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ABSTRACT 57 

Familiarity is the strange feeling of knowing that something has already been seen in our past. 58 

Over the past decades, several attempts have been made to model familiarity using artificial 59 

neural networks. Recently, two learning algorithms successfully reproduced the functioning of 60 

the perirhinal cortex, a key structure involved during familiarity: Hebbian and anti-Hebbian 61 

learning. However, performance of these learning rules is very different from one to another 62 

thus raising the question of their complementarity. In this work, we designed two distinct 63 

computational models that combined Deep Learning and a Hebbian learning rule to reproduce 64 

familiarity on natural images, the Hebbian model and the anti-Hebbian model respectively. We 65 

compared the performance of both models during different simulations to highlight the inner 66 

functioning of both learning rules. We showed that the anti-Hebbian model fits human 67 

behavioral data whereas the Hebbian model fails to fit the data under large training set sizes. 68 

Besides, we observed that only our Hebbian model is highly sensitive to homogeneity between 69 

images. Taken together, we interpreted these results considering the distinction between 70 

absolute and relative familiarity. With our framework, we proposed a novel way to distinguish 71 

the contribution of these familiarity mechanisms to the overall feeling of familiarity. By 72 

viewing them as complementary, our two models allow us to make new testable predictions 73 

that could be of interest to shed light on the familiarity phenomenon. 74 

 75 
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INTRODUCTION 80 

Recognition memory has been described as the ability to determine if one has already 81 

encountered or not an event such as an object or a person (see Besson, Ceccaldi, & Barbeau, 82 

2012 for a review article on the subject). Although it was highly debated among the scientific 83 

community, it is now commonly accepted that two retrieval processes can occur during 84 

recognition (Jacoby, 1991; Mandler, 1980; Tulving, 1985; Yonelinas, Ramey, & Riddell, 85 

2022). Familiarity-based recognition is the feeling of knowing that something – or someone – 86 

has already been seen in the past, without recall of the context in which it has been encountered 87 

(Tulving, 1985; Yonelinas, Aly, Wang, & Koen, 2010). By contrast, recollection-based 88 

recognition refers to the experience of consciously remembering an event (Tulving, 1985; 89 

Yonelinas et al., 2010). Over the past decades, Dual Process theories proposed that recollection 90 

and familiarity work as two functionally and anatomically independent processes (see Diana, 91 

Reder, Arndt, & Park, 2006; Eichenbaum, Yonelinas, & Ranganath, 2007; Yonelinas, 2002 for 92 

reviews). 93 

Recent studies suggest that familiarity emerges through the implication of an anterior-94 

temporal network including several brain regions (Bastin et al., 2019; Merkow, Burke, & 95 

Kahana, 2015; Ritchey, Libby, & Ranganath, 2015; Scalici, Caltagirone, & Carlesimo, 2017; 96 

Yonelinas, Otten, Shaw, & Rugg, 2005). Previous works have also shown that the perirhinal 97 

cortex (PrC) is crucial during familiarity detection (Aggleton & Brown, 2006; Bowles et al., 98 

2010; Eichenbaum et al., 2007; Montaldi & Mayes, 2010). For example, a study showed that 99 

during a recognition task, patients with specific lesions in the PrC present impaired familiarity 100 

without recollection dysfunction (K. R. Brandt, Eysenck, Nielsen, & von Oertzen, 2016). These 101 

works were also supported by Wolk, Dunfee, Dickerson, Aizenstein, & Dekosky (2011), who 102 

showed an anatomic double dissociation between familiarity associated with the PrC and 103 

recollection associated with the hippocampus. 104 
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Looking more closely at patterns of neural firing during familiarity-based recognition, 105 

electrophysiological studies in monkeys showed that a small fraction of PrC neurons – called 106 

novelty neurons – respond in a stronger manner when new stimuli are presented (Brown & 107 

Xiang, 1998; Xiang & Brown, 1998). More importantly, this pattern of high activation tends to 108 

decrease when the same stimuli are presented again (Brown & Aggleton, 2001). In other words, 109 

when a stimulus is new, novelty neurons in the PrC will respond with a higher firing rate. But, 110 

when the same stimulus becomes familiar, its activity in the PrC is reduced compared to a novel 111 

stimulus. This phenomenon known as repetition suppression has also been observed in the 112 

human brain. This is notably the case in the inferotemporal cortex, a region which is adjacent 113 

to the PrC and is involved in visual perception (Grill-Spector, Henson, & Martin, 2006; Meyer 114 

& Rust, 2018). 115 

Several works in computational modeling are grounded around Dual Process 116 

frameworks and the implication of the PrC in familiarity detection (Cowell, 2012). For example, 117 

a neurocomputational model brought evidence that human must resort to two complementary 118 

learning systems to adequately capture the mechanisms of recognition memory (Norman & 119 

O’Reilly, 2003). According to this framework, the hippocampus is involved in the recall of 120 

details from specific events (i.e., recollection) whereas the medial-temporal cortices – including 121 

the PrC – learned the statistical regularities of the environment (i.e., familiarity). Intriguingly, 122 

it seems difficult to implement these two functions in a single system (McClelland, 123 

McNaughton, & O’Reilly, 1995). Therefore, Norman & O’Reilly (2003) developed two 124 

separate networks for recognition: the hippocampal model for recollection and the neocortical 125 

model for familiarity. Basically, the neocortical model (Norman, 2010; Norman & O’Reilly, 126 

2003) encodes regularities in the input layer (i.e. a stimulus) with Hebbian learning and assigns 127 

similar representations to similar stimuli. When the same stimulus is presented repeatedly to 128 

the neocortical model, the internal representation of this stimulus will sharpen gradually and 129 
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fewer neurons will respond to the stimulus. However, these neurons will be strongly activated. 130 

Here, familiar stimuli will strongly activate a small number of neurons whereas novel stimuli 131 

will weakly activate many neurons. Paradoxically, the idea behind familiarity-based 132 

recognition is the ability to recognize events that only have occurred once (Yonelinas et al., 133 

