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ABSTRACT. Thalattosuchia (Early Jurassic–Early Cretaceous) and Dyrosauridea (Late Cretaceous–Early
Eocene) are crocodylomorph archosaurs which diversified in fluvial and marine environments and endured ex-
tinction events (i.e. Jurassic–Cretaceous boundary for Thalattosuchia; Cretaceous–Paleogene for Dyrosauridea).
Their postcrania remain globally undervalued in anatomical descriptions and diagnoses, shrouding the loco-
motive adaptations that possibly underpinned their radiations and longevity. We thoroughly surveyed the
postcranial morphology of Dyrosauridea and Thalattosuchia, recreated their girdles in three-dimensions using
tens of high-precisions 3D scans, and analysed their shape using geometric morphometrics. Dyrosauridea
and Thalattosuchia have clearly distinct postcrania, even when found within similar environments, suggest-
ing the existence of clade-specific features limiting the strength of evolutionary convergence. Moreover, the
range of postcranial morphologies evolved by dyrosaurids and thalattosuchians is large compared to extant
crocodylians, making the latter unsatisfactory functional analogues for every group of extinct crocodylo-
morphs. Our work reveals the previously unsuspected potential of postcranial anatomy as an abundant source
of phylogenetic and taxonomic characters to assess the relationships within Crocodylomorpha. Incorporation
of postcranial anatomy therefore appears crucial to fully assess the ecology, disparity, and relationships of
crocodylomorphs.

1. INTRODUCTION

Crocodylomorpha is currently restricted to twenty-eight species of semi-aquatic ambush predators
(Rasmussen et al., 2011; Grigg and Kirshner, 2015; Stubbs et al., 2021; Griffith et al., 2023). Nevertheless,
its considerable fossil record reveals that Crocodylomorpha presented a significant diversity in the past
(Toljagı̀c and Butler, 2013; Bronzati et al., 2015; Tennant et al., 2016; Wilberg et al., 2019; Mannion
et al., 2019; Johnson et al., 2020; Young et al., 2020a; Jouve and Jalil, 2020a; Stubbs et al., 2021).
Thalattosuchia represents the most remarkable and diverse marine radiation within Crocodylomorpha
(Fanti et al., 2015; Wilberg, 2015a; Young et al., 2020a; Johnson et al., 2020), distinguishing itself with
its wide range of postcranial morphologies, likely representing several approaches to aquatic life within
the clade. Dyrosauridea is another lineage that colonized the aquatic realm. Both clades do not overlap
in time, with Thalattosuchia crossing the Jurassic–Cretaceous boundary and disappearing in the Early
Cretaceous (Young et al., 2012; Fanti et al., 2015; Chiarenza et al., 2015) while Dyrosauridea radiated by
the late Cretaceous and crossed the Cretaceous–Paleogene boundary (Jouve et al., 2006; Hastings et al.,
2014; Bronzati et al., 2015; Jouve and Jalil, 2020a). Each clade initially evolved in non-marine settings
before transitioning to marine environments (Wilberg et al., 2019; Young et al., 2020a; Johnson et al.,
2020; Jouve, 2021).

The postcranial anatomy of extinct crocodylomorphs constitutes an exemplary case of ambivalence.
Over their long evolutionary history, crocodylomorphs have colonized various environments from fully
terrestrial to fully aquatic (Toljagı̀c and Butler, 2013; Bronzati et al., 2015; Tennant et al., 2016; Wilberg
et al., 2019; Mannion et al., 2019; Johnson et al., 2020; Young et al., 2020a; Jouve and Jalil, 2020a; Godoy,
2020; Stubbs et al., 2021), as revealed by extensive modification of their postcranium. Yet, attention has
historically been focused on craniodential anatomy, resulting in the depreciation of postcranial anatomy
in diagnoses, anatomical descriptions, phylogenetic analyses, and palaeoecological inferences. Recent
studies on different groups of Crocodyliformes have started to shed light on the importance of postcranial
anatomy in understanding the lifestyle but also relationships of those extinct clades (Langston, 1995; Her-
rera et al., 2013; Godoy et al., 2016; Martin et al., 2016; Herrera et al., 2017; de Souza et al., 2019; Jouve
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and Jalil, 2020a; Jouve et al., 2021; Blanco, 2021). Withal, the postcranial anatomy of Thalattosuchia and
Dyrosauridae remains profoundly overlooked despite an evident disparity. In this study we investigate
the shape disparity of the girdle and upper appendicular anatomy of Thalattosuchia and Dyrosauridae
using geometrics morphometrics and discuss their potential as a source of taxonomic and phylogenetic
characters.

