
and restricted to the range of 540 to 1,200 d. Daily MY, 
FP, and PP were restricted to the range from 3 to 99 
kg, 1 to 9%, and 1 to 7%, respectively (ICAR, 2022). 
Test-day records of the other considered traits were 
edited to remove records outside the range of mean ± 5 
SD. Within cow, if parity 3 was present, parities 1 and 
2 were also present, and if parity 2 was present, parity 1 
was also present. The number of test-day records in the 
first-, second-, and third-parity cows were 485,218 (on 
78,073 cows), 284,942 (on 48,766 cows), and 105,112 
(on 21,941 cows), respectively. The data were collected 
from 2014 to 2020 on 78,073 animals distributed in 671 
herds in the Walloon Region of Belgium. On average 
across the data set, 5.88 test-day records were available 
per cow per lactation. Pedigree depth of the animals 
was traced back to 5 generations. The used pedigree 
consisted of 186,548 females and 10,076 males.
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Genotypic Data

Genotypic data were available for 6,617 (1,712 males 
and 4,905 females) phenotyped animals or those animals 
included in the pedigree. Individuals were genotyped 
using the BovineSNP50 Beadchip v1 to v3 and EuroG 
MD (SI) v9 (Illumina, San Diego, CA). Single nucleo-
tide polymorphisms in common among the 4 chips were 
kept. Nonmapped SNP, SNP located on sexual chromo-
somes, and triallelic SNPs were excluded. A minimum 
GenCall Score of 0.15 and a minimum GenTrain Score 
of 0.55 were used to keep SNP. Then, the genotypes 
were imputed to HD with a reference population of 
4,352 HD individuals (1,046 males and 3,288 females) 
using FImpute V2.2 software (Sargolzaei et al., 2014). 
Single nucleotide polymorphisms with Mendelian con-
flicts and those with minor allele frequency (MAF) 
less than 5% were excluded. The difference between the 
observed and expected heterozygosity was estimated, 
and if the difference was greater than 0.15, the SNP 
was excluded (Wiggans et al., 2009). Finally, 565,533 
SNPs located on 29 BTA were used in the genomic 
analyses.

Variance Component Estimation

The (co)variance components and breeding values 
for the considered cheese-making properties were esti-
mated based on the integration of the random regres-
sion test-day model (RR-TDM) into the single-step 
GBLUP procedure (SS RR-TDM) using the following 
single-trait, multiple-lactation (first 3 lactations) model 
(Paiva et al., 2022):
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where yijklmn is the test-day record (milk yield, milk 
composition, and cheese-making traits) belonging to 
the DIM n of cow m in parity l, belonging to the ith 
class of HTDp, jth class of AS, and kth class of HY; 
HTDp is the fixed effect of herd-test-day-parity; AS is 
the fixed effect of age-season of calving defined as fol-
lows: age at calving class (6, 4, and 2 classes of age at 
calving were created for the first, second, and third 
parity, respectively) × season of calving (4 seasons: 
winter from January to March, spring from April to 
June, summer from July to September, and autumn 

from October to December); 
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environment, additive genetic, and residual variances 
were assumed as follows:
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Table 1. The calibration and the cross-validation statistics of the mid-infrared prediction equations used

 Trait Calibration statistics1

 

Cross-validation statistics2

N Mean SD Min Max SEC R2c SECV R2cv RPDcv

Calcium content (mg/kg) 1,094 1,149.9 124.7 593 1,743 51.8 0.83 53.38 0.82 2.34
Casein (%) 976 2.67 0.34 1.61 4.04 0.074 0.95 0.076 0.95 4.47
Titratable acidity3 (°D) 930 15.97 1.84 9.50 23.40 1.00 0.71 1.040 0.68 1.77
Coagulation time4 (s) 854 1,088.6 262.4 574.5 1,942 154.6 0.65 159.9 0.63 1.64
Curd firmness5 (mm) 547 33.06 4.22 20.60 43.50 3.08 0.47 3.22 0.42 1.31
1Min = minimum; Max = maximum; SEC = standard error of calibration; R2c = coefficient of determination of calibration. 
2SECV = standard error of cross-validation; R2cv = coefficient of determination of cross-validation; RPDcv = ratio performance/deviation 
(RPD) of cross-validation defined as the ratio SD to root mean square error of cross-validation.
3Milk titratable acidity in Dornic degrees (°D).
4Coagulation time is defined here as the sum of the rennet coagulation time plus the time to a curd firmness of 20 mm measured by the 
Computerized Renneting Meter.
5Curd firmness (a30) is defined as the curd firmness measured 30 min after enzyme addition by the Computerized Renneting Meter.
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where HY is the 12 × 12 covariance matrix of the 
herd-year of calving regression coefficients; I is an iden-
tity matrix, ⊗ represents the Kronecker product func-
tion, P is the 12 × 12 covariance matrix of the perma-
nent environmental regression coefficients; Ga is the 12 
× 12 covariance matrix of the additive genetic regres-

sion coefficients, blocks within R rp=
+

∑  contain resid-

ual variance (r) that depends on parity (p). Residual 
variance was the same within each parity. The H is a 
matrix that combines pedigree and genomic relation-
ships, and its inverse consists of the integration of addi-
tive and genomic relationship matrices, A and G, re-
spectively (Aguilar et al., 2010):