2022). This assumption seems therefore incompatible with the gradual learning postulated by 134 

the neocortical model. 135 

Another major limitation of the neocortical model – as well as for other architectures – 136 

is that they used formal binary patterns (i.e., sequences of 0s and 1s) as direct inputs for 137 

memorizing (Bogacz & Brown, 2003b; Norman & O’Reilly, 2003; Sohal & Hasselmo, 2000). 138 

One could reasonably assume that this kind of inputs are not congruent with the processing 139 

occurring in human brain. As a matter of fact, our judgments of familiarity arise from events 140 

involving real stimuli instead of artificial patterns. Eichenbaum et al. (2007) proposed a 141 

functional organization for visual processing in the median temporal lobes including the PrC. 142 

In this organization, most of the neocortical input to the PrC comes from association areas called 143 

the ventral pathway (Eichenbaum et al., 2007). The ventral pathway process unimodal sensory 144 

information about qualities of objects: the so-called “what” information (Humphreys & 145 

Riddoch, 2006). The representation of a stimulus formed by the ventral pathway allows 146 

subsequent judgment of familiarity. Trying to fulfill the gap between modelling and human 147 

brain processing, some models used convolutional neural networks (CNN) to mimic the ventral 148 

pathway processing to the PrC (Ji-An, Stefanini, Benna, & Fusi, 2022; Kazanovich & Borisyuk, 149 

2021; Tyulmankov, Yang, & Abbott, 2022). In principle, every pre-trained CNN followed by 150 

a simple neural network could successfully model familiarity on natural images with an 151 

adequate synaptic plasticity rule (Kazanovich & Borisyuk, 2021). 152 

Accordingly, two synaptic plasticity rules seem very promising to model familiarity-153 

based recognition: the Hebbian and the anti-Hebbian learning rules (Bogacz & Brown, 2003b; 154 
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Tyulmankov et al., 2022). The functioning of these learning rules are based on Hebb’s works 155 

(Hebb, 1949): 156 

“When an axon of cell A is near enough to excite cell B and repeatedly or persistently 157 

takes part in firing it, some growth process or metabolic change takes place in one or both cells 158 

such that A's efficiency, as one of the cells firing B, is increased.” 159 

Computational models using Hebb’s theory to model familiarity are essentially designed 160 

as two-layers feedforward networks (Androulidakis, Lulham, Bogacz, & Brown, 2008; Bogacz 161 

& Brown, 2003a; Bogacz, Brown, & Giraud-Carrier, 2001b). In these networks, weight 162 

modification is implemented such as the connection strengths are either strengthened or 163 

weakened in response to co-activated neurons. The direction of this modification (i.e., 164 

strengthening or weakening) depends on the chosen synaptic plasticity rule. Respectively, the 165 

Hebbian plasticity potentiates connection strengths while the anti-Hebbian plasticity depresses 166 

them in response to a stimulus. 167 

The advantage of these learning rules is that they are built to reproduce patterns of 168 

activity observed in the PrC during familiarity, which correspond to physiological evidence 169 

(Brown & Aggleton, 2001; Brown & Xiang, 1998). In that way, models of that kind provide a 170 

biologically plausible implementation for familiarity recognition (Bogacz & Brown, 2003a; 171 

Bogacz et al., 2001b; Tyulmankov et al., 2022). Nevertheless, Hebbian and anti-Hebbian 172 

trainings seem to have distinct properties and thus operate differently from each other. For 173 

example, Bogacz & Brown (2003b) observed differences in performance whether inputs are 174 

correlated or not. More importantly, some authors argue that Hebbian learning is more 175 

biologically plausible than its anti-Hebbian counterpart. According to these authors, this is due 176 

to the fact that anti-Hebbian learning tries to reproduce synaptic mechanisms that they declare 177 

were not observed in the brain yet (Bogacz & Brown, 2003b). However, this lack of biological 178 

plausibility is still debated. In fact, recent works with meta-learning algorithms seems to be in 179 
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favor of anti-Hebbian models. In the model proposed by Tyulmankov et al. (2022), the network 180 

learns from itself (i.e., meta-learns) which one the two learning rules, that is the Hebbian or the 181 

anti-Hebbian, should be preferred during training. Authors showed that a network with meta-182 

learning optimization is more likely to converge to the anti-Hebbian solution. Moreover, anti-183 

Hebbian plasticity seems to generalize better and has a larger memory capacity than Hebbian 184 

plasticity (Tyulmankov et al., 2022). So, the question remains: which one of these learning rules 185 

should be preferred when one is trying to model familiarity using artificial neural networks?  186 

The goal of this article is to understand, by means of computational models, the inner 187 

functioning of the Hebbian and anti-Hebbian training. By comparing how they operate, we want 188 

to explain differences in models’ abilities on natural images. Therefore, we built two models 189 

respectively with Hebbian and anti-Hebbian type of learning rules. The models are preceded by 190 

a pre-trained CNN to extract features of images. In this article, we compared the two models’ 191 

performance under two criteria. First, we replicated and administered Standing's behavioral 192 

experiment to the Hebbian and anti-Hebbian models. Standing's apparatus showed that 193 

familiarity has an almost unlimited capacity during a forced-choice recognition (FCR) task 194 

(Standing, 1973). This experiment is frequently used to test recognition models’ performance. 195 

Secondly, we compared our models’ performance during a FCR task regarding specific 196 

characteristics of the dataset. 197 

METHODS 198 

Model architectures and recognition task simulations were implemented with the Python 199 

3.9.11 software (https://www.python.org/, RRID:SCR_008394). The code is available in open 200 

access on GitHub (https://github.com/JRead98/master.git, RRID:SCR_002630). Note that for 201 

our modelling, we used basic model of artificial neurons and not spiking neurons. 202 

https://www.python.org/
https://github.com/JRead98/master.git
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2.1. Model’s architecture 203 

As our model was inspired by previous works, it therefore functions in a similar way 204 

