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 In theory

In the real world 

Food webs: networks formed by entirety of trophic interactions found in a given ecosystem.

Trophic interactions are numerous and dynamic, leading to complex ecological networks

Since food webs link all organisms living in a given ecosystem together, their structure conditions system 
functioning and reaction to environmental fluctuations (natural or anthropogenic)

They can act as vectors, through which ecological changes can propagate across ecosystem compartments, or 
even across ecosystems



Chemosynthesis

While initially depicted as a rather 
anecdotic carbon fixation pathway, 

chemosynthesis has proven to be a major 
mechanism supporting food webs in 

multiple marine ecosystems, including 
hydrothermal vents 



Hydrothermal vent food webs

Diagrams from Govenar 2012

Decades of intensive research led 
to many discoveries regarding 

hydrothermal vent food webs…



Hydrothermal vent food webs

Diagrams from Govenar 2012

Decades of intensive research led 
to many discoveries regarding 

hydrothermal vent food webs…

… and yet, trophic ecology of deep-sea vents remain, by many aspects, in its infancy when compared with other 
systems. Many questions about food web structure, trophic interactions and how they condition vent ecosystem 

functioning remain open, and new ones keep arising!



Deep-sea chemosynthetic subsidies

Chemosynthetic habitats are not only, as 
initially thought, "oases within a barren deep 

ocean"

There is increasing evidence that they are 
strongly connected to surrounding ecosystems 

Levin et al. 2016 



Deep-sea chemosynthetic subsidies

Ardyna et al. 2019

Hydrothermally-sourced iron triggers massive phytoplankton blooms in shallower layers of the Southern Ocean
Influence extending to hundreds of km
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Chemosynthetic OM can be exported through 
particle advection + active movement of 

predators and scavengers

Levin et al. 2016 
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Deep-sea chemosynthetic subsidies

Chemosynthetic OM can be exported through 
particle advection + active movement of 

predators and scavengers

Overall: >10% of deep-sea benthic carbon flux 
could be derived from chemosynthesis

Mostly cold seeps (less intense production than 
vents, but more widespread)

Many things about the nature, occurrence or 
intensity of those subsidies are still 

unadequately understood…

Levin et al. 2016 
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Research interests:

▪ How do food web structure and trophic interactions influence marine 
ecosystem functioning and biodiversity?

▪ How do natural or anthropogenic environmental variations impact animal 
feeding?

▪ How does ecological plasticity mediates marine consumers’ response to 
change? 

I mostly tackle those issues by using polar and deep-sea benthic invertebrates as
ecological models, and by developing approaches based on trophic markers,
notably stable isotopes.
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Stable isotopes & hydrothermal vents: a long-lasting love story

Discovery of hydrothermal vents: 1977

Establishment of stable isotopes as 
trophic markers: 1978-1981

It did not take long for those new markers to be applied to the recently discovered hydrothermal ecosystems!

For 4 decades, stable isotopes have been instrumental to many findings about vent ecology… And still have much 
potential to offer!
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Stable isotope ratios in animals can be used as integrative trophic markers (indirect info on animal diet)

Mixing law: stable isotope composition of an animal is a proportional mix of its food sources’ isotopic compositions



By measuring the isotopic compositions of an animal and those of its food sources, it is possible to estimate the 
contribution of each food source to the animal’s diet

Stable isotopes: you are what you eat
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Thiotrophs (rTCA)

δ13C of marine producers is variable and mostly conserved throughout the food web

δ13C can be used to identify and quantify relative contributions of production mechanisms supporting animal 
populations in marine ecosystems
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A food web example : Woodlark Basin

Chubacarc cruise: connectivity and regional patterns of 
biodiversity in back-arc basins of Western Pacific

Hourdez & Jollivet (2019): https://doi.org/10.17600/18001111
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A food web example : Woodlark Basin

Chubacarc cruise: connectivity and regional patterns of 
biodiversity in back-arc basins of Western Pacific

Hourdez & Jollivet (2019): https://doi.org/10.17600/18001111

Woodlark Basin

https://doi.org/10.17600/18001111


Open access paper: https://doi.org/10.1038/s43247-022-00387-9

La Scala vent field, Woodlark Basin

https://doi.org/10.1038/s43247-022-00387-9


Discovery of several active smokers, depth  ≈ 3400 m

La Scala vent field, Woodlark Basin



Close to active chimneys: communities dominated by symbiont-bearing gastropods that act as foundation species

La Scala vent field, Woodlark Basin



On inactive chimneys and peripheral zones: dense cirriped bushes
Not typical of SW Pacific hydrothermal vents, but described in nearby oceanic trenches (e.g. Tonga)

