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ABSTRACT

Context. In close binary systems, tidal interactions and rotational effects can strongly influence stellar evolution as a result of mass
transfer and common envelope phases. These aspects can only be treated following improvements of theoretical models to take into
account the breaking of spherical symmetry occurring in close binaries. Current models of binary stars rely on either the so-called
Roche model or the perturbative approach, both of which result in several assumptions concerning the gravitational, tidal, and cen-
trifugal potentials.
Aims. Our aim is to develop a precise 3D model of stellar deformations and to study the robustness of the Roche and perturbative
models in different deformation regimes.
Methods. We developed a new non-perturbative method to compute the precise structural deformation of a binary system in three
dimensions that is valid even in the most distorted cases. We then compared our new method to the Roche and perturbative models
for different orbital separations and binary components.
Results. We found that in the most distorted cases, both the Roche and perturbative models significantly underestimate the deforma-
tion of binaries. The effective gravity and the overall structural deformations are also noticeably different in the most distorted cases,
leading to modifications of the usual gravity darkening generally obtained through the Roche model when interpreting the observa-
tions. Moreover, we found that the dipolar term of the gravitational potential, usually neglected by the perturbative theory, has the
same order of magnitude as the leading tidal term in the most distorted cases.
Conclusions. We developed a new method that is capable of precisely computing the deformations of a binary system composed of
any type of stars, even compact objects. For all the stars we studied, the differences in deformation with respect to the Roche or per-
turbative models are significant in the most distorted cases, which impacts both the interpretation of observations and the theoretical
structural depiction of these distorted bodies. In the weaker deformation regimes, the Roche model is a viable option for studying the
surface properties of binaries, while the perturbative model is strongly favoured when evaluating structural deformations.
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1. Introduction

The recent work of Sana et al. (2012, 2013, 2014) showed that a
significant fraction of massive binary stars (>70%) are impacted
during their lifetime by interactions with their companions.
While massive stars have a high occurrence rate in a binary sys-
tem (Sana & Evans 2011; Sana et al. 2012, 2013, 2014), both
evolved and main sequence (MS) low-intermediate mass stars
are also commonly found in binary systems (Slawson et al.
2011; Price-Whelan et al. 2018; Gaia Collaboration 2022). The
recent Gaia Data Release 3 (Gaia Collaboration 2021) offers the
possibility to catalogue non-single stars, as more than 800 000 of
them were discovered (Gaia Collaboration 2022), allowing us to
find and study the most peculiar systems.

In a binary system, the presence of a nearby companion
alters the classical evolutionary path of each binary compo-
nent (Hurley et al. 2002; Sana et al. 2012), leading in the most
extreme cases to X-ray binaries (Savonije 1978; Patterson 1984)
or gamma ray bursts (Aharonian et al. 2005), for example. For
any type of close binaries, the Roche-lobe overflow is a com-
mon phenomenon (Sana & Evans 2011; Sana et al. 2012, 2013,
2014). It is characterised by a material and angular momentum
transfer that can even strip stars from their envelope in some
systems, and it is believed to be at the origin of hot sub-dwarfs

(Han et al. 2002, 2003; Heber 2009). Moreover, phases of com-
mon envelope can allow the binary components to exchange
angular momentum or chemicals, for example. Before reach-
ing such stages, stars experience deformations induced by their
mutual interactions dominated by the gravitational, tidal, and
centrifugal forces.

A correct modelling of these deformations is crucial in order
to determine an accurate stellar structure of each component of
the binary system during these phases and to study their evolu-
tion. Such models are also necessary as starting points to study
the physics behind mass transfer in more detail, which currently
relies on numerous free parameters and assumptions. Finally,
these models can contribute to precise computations of system
apsidal motions that impose direct observable constraints on the
stellar structure in a binary system usually theoretically obtained
with the perturbative model (Rosu et al. 2020).

The modelling of deformations is currently based on two
independent types of models: the Roche model and the pertur-
bative model. The principle of the Roche model is to treat binary
components as point-mass bodies using a simplified expression
of the gravitational and tidal potentials. On the other hand, the
principle of the perturbative model is to treat the centrifugal and
tidal forces as a first order perturbation to the spherical sym-
metry, only accounting for the leading orders of gravitational
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potential (` = 0, 2 Kopal 1959, 1978) and neglectingthe dipolar
term (` = 1) in particular. Both models are first order approxima-
tions that consider spherically symmetric stellar density distri-
butions. In the least distorted cases, the different assumptions of
the classical modelling procedure are justified and allow for the
study of the stellar surface deformations, effective gravity, and
even structure (Siess et al. 2013; Palate et al. 2013; Prša 2018;
Fabry et al. 2022). However, in the most distorted cases, the
redistribution of mass caused by the deformation, as well as the
different assumptions made by the classical models, can cause
inaccuracies in the depiction and study of the stellar deforma-
tions, particularly in the low-mass regime (Landin et al. 2009).