2. ABBREVIATIONS

BRLSI Bath: Bath Royal Literary and Scientific Institute, UK; BRSMG Bristol: Bristol City Museum
and Art Gallery, UK; GLAHM Glasgow: Hunterian Museum and Art Gallery, UK; GPIT Tübingen:
Geologisch–Paläontologisches Institut Tübingen, Germany; LRM Lyme: Lyme Regis Museum, UK;
MLP La Plata: Museo de La Plata, Buenos Aires, Argentina; NHMUK London: Natural History Mu-
seum, UK; MNHN Paris: Muséum national d’Histoire naturelle, France; MRAC Tervuren: Musée Royal
de l’Afrique Centrale, Belgium; NJSM Trenton: New Jersey State Museum, USA; NKNB Bamberg:
Naturkunde-Museum Bamberg, Germany; OCP Khouribga, Office Chérifien des Phosphates, Direction
de l’Exploitation de Khouribga, Geologie-Exploitation, Morocco; PMU Uppsala: Evolutionsmuseet, Up-
psala Universitet, Sweden; RBINS Brussels: Royal Belgian Institute of Natural Sciences, Belgium; SCR:
’Sur Combe Ronde’, Jurassica Museum, Porrentruy, Switzerland; SMNS Stuttgart: Staatliches Museum
für Naturkunde, Germany; UJF Grenoble: Joseph Fourier University, France; UF/IGM Gainesville: UF,
Florida Museum of Natural History, University of Florida, USA / IGM, Museo Geológico, at the Instituto
Nacional de Investigaciones en Geociencias, Minerı́a y Quimica, Bogotá, Colombia; YPM New Haven:
Yale Peabody Museum, USA.

3. MATERIAL AND METHODS

We created 3D models of the best preserved specimens of key species of Thalattosuchia and Dy-
rosauridea using high precision surface scanning (see Figure 1). We sampled specimens possessing both
postcranial and cranial materials, and some missing cranial remains but with outstanding postcrania (see
supplementary table 1 – in total one specimen for Crocodylia, 36 specimens for Thalattosuchia, and five
specimens for Dyrosauridae). We assign NHMUK PV R 3169 to Neosteneosaurus edwardsi based on the
morphology of its girdle elements, similarly to Johnson et al. (2015). We, and additional colleagues (pers.
comm. MM Johnson, April 2023) suspect that the coracoid of NHMUK PV R 3169 might actually be-
long to the holotype of Lemmysuchus obtusidens (NHMUK PV R 3168) based on its overall dimensions,
type of preservation, and the presence of bite marks on its distal blade. For this reason we included it in
the combined analyses. The majority of surface scan data were obtained using the surface laser scanner
Creaform HandySCAN 300 (accuracy of 0.2 mm). The surface models for the specimens of Hyposaurus
natator YPM VP.000753 and YPM VP.000985 were obtained using the white light scanner Artec EVA
(accuracy up to 0.5 mm). The surface model of Acherontisuchus guajiraensis was modelled using pho-
togrammetry (Meshroom version 2021.1.0) and assembled using Artec Studio 16. Blender (version 3.1.2)
was used to mirror bones into the preferred left polarity, and also to repair obvious defects portions (see
supplementary table 2 and supplementary figures 1–16). Our entire data set of 3D models comprises a
total of: ten scapulae, fourteen coracoids, seventeen humeri, twenty-two ilia, nineteen ischia, seventeen
pubes, and twenty-three femora. On each model, we placed a series of type-II landmarks (Bookstein,
1997) and sliding semi-landmarks (see supplementary tables 6–8 and supplementary figures 17–19) us-
ing the software Stratovan Checkpoint (version 2020.10.13.0859): scapula (6 type-II; 187 sliding); cora-
coid (9 type-II; 185 sliding); humerus (8 type-II; 172 sliding); ilium (14 type-II; 195 sliding); ischium
(11 type-II; 159 sliding); pubis (8 type-II; 169 sliding); femur (8 type-II; 132 sliding). The landmarks
were all placed by the same person. For the humeri phenograms, we used a series of two dimensional
measurements (namely length and width) to build our ratios. In total, the humeri phenograms contain
31 specimens with seven crocodylians, four dyrosaurids, eleven metriorhynchoids and nine teleosauroids
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(see supplementary table 9 for the complete list).