(Ji-An et al., 2022; Kazanovich & Borisyuk, 2021). That is, it was designed as a two-step 205 

network combining deep learning and simple feedforward neural networks (see Figure 1). The 206 

goal of this architecture is to reproduce patterns of activity observed in the PrC leading to a 207 

familiarity decision during a recognition task. 208 

[Insert Figure 1] 209 

Training operates in two times. First, an image is presented to a pre-trained CNN – in 210 

this case ResNet50 – for feature extraction. This mimics the processing in the ventral pathway 211 

from visual associative areas to the PrC (Eichenbaum et al., 2007; Le Cun, 2019). This is the 212 

feature extraction module. Second, the output of the second-last layer of the CNN is used as an 213 

input for a memory module. The memory module is a simple two-layers feedforward network 214 

which will learn the features of an image thanks to an Hebbian or an anti-Hebbian learning rule 215 

(similar two-layers networks were also used in Androulidakis et al., 2008). The output of the 216 

memory module is used for familiarity discrimination during the testing phase. 217 

2.2. Feature extraction module 218 

We used a CNN called ResNet50 as our feature extraction module (He, Zhang, Ren, & 219 

Sun, 2015, 2016). More precisely, we used the version ResNet50 v1.5 which was previously 220 

trained on PyTorch with 1.2 million high-resolution photographs of natural images from 221 

ImageNet (Deng et al., 2009). ResNet50 was initialized as described in He et al. (2015). 222 

Originally, ResNet50 allows the classification of images in 1000 different categories with a 223 

high rate of accuracy. ResNet50 is built with 48 convolutional layers and 2 pooling layers to 224 

identify an image and define its characteristics according to different degrees of complexity. 225 

The penultimate layer of the model is a fully connected layer of 2048 features. We use this layer 226 

which corresponds to the embedding of the many successive convolutional layers to represent 227 
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the characteristics of an image. Note that in the complete architecture of ResNet50, the fully 228 

connected layer projects onto a SoftMax layer. This SoftMax allows the network to classify 229 

images. We do not use this last layer in our architecture. 230 

Before going into the extraction module, the RGB representation of each images was 231 

normalized to the size 3x224x224 (as in Kazanovich & Borisyuk, 2021); 3 being the number of 232 

channels corresponding to the RGB colors and 224x224 the size of the images. For a given 233 

image, we retrieved a vector of 2048 features obtained at the penultimate fully connected layer 234 

of ResNet50. We consider this vector to represent the characteristics of this image. This vector 235 

is further used for image learning in the memory module. After passing through the CNN, the 236 

vector of size 2048 for a given image is collected then normalized. That is, the distribution of 237 

vector values has a mean of zero and a standard deviation of 1. We used this vector of real 238 

numbers as inputs for the memory module. 239 

2.3. Memory modules 240 

To reproduce familiarity decision, we implemented versions of the memory module that 241 

are similar to the version designed by Kazanovich & Borisyuk (2021). In contrast to Bogacz & 242 

Brown (2003b), we used simple neural networks instead of spiking neural networks. 243 

Both Hebbian and anti-Hebbian modules are two-layers fully connected feedforward 244 

networks. Input layers consist of n = 2048 neurons and output layers consist of m = 2048 novelty 245 

neurons. Connection strengths (i.e., weights between inputs and outputs) are denoted wij and 246 

were initialized randomly between -1 and 1. The two learning rules differ in terms of weight 247 

modifications (Figure 2). Nevertheless, the formula to compute the activity in the output layer 248 

is the same for the Hebbian and anti-Hebbian model. That is, we used a forward propagation to 249 

compute the activity hj of novelty neurons j according to the following formula: 250 

ℎ𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖 ,   𝑗 = 1, … , 𝑛𝑛
𝑖=1          (1) 251 
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where xi is the vector of neurons activity for an image X after normalization in the feature 252 

extraction module and wij denotes the connection strengths. 253 

Authors originally introduced the notion of active neurons as neurons whose number in 254 

the output layer must be limited (Bogacz et al., 2001;.Bogacz & Brown, 2003a). We decided to 255 

reproduce this distinction between active neurons and neurons at rest using competition and 256 

inhibition (k/2-winners) as previously done in Androulidakis et al. (2008). More precisely, half 257 

of the novelty neurons with the highest activity are selected to be active (red circles in Figure 258 

2A). The other half are considered inactive and should not participate in the weight modification 259 

during the training phase (blue circles). We used the median of the overall activity to determine 260 

which neuron is active (> median) or inactive (≤ median). Active neurons took the value yj = 1 261 

and inactive neurons took the value yj = 0 (see Figure 2A). 262 

[Insert Figure 2] 263 

2.3.1. Hebbian learning rule 264 

In the Hebbian learning rule, we assumed that the novelty neuron j is active only if the 265 

corresponding input neuron j is also active as previously done in Bogacz & Brown (2003b). 266 

Consequently, at the first presentation of an image X, the activity pattern of novelty neurons j 267 

(y) is equal to the activity pattern of input neurons i (x). Thus, in vector form, we consider that 268 

the initial response of the networks would be: 269 

𝑥𝑋 = 𝑦𝑋 270 

where xX is the vector of neurons activity for an image X after normalization in the 271 

feature extraction module and where yX is the vector of novelty neurons activity for an image 272 

X. In the Hebbian model, we didn’t use the activity of novelty neurons during training given 273 

this assumption that the initial response of the network is equal to the activity of input neurons. 274 

Instead, we started by applying the k/2-winners rule on the vector xX to obtain the vector yX 275 
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constituted of 0s and 1s. We then applied the following weight modification formula (one 276 

should note that weights are not bounded and could thus be subject to saturation): 277 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂𝑦𝑗𝑥𝑖            (2) 278 

where η = 0.01 is the learning rate (this value has been found as the global minimum in 279 

Kazanovich & Borisyuk, 2021), xi corresponds to the input neurons after normalization and yj 280 

corresponds to the input neurons after inhibition and competition. If yj and xi represent features 281 

of the input, then the learning rule will amplify the wij link between features that appear 282 

together. Here, learning occurs through the increase in connections strengths between co-283 

occurring features as if by Long-Term Potentiation (Bliss & Collingridge, 1993). This weight 284 

modification is implemented a single time for each image of the training set. It will lead to an 285 

overall higher activity in the output layer when a familiar stimulus is presented again. 286 