To study the limits of classical models and get an accu-
rate computation of the stellar surface deformations, even in
the most distorted cases, we developed a new non-perturbative
approach in three dimensions based on a method presented in
Roxburgh (2004, 2006) and recently used by Manchon (2021),
Houdayer & Reese (2023) to model rotating stars in two dimen-
sions. This tool, called Modelling Binary Deformation Induced
by Centrifugal and Tidal forces (MoBiDICT), was developed
in Fortran 95 for computational efficiency. The principle of
MoBiDICT is to iteratively solve Poisson’s equation, including
the centrifugal and tidal forces in a non-perturbative way. More
than obtaining accurate surface quantities, such non-perturbative
models give access to the entire, precise 3D structure of each
binary system component, allowing accurate computation of
gravity darkening or the apsidal motion constant, even in the
most distorted cases. Finally, the impact of deformations on the
time evolution of the stellar internal structure becomes accessi-
ble with such detailed models.

In this work, we start by giving a technical and physi-
cal description of our new modelling method in Sect. 2. In
Sect. 3, we present the post-treatment of our code that computes
the effective gravity and gives the physical insights to couple
MoBiDICT to classical 1D stellar evolution codes. Section 4 is
dedicated to the presentation of the Roche model and its com-
parison with our new models. The presentation and comparison
with the perturbative model is done in Sect. 5. Finally, the con-
clusion, the possible improvements, and applications of our new
types of models are discussed in Sect. 6.

2. Stellar models and properties

In this section, we describe and give the technical details of
our novel modelling procedure to compute 3D non-perturbative
models of close synchronised binaries in hydrostatic equilib-
rium. Our method is an iterative procedure designed to include
the impact of stellar deformations on the stellar structure of the
whole system.

In Sect. 2.1, we present the general properties of the prob-
lem that we solve as well as the general principle of MoBiDICT.
Then in Sects. 2.2 and 2.3, we detail the modelling procedure
by describing the different steps of each iteration. Finally, in
Sect. 2.4, we present our convergence criterion and the differ-
ent readjustments made at the end of each modelling iteration.

2.1. General modelling procedure

In the case of a binary system, the equations governing the
hydrostatic structure of a given rotating component i are given
by

∇P
ρ

= −∇ (Ψ1 + Ψ2 + Ψcentri) = geff , (1)

and the Poisson equation

∆Ψi = 4πGρi, (2)

where ρ(r, µ, φ) and P(r, µ, φ) respectively denote the density
and the pressure in the spherical polar coordinates (r, µ, φ), with
µ = cos(θ), θ being the polar angle, φ being the azimuthal angle,
and r being the radial coordinate. The gravitational potential of
the arbitrary selected primary star of the system is denoted by
Ψ1(r, µ, φ); Ψ2(r, µ, φ) is the gravitational potential of its com-
panion; and Ψcentri is the centrifugal potential later defined in
Eq. (13). Equation (2) is a second order non-linear differential
equation in three dimensions with Ψi(r, µ, φ) → 0 at the infinity
as the boundary conditions.

Assuming stars with a solid body rotation, all the forces here
considered were derived from a potential. Thus the problem is
conservative. By combining Eq. (1) and its curl,

∇ ×

(
∇P
ρ

)
= −
∇ρ × ∇P

ρ2 = −∇ × ∇ (Ψ1 − Ψ2 − Ψcentri) = 0, (3)

we deduced that the structure of each star is barotropic, which
means that the density and pressure are constant on a given
equipotential. At a given chemical composition, the structure
of stars becomes thermotropic, implying that the temperature is
also constant on the equipotentials. To take advantage of these
properties, we assumed that the density of each star is given by
a one dimensional, spherically symmetric input model along a
given arbitrary direction (µcrit, φcrit). Therefore, in this direction,
we can associate a total potential to a density distribution, and
by computing the total potential on the whole star, we deduce
the 3D density profile of each component of the system. The
choice of the direction (µcrit, φcrit) is detailed in Sect. 3.1.