All subsequent analyses were run in the R statistical environment v4.1.2 (TEAM, 2013). Landmark
coordinates were saved as .pts files and imported in R using the READ.PTS function of the MORPHO pack-
age (Schlager et al., 2021). The isolated bone morphospaces were performed to allow the inclusion of a
greater portion of specimens (see supplementary figures 20–28). To analyse the distribution of landmarks
of each bone, we performed the Generalized Procrust Analysis (GPA) (using the GPAGEN function of the
GEOMORPH package, with the default option ProcD = FALSE Adams et al. (2022)) followed by a Prin-
cipal Component Analysis (PCA) (using the GM.PRCOMP function of the GEOMORPH package Adams
et al. (2022)). To assess the differences between the clades, we also computed a procrustes ANOVA
(Adams et al., 2022). In parallel, we also combined landmark coordinates to create new sets grouping
together the different pelvic or thoracic girdle elements (sometimes combining different specimens; see
supplementary table 1). Landmark coordinates were grouped after performing separate Generalized Pro-
crust Analysis (GPA) using the COMBINE.SUBSETS function of the GEOMORPH package (Adams et al.,
2022). Each new set was then subjected to a Principal Component Analysis (PCA) using the GM.PRCOMP
function of the GEOMORPH package (Adams et al., 2022) (see Figures 2 and 3). Again, the differences
between the clades for the new sets were assessed through a procrustes ANOVA (Adams et al., 2022).

We created a supertree based on the dataset from Jouve and Jalil (2020a,b), with additional phyloge-
netic relations for Teleosauroidea obtained from Johnson et al. (2020) and for Metriorhynchoidea from
Young et al. (2020a). We reanalysed this dataset using our parsimony protocol (TNT version 1.5; see Ben-
nion et al. (2023) for protocol) and randomly selected one most parsimonious tree. To fit our taxa from
our combined thoracic and pelvic morphometric analyses, and because sampling differs for each bone, we
removed and added tips to the tree using ADDTIP and DROPTIP functions from the TREETOOLS pack-
age (Smith, 2022) in R. Each newly created tree was calibrated in time with the minimum branch length
method and minimum value of three million years using the function TIMEPALEOPHY from the PALE-
OTREE package (v.4.1.3; Bapst (2012)) based on taxon occurrences obtained from https://paleobiodb.org.
The estimations for Dyrosauridea–Thalattosuchia and Dyrosauridea–Crocodylia roots were taken from
Jouve and Jalil (2020a). These dates were combined with morphological data to produce phylomor-
phospaces (see supplementary figure 29) using the PHYTOOLS package (Revell, 2012).

For each bone, the degree of phylogenetic signal was assessed using the Kmult method from the PHYSIG-
NAL function (GEOMORPH package Adams et al. (2022)). Kmult corresponds to the multivariate version of
the K-statistic (Adams, 2014). It determines the degree of phylogenetic signal under a Brownian motion
model of evolution, and Kmult values close to 1 indicate strong phylogenetic signal (Adams et al., 2022).
In parallel, we conducted, per bone, the updated Stayton distance-based convergence measure tests (Ct
metrics; Grossnickle et al. (2023)) on several pairs of crocodylomorphs. These pairs were selected as
the closest taxa in morphospaces regardless of their phylogenetic affinities. Ct metrics close to 1 indicate
convergence whereas negative values reflect divergence (Grossnickle et al., 2023). We also analysed the
correlation between the phenotypic and the phylogenetic distance by computing Mantel tests (1000 per-
mutations using the mantel function of the vegan v.2.5-6 package; Oksanen et al. (2019)).

4. RESULTS

4.1. Morphospace occupation. Thalattosuchia, Dyrosauridea and Crocodylia cover clearly distinct por-
tions of the morphospace for both girdles (see Figures 2 and 3; ANOVA p values <0.001). Teleosauroidea
and Metriorhynchoidea are also found in specific regions of the morphospaces, resulting in a large mor-
phospace occupation for Thalattosuchia, as also shown in individual bone analyses (see supplementary
figures 20–28). On the combined morphospaces, the clades appear markedly distinct from one another,
although the sampling is reduced. In addition, the thoracic and pelvic combined sets hint at the potential
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FIGURE 1. 3D models of girdle elements used in our analyses. A. left scapula in lateral view ; B. left coracoid in dorsal view
; C. left humerus in dorsal view ; D. left ilium in lateral view ; E. left femur in dorsal view ; F. Pelvic girdle reconstruction
in ventral view. Arrow points anteriorly. All scale bars represent 1cm. Crocodylomorphs silhouettes: Metriorhynchoidea &
Teleosauroidea (c) Gareth Monger – Licence CC BY 3.0; Dyrosauridae (c) Nobu Tamura, vectorized by Zimices – Licence
CC BY-SA 3.0; Crocodylia original picture (c) Thesupermart – License CC BY-SA 3.0.
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high interspecific variance of Teleosauroidea and Metriorhynchoidea respectively, and that shape dispar-
ity is not only carried by the humerus. Indeed, the mantel test recovers a relatively significant correlation
between phylogenetic distance and phenotypic distance for each dataset (thoracic dataset r=0.6299 &
p=0.007; pelvic dataset r=0.755 & p=0.004; thoracic+pelvic dataset r=0.845 & p=0.036).