However, to correctly mimic the pattern of neuronal firing in the PrC during the 287 

presentation of a familiar stimulus, the activity of novelty neurons should be lower for familiar 288 

stimuli than novel ones (Brown & Aggleton, 2001; Brown & Xiang, 1998). To overcome this 289 

problem, the Hebbian model originally described by Bogacz et al. (2001) used an inhibitory 290 

interneuron to model the familiarity decision in the PrC. This inhibitory interneuron is 291 

computed from the activity of novelty neurons. It will represent the level of inhibition that 292 

should be used to reduce the activity of novelty neurons when a familiar stimulus is presented 293 

again. They argued that familiarity decision in their model could be implemented with two 294 

options (Bogacz et al., 2001; Bogacz et Brown, 2003b). First, with the reduced activity of the 295 

novelty neurons after inhibition by the inhibitory interneurons. Second, with the level of 296 

inhibition itself which should therefore be higher for familiar stimuli than for novel ones. Here, 297 

we decided to implement the second option during the testing phase. We used the activity of 298 

the output layer to compute an inhibition level d(X) as: 299 
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𝑑(𝑋) = ∑ 𝑥𝑗ℎ𝑗
𝑚
𝑗=1            (3) 300 

where hj are the components from the vector of the novelty neurons computed with 301 

formula (1) and xj are the components from the vector of inputs neurons after normalization. 302 

Familiar images should present a higher level of inhibition compared to novel images. Thus, 303 

during a recognition task where a pair of images (X, Z) is presented to the model, where X is an 304 

old and Z is a novel image, a correct familiarity decision is made by the model if d(X) > d(Z). 305 

This can be easily seen by presenting the same image several times to the model during training. 306 

This will amplify the wij links between active features, increasing hj and consequently 307 

increasing d(X) compared to a novel image d(Z). 308 

2.3.2. Anti-Hebbian learning rule 309 

In the anti-Hebbian learning rule, on the opposite of the Hebbian learning rule, we 310 

started by computing the activity hj of the novelty neurons with formula (1) before applying the 311 

weight modification formula. Thus, there was a diffusion of activity before the weight were 312 

modified. Once the output layer is computed, we applied the k/2-winner rule on the components 313 

hj to obtain yj. 314 

Here, learning occurs through the decrease in connections strengths between input 315 

neurons and active novelty neurons as if by Long-Term Depression (Androulidakis et al., 2008; 316 

Bogacz & Brown, 2003a; Ito, 1989). Therefore, weights are modified during training with the 317 

following formula: 318 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂𝑥𝑖𝑦𝑗           (4) 319 

where η = 0.01 denotes the learning rate, xi corresponds to the input neurons after 320 

normalization and yj corresponds to the components of the vector of novelty neurons after the 321 

k/2-winner rule. This weight modification will slightly reduce the variance inside the vector of 322 

novelty neurons hj when computed again with formula (1). As in the Hebbian solution, this 323 
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weight modification is only implemented a single time for each image of the training set. 324 

Nevertheless, the variance reduction can be easily objectified if we repeatedly present a sole 325 

stimulus to the anti-Hebbian model. Indeed, after several presentations, the differences between 326 

values of novelty neurons for a given image will gradually decrease. 327 

After each image has been studied by the model, we fix the connection strengths before 328 

the testing phase. Overall, we should observe an average activity in the output layer that is lower 329 

when a familiar stimulus is presented compared to a novel one. During the testing phase, we 330 

computed the average output activity to model the familiarity decision as in the Hebbian model 331 

with the following formula (Kazanovich & Borisyuk, 2021): 332 

 𝑑(𝑋) =
1

𝑚
(∑ ℎ𝑗 − ∑ ℎ𝑗)𝑗∈𝑀2𝑗∈𝑀1         (5) 333 

where hj are the components from the vector of the novelty neurons computed with 334 

formula (1) and M1 and M2 are respectively the sets of k/2-winners (active neurons) and -losers 335 

(inactive neurons) in the output layer. Familiar images should produce lower activity than novel 336 

images (Bogacz & Brown, 2003a). Indeed, if we present several times the same image to the 337 

network, the wij links will decrease, reducing hj and consequently decreasing d(X). Thus, during 338 

a recognition task where a pair of images (X, Z) is presented to the model, where X is an old 339 

and Z is a novel image, a correct familiarity decision is made if d(X) < d(Z). 340 

2.4. Simulation methodology 341 

The simulation methodology is depicted in Figure 3 and was similar to that of 342 

Kazanovich & Borisyuk (2021). The methodological pipeline is identical for every simulation 343 

with a training phase followed by a testing phase. During the training phase, a model was trained 344 

on a subsample constituted of N images randomly taken from the corresponding dataset. Images 345 

were learned one-by-one with the weight modification specific to the selected memory module. 346 

Each image was presented once to the model for learning. In the testing phase, we implemented 347 
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a forced-choice recognition (FCR) task. During the FCR task, N pairs of images were presented 348 

simultaneously to the network: a new image as well as an image previously learned during 349 

training. The model had thus to decide which image is familiar depending on the memory 350 

module. If the model has chosen the new image as familiar, a recognition error was logged. 351 

[Insert Figure 3] 352 

RESULTS 353 

All the plots were generated by using ggplot2 package (Wickham, 2009, https://cran.r-354 

project.org/web/packages/ggplot2/index.html, RRID:SCR_014601). The data obtained during 355 

the different simulations and the script used to visualize them are openly available on the OSF 356 

platform (https://osf.io/vpgdm/, RRID:SCR_003238). 357 

As a first simulation, we reproduced Standing’s experiment to evaluate the memory 358 

capacity of the models with the methodological pipeline depicted in Figure 3 (Standing, 1973). 359 