 H A
G A
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where A is the numerator relationship matrix based 
on the pedigree for all animals, A22 is the numerator 
relationship matrix for genotyped animals, and G is 
the weighted genomic relationship matrix obtained us-
ing the following function:

 G = G* × 0.95 + A22 × 0.05. 

The G* is the genomic relationship matrix obtained 
using the following function described by VanRaden 
(2008):

 G
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where Z is a matrix of gene content adjusted for allele 
frequencies (0, 1, or 2 for aa, Aa, and AA, respectively); 
D is a diagonal matrix of weights for SNP variances (D 
= I); M is the number of SNPs, and pi is the MAF of 
the ith SNP. The H matrix was built scaling G based 
on A22 considering that the average of the diagonal of 
G is equal to the average of the diagonal of A22, and 
the average of the off-diagonal G is equal to the aver-
age of the off-diagonal A22.

The (co)variance components were estimated by 
Bayesian inference using the GIBBS3F90 software 
(Aguilar et al., 2018). Gibbs sampling was used to 
obtain marginal posterior distributions for the various 
parameters using a single chain of 200,000 iterates with 
a sampling interval of 20 samples. The first 50,000 iter-
ates of the chain were regarded as a burn-in period to 
allow sampling from the proper marginal distributions. 
Post-Gibbs analysis was performed using the software 
POSTGIBBSF90 (Aguilar et al., 2018), using the re-

tained 7,500 samples. Genetic (co)variances on each 
test-day were calculated using the equation described 
by Jamrozik and Schaeffer (1997). Daily heritability 
was defined as the ratio of genetic variance to the sum 
of the additive genetic, permanent environmental, herd-
year calving, and residual variances at a given DIM.

The vector of genomic estimated breeding values 
(GEBV) of the included traits for each animal i, which 
included daily GEBV from all DIM (5 to 365) in each 
parity, was estimated by multiplying the vector of addi-
tive genetic predicted regression coefficients by the 
matrix of Legendre orthogonal polynomial covariates; 
that is, GEBV Tgi i= ˆ , where ĝi is the vector of additive 
genetic predicted regression coefficients for animal i, 
and T is a matrix of orthogonal covariates associated 
with the Legendre orthogonal polynomial functions.

Genome-Wide Association Study

The GWAS analyses were performed for all included 
traits in the first 3 parities considering following 3 
lactation stages: (1) from 5 to 60 DIM, representing 
the ascending production stage and lactation peak; (2) 
from 61 to 200 DIM, representing the middle lacta-
tion stage; and (3) from 201 to 365 DIM, representing 
the production decline up to the end of the lactation 
(Oliveira et al., 2019). Therefore, the GEBV for each 
lactation stage of each animal i (for each trait in each 
parity) were obtained by averaging (summing for MY) 
the daily GEBV solutions of the specific DIM; that is,

 GEBV GEBV GEBV  GEBVi i i i
ˆ ˆ ˆ ˆ ,1 5 6 60= + +…+  

 GEBV GEBV GEBV  GEBV  i i i i
ˆ ˆ ˆ ˆ ,2 61 62 200= + +…+  and 

 GEBV GEBV GEBV  GEBVi i i i
ˆ ˆ ˆ ˆ ,3 201 202 365= + +…+  

where GEBV i
ˆ ,1  GEBV i

ˆ ,2  and GEBV i
ˆ 3  are the GEBV for 

the first, second, and third lactation stages of animal i 
obtained by averaging (summing for MY) the GEBV 
from 5 to 60, 61 to 200, and 201 to 365 DIM, respec-
tively. Furthermore, the GEBV of animal i through the 
entire lactation were obtained by summing (averaging) 
the daily GEBV solutions of all DIM; that is,

 GEBVe GEBV GEBV  GEBVi i i i
ˆ ˆ ˆ ˆ ,= + +…+5 6 365  

where GEBVeiˆ  is the GEBV of animal i through the 
entire lactation, obtained by averaging (summing for 
MY) the GEBV from 5 to 365.