Yet, the Kmult tests performed on isolated and combined girdle elements (see supplementary table
3) exhibited relatively weak phylogenetic signal (Kmult <1 with significant p-values p<0.005; Adams
(2014)) for our phylogenetic tree comprising Thalattosuchia, Dyrosauridea and Crocodylia. However,
strongly diverging branches between the clades on the phylomorphospaces implies the absence of any
kind of intersuperfamily convergent evolution. Solely within Thalattosuchia, the ilium (Kmult=0.7648
& p<0.005) and scapula (Kmult=0.6319 & p<0.005) showed a stronger phylogenetic influence meaning
that closely related taxa resemble each other slightly more than distantly related taxa (and potentially
reflecting some degree of evolutionary conservatism), although still less than expected under Brownian
motion (see supplementary table 4). The low Kmult values (i.e. Kmult <0.5) obtained for both the isolated
(with the exception of the ilium, scapula, and almost coracoid) and combined dataset note the presence
of intraclade convergence within Thalattosuchia (see supplementary tables 3 and 4).

We investigated the latter by performing the updated Stayton distance-based convergence tests (Ct met-
rics; see supplementary table 5). Our results (p<0.05) show the presence of limited convergence between
few thalattosuchian pairs for all isolated bones (i.e. Thalattosuchus superciliosus and Tyrannoneustes
lythrodectikos humeri ; Neosteneosaurus edwardsi and Thalattosuchus superciliosus pubes). In compari-
son, a singular intersuperfamily pair showed significant results (p<0.05) of divergence: the teleosauroid
Mycterosuchus nasutus and extant crocodylian Mecistops cataphractus scapulae. The remaining intra-
clade and intersuperfamily pairs are overall divergent (yet not significant; see supplementary table 5).

All clades differ in a number of traits. For the thoracic girdle (see Figure 2 A), Dyrosauridea displays
both the sturdiest scapula, with its enlarged scapular blade, and robust humerus, with its well-developed
distal condyles and thick shaft, resulting in positive values of the first axis. In contrast, the dyrosaurid
coracoid is the most gracile: it has a strongly developed proximal head but a reduced coracoid blade
and a slender shaft (resulting in positive values of the first and second axis respectively). Compara-
tively, Teleosauroidea displays a gradually shorter (proximodistal) and twisted (retroversion) humerus
(see Figure 2 E), along with a slender scapula and more developed coracoid, all resulting in (increasing)
negative values of both axes. The proximal region of the humerus is also enlarged and its deltopectoral
crest positioned more proximally than in Crocodylia and Dyrosauridea. Teleosauroidea shows a pos-
terior deflection of the humeral proximal head like Crocodylia, but its three proximal tuberosities are
less marked. The teleosauroid scapula is slender but possesses a relatively greater scapulocoracoid syn-
chondrosis, glenoid surface, and scapular blade which distinguishes it from Metriorhynchoidea. Basal
teleosauroids show a more developed and ventrally deflected scapulocoracoid synchondrosis, whereas
the orientation of the glenoid surface has a stronger lateral component among derived teleosauroids. The
teleosauroid coracoid bears both a large proximal head and coracoid blade with a medium to short shaft,
resulting in negative values of each axis. Metriorhynchoidea shows the most slender scapula (short scapu-
lar blade, short scapulocoracoid synchondrosis, and reduced glenoid surface) as well as the most gracile
and reduced humerus, resulting in negative values of the first axis. The metriorhynchoid humerus is short
and rod-like, with reduced proximal and distal articular facets. As in Teleosauroidea, the deltopectoral
crest of metriorhynchoids is set more proximally than in Crocodylia or Dyrosauridea. Metriorhynchoidea
also stands out with its peculiar coracoid showing: a large and perforated proximal head, a broad cora-
coid blade, a short shaft, and a reduced dorsoventral thickness. The overall expansion of the perforated
proximal coracoid head results in positive values of the second axis like in Dyrosauridea. Metriorhyn-
choidea displays a wide array of shape, ranging from slender to sturdy humeri (see Figure 2 C, and see
supplementary figures 20 & 24). Within Metriorhynchoidea, Geosaurus lapparenti stands out with its