By assuming that stars have their rotation axis aligned to the
orbital rotational axis, two planes of symmetry appeared. The
first one is the orbital plane, and the second one is in the plane
including the two stellar rotation axes and the orbital rotation
axis. With these two symmetries, a description of one quarter of
each star was sufficient to model the entire system in 3D.

The principle of our modelling method is to iteratively solve
Poisson’s equation on a spherical harmonic basis for each star in
order to compute, in a non-perturbative way, the impact of tidal
and centrifugal forces on the stellar hydrostatic structure. This
method is a generalisation of the method of Roxburgh (2004,
2006) in 3D and for binary systems. Each iteration of our mod-
elling technique proceeded as follows:
1. As an initial model, we took an input density profile from a

spherically symmetric 1D model (i.e., ρi(r, µ, φ) = ρi,1D(r))
obtained through a stellar evolution code for each star i com-
posing the system.

2. We solved Poisson’s equation (Eq. (2)) knowing ρi(r, µ, φ),
and we computed Ψtot = Ψ1 + Ψ2 + Ψcentri for each star.

3. We deduced ρi(r, µ, φ) from Ψtot(r, µ, φ) using the barotropic
property of our problem. More precisely, along the direc-
tion (µcrit, φcrit), we computed Ψtot(r, µcrit, φcrit) and imposed
that ρi(r, µcrit, φcrit) = ρi,1D(r). Since ρi and Ψtot are two
monotonic functions of r, we obtained the function ρi(Ψtot).
Finally, we simply had ρi(r, µ, φ) = ρi(Ψtot(r, µ, φ)).

4. We estimated the quantities δρi(r, µ, φ) and δΨi(r, µ, φ) that
we used as a convergence indicator and readjusted the model.
If the model did not converge, we started again from step
two, using ρi(r, µ, φ) obtained in step three as an input.
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2.2. Solution for Ψtot given ρi

Given ρi(r, µ, φ) on a grid (r, µ, φ) for each star i, we solved Pois-
son’s equation (Eq. (2)) in order to obtain the potential Ψi(r, µ, φ)
and deduce Ψtot = Ψ1 + Ψ2 + Ψcentri. We decided to adopt an
individual spherical coordinates grid (ri, µ, φ) centred on each
star i with ri pointing toward the centre of mass of the system
when φ = 0 and µ = 0. The colatitude µ and φ share a common
mesh for each star, while ri depends on the mesh of the input
1D models. Taking advantage of the two symmetrical plans of
the problem, we could limit the angular domain to µ ∈ [0, 1] and
φ ∈ [0, π].

Generalising the method presented by Roxburgh (2006) in
3D and for binaries, we expressed ρ and Ψ as a finite sum of
spherical harmonics with

ρi(ri, µ, φ) =

L∑
`=0

(`−p)/2∑
k=0

ρm
i,`(ri)Pm

` (µ) cos(mφ), (4)

and

Ψi(ri, µ, φ) =

L∑
`=0

(`−p)/2∑
k=0

Ψm
i,`(ri)Pm

` (µ) cos(mφ), (5)

where p = 0 if ` is even, p = 1 if otherwise, and m = 2k + p.
The free parameter of our model defining the maximum degree
of the spherical harmonics to account for is as denoted L. In our
work, the spherical harmonics Ym

` (µ, φ) = Pm
` (µ) cos(mφ) were

normalised as∫ π

0

∫ 1

0
Pm
` (µ) cos(mφ)Pm′

`′ (µ) cos(m′φ)dµdφ = δ``′δmm′ , (6)

where δi j is Kronecker’s delta, only , 0 and = 1 when i = j.
To obtain Ψm

i,`, we solved Poisson’s equation on the spherical
harmonics basis, which is expressed as

1
r2

i

d
dri

(
r2

i

dΨm
i,`

dri

)
−
`(` + 1)

r2
i

Ψm
i,` = 4πGρm

i,`, (7)

with the boundary conditions as Ψm
i,`(0) = 0 if ` , 0 and

(` + 1)Ψm
i,` + ri

dΨm
i,`

dri
= 0 at ri = Ri,0, (8)

where Ri,0 denotes a given radius at the exterior of the star i. To
project the density on the spherical harmonics basis, we used the
integral relation

ρm
i,`(ri) =

∫ 1

0

∫ π

0
ρi(ri, µ, φ)Pm

` (µ) cos(mφ)dφdµ. (9)

As mentioned by Roxburgh (2006), the computation of ρm
i,`(ri)

through Eq. (9) using a detailed mesh can become a real prob-
lem in terms of computation time and the precision required.
To reduce this problem, we decided to use a mesh of µ and φ
following the Gauss-Legendre quadrature method. This method
allows for an exact solution to an integral of a polynomial of
degree 2n − 1, where n is the number of points in the integration
domain. Drastically reducing the number of points in grids while
increasing the integral precision, the Gauss-Legendre quadrature
method is particularly efficient for computing integrals of func-
tions, such as our spherical harmonics.