La Scala vent field, Woodlark Basin



Document functional ecology of this newly discovered system

La Scala vent field, Woodlark Basin
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Document functional ecology of this newly discovered system

Identify main production pathways supporting animal populations

Assess potential energy fluxes between active sites and inactive, peripheral habitats

La Scala vent field, Woodlark Basin



ROV sampling of biomass-
dominant benthic fauna 

Dissection and extraction of 
relevant tissues

Use of stable isotope ratios of C, 
N and S

La Scala vent field, Woodlark Basin



ROV sampling of biomass-
dominant benthic fauna 

Dissection and extraction of 
relevant tissues

Use of stable isotope ratios of C, 
N and S

La Scala vent field, Woodlark Basin

Gilles Lepoint (ULiège)
Stable isotope sensei
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A. kojimai

I. nautilei

Food web structure: La Scala (Woodlark basin)

Symbiotrophs relying on different bacterial sulphur oxydation metabolisms: Calvin-Benson-
Bassham (CBB) and reverse tricarboxylic acid (rTCA) cycles
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Phymorhynchus sp.
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Provanna sp.

Phymorhynchus sp.

Food web structure: La Scala (Woodlark basin)

Provanna sp.: Relatively low trophic position, most likely bacterial grazer 

Phymorhynchus sp.: δ15N higher than grazers but similar to symbiont feeders. Seems to feed 
at a lower trophic position than often assumed.
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Austinogrea sp.

Food web structure: La Scala (Woodlark basin)

Vulcanolepas sp. nov.

δ15N of crabs and shrimps higher, yet similar. Both omnivores? Differences in trophic 
position masked by baseline differences? 

Marked δ13C differences among shrimps: high intraspecific trophic diversity
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What do these animals with intermediate 
δ13C feed on?

Exported photosynthetic production?

Mix of chemosynthesis-derived OM 
produced through multiple pathways?
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Food web structure: La Scala (Woodlark basin)

Low δ34S in most fauna, from known symbiotrophs to facultative vent dwellers found in 
inactive or peripheral zones
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Intermediate δ34S in echinoderms: reliance on both chemosynthesis- and photosynthesis-
derived organic matter
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Isotopic variability: what ecological info does it hold?
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Isotopic variability: what ecological info does it hold?
Geometric approach (Layman et al. 2007):
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Geometric approach (Layman et al. 2007):

Fit a convex hull (i.e., the smallest possible 
surface that encompasses all points) to the 

data

This convex hull represents the isotopic niche 
of the group of consumers (proxy for their 

realized ecological niche)
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Isotopic variability: what ecological info does it hold?
Geometric approach (Layman et al. 2007):

Fit a convex hull (i.e., the smallest possible 
surface that encompasses all points) to the 

data

This convex hull represents the isotopic niche 
of the group of consumers (proxy for their 

realized ecological niche)

Set of complementary metrics including total 
area of the convex hull: proxy of the total 
resource diversity used by the organisms
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Isotopic variability: what ecological info does it hold?

Some hull-based metrics (including its total 
area) are highly sensitive to the presence of 

extreme points

According to your research question, it can be 
a good or a bad thing…
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Isotopic variability: what ecological info does it hold?

Standard ellipse vs. convex hull
(SD vs. full range)

Represents "core isotopic niche" of the group of 
consumers
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Isotopic variability: what ecological info does it hold?

Standard ellipse vs. convex hull
(SD vs. full range)

Represents "core isotopic niche" of the group of 
consumers

Main metric: standard ellipse area (SEA), proxy 
for the diversity of most commonly used 
ecological resources

More robust and less sensitive to extreme values 
and small sample size

Ellipses and hulls can be complementary

δ
1

5
N

 (
‰

)

δ13C (‰)



Stable isotopes as niche proxies

δ13C (‰)

δ
1

5
N

 (
‰

)

Comparison of groups : 

Hull or ellipse size



Stable isotopes as niche proxies

δ13C (‰)

δ
1

5
N

 (
‰

)

Comparison of groups : 

Hull or ellipse size

Hull or ellipse overlap: the greater the 
overlap, the more the organism groups are 
likely to rely on shared resources



Stable isotopes as niche proxies

δ13C (‰)

δ
1

5
N

 (
‰

)

Comparison of groups : 

Hull or ellipse size

Hull or ellipse overlap: the greater the 
overlap, the more the organism groups are 
likely to rely on shared resources



Isotopic niches – Snake Pit shrimps

Pierre Methou
(Then Ifremer, now JAMSTEC)