LIMITED CONVERGENCE IN THE POSTCRANIUM OF AQUATIC CROCODYLOMORPHA 6

protruding posterior capitular tuberosity and absence of distinct distal capitula. Crocodylia shows pro-
portionally well-developed humerus, coracoid and scapula, resulting in positive values of the first axis.
The crocodylian coracoid shows relatively large and similarly sized proximal head and coracoid blade for
a shortened shaft. Overall, the scapulocoracoid synchondrosis of the crocodylian coracoid is proportion-
ally smaller than the glenoid surface resulting in negative values on the second axis. Crocodylia has a less
extensive scapular blade but a larger coracoid blade than Dyrosauridea, resembling teleosauroids. The
crocodylian humerus shows well-formed proximal tuberosities and distal condyles as in Dyrosauridea but
is more gracile.
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FIGURE 2. A. morphospace based on the combination of thoracic landmarks; B – D forelimb evolution within: B.
Teleosauroidea, Aeolodon priscus MNHN.F.CNJ 78 modified from Foffa et al. (2019); C. Metriorhynchoidea, Cricocau-
rus bambergensis NKMB-P-Watt14/274 modified from Sachs et al. (2019); D. Dyrosauridea, Dyrosaurus maghribensis
OCP DEK-GE 252 adapted from pictures courtesy of Stéphane Jouve. E. Phenograms based on the humeral ratio. Light
grey colored bones are reconstructed. Colored specimen numbers and names are used in this work. Bones not in anatomical
position. Crocodylomorphs silhouettes: Metriorhynchoidea & Teleosauroidea (c) Gareth Monger – Licence CC BY 3.0; Dy-
rosauridae (c) Nobu Tamura, vectorized by Zimices – Licence CC BY-SA 3.0; Crocodylia original picture (c) Thesupermart
– License CC BY-SA 3.0.
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Crocodylomorpha also differ in pelvic morphology (see Figure 3 A). Crocodylia and Dyrosauridea
possess relatively stout and twisted femora, ilia with large postacetabular processes and acetabular per-
forations, and proportionally anteroposteriorly limited ischia (all of which result in negative values of
both axes). Crocodylia also shows a strongly reduced pubic diaphysis and a thinner ischial shaft. Dy-
rosauridea displays a broad ilium with the largest and widest postacetabular process, but a relatively short
and stout preacetabular process and supraacetabular crest. The bony acetabulum appears relatively re-
duced whereas it is mediolaterally deep (as opposed to Teleosauroidea). The dyrosaurid ilium also bears
the strongest ventral indentation – the acetabular perforation – separating its peduncles. The dyrosaurid
ischium possesses a larger ischial blade than Crocodylia (with a short anterior process) but still less
developed than Thalattosuchia. In Dyrosauridea, the anterior peduncle (with the so-called ’pubic knob’)
and acetabular perforation of the ischium are the largest (and second largest in Crocodylia). Dyrosauridea
displays a slender pubis, with a well-developed pubic diaphysis and a greater inclination of the shaft com-
pared to Crocodylia. In addition, the pubic peduncle of Dyrosauridea is overall small with a relatively
circular outline. Dyrosauridea and Crocodylia show a double torsion of the femur (dorsoventrally and
anteroposteriorly), a marked fourth trochanter (stronger in Dyrosauridea), and display well-developed
distal condyles (separated by an intercondylar fossa). Teleosauroidea also displays a broad ilium but
a relatively short postacetabular process and long preacetabular process compared to Dyrosauridea and
Crocodylia. The teleosauroid bony acetabulum is the largest and is bordered by a relatively long supraac-
etabular crest (resulting in positive values of the second axis). In Teleosauroidea, the acetabular per-
foration is less marked than in Crocodylia and Dyrosauridea but still separates the peduncles (contra
Metriorhynchoidea). Teleosauroidea possesses a wide ischial blade with a pointed anterior process and
large posterior process (the latter resulting in positive values of the second axis). Its acetabular perforation
is mainly poorly developed and its anterior peduncle is strongly reduced (but larger than in Metriorhyn-
choidea). The pubis of Teleosauroidea is closer to that of Metriorhynchoidea with its relatively large pubic
diaphysis and oval peduncle, along with the marked inclination of the shaft laterally. Compared to Metri-
orhynchoidea, Teleosauroidea shows a stronger anterodorsal curvature of its femur and well-developed
distal condyles. Metriorhynchoidea possesses a reduced ilium with the lack of a postacetabular process, a
strongly reduced acetabular perforation and a continuous surface uniting the pubic and ischial peduncles
(resulting in positive values of the first axis). Basal metriorhynchoid ilia (see supplementary figures 21 &
25) are strongly similar to Teleosauroidea. The ischium of Metriorhynchoidea also possesses an enlarged
ischial blade but shows the most reduced anterior peduncle and acetabular perforation (see supplementary
figures 21 & 26). However, the pubis of Metriorhynchoidea possesses the greatest pubic diaphysis and
lateral inclination of the shaft (see supplementary figures 21 & 27). Like Teleosauroidea, the pubic shaft
of Metriorhynchoidea is shorter than Crocodylia and Dyrosauridea, but its peduncle is proportionally
larger and ovoid.