The dataset consisted of a database of about 30 000 natural images divided into 256 object 360 

categories (Caltech 256 Image Dataset; Griffin, Holub, & Perona, 2007). All categories 361 

contained in average 119 images and a minimum of 80 images. 362 

As part of the simulation, we estimated the error probability (Perr) for the entire task 363 

then averaged it on 100 runs of the models. Each run was realized with a different training and 364 

testing set. We also computed the number of images retained in memory, similarly to 365 

Kazanovich & Borisyuk (2021): 366 

𝑁𝑟𝑒𝑡 = 𝑁(1 − 2𝑃𝑒𝑟𝑟)          (6) 367 

where N is the number of images presented during training and Perr is the error 368 

probability for the entire task. Results from the first simulation are shown in Figure 4. 369 

[Insert Figure 4] 370 

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html


 

17 

As expected, we observed for both our models that performance decreases gradually as 371 

the dataset size increases (Figure 4B). That is, the error probability is on average worse when 372 

the models are tested with large datasets than with small datasets (Table 1). In the medium 373 

dataset size condition (N = 100), both models still have good accuracy. However, when this 374 

threshold is crossed, the performance of the Hebbian model started to decrease more drastically 375 

than its anti-Hebbian counterpart. 376 

In comparison with human data, we can see that anti-Hebbian model outperformed 377 

human performance until 1000 images are presented. As a matter of fact, it is only for the two 378 

biggest datasets (N = 4000 and N = 10000) that the anti-Hebbian model performs worse than 379 

human. One should note that the performance still reaches more than 65% accuracy with the 380 

highest dataset size, suggesting that the model didn’t perform at chance level even in this 381 

condition. Regarding the Hebbian model, the probability of error is similar to human behavioral 382 

performance up to 40 images. Passed this dataset size, performance of the Hebbian model 383 

gradually decreased to reach random choices between familiar and novel images for the highest 384 

dataset size (Perr = 0.5). This random choice pattern of answers tends to come up when more 385 

than 1000 images were presented during the training phase. 386 

Moreover, we observed that the memory capacity for the anti-Hebbian solution is 387 

strikingly similar to human performance with on average µ = 3-171.760 (σ = 101.402) images 388 

retained in memory for N = 10 000. In fact, it managed to have near perfect memory for most 389 

of the dataset sizes (Table 1). Overall, it tends to fit the power law observed in Standing’s 390 

original experiment (Figure 4A). In comparison, the Hebbian solution seems to have a poor 391 

memory capacity which didn’t exceed 376 images when 10 000 pictures are learned during 392 

training (µ = 150.760; σ = 90.912). On average, the number of images retained in memory by 393 

the Hebbian model seems to be constant for every dataset size that exceeds a hundred pictures. 394 

[Insert Table 1] 395 
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Next, we wanted to check whether the models could display a recency effect. To 396 

highlight such an effect, we estimated the probability that a network will make an error for a 397 

given pair of images during the testing phase and averaged it over 100 runs of the models. We 398 

performed the simulations at the threshold where models’ performance started to diverge while 399 

they both kept more than 80% accuracy (N = 100). Graphically, a recency effect should be 400 

marked by a gradual decrease in the average error probability as a function of the image position 401 

in the training phase. Results were then smoothed with a Loess Regression function and plotted 402 

in Figure 5. 403 

[Insert Figure 5] 404 

Interestingly, it seems that the anti-Hebbian model exhibits a recency effect that is not 405 

observed with the Hebbian model. The former has indeed lower probabilities of error for images 406 

learned at the end of the training (i.e., recent images) compared to images learned at the 407 

beginning of the training. This is not the case for the Hebbian model which showed no tendency 408 

to make less mistakes for recent images. 409 

For the second simulation, we decided to test whether the models are sensitive to 410 

homogeneity between the inputs. We tested the performance of the models in three conditions 411 

of homogeneity: heterogeneity, mild homogeneity, high homogeneity. The heterogeneity 412 

condition consisted of random pictures selected from the Caltech 256 database (Griffin et al., 413 

2007). The two homogeneous conditions consisted of two datasets, each constituted with only 414 

one semantic category of images, respectively dogs and cats. The mild homogeneity condition 415 

thus corresponded exclusively to dogs’ pictures randomly selected for the dog’s category folder 416 

from the Caltech 256 database (Griffin et al., 2007). Regarding the high homogeneity condition, 417 

we used exclusively cats’ pictures randomly selected from the so-called “Cat Dataset”, which 418 

consists of nearly 10 000 pictures of cats divided in 7 sub-folders (W. Zhang, Sun, & Tang, 419 

2008). We justify our choices on the fact the dogs have a wider variety of perceptual features 420 
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than cats (i.e. dogs are more heterogeneous than cats, French, Quinn, & Mareschal, 2001; 421 

Mareschal, French, & Quinn, 2000). 422 

Simulations took place similarly as in the first simulation (see Figure 3). The only 423 

difference is that for the mild and high homogeneity conditions, models were trained 424 

exclusively with dogs or cats’ pictures, respectively. For example, in the high homogeneity 425 

condition, models had to learn 40 images of cats (N = 40). During the testing phase, N pairs of 426 

cats’ pictures were presented to the model: a new and an old cat. The models had to decide 427 

which one was familiar.  428 

As previously done, the results were average over 100 runs of the models. Each run was 429 

realized with a different training and testing set. The average Perr and standard deviations for 430 

the three homogeneity conditions are plotted in Figure 6. 431 

[Insert Figure 6] 432 

Foremost, the anti-Hebbian model has a better accuracy than the Hebbian model in every 433 

homogeneity condition. With the anti-Hebbian learning rule, model performance still reaches 434 

high accuracy in the high homogeneity condition. Performance is furthermore stable for the 435 

heterogeneity to the mild homogeneity, and we observed no decrease in accuracy between the 436 

two conditions. In fact, the anti-Hebbian model has a near perfect accuracy when trained and 437 

tested with low and no homogeneity between the inputs. With the Hebbian learning rule, we 438 

observed a gradual decrease as the homogeneity between the pictures increases during the 439 

learning phase. Moreover, we can see that when the Hebbian model is trained with cat pictures 440 

only (i.e., high homogeneity), the model responds randomly during the FCR task. 441 