Snake Pit hydrothermal field (Mid-Atlantic Ridge)

Spedicato et al. 2020



Isotopic niches – Snake Pit shrimps

Shrimp swarms notably containing two
congeneric species in variable densities and 
proportions
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Isotopic niches – Snake Pit shrimps

Shrimp swarms notably containing two
congeneric species in variable densities and 
proportions

Rimicaris exoculata: enlarged cephalothoracic
cavity hosting abundant episymbiotic
communities on which they depend for their
nutrition

Rimicaris chacei: smaller, no obvious
morphological adaptations to symbiosis, 
mixotrophic species (depend both on symbiotic
associations and "classical" feeding)
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Not only adults, but also juveniles / immature individuals
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Not only adults, but also juveniles / immature individuals

5 mm

2 mm

R. exoculata

Juvenile stade A

Juvenile stade B

Juvenile stade C
(Subadult)

R. chacei

Juvenile stade A

Juvenile stade B
(Subadult)

What do these species rely on throughout their life cycle stages occuring in vent ecosystems? Are 
there ontogenetic niche shifts?
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Isotopic niches – Snake Pit shrimps

Early stages (A):
Mostly photosynthetic nutrition reflecting larval stages in the water 
column
No overlap between the two species: larval niche segregation (trophic, 
habitat, or both)? Maternal carry-over effect?
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Isotopic niches – Snake Pit shrimps

Early stages (A):
Mostly photosynthetic nutrition 
No overlap between the two species

Intermediate stages (B and/or C)
Transition towards reliance on chemosynthesis

Adult stages
Chemosynthetic nutrition and marked niche separation
R. exoculata: narrow niche consistent with sole reliance on their
symbionts. Big gap between subadults and adults linked with strong
ecological and morphological changes
R. chacei: much wider niche (greater trophic diversity): mixotrophy
and/or reliance on multiple symbiotic partners



Isotopic niches – Snake Pit shrimps



Isotopic niches – Snake Pit shrimps

R. exoculata
Mostly rely on Campylobacterota (Epsilonproteobacteria) that 
dominate their symbiotic communities and use the rTCA cycle 
to oxidize sulfides

δ15N increase in adults unlikely to be linked with trophic 
position increase, but rather preferential assimilation of 
nitrates by those symbionts
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R. exoculata
Mostly rely on Campylobacterota (Epsilonproteobacteria) that 
dominate their symbiotic communities and use the rTCA cycle 
to oxidize sulfides

δ15N increase in adults unlikely to be linked with trophic 
position increase, but rather preferential assimilation of 
nitrates by those symbionts

R. chacei
Rely on multiple pathways of carbon fixation, with large inter-
individual differences (not opportunistic feeding!)

Stable isotopes alone cannot settle the relative importance of 
reliance on a diverse symbiont pool (CBB-using 
Gammaproteobacteria + rTCA-using Campylobacterota) vs. 
grazing on diverse bacterial mats along the vent gradient



Isotopic niches – Snake Pit shrimps

Symbiotrophic
Rimicaris exoculata

Mixotrophic
Rimicaris chacei

Phagotrophic
Mirocaris fortunata

Alvinocaris markensis
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M. fortunata only relies on endogenous vent production, but A. markensis’ niche is very wide and this species 
apparently feeds on a mix of photosynthesis- and chemosynthesis-derived items
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Rimicaris chacei
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Both phagotrophic species have higher δ15N : omnivory?

M. fortunata only relies on endogenous vent production, but A. markensis’ niche is very wide and this species 
apparently feeds on a mix of photosynthesis- and chemosynthesis-derived items

Stable isotopes allow tracing organic matter fluxes between ecosystems… Both ways!



Links between vents and peripheral habitats

Lucky Strike hydrothermal field (Mid-Atlantic Ridge)

Spedicato et al. 2020

Joan Alfaro-Lucas
(Then Ifremer, now U Victoria)



Links between vents and peripheral habitats

Deployment of artificial substrates along a vent proximity gradient for 2 years

Analysis of settled communities in terms of taxonomic, functional and isotopic diversity



Links between vents and peripheral habitats



Links between vents and peripheral habitats



Links between vents and peripheral habitats
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Links between vents and peripheral habitats

Partial reliance on chemosynthesis at the far site (100 m from any active vent): spatial subsidy extends way beyond 
areas under direct venting influence

To quantify this subsidy, you need to know the isotopic composition of your baseline 
(organic matter produced through chemosynthesis in the studied system)



Baseline variability inside a vent field

Lucky Strike vent field

Eiffel Tower & Capelinhos (~ 1.5 km 
apart)