An integral representation of the solution of Eq. (7) with the
boundary conditions presented in Eq. (9) can be written as

Ψm
i,`(ri) = r`i 4πG

∫ ri

R0,i

r′−(2`+2)
i

[∫ r′i

0
r′′`+2

i ρm
i,`(r

′′
i )dr′′

]
dr′

−
r`i

R2`+1
0,i

4πG
2` + 1

∫ R0,i

0
r′`+2

i ρm
i,`(r

′
i )dr′. (10)

An equivalent representation of Eq. (10) used by Kopal (1959,
1978), Fitzpatrick (2012), for example, is expressed as

Ψm
i,`(ri) = −

4πG
(2` + 1)r`+1

i

∫ r′i

0
r′`+2

i ρm
i,`(r

′
i )dr′ −

4πGr`i
2` + 1

∫ R0,i

r
r′1−`i ρm

i,`(r
′
i )dr′.

(11)

Both equivalent solutions were implemented in our code, and the
only difference between the two is related to the numerical treat-
ment of the integrals in the limit ri → 0. To avoid further com-
plications in this region, we exploited the linearity of ρm

i,`(r
2
i )/r`i

close to the singularity with our trapezoidal integration method
to increase the integration precision. With both solutions, the
same results were obtained. For all the work presented in the
rest of this article, we used the solution given by Eq. (10).

Inside MoBiDICT, all the equations solved and quantities
used are dimensionless in order to facilitate the computations.
To non-dimensionalise the system, we used constants of a binary
system. The different dimensionless variables of the system are
expressed as

xi = ri/a; m′i = mi/Mtot; ρ′i = ρi/
( Mtot

4πa3

)
;

Ψ′i = Ψi/
(GMtot

a

)
; Ω′2? = Ω2

?/
(GMtot

a3

)
, (12)

where a is the separation of the binaries, Mtot is the total mass
of the binary system, Ω? is the orbital rotation rate, and G is the
gravitational constant. From a numerical point of view, having
dimensionless variables is useful. In our case, the quantities used
to non-dimensionalise were chosen to simplify the 4πG constant
in Poisson’s equation (Eq. (2)) and the integral representation
of its solution (Eqs. (10) and (11)). In the rest of this article,
the equations and quantities presented are with dimensions to
maintain the physical sense of the problem.

Using the presented method, the following steps are per-
formed to compute the total potential of each star:
1. With the density provided for each star ρi(ri, µ, φ), we deter-

mined their spectral expansion ρm
i,`(ri) through Eq. (9).

2. We numerically computed Poisson’s equation (Eq. (7)) solu-
tion given by Eq. (10) for each star in order to obtain their
gravitational potential projected on the spherical harmonics
basis: Ψm

1,`(r1) and Ψm
2,`(r2).

3. Using the proper coordinates conversion and the previously
determined spectral quantities, namely Ψm

1,`(r1) and Ψm
2,`(r2),

we determined each gravitational potential on the grid of
each star, obtaining Ψ1(r1, µ, φ), Ψ1(r2, µ, φ), Ψ2(r1, µ, φ),
Ψ2(r2, µ, φ). Finally, we computed the total potential Ψtot =
Ψ1 + Ψ2 + Ψcentri on the grid of each star.

The centrifugal potential of each star, assuming a synchronised
solid body rotation aligned to the orbital rotation axis, can be
expressed as

Ψcentri(r, µ, φ) = −
Ω2
?

2
$2(r, µ, φ)

= −
Ω2
?

2

[
(xCM − r sin(θ) cos(φ))2 + (r sin(θ) sin(φ))2

]
,

(13)
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where $(r, µ, φ) is the distance, on the orbital plane from the
orbital rotation axis of the element considered, Ω? is the stellar
and orbital rotation rate, xCM is the distance of the star from the
centre of mass of the system.

Our formalism is not limited to solid body rotation with
aligned rotational axis. By modifying the centrifugal poten-
tial, we can extend the method to model the cases of non-
synchronised, non-aligned solid body rotations. These specific
cases could be important to model since we expect non-
synchronised stellar rotations close to the critical velocity as a
result of mass transfer within binary systems. This generalisa-
tion of our formalism will be presented in a forthcoming article.