[Insert Table 2] 442 

A summary of our key results is detailed in Table 2. For each simulation, we estimated 443 

the error probability (Perr) for the entire task then averaged it on 100 runs of the models. Each 444 



 

20 

run was realized with a different training and testing set. We can observe that both the Hebbian 445 

and anti-Hebbian model have more than 80% accuracy on small, medium, and mildly 446 

homogeneous datasets. Besides, the accuracy is numerically higher in the anti-Hebbian model 447 

in every conditions. Regarding the performance of the Hebbian model on large and highly 448 

homogeneous dataset, it seems that the model failed 1 out of 2 times to correctly choose the 449 

familiar image. We interpreted these results as random answers. 450 

DISCUSSION 451 

The goal of the paper is to compare two learning rules which can be used to model 452 

familiarity by reproducing the pattern of neural firing observed in the PrC. Here, by 453 

differentiating Hebbian and anti-Hebbian learning on natural images, we want to provide 454 

insight into the operations at hands when a stimulus becomes familiar. We showed that the anti-455 

Hebbian solution has on average a higher memory capacity than the Hebbian solution. Besides, 456 

the former fits relatively well Standing’s behavioral data (Standing, 1973) whereas the later 457 

only fits the data when the training set doesn’t exceed 40 images. Regarding their ability to 458 

manage homogeneity between the inputs, we showed that the anti-Hebbian model once again 459 

has better accuracy than its Hebbian counterpart. In fact, the anti-Hebbian model still reaches 460 

high accuracy even with highly homogeneous stimuli (i.e., cats). The Hebbian model reaches 461 

more than 80% accuracy in the mild homogeneity condition (i.e., dogs). Nevertheless, it fails 462 

to perform above chance in the high homogeneity condition suggesting high vulnerability to 463 

homogeneity. 464 

On one hand, our results with the anti-Hebbian model are in line with previous networks 465 

using anti-Hebbian learning to model familiarity (Androulidakis et al., 2008; Kazanovich & 466 

Borisyuk, 2021). Interestingly, in the model proposed by Kazanovich & Borisyuk (2021), they 467 

did not implement inhibition and competition per se. Rather, they only applied formula (5) to 468 
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withdraw the activity from the sets of losers (i.e., half of the neurons in the output layer with 469 

the lowest activity) for the pair of images presented during the FRC task. Besides, they used 470 

AlexNet for features extraction instead of ResNet50 as in our modeling (Krizhevsky, Sutskever, 471 

& Hinton, 2012). Despite these slightly different implementations of the anti-Hebbian model, 472 

we still managed to reproduce their results on Standing’s experiment. 473 

In addition, our results showed that the anti-Hebbian model can react to the more recent 474 

(i.e., familiar) stimuli with greater accuracy. More importantly, by reducing the overall activity 475 

in the output layer, it successfully reproduces the repetition suppression mechanisms observed 476 

in the brain when a stimulus becomes familiar (Grill-Spector et al., 2006; Meyer & Rust, 2018). 477 

According to Tanaka, Saito, Fukada, & Moriya (1991), repetition suppression is thought to be 478 

very selective for complex visual stimuli. In fact, it provides the specific information that would 479 

permit recognizing a recent stimulus. Taken together, this suggests that it is the anti-Hebbian 480 

learning rule ability to reduce the variance of the vector of novelty neurons that allows it to 481 

accurately model familiarity recognition (Bogacz & Brown, 2003a). If the target has lower 482 

variance in its output layer than the lure, it should mean that the target has more recency – or 483 

familiarity – than the lure. Our simulations showed that this ability is impaired neither by the 484 

number of presented stimuli nor by the similarity between targets lures. 485 

On the other hand, to our knowledge, this is the first time that an Hebbian learning rule 486 

was implemented on natural images instead of artificial inputs. This makes the comparison with 487 

other networks difficult. Nevertheless, Bogacz & Brown (2003b) have previously shown that 488 

its performance should be lower than an anti-Hebbian model when there were dependances 489 

between the stimuli features. To address this issue, Kazanovich & Borisyuk (2021) have 490 

computed this dependances for the images from the Caltech 256 database. As expected, they 491 

showed that the co-occurrence between pairs of features could be high for some pictures. It is 492 

then plausible that differences in models’ performance to reproduce behavioral data could be 493 
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explained to some extent by co-occurrence between the features of an image. This is also in line 494 

with our results showing high sensitivity to homogeneity between inputs in the Hebbian model 495 

only. However, this raises the question: can the Hebbian solution provide an accurate modeling 496 

framework for familiarity recognition in human? 497 

Based on the results of our simulations, we can reasonably admit that the Hebbian model 498 

can successfully discriminate between old and new pictures under certain conditions (small to 499 

medium dataset set, mild homogeneity in the training data). We also showed that our version 500 

of the Hebbian learning rules operates by encoding co-occurrence between features that 501 

appeared together in an image. This means that the learning rule will increase the connection 502 

strength between two active features of an input. For example, consider a picture of an old man 503 

as the stimulus. He has glasses, a beard, and a baldness that are considered as active features. 504 

The Hebbian model will increase the link between the glasses and the beard, between the 505 

baldness and the beard, and so on. In other words, the Hebbian model will create a global 506 

representation of a stimulus. This means, regarding recognition, that stimuli where glasses 507 

appear with beard and where baldness appears with glasses will be more familiar to the system. 508 

Interestingly, this description of our Hebbian model is consistent with the global 509 

matching models (GMM) of recognition (Clark & Gronlund, 1996; Osth & Dennis, 2020). The 510 

assumption behind GMM is that an item is constituted of several memory representations (i.e., 511 

several features). During a recognition task, a cued item will activate these representations. The 512 

activation of these components of an item will be combined to produce global match. If the 513 

match signal is high enough, it will lead to a familiarity judgment. More importantly, GMM 514 

predicts that high number of stimuli and similarity between stimuli (i.e., homogeneity) will both 515 

lead to impaired recognition judgment (M. Brandt, Zaiser, & Schnuerch, 2019; Cary, 2003). 516 