Sánchez-Mora et al. 2022
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Baseline variability inside a vent field

General shift towards more positive δ13C, particularly marked in the foundation species Bathymodiolus azoricus (5)

Strong shift of the whole community towards higher δ34S

Alfaro-Lucas et al., In review



Baseline variability inside a vent field

Higher contribution of photosynthetic OM? Unlikely: overall low δ15N + similar depth and oceanographic features as 
other LS vents where export of photosynthetic OM is considered low to negligible

Alfaro-Lucas et al., In review



Baseline variability inside a vent field

Local differences in geochemistry: different rock/fluid interactions leading to isotopically heavy sulfides and/or co-
reliance of the vent community on CBB thiotrophy and methanotrophy (seen in other MAR vents like Rainbow)

Alfaro-Lucas et al., In review



Baseline variability inside a vent field

Local differences in geochemistry: different rock/fluid interactions leading to isotopically heavy sulfides and/or co-
reliance of the vent community on CBB thiotrophy and methanotrophy (seen in other MAR vents like Rainbow)

Alfaro-Lucas et al., In review
The absence of baseline data complicates the interpretation of trophic interactions inside a 

system or across systems

Baseline variation exists at multiple spatial scales
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Hulls built using isotopic compositions of symbiotrophic foundation species (Alviniconcha spp., Ifremeria nautilei, Bathymodiolus spp.)

Strong inter-basin differences in hull shape and size

No clear longitudinal effect…
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Some conserved relative positions, e.g. A. boucheti > 
A. kojimai : species-specific patterns in isotope 

fractionation during sulfide uptake by symbionts?

Main driver = geochemistry
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Changes in identity or metabolism of symbiotic partners, resulting in different isotopic composition of the 

holobionts?
 Changes in trophic position: unlikely as symbiotrophic species…
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To understand the trophic ecology of a species, info 
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To understand the trophic ecology of a species, info 
about its "isotopic landscape" (isotopic composition of 
baseline items, of other species, of previous sampling 

events, of its place in other comparable systems, etc…) 
highly desirable…

…Yet often hard to obtain due to constraining sampling 
logistics, analytical limitations, etc.
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DeepIso

Freely available at https://doi.org/10.17882/76595 under CC-BY licence

Goals: 
Produce a global, easily discoverable, available and reusable compilation of stable isotope ratios and 

elemental contents in organisms from deep-sea ecosystems

Provide the deep-sea community with an open data analysis tool that can be used in the context of future 
ecological research, and to help deep-sea researchers to use stable isotope markers at their full efficiency.

https://doi.org/10.17882/76595


DeepIso: core working group



DeepIso: data contributors



DeepIso

n

δ34S

6000

4000

2000

0
δ13C δ15N %C %N %S C/N

38335 measurements of 7 parameters



DeepIso

Benthic systems

Hydrothermal vents

Cold seeps

Pelagic systems

Cold water coral reefs

Organic falls

7248 distinct samples from multiple ecosystems, including 3164 (44%) from chemosynthesis-based ecosystems



DeepIso

Echinodermata

Arthropoda

Mollusca

Chordata

Annelida

Others

881 distinct taxa (+ sediment, detritus, suspended particulate organic matter, bulk plancton, etc.)



DeepIso

Worldwide spatial coverage
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▪ We are looking for people willing to share data, either 
underlying published articles, grey literature or even 
unpublished

▪ We are also looking for people willing to help with data 
carpentry
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▪ Integrate DeepIso with larger scale initiatives such as IsoBank

▪ Keep building up the database and maximising its scope by 
integrating more data

▪ We are looking for people willing to share data, either 
underlying published articles, grey literature or even 
unpublished

▪ We are also looking for people willing to help with data 
carpentry

Feeling like contributing? Questions? Feedback?
Get in touch!

DeepIso: what’s next?
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Take home message

▪ When used sensibly, stable isotopes allow to tackle diverse ecological 
questions in chemosynthesis-based ecosystems, either fundamental 
(ecosystem functioning) or applied (conservation)

▪ It’s important to pick the right tracers according to your question, and to 
keep their limitations in mind (e.g. δ15N and trophic position)

▪ Stable isotope markers are more efficient when properly contextualized. 
Whenever possible, adapt your sampling strategy to collect baseline items 
and/or other organisms with known feeding habits

▪ Plan ahead – if you’re thinking of doing stable isotope analysis, get in touch 
with the isotope lab of your choice before going on the field

▪ Consider archiving your data openly – you’ll likely benefit from it and so will 
the rest of the scientific community
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