The SNP effects for each lactation stage were esti-
mated individually for each trait in each parity using 

Atashi et al.: GENOME-WIDE ASSOCIATION STUDY FOR CHEESE-MAKING TRAITS



Journal of Dairy Science Vol. TBC No. TBC, TBC

the postGSf90 software (Aguilar et al., 2014). The ani-
mal effects were decomposed into those for genotyped 
(ag) and ungenotyped animals (an). The animal effects 
of genotyped animals are a function of the SNP effects, 
ag = Zu, where Z is a matrix relating genotypes of each 
locus and u is a vector of the SNP marker effect. The 
variance of animal effects was assumed as

 Var Var   u aa Zu ZDZ Gg( ) = ( ) = =' ,σ σ2 2  

where D is a diagonal matrix of weights for variances of 
markers (D = I), and σu

2 is the additive genetic variance 
captured by each SNP marker when the weighted rela-
tionship matrix (G) was built with no weight. The SNP 
effects were obtained using the following equation:

 ˆ ˆ ˆ ,u a Z ag g= ′ = ′ ′ 
− −

λDZ G DZ DZ1 1  

where λ was defined by VanRaden (2008) as a normal-
izing constant, as described below:
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The percentage of the total additive genetic variance 
explained by the ith genomic region was estimated as 
follows:
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where ai is the genetic value of the ith region that con-
sists of 50 adjacent SNPs, σa

2 is the total additive ge-
netic variance, Zj is the vector of the SNP content of 
the jth SNP for all individuals, and û j is the marker 
effect of the jth SNP within the ith region. The additive 
genetic variance explained by 50-SNP moving windows, 
with an average size of ~216 KB, was calculated across 
the whole genome, and those windows explaining at 
least 1.0% of the total additive genetic variance were 
considered promising regions and used to identify posi-
tional candidate genes. The concept of grouping SNP 
into windows was adopted as a way to better capture 
the genetic information such as the extent of linkage 
disequilibrium (LD) in neighboring SNPs (Habier et 
al., 2011).

Identification of Positional Candidate Genes  
for the Studied Traits

The animals included in this study were genotyped 
using the BovineSNP50 Beadchip v1 to v3 and EuroG 
MD (SI) v9 (Illumina, San Diego, CA); then, the geno-
types were imputed to the BovineHD Beadchip, which 
is based on the bovine reference genomes assembly 
UMD3.1. However, new bovine reference genome as-
sembly ARS-UCD1.2, assembled using long sequencing 
reads, filled gaps and resolved repetitive regions of the 
UMD3.1 assembly, and has more credible annotation 
information (Rosen et al., 2020). The Lift Genome 
Annotations tool, available through a simple web in-
terface (https: / / genome .ucsc .edu/ cgi -bin/ hgLiftOver), 
was used to convert coordinate ranges of the identified 
genomic regions from the UMD3.1 to the ARS-UCD1.2 
assembly. Then, to identify possible candidate genes 
associated with the considered traits, genes located 
within the identified genomic regions (i.e., between the 
start and end of genomic coordinates of the identified 
regions based on the ARS-UCD1.2 assembly) were 
further investigated. We identified genes using the 
National Center for Biotechnology Information (NCBI) 
Map Viewer tool for the ARS-UCD1.2 assembly as the 
reference map.

RESULTS AND DISCUSSION

The lactation curves of daily average of phenotypic 
records for the considered traits are presented in Figure 
1. The peak of MY occurred at the DIM 41 (27.59 kg), 
35 (35.03 kg), and 32 (39.40 kg) for the first, second, 
and third parity, respectively. The FP, PP, and CNP 
curves were observed to be lower for first-parity cows 
than for second- and third-parity cows. The TA curves 
were higher for first-parity cows than for second- and 
third-parity cows. The descriptive statistics for studied 
traits in the first 3 lactations are presented in Table 
2. Daily MY averaged 24.2, 27.9, and 30.0 kg in the 
first 3 lactations, which is comparable to those previ-
ously reported for Walloon Holstein cows (Bastin et al., 
2013). Somatic cell score was the trait with the great-
est coefficient of variation (53.54 to 59.45%), whereas 
a30 had the lowest coefficient of variation (7.17 to 
7.54%). Cassandro et al. (2008) reported that among 
milk coagulation and production traits (MY, FP, PP, 
CNP, SCS, TA, RCT, and TA) of Italian Holstein, SCS 
has the highest and casein percentage has the lowest 
coefficient of variation. The average a30 ranged from 
32.11 to 32.33 mm, which is in agreement with previous 
studies (Cassandro et al., 2008; Atashi et al., 2022a). 
However, mean a30 reported for Finnish Ayrshire cows 
ranged from 25 to 27 mm (Ikonen et al., 2004). The av-
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erage (SD) SCS were 2.25 (1.36), 2.46 (1.46), and 2.77 
(1.48) in the first, second, and third parity, respectively. 
Averaged MY, and SCS were higher with increasing 
parity in line with previous studies (Bastin et al., 2013; 
Atashi and Hostens, 2021), whereas averaged TA was 
lower with increasing parity as has been reported for 
DPBB cows (Atashi et al., 2022a).

Average daily heritability (h2) estimates for the stud-
ied traits are shown in Table 3. Heritability estimates 
ranged from 0.10 (SCS) to 0.53 (CNP), 0.10 (SCS) to 
0.50 (CNP), and 0.12 (SCS) to 0.49 (CNP) in the first, 
second, and third parity, respectively. Heritability esti-
mates were generally higher in first parity than in later 
parities. The mean daily h2 estimates for CT, a30, and 
TA ranged from 0.47 to 0.52, 0.46 to 0.47, and 0.46 to 

Atashi et al.: GENOME-WIDE ASSOCIATION STUDY FOR CHEESE-MAKING TRAITS

Figure 1. Lactation curves for milk yield (MY), fat percentage (FP), protein percentage (PP), casein percentage (CNP), milk calcium 
content (CC) expressed as milligrams per kilogram of milk, SCS, coagulation time (CT) expressed in minutes, curd firmness after 30 min from 
rennet addition (a30) expressed in millimeters, and titratable acidity (TA) in Dornic degrees for the first (blue), second (red), and third (green) 
parity in Walloon Holstein cows.



Journal of Dairy Science Vol. TBC No. TBC, TBC

0.51 in agreement with previously reported estimates 
for dairy cattle (Vallas et al., 2010; Tiezzi et al., 2013). 
Atashi et al. (2022a) reported that h2 of infrared-
predicted CT, a30, and TA in DPBB ranged from 0.40 
to 0.48, 0.36 to 0.39, and 0.41 to 0.50, respectively. 
The high h2 estimated for milk coagulation properties 
supports possible genetic improvement of milk coagu-
lation ability in the population of Walloon Holstein 
cows. Cecchinato et al. (2011) reported that h2 of RCT 
(min), a30, and TA ranged, respectively, from 0.22 to 
0.58, 0.05 to 0.32, and 0.11 to 0.42 in Italian Holstein 
cows. Colinet et al. (2012) reported that the daily h2 of 
infrared-predicted TA in the first-parity Holstein cows 
in Wallonia ranged from 0.45 to 0.60 with an average 

of 0.57. Mean daily h2 of CC ranged from 0.47 to 0.50, 
which is in line with those reported for Montbéliarde 
dairy cows (Sanchez et al., 2021). The variation found 
for h2 of CMP in the literature can be explained by the 
differences in the studied breeds, structure of the data, 
number of records, statistical models, and the length of 
the period of data collection.

Typically, GWAS methods are based on testing the 
significance of SNP effects on the traits of interest. 
However, SNPs within a genomic region can be highly 
correlated and jointly influence the phenotype. Fur-
thermore, the genetic information in neighboring SNPs, 
such as the extent of LD, is not used in the GWAS de-
pends on single SNP (Bao and Wang, 2017). Therefore, 
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Table 2. Descriptive statistics for milk yield traits and cheese-making properties in Walloon Holstein cows1

Trait

First lactation

 

Second lactation

 

Third lactation

Mean SD CV (%) Mean SD CV (%) Mean SD CV (%)

Milk yield (kg) 24.2 6.01 24.86 27.9 8.29 29.68 30.0 9.11 30.34
Fat (%) 4.01 0.68 15.94 4.10 0.67 16.37 4.11 0.67 16.25
Protein (%) 3.38 0.34 10.04 3.46 0.37 10.73 3.43 0.37 10.92
Casein (%) 2.59 0.29 11.23 2.63 0.31 11.69 2.59 0.31 11.85
Calcium content (mg/kg milk) 1,155 100.0 8.66 1,172 106.9 9.13 1,164 105.4 9.06
SCS2 2.25 1.36 53.54 2.46 1.46 59.45 2.77 1.48 53.54
Coagulation time3 18.16 2.99 16.46 18.25 3.05 16.72 18.00 3.64 17.47
Curd firmness4 (mm) 32.11 2.30 7.17 32.31 2.44 7.54 32.33 2.39 7.41
Titratable acidity5 (°D) 16.52 1.41 8.52 16.0 1.44 9.03 15.7 1.47 9.39
1The number of data were 485,218 test-day records (on 78,073 animals), 284,942 test-day records (on 48,766 animals), and 105,112 test-day 
records (on 21,948 animals) in the first, second, and third lactations, respectively.
2SCS = log2(SCC/100,000) + 3.
3Coagulation time is defined here as the sum of the rennet coagulation time plus the time to a curd firmness of 20 mm measured by the 
Computerized Renneting Meter.
4Curd firmness (a30) is defined as the curd firmness measured 30 min after enzyme addition by the Computerized Renneting Meter.
5Milk titratable acidity in Dornic degrees (°D).