Along with the results from our simulations, this suggest that the Hebbian model could indeed 517 

correspond to a mechanism for familiarity recognition. 518 



 

23 

It has long been thought that familiarity could involve different co-existing mechanisms 519 

(Bastin et al., 2019; Mandler, 1980; Mecklinger & Bader, 2020). Therefore, the Hebbian and 520 

anti-Hebbian model should not be mutually exclusive. Instead, we believe that our models are 521 

quite complementary and can provide insight into answering questions of that sort. In a review 522 

article, Mecklinger & Bader (2020) highlight the distinction between an absolute familiarity 523 

and a relative familiarity. The former would be linked to stimuli that have been frequently 524 

encountered in our lifetime whereas the latter would be associated with stimuli that have been 525 

recently encountered (Bridger, Bader, & Mecklinger, 2014). More importantly, it has been 526 

shown that the PrC exhibits different patterns of activity in association with both absolute and 527 

relative familiarity (Daselaar, Fleck, & Cabeza, 2006; Diana, Yonelinas, & Ranganath, 2007; 528 

Duke, Martin, Bowles, McRae, & Köhler, 2017). Along with the work of Xiang & Brown 529 

(1998) on monkeys, it has been suggested that the reduced firing pattern (i.e., repetition 530 

suppression) observed in some neurons of the PrC would be associated with relative familiarity. 531 

It would result in a decrease in the signal strength, similarly to what we observed in our anti-532 

Hebbian model. On the other hand, other PrC neurons have shown a selective firing pattern to 533 

stimuli with high absolute familiarity. In agreement with our Hebbian model, absolute 534 

familiarity would induce an increase in the signal strength as measured by d(X) (Mecklinger & 535 

Bader, 2020; Xiang & Brown, 1998). 536 

For now, we don’t know precisely how these two familiarity processes are articulated 537 

together. Coane, Balota, Dolan, & Jacoby (2011) tried to answer this question by clarifying the 538 

time course of the familiarity signal. Previous works showed that items already have a baseline 539 

familiarity whose level depends on how often an item has been encountered during the lifespan 540 

(Joordens & Hockley, 2000; Reder et al., 2000). Coane et al. (2011) hypothesized that when an 541 

item is studied, it acquires a temporary increase in its familiarity signal in addition to a 542 

permanent increase in its absolute level of familiarity (Figure 7A). This temporary familiarity 543 
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boost corresponds to the relative level of familiarity. Unfortunately, this framework does not 544 

tell us about the conditions for a mechanism to take precedence over another. 545 

Our modeling framework allows us to make the following predictions by separating the 546 

contribution of absolute and relative familiarity to the phenomenological feeling of familiarity 547 

(Figure 7B). Here, we first assume that the Hebbian learning rule models exclusively absolute 548 

familiarity through the overall structure of the stimulus, like in GMM. On the opposite, the anti-549 

Hebbian learning rule models exclusively the relative familiarity through the recency of a 550 

stimulus. At first, both mechanisms could participate in familiarity decisions when the 551 

distinctiveness between stimuli is high. However, when the number of stimuli learned increases, 552 

absolute familiarity alone would not be efficient anymore as shown by the green line in Figure 553 

7B (M. Brandt et al., 2019; Cary, 2003). That is because stimuli become more and more 554 

homogeneous. In turn, more homogeneity – meaning less distinctiveness between the stimuli – 555 

increases the response criterion necessary to make familiarity judgments. In these conditions, 556 

we could only rely on relative familiarity mechanism to maintain recognition accuracy, as 557 

shown by the blue line. 558 

Overall, our framework allows us to make testable predictions. More precisely, the 559 

advanced hypothesis could be further explored in patients at risk of Alzheimer’s disease as the 560 

PrC is one of the first regions affected by the disease (Braak, Thal, Ghebremedhin, & Del 561 

Tredici, 2011). Interestingly, this population showed a selective relative familiarity impairment, 562 

with preserved absolute familiarity (Anderson, Baena, Yang, & Köhler, 2021). With the aim of 563 

disentangling the respective contributions of relative and absolute familiarity in Alzheimer’s 564 

patients, one could easily imagine a recognition task administered in different homogeneity 565 

conditions such as in our second simulation (see Delhaye, Folville, & Bastin, 2019, for an 566 

example of paradigm). The prediction would be that Alzheimer’s patients should exhibit 567 

impaired relative familiarity responses regardless of the homogeneity condition. In contrast, 568 
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they should exhibit preserved absolute familiarity responses only in low homogeneity 569 

conditions. 570 

As expected, our study has several limitations that should be acknowledged. To begin 571 

with, we wanted to highlight the influence of the CNN on our results. Indeed, it is plausible that 572 

the reason why our Hebbian model is highly sensitive to homogeneity is due to the way features 573 

are extracted by ResNet50. ResNet50 – as most of other CNN – was trained to categorize 574 

pictures (He et al., 2016; Krizhevsky et al., 2012); i.e., this picture is a dog, this picture is a cat. 575 

That is what a CNN is trained to do but its inner mechanism is still a black box. Thus, in our 576 

models, the vector of 2048 features extracted from the second-last layer of the network has been 577 

designed during the training to represent the concept of cat. If we present a picture of another 578 

cat to the CNN, the new vector of features could be highly similar to the last picture categorized 579 

as a cat by ResNet50. Put in other words, it is plausible that our CNN does not extract the 580 

feature of the image per se but rather the features of the concept of “cat” itself. This would 581 

explain why it is more difficult to choose correctly between two similar images as in our second 582 

simulation. However, the lack of similarity effect on the ability of the anti-Hebbian model lets 583 

us think that our CNN does not impact that much the results from our simulations. 584 

Another limitation is linked to our reproduction of the initial Hebbian model of Bogacz 585 

et al. (2001b). Indeed, in their original paper, they used an inhibitory interneuron to reduce the 586 

activity in the output layer after a stimulus is presented for the first time. This is to adequately 587 

reproduce the functioning of the PrC. By ease of computation, we decided not to implement 588 

this downsize of activity (Bogacz & Brown, 2003b). Rather, we directly used the so-called level 589 

of inhibition - which should be used to reproduce repetition suppression – in our decision 590 

function. One could therefore say that our model is incomplete in comparison to the model of 591 