2.3. Solution for ρ given Ψtot

Given Ψtot, which we determined in the Sect. 2.2, we wanted to
estimate the corresponding density for of each star. We exploited
the fact that the structure of each star is barotropic, meaning that
the density is constant on the equipotentials.

Assuming that the density of a star i along a given
direction µcrit and φcrit is the density of the corresponding
averaged 1D input model, we could determine the functions
ρi(Ψi,tot(ri, µcrit, φcrit)) = ρi,1D(ri) for each star. Then, by simple
function composition and interpolation, we could estimate the
density of the entire star with the total potential on each point of
the grid.

2.4. Readjustment and criterion for the convergence
of the method

A readjustment of the density was necessary to conserve the total
mass of each star and the system. By the simple integration of
ρm=0

i,`=0(ri), we obtained the total mass of each star with our new
density profiles. We then corrected the entire stellar density pro-
files by the ratio of the mass from the average 1D input models
to the new mass obtained.

At this modelling step, several readjustments were made
in order to verify different basic laws impacted by the non-
sphericity of the models. In particular, we solved a system of
equations verifying the balance of forces at the centre of each
star in order to properly recompute the centre of mass and the
orbital period of the system and maintain the balance of the
forces. The system of equations solved at this modelling step
is presented in Appendix A.

The convergence of our method was guided by the variations
of the density and gravitational potential between two succes-
sive iterations. These variations quantified the contribution of
each iteration to the deformation of each point of a star and thus
gave a direct control of the convergence of our modelling. The
point at which deformation was expected to be the most impor-
tant is at the point closest to the Lagrangian point L1 in each
star i: (Rs,i, µ = 0, φ = 0). Thus, if the variation of potential and
density at this point was negligible, compared to the previous
iteration, then the entire model had converged. In the rest of our
work, Rs,i denotes the radial coordinate of the stellar surface in a
given direction(µ, φ). Our normalised convergence criterion for
a model at the iteration j was

δρm
i, j,` =

ρi, j(Rs,i, j, 0, 0) − ρi, j−1(Rs,i, j−1, 0, 0)
ρi, j(Rs,i, j, 0, 0)

, (14)

or

δΨm
i, j,` =

Ψi, j(Rs,i, j, 0, 0) − Ψi, j−1(Rs,i, j−1, 0, 0)
Ψi, j(Rs,i, j, 0, 0)

. (15)

Given the normalised precision of our 1D average input models
of about 10−8 on the density, we used δρm

i, j,` < 10−8 and δΨm
i, j,` <

10−8 as the criterion for convergence for each star. This value
can be adjusted in order to reduce the computation time of our
models if high-precision modelling is not required.

3. Post-treatment of the models

Once we obtained a final model with the desired precision,
the models went into to a post-processing phase. During this
phase, the different properties of the models were extracted and
used to potentially include our new 3D models in stellar evo-
lutionary models using the method of Kippenhahn & Thomas
(1970). Later revisited by Meynet & Maeder (1997), this
method has been extensively used in the literature (Roxburgh
2004; Landin et al. 2009; Siess et al. 2013; Palate et al. 2013;
Fabry et al. 2022) to couple deformations to 1D stellar evolu-
tionary models.

Following this method, the stellar structural equations were
averaged over isobars of our 3D models to give a one dimen-
sional description of the stellar-distorted structure usable by stel-
lar evolution codes.

3.1. Mass conservation equation

Next, we introduce mp, denoting the mass encompassed under
an isobar of pressure p and the averaged radius rp, such as Vp =
4
3πr3

p, which is the volume under this isobar. With this notation,
the mass conservation equation is unmodified and given by

dmp

drp
= 4πρr2

p. (16)

By construction, the critical direction (µcrit, φcrit) was chosen to
verify Eq. (16) at each layer of the star, implying that rp,i = ri
and mp,i = mi in the whole star.

3.2. Hydrostatic equilibrium

Following Eq. (1), the infinitesimal distance dn between the
equipotentials Ψtot and Ψtot + dΨtot is given by

dn = |geff |
−1dΨtot. (17)

With this formalism, the volume between two isobars is obtained
with

dVp =

∫
Ψtot

dndσ, (18)

where the integrals on Ψtot denote integrals taken over isobars of
constant Ψtot and dσ is an isobar surface element expressed as

dσ = −r(µ, φ)2