Table 3. Mean (SD) daily heritability for milk yield traits and cheese-making properties estimated across the lactation in the first 3 parities in 
Walloon Holstein cows1

Trait

First lactation

 

Second lactation

 

Third lactation

Mean (SD) Range Mean (SD) Range Mean (SD) Range

Milk yield (kg) 0.25 (0.04) 0.16–0.29 0.25 (0.04) 0.11–0.24 0.25 (0.04) 0.10–0.22
Fat (%) 0.48 (0.10) 0.22–0.57 0.49 (0.10) 0.22–0.59 0.47 (0.10) 0.19–0.56
Protein (%) 0.51 (0.10) 0.22–0.60 0.48 (0.12) 0.17–0.60 0.47 (0.12) 0.17–0.59
Casein (%) 0.53 (0.10) 0.25–0.61 0.50 (0.12) 0.19–0.61 0.49 (0.12) 0.19–0.61
Calcium content (mg/kg milk) 0.50 (0.08) 0.31–0.57 0.47 (0.08) 0.28–0.56 0.47 (0.08) 0.26–0.57
SCS2 0.10 (0.01) 0.07–0.11 0.10 (0.02) 0.05–0.14 0.12 (0.03) 0.07–0.17
Coagulation time3 0.52 (0.08) 0.29–0.60 0.48 (0.07) 0.30–0.54 0.47 (0.07) 0.30–0.53
Curd firmness4 (mm) 0.46 (0.09) 0.21–0.54 0.46 (0.09) 0.21–0.55 0.47 (0.09) 0.21–0.55
Titratable acidity5 (°D) 0.51 (0.07) 0.32–0.57 0.47 (0.07) 0.28–0.53 0.46 (0.07) 0.27–0.52
1The number of data were 485,218 test-day records (on 78,073 animals), 284,942 test-day records (on 48,766 animals), and 105,112 test-day 
records (on 21,948 animals) in the first, second, and third lactations, respectively.
2SCS = log2(SCC/100,000) + 3.
3Coagulation time is defined here as the sum of the rennet coagulation time plus the time to a curd firmness of 20 mm measured by the 
Computerized Renneting Meter.
4Curd firmness (a30) is defined as the curd firmness measured 30 min after enzyme addition by the Computerized Renneting Meter.
5Milk titratable acidity in Dornic degrees (°D).
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window-based GWAS procedure have been proposed as 
an effective procedure to estimate the combined effect 
of several consecutive SNPs in a specific region and 
identify genomic regions explaining a given amount of 
genetic variance (Aguilar et al., 2019). Window-based 
GWAS may use different window types (distinct or slid-
ing windows) and variable window sizes (defined as the 
number of SNP or the number of base pairs). However, 
the absence of a universal approach for hypothesis test-
ing is an important challenge of window-based GWAS, 
even though it is quite a common procedure in genetic 
studies. The common form for declaring significance 
is to use a threshold on the additive genetic variance 
explained by individual window (Aguilar et al., 2019). 
However, it is unclear what window size is optimal, and 
no standard presently exists to define the threshold on 
explained genetic variance. Therefore, determining the 
proper window size is usually subjective, and research-
ers often have not justified their choices or sometimes 
have acknowledged that their choices are arbitrary 
(Beissinger et al., 2015). Medeiros de Oliveira Silva et 
al. (2017), using the BovineHD SNP panel, considered 
50 adjacent SNP windows (with an average of 280 KB) 
that explained at least 0.50% of additive genetic vari-
ance as the threshold to declare significance. Atashi 
et al. (2020), using the BovineHD SNP panel, consid-
ered 50 adjacent SNP windows that explained more 
than 1% of the total additive genetic variance as the 
threshold to declare significance for milk production 
and lactation curve parameters. Han and Peñagaricano 
(2016) considered 1.5-MB windows that explained at 
least 0.50% of the total genetic variance as the thresh-
old to declare significance. Suwannasing et al. (2018) 
considered windows that explained more than 1% of 
the total genetic variance as the threshold to declare 
significance. Tiezzi et al. (2015) calculated the variance 
absorbed by 10-SNP moving windows and reported 
the 10 windows explaining the largest amount of ge-
nomic variance as the most important windows. In this 
study, a window-based GWAS through the single-step 
genomic best linear unbiased predictor (ssGBLUP) 
was used. The results were presented by the proportion 
of total genetic variance explained by a window of 50 
adjacent SNPs with an average size of ~216 KB and 
windows explaining for at least 1.0% of the total addi-
tive genetic variance were used to search for positional 
candidate genes. We used 1 SNP as the moving step 
of the window, which ensured that we do not miss ge-
nomic regions potentially associated with the traits due 
to the combination of SNPs.

General information (starts and end SNP numbers, 
window size, start and end genomic positions, and the 
variance explained by each windows) about the results 
of single-step GWAS for the included milk production 

and cheese-making traits are presented in Supplemental 
Data S1–S108 (9 traits [MY, FP, PP, CNP, CC, SCS, 
CT, a30, and TA] × 3 parities × 4 stages per parity). 
The Manhattan plots of the proportion of total addi-
tive genetic variance explained by 50-SNP windows are 
shown in Supplemental Figures S1–S9. The windows as-
sociated with the studied traits along with correspond-
ing genes are presented in Table 4. In total, 6 genomic 
regions distributed over 3 chromosomes (BTA1, BTA14 
[4 regions], and BTA20) were identified that are associ-
ated with one or more of the included traits. However, 
there was no genomic region that explained more than 
1.0% of the total additive genetic variance of SCS. The 
following are the results discussed by chromosome.

BTA1

The genomic region located from 144.38 to 144.47 
MB (UMD3.1 assembly) on BTA1 was associated with 
TA and CT. This window was 84.82 KB in size and 
explained more than 2.0% of the total additive genetic 
variance of TA in all defined lactation stages and more 
than 1.0% of the total additive genetic variance of 
CT in the first 2 stages of first 3 lactations. Moderate 
negative genetic correlations were found between TA 
and CT (−0.46 in the first 3 lactations), which may 
explain why these traits are affected by the same ge-
nomic region (Supplemental Tables S1–S3). This region 
has been previously reported to be associated with PP, 
TA, CT, a30, and CNP in the DPBB cows (Atashi 
et al., 2022a,b). Iung et al. (2019) reported that this 
region is associated with SCS and MY in the Brazil-
ian Holstein population. Sanchez et al. (2021) reported 
that this region is associated with milk mineral con-
tent of magnesium (Mg), potassium (K), sodium (Na), 
and phosphorus (P) in Montbéliarde dairy cows. This 
region harbors the solute carrier family 37 member 1 
(SLC37A1) gene. SLC37A1 is highly expressed in the 
mammary glands (Chamberlain et al., 2015; Raven et 
al., 2016) and encodes a glucose-6-phosphate trans-
porter involved in the blood glucose homeostasis and 
sugar transport (Pan et al., 2011). It has been reported 
that the SLC37A1 gene has a very strong effect on milk 
mineral contents (Sanchez et al., 2021; Zaalberg et al., 
2021) and is associated with MY, FP, and PP (Kemper 
et al., 2015; Raven et al., 2016; Pausch et al., 2017; 
Sanchez et al., 2017), milk FA profile and SCS (Iung 
et al., 2019), and milk’s CMP (Sanchez et al., 2019) 
in dairy cows. Sanchez et al. (2019) reported that the 
SLC37A1 plays a role in inorganic anion transport and 
is a good candidate for CMP and milk composition. 
This gene has been shown to be associated with casein 
phosphorylation (Fang et al., 2019) and participates 
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in fat metabolism or mammary gland development in 
Holstein cows (Wang et al., 2022).

BTA14

Four genomic regions located from 1.52 to 2.15 MB, 
2.19 to 2.57 MB, 2.67 to 2.98 MB, and 3.13 to 3.38 
MB (UMD3.1 assembly) on BTA14 were identified to 
be associated with one or more of the included traits. 
Hereafter, these regions are identified as BTA14-I, 
BTA14-II, BTA14-III, and BTA14-IV. These 4 regions 
combined explained 23.82 to 26.92% of the total genetic 
variance of FP. Genomic regions of BTA14-I, BTA14-
II, and BTA14-III combined explained 7.5 to 10.87%, 
7.09 to 9.73%, and 6.72 to 9.29% of the total genetic 
variances of CC, CNP, and PP, respectively. Genomic 
regions of BTA14-I and BTA14-III combined explained 
3.27 to 5.08% of the total genetic variances of MY. The 
association between this region (1.52 to 3.38 MB on 
BTA14) and milk production traits has been reported 
by previous studies (Pausch et al., 2015; Jiang et al., 
2019; Pedrosa et al., 2021). Iung et al. (2019) reported 
that the region located from 1.19 to 3.70 MB (UMD3.1 
assembly) on BTA14 explained the highest proportions 
of genetic variance for FP and milk FA profile in the 
Brazilian Holstein population. The following are the 
results discussed by regions identified on BTA14.