Bogacz et al. (2001b). It would therefore be interesting to enhance our Hebbian model to see if 592 

our arbitrary simplification could have a profound impact on its performance. 593 
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Finally, it seems apparent that both models are too simple to account for the whole 594 

diversity of a phenomenon such as familiarity. For example, artificial neural networks as used 595 

in our works don’t even consider the temporal dimension of synaptic plasticity (L. I. Zhang, 596 

Tao, Holt, Harris, & Poo, 1998). One way to overcome this problem would be to use spiking 597 

neural networks such as in other computational models of recognition (Ji-An et al., 2022; 598 

Norman & O’Reilly, 2003). Moreover, we do not implement the contribution of other brain 599 

area which are known to take part during familiarity (Bastin et al., 2019). As an example, it has 600 

been shown that the anterolateral entorhinal cortex is associated with familiarity recognition on 601 

images with overlapping features (Besson, Simon, Salmon, & Bastin, 2020). Thus, the 602 

integration of other part of the transentorhinal cortex in our modelling framework could be a 603 

promising way to capture more adequately the functioning of familiarity mechanisms (Bastin 604 

& Delhaye, 2023; Besson et al., 2020). 605 

CONCLUSION 606 

In conclusion, we designed two computational models of familiarity in the PrC, the anti-607 

Hebbian and the Hebbian models. We argued that these models should be viewed as 608 

complementary as they account for two distinct familiarity mechanisms, respectively relative 609 

and absolute familiarity. On one hand, the anti-Hebbian model reduces the variance inside the 610 

output layer to compute the recency of an item, which would be a suitable mechanism for 611 

relative familiarity. On the other hand, the Hebbian model increases the link between co-612 

occurring features to produce a global match between features activation and a cued item, which 613 

would in turn be related to absolute familiarity. We also hypothesized that the contributions of 614 

these familiarity processes to recognition can be dissociated when there is not enough 615 

distinctiveness between items. To extent this framework, we could challenge predictions made 616 

by the models with experimental studies on real subjects.  617 
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TABLES 839 

Table 1  

Number of images retained in memory (Nret) by the Hebbian and anti-Hebbian models for 

different dataset sizes. 

 Dataset Size 

Anti-Hebbian  20 40 100 200 400 1000 4000 10000 

Mean 20.00 39.860 97.90 189.680 357.70 744.720 1786.180 3171.760 

Std. Deviation  0.00  0.586  2.418  4.720  10.661  22.256  63.583  101.402  

Minimum  20.00  36.00  90.00  180.00  332.00  678.00  1632.00  2932.00  

Maximum  20.00  40.00  100.00  200.00  378.00  798.00  1928.00  3564.00  

Hebbian                  

Mean  19.920  38.380  73.440  91.760  100.140  107.820  128.560  150.760  

Std. Deviation  0.394  1.879  6.781  12.112  17.294  29.666  61.671  90.912  

Minimum  18.00  32.00  52.00  60.00  52.00  50.00  12.00  0.00  

Maximum  20.00  40.00  90.00  124.00  144.00  188.00  282.00  376.00  

 

 840 

Table 2 

Accuracy for the Hebbian and anti-Hebbian model computed during 

the testing phase in every dataset condition. 

 Model 

Dataset Size Anti-Hebbian Hebbian 

Small dataset (N = 20) 100.00 (0.00) 99.80 (1.00) 

Medium dataset (N = 100) 98.90 (1.20) 86.70 (3.40) 

Large dataset (N = 1000) 87.20 (1.10) 55.40 (01.50) 

Dataset Type (N = 40)   

Heterogeneous (random) 99.80 (0.7) 980 (2.30) 

Mild homogeneity (dogs) 99.90 (0.5) 82.90 (5.10) 

High homogeneity (cats) 91.30 (4.50) 56.80 (7.50) 

   

Note. Mean % over 100 runs (standard deviation). 

 841 



 

37 

FIGURE 842 

Figure 1. Global architecture of the models. An image goes through ResNet50 for features 843 

extraction then inside a memory module for learning. During the testing phase, a familiarity 844 

score d is computed for decision making. 845 

 846 

Figure 2. Learning rules inside the memory modules. (A) General idea behind the functioning 847 

of the memory module. (B) Weight potentiation for active neurons in the Hebbian model. (C) 848 

Weight depression for active neurons in the anti-Hebbian model. 849 

 850 
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Figure 3. Simulation methodology. During the training phase, N images are learned one-by-851 

one by the model. During the testing phase, pairs of images are presented to the model which 852 

has to decide which image is familiar. 853 

 854 

Figure 4. Results from the reproduction of Standing’s experiment. (A) Number of images 855 

retained by the model as a function of the number of the dataset size during training (log10 scale) 856 

(B) The probability of error as a function of the number of images learned during training. Red 857 

curves: Standing’s behavioral data (Standing, 1973). Blue curves: performance for the anti-858 

Hebbian solution. Green curves: performance for the Hebbian solution. 859 

 860 



 

39 

Figure 5. Mean probability of error for a given image and standard deviation (grey areas) as a 861 

function of the position of this image in the training phase (N =100). (A) Performance tested 862 

with the anti-Hebbian model. (B) Performance tested with the Hebbian model. 863 

 864 

Figure 6. Mean probability of error and standard deviation when the two models are tested on 865 

dataset with different homogeneity levels (N = 40). 866 
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40 

Figure 7. Time course of the familiarity signal. (A) Collective contribution of both absolute 868 

and relative familiarity to the familiarity decision as described in Coane et al. (2011). (B) 869 

Separate contributions of the absolute familiarity as modeled by the Hebbian learning rule 870 

(green curve) and the relative familiarity as modeled by the anti-Hebbian learning rule (blue 871 

curve) under different level of distinctiveness. 872 
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