5. DISCUSSION

5.1. Phylogenetic implications. In the most recent phylogenetic datasets, postcranial characters only
represent about 27% of the total (Young et al., 2020b; Johnson et al., 2020). This number reaches 9%
in the goniopholidid+tethysuchian matrix of Jouve and Jalil (2020a). The preponderance of cranial char-
acters brings several issues, especially since craniodential morphology is known to be malleable (Pierce
et al., 2009) and convergent in crocodylomorpha (Young et al., 2010; Godoy et al., 2016; Martin et al.,
2016; McCurry et al., 2017; Martin et al., 2019a; Young et al., 2020b; Stubbs et al., 2021). This wide-
spread craniodental convergence has obscured the global positioning of Thalattosuchia in Crocodylomor-
pha (Jouve, 2009; Wilberg, 2015b, 2017) a well as the interrelationships of Thalattosuchia (Martin et al.,
2019a; Johnson et al., 2020). These issues were partially resolved with a better outgroup choice (Wilberg,
2015b). Increasing the dataset (quantity of characters and thalattosuchian OTUs) and character reassess-
ment (Young et al., 2016; Ősi et al., 2018; Johnson et al., 2020; Young et al., 2020b) has been met with
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FIGURE 3. A. morphospace based on the combination of pelvic landmarks; B–D hindlimb evolution within: B.
Teleosauroidea, Aeolodon priscus MNHN.F.CNJ 78 modified from Foffa et al. (2019); C. Metriorhynchoidea, Cricocau-
rus bambergensis NKMB-P-Watt14/274 modified from Sachs et al. (2019); D. Dyrosauridea, Dyrosaurus maghribensis
OCP DEK-GE 252 adapted from pictures courtesy of Stéphane Jouve. Light grey colored bones are reconstructed. Colored
specimen numbers and names are used in this work. Bones not in anatomical position. Crocodylomorphs silhouettes: Metri-
orhynchoidea & Teleosauroidea (c) Gareth Monger – Licence CC BY 3.0; Dyrosauridae (c) Nobu Tamura, vectorized by
Zimices – Licence CC BY-SA 3.0; Crocodylia original picture (c) Thesupermart – License CC BY-SA 3.0.
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limited success (Ősi et al., 2018; Johnson et al., 2020).

The scarcity of postcranial phylogenetic characters actually concerns Crocodylomorpha in its entirety
(Godoy et al., 2016; Martin et al., 2016; Mannion et al., 2019; Blanco, 2021). This issue is empha-
sized as postcranial anatomy is poorly presented and illustrated in publications, whether it is a matter
of historically missing materials or general contempt (Godoy et al., 2016; Martin et al., 2016; Mannion
et al., 2019; Scavezzoni and Fischer, 2021). Fortunately, recent works have started to incorporate more
postcranial anatomy in both descriptive works and character building, which has brought to light the rich
morphological disparity of Crocodylomorpha (Pol et al., 2012; Godoy et al., 2016; Martin et al., 2016,
2019b; Jouve and Jalil, 2020a; Jouve et al., 2021; Scavezzoni and Fischer, 2021), and its significance in
understanding crocodylomorph relationships (Pol et al., 2012; Godoy et al., 2016; Martin et al., 2016;
Jouve and Jalil, 2020a; Blanco, 2021).

In this context, it is clear that new data are in dire need to better constrain the phylogenetic evolution of
crocodylomorphs (Godoy et al., 2016; Mannion et al., 2019). Our convergence analyses show that appen-
dicular convergence amongst Crocodylomorpha is very rare. Despite showing a range of morphologies
in each bone, (semi-)aquatic crocodylomorphe groups are weakly convergent, highlighting the existence
of several clade-specific postcranial traits such as scapula’s acromion process development, scapuloco-
racoid synchondrosis size, coracoid proximal head perforation, iliac acetabular perforation size, ischial
acetabular perforation size and shape, ischial shaft shape, pubic diaphysis size, pubic apron lateral protu-
berance, etc. As a result, postcranial anatomy likely is an abundant source of phylogenetic and taxonomic
characters to assess the relationships within Crocodylomorpha.