BTA14-I. The genomic region located from 1.52 
to 2.15 MB on BTA14 was associated with all studied 
traits except for SCS. This region explained 2.40 to 
3.89%, 15.51 to 17.75%, 4.66 to 6.57%, 4.97 to 6.91%, 
4.88 to 7.28%, 1.97 to 2.66%, 2.74 to 4.12%, and 1.20 to 
2.05% of the total additive genetic variance of MY, FP, 
PP, CNP, CC, CT, a30, and TA, respectively.

The results showed moderate negative genetic corre-
lated between CT and milk composition traits, whereas 
high positive genetic correlations were estimated be-
tween milk composition traits and a30 and TA. There-
fore, these traits are correlated and can be affected by 
the same genes. Chen et al. (2023) reported that this 
region is associated with nitrogen efficiency index and 
milk true protein nitrogen in Walloon Holstein cows. 
Clancey et al. (2019) reported that SNP inside this 
region are associated with MY in Holstein cows. This 
region was 633.27 KB in size and harbors 30 genes 
including the scratch family zinc finger 1 (SCRT1), 
diacylglycerol O-acyltransferase 1 (DGAT1), cleavage 
and polyadenylation specific factor 1 (CPSF1), tonsoku 
like, DNA repair protein (TONSL), and spermatogen-
esis and centriole associated 1 (SPATC1). Most of the 
positional candidate genes found in this region support 
results from previous studies for MY and milk com-
position in dairy cattle (Kolbehdari et al., 2009; Li et 
al., 2010; Capomaccio et al., 2015; Jiang et al., 2019). 

DGAT1, involved in the last step of the synthesis of 
triacylglycerol, has a major effect on milk production 
traits (Jiang et al., 2010; Maxa et al., 2012; Nayeri et 
al., 2016; Clancey et al., 2019; Cruz et al., 2019). Nayeri 
et al. (2016) reported that SNP located within CPSF1 
and TONSL are associated with MY in Canadian dairy 
Holstein cattle. The SHANK associated RH domain in-
teractor (SHARPIN) gene product is inside this region. 
This product of this gene involved in the regulation 
of immune and inflammatory responses (Wang et al., 
2012) and has been reported to be associated with 
the colostrum and serum albumin concentrations in 
Holstein cows (Lin et al., 2020). Sanchez et al. (2017) 
reported DGAT1, maestro heat like repeat family mem-
ber 1 (MROH1), and BOP1 ribosomal biogenesis factor 
(BOP1) as the most important genes explaining the 
majority of the variability of milk protein composition 
in Montbéliarde, Normande, and Holstein dairy cattle.

BTA14-II. Furthermore, the region located from 
2.19 to 2.57 MB on BTA14 was associated with milk 
composition traits including FP, PP, CC, and CNP. 
This region explained 3.33 to 3.71%, 1.08 to 1.38%, 1.09 
to 1.42%, and 1.24 to 1.67% of the total additive genetic 
variance of FP, PP, CNP, and CC, respectively. Milk 
composition traits including FP, PP, CNP, and CC are 
strongly correlated and are expected to be influenced 
be the same genomic regions. The genetic correlations 
estimated among FP, PP, CNP, and CC ranged from 
0.56 (FP and CC) to 0.97 (PP and CNP), 0.61 (FP 
and CC) to 0.97 (PP and CNP), and 0.58 (FP and 
CC) to 0.97 (PP and CNP) for the first, second, and 
third lactations, respectively. Atashi et al. (2020) re-
ported that the region located from 1.86 to 2.12 MB on 
BTA14 is associated with 305-d MY and the lactation 
curve parameters in Holstein dairy cows. This region 
was 374.22 KB in size and harbors 22 genes. Among 
genes inside this region, nicotinate phosphoribosyl-
transferase (NAPRT), family with sequence similarity 
83 member H (FAM83H), eukaryotic translation elon-
gation factor 1 delta (EEF1D), pyrroline-5-carboxylate 
reductase 3 (PYCR3), scribbled planar cell polarity 
protein (SCRIB), lymphocyte antigen 6 family member 
H (LY6H), and mitogen-activated protein kinase 15 
(MAPK15) have been previously reported as candidate 
genes for milk production traits in Holstein cows (Li 
et al., 2010; Buitenhuis et al., 2014; Ning et al., 2017; 
Wang et al., 2019). MAPK15 may affect milk composi-
tion through downregulating transactivation of the glu-
cocorticoid receptor, as glucocorticoid is an important 
hormone in maintaining milking (Saelzler et al., 2006). 
The pyrroline-5-carboxylate reductase 3 (PYCR3) gene 
is located inside this region. This gene encodes a pro-
tein that belongs to the pyrroline-5-carboxylate reduc-
tase family of enzymes that responds to inflammatory, 
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nutrient, and oxidative stress (Kuo et al., 2016) and 
has been reported to be associated with colostrum and 
serum albumin concentrations in Holstein cows (Lin et 
al., 2020).

BTA14-III. Additional region explaining large 
proportions of the genetic variance of MY and milk 
composition (CC, CNP, FP, PP) were found between 
2.67 to 2.98 MB on BTA14, where 15 genes are lo-
cated. Milk composition traits are strongly correlated 
and are expected to be affected by same polytrophic 
genes. This region contains lymphocyte-antigen-6 com-
plex (LY6) including LY6K, SLURP1, LYNX1, PSCA, 
LYPD2, and LY6D in regulating the major histocom-
patibility complex. Tiezzi et al. (2015) reported that 
this region is associated with clinical mastitis in US 
Holsteins. Atashi et al. (2020) reported that this region 
is highly associated with 305-d MY and peak yield in 
Holstein cows. Among genes inside this region, adhe-
sion G protein-coupled receptor B1 (ADGRB1), glyco-
sylphosphatidylinositol anchored molecule like (GML), 
and lymphocyte antigen 6 family member D (LY6D) 
have been reported as candidate genes for MY, FP, 
PP, fat yield (FY), protein yield (PY), and milk FA 
profile in Holstein cows (Cole et al., 2011; Buitenhuis 
et al., 2014; Ning et al., 2017; Jiang et al., 2019). Costa 
et al. (2019) reported that the variant within ADGRB1 
accounted for 2.44% of the total additive genetic vari-
ance for lactose yield in Fleckvieh cattle. The LY6D 
gene has been reported to be associated with MY and 
FY in Holstein cows (Jiang et al., 2014; Suchocki et 
al., 2016). The cytochrome P450 family 11 subfamily 
B member 1 (CYP11B1) gene is involved in glucose 
and lipid metabolism and has been reported as a func-
tional candidate gene for milk production in dairy cows 
(Bülow and Bernhardt, 2002; Kaupe et al., 2007).

BTA14-IV. The genomic region located from 3.13 
to 3.38 MB on BTA14, where the t-SNARE domain 
containing 1 (TSNARE1) gene is located, was associ-
ated with FP. This region was 246.80 KB in size and 
explained 1.12 to 1.25% of the total additive genetic 
variance of FP. TSNARE1 plays a role in intracellu-
lar protein transport and synaptic vesicle exocytosis 
(Smith et al., 2012; Luo et al., 2021) and has been 
reported as a candidate gene for traits including MY, 
FY, FP, PY, PP, and milk FA profile in Holstein cows 
(Buitenhuis et al., 2014; Jiang et al., 2019; Freitas et al., 
2020; Bohlouli et al., 2022). Luo et al. (2021) evaluated 
physiological indicators of heat stress in Holstein dairy 
cows and reported a strong association of TSNARE1 
with rectal temperature.

BTA20

On BTA20, the window located from 58.87 to 58.97 
MB (UMD3.1 assembly), where the trio Rho guanine 
nucleotide exchange factor (TRIO) gene is located, was 
associated with TA. TRIO encodes a large protein that 
functions as a guanosine diphosphate (GDP) to guano-
sine triphosphate (GTP) exchange factor (Bateman et 
al., 2000). It has also been shown that the TRIO gene 
is associated with FY and milk BHB concentration in 
Holstein dairy cattle (Nayeri et al., 2019). The SNP 
inside this region has been reported to be associated 
with MY, FP, PP, FY, PY, SCS, and udder morphol-
ogy traits in Holstein cows (Bennewitz et al., 2004; 
Schrooten et al., 2004; Höglund et al., 2009; Cole et al., 
2011; Wang et al., 2022), and weaning weight and MY 
in beef cattle (Michenet et al., 2016).

CONCLUSIONS

Milk’s CMP are among important breeding traits in 
dairy cattle breeds, especially in modern animal hus-
bandry environments. This study aimed to estimate 
genetic parameters and to identify genomic regions 
associated with milk’s cheese-making traits in Walloon 
Holstein cows. The findings showed that the included 
CMP are moderately heritable and could be included 
into the breeding program currently used for Walloon 
Holstein cows. Using available genotyping data, addi-
tional analyses were done to identify genomic regions 
associated with milk’s cheese-making traits. Different 
milk production and cheese-making traits were associ-
ated with 6 genomic regions distributed over 3 chro-
mosomes (BTA1, BTA14, and BTA20), which could 
further be used for genomic prediction purposes. The 
results confirmed most previously identified genes for 
milk production traits and identified several novel 
candidate genes (including SLC37A1, TRIO, and genes 
inside located from 1.52 to 2.15 MB on BTA14) for the 
studied cheese-making traits including CT, a30, and 
TA. Future research based on gene enrichment analy-
sis might complement the GWAS results and help to 
deepen the understanding of the biological pathways 
related to the studied milk’s cheese-making traits.
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