5.2. The multiple ways of being an aquatic crocodylomorph. Both isolated and combined analyses re-
veal the clear postcranial dissimilarity between Crocodylia, Thalattosuchia and Dyrosauridea, regardless
of the thanatocoenosis, hinting at the presence of conservatism in the postcranium of Crocodylomorphs.
Among postcranial elements, the scapula, the coracoid and the ilium prove to be most distinctive for the
three clades. The humerus, ischium and pubis are mostly affected by the intraspecific variation of ‘Thalat-
tosuchus’ superciliosus, which putatively holds at least two morphotypes. Regarding the pubis, the semi-
aquatic teleosauroids have only evolved a limited range of morphologies compared to metriorhynchoids.
The metriorhynchoid and teleosauroid ischia appear overall similar for a wide range of thanatoceonose,
echoing the weight of conservatism in crocodylomorpha. Still, metriorhynchoid and teleosauroid ischia
bear distinct anatomical features (e.g. acetabular perforation, anterior peduncle shape, shaft thickness,
posterior process shape, etc.). In parallel, the wide variety of shape of both Teleosauroidea and Metri-
orhynchoidea humeri reflects the various and extensive modifications undergone in each lineage. Indeed,
the humerus shows progressive modifications in shape through time, gradually departing from the ple-
siomorphic crocodylomorph configuration to pursue different trends following the lineage. The most
recent phylogenetic hypotheses for Thalattosuchia (Johnson et al., 2020; Young et al., 2020b) suggest
that humeral reduction appeared independently thrice in Teleosauroidea and more than thrice in Metri-
orhynchoidea (see Figure 2 E, and see supplementary figure 30) (contra (Wilberg, 2015a; Young and
de Andrade, 2009)). Furthermore, the coracoid also undergoes two evolutionary changes with a proxi-
mal opening of the foramen in basal metriorhynchids and then reverts back to enclosed foramen in more
derived members. Therefore, the strong dissimilarity between Metriorhynchoidea and Teleosauroidea
mirrors the existence of specific evolutionary trends within Thalattosuchia. The thalattosuchian, and
more spectacularly metriorhynchoid, thoracic and pelvic girdles show a reduction of dorsal elements
along with an increase of ventral ones, similarly to other pelagic marine reptiles (e.g. nothosaurs and ple-
siosaurs; Krahl (2021)). This trend is not recovered within marine dyrosaurids which were presumably
as comfortable on land as at sea (Schwarz-Wings et al., 2009; Jouve, 2021). The overall reduction of
the forelimb and lengthening of the hindlimb in metriorhynchoids is a pattern found in other lineages of
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aquatic archosaurs like thalattosaurs (Liu et al., 2013) and hesperornithiformes (Bell et al., 2018), hinting
at the existence of another type of evolutionary trajectory for pelagic taxa differing from the development
of foreflippers among Archosauria.

Despite this conservatism, the diverging morphologies observed among aquatic to semi-aquatic crocody-
lomorphs likely mirror differences in their ecology, such as fully pelagic taxa reducing their dorsal girdle
elements as opposed to load-bearing semi-aquatic taxa. Furthermore, differences in feeding behaviours
(see Foffa et al. (2018)) required certain locomotor capabilities or constraint resistance, which appear to be
reflected in the postcranium (e.g. humeral shape variation). For example, Torvoneustes, Dakosaurus, and
Geosaurus evolved short and robust humeri that still markedly differ from on another in their overal shape,
so does their inferred feeding ecology (durophageous and cutting macrophages, respectively) (Foffa et al.,
2018)).

Another fascinating point concerns the location of the scapular glenoid facet of teleosauroids, which
changed several times across the teleosauroid evolutionary history regardless of their habitat. In teleosauroids,
the change in position of the glenoid facet on the scapula between more laterally and more posteriorly
oriented implies slightly differing orientations of the humerus in relation to thoracic girdle. Posteriorly
oriented glenoid facets on the scapula have occurred several times across the teleosauroid evolution-
ary history, with examples in at least Indosinosuchus potamosiamensis (Martin et al., 2019a), Neoste-
neosaurus edwardsi, and Platysuchus multiscrobiculatus whose habitats range from freshwater (Martin
et al., 2019a), to semi-aquatic and semi-terrestrial (Johnson et al., 2022) respectively. Although relatively
more elongated, the humerus of Platysuchus multiscrobiculatus resembles that of extant crocodylians,
namely in the shape and orientation of the proximal head, distal condyles, and position of the deltopec-
toral crest. Due to the orientation of the glenoid facet on both scapula and coracoid and their overall
shape, it is possible that the shoulder architecture of Platysuchus multiscrobiculatus in terms of soft tis-
sues (muscles and cartilage) could possess certain similarities with that of extant crocodylians, especially
when compared to more derived teleosauroids. Comparatively, in Indosinosuchus potamosiamensis and
Neosteneosaurus edwardsi, the proximal head displays a greater posterior deflection and has less marked
capitula and the condyles are anterodorsally twisted, which also impacts the orientation of the deltopec-
toral crest. In comparison, teleosauroids that display a laterally positioned glenoid facet on the scapula
also have a relatively straighter humerus, either due to a lesser angle of the posterior deflection or by
a proportionally shorter deflected head (distance between the tip deltopectoral crest and tip of proximal
head). Presumably, the change in position of the glenoid facet on the scapula reflects iterative changes in
the forelimb posture.

Thereby, it appears to exist multiple ways to be an aquatic crocodylomorph, not unlike what is observed
for the aquatic lizards Anolis (Leal et al., 2002). Indeed, geographically distinct aquatic Anolis species are
strongly dissimilar although their terrestrial counterparts – separated islanders – constitute the emblem
of convergence. Furthermore, some of those aquatic lineages seem to show convergence although solely
among themselves (Leal et al., 2002); a similar outcome was also found for Thalattosuchia. Hence,
postcranial anatomy seems to define clade-wide functional capabilities and should be taken into account
when discussing the palaeoecology of crocodylomorpha.

6. CONCLUSION

Similarly to aquatic anoles, our new dataset of crocodylomorph postcranial anatomy reveals that the
extinct marine clades Thalattosuchia and Dyrosauridea are strongly dissimilar in postcranial anatomy
(both in overall structure and in the morphological detail of individual bones), even though coloniz-
ing similar environments. Extant crocodylians are markedly divergent from extinct crocodylomorphs;
comparatively to Dyrosauridea and Thalattosuchia, extant crocodylians likely evolved a limited range
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of morphologies. Consequently, extant crocodylians do not represent flawless functional analogues for
extinct crocodylomorpha.

Thalattosuchia shows some degree of intragroup convergence for the pubis and humerus, whereas
the ilium and scapula appear more conservative. In comparison, the extinct crocodylomorphs appear
overall divergent throughout their postcranium. Postcranial elements manifest a high, previously unsus-
pected potential as a source of taxonomic and phylogenetic characters to precise the relationships be-
tween crocodylomorph groups. In addition, a better understanding of the ecology and disparity of extinct
crocodylomorphs appears only achievable through the inclusion of more postcranial elements, which we
show are more diversified than previously thought.
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8. LIST OF FIGURE CAPTIONS

Figure 1:
3D models of girdle elements used in our analyses. A. left scapula in lateral view ; B. left coracoid in
dorsal view ; C. left humerus in dorsal view ; D. left ilium in lateral view ; E. left femur in dorsal view
; F. Pelvic girdle reconstruction in ventral view. Arrow points anteriorly. All scale bars represent 1cm.
Crocodylomorphs silhouettes: Metriorhynchoidea & Teleosauroidea (c) Gareth Monger – Licence CC
BY 3.0; Dyrosauridae (c) Nobu Tamura, vectorized by Zimices – Licence CC BY-SA 3.0; Crocodylia
original picture (c) Thesupermart – License CC BY-SA 3.0.

Figure 2:
A. morphospace based on the combination of thoracic landmarks; B – D forelimb evolution within: B.
Teleosauroidea, Aeolodon priscus MNHN.F.CNJ 78 modified from Foffa et al. (2019); C. Metriorhyn-
choidea, Cricocaurus bambergensis NKMB-P-Watt14/274 modified from Sachs et al. (2019); D. Dy-
rosauridea, Dyrosaurus maghribensis OCP DEK-GE 252 adapted from pictures courtesy of Stéphane
Jouve. E. Phenograms based on the humeral ratio. Light grey colored bones are reconstructed. Colored
specimen numbers and names are used in this work. Bones not in anatomical position. Crocodylomorphs
silhouettes: Metriorhynchoidea & Teleosauroidea (c) Gareth Monger – Licence CC BY 3.0; Dyrosauri-
dae (c) Nobu Tamura, vectorized by Zimices – Licence CC BY-SA 3.0; Crocodylia original picture (c)
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Thesupermart – License CC BY-SA 3.0.

Figure 3:
A. morphospace based on the combination of pelvic landmarks; B–D hindlimb evolution within: B.
Teleosauroidea, Aeolodon priscus MNHN.F.CNJ 78 modified from Foffa et al. (2019); C. Metriorhyn-
choidea, Cricocaurus bambergensis NKMB-P-Watt14/274 modified from Sachs et al. (2019); D. Dy-
rosauridea, Dyrosaurus maghribensis OCP DEK-GE 252 adapted from pictures courtesy of Stéphane
Jouve. Light grey colored bones are reconstructed. Colored specimen numbers and names are used
in this work. Bones not in anatomical position. Crocodylomorphs silhouettes: Metriorhynchoidea &
Teleosauroidea (c) Gareth Monger – Licence CC BY 3.0; Dyrosauridae (c) Nobu Tamura, vectorized by
Zimices – Licence CC BY-SA 3.0; Crocodylia original picture (c) Thesupermart – License CC BY-SA
3.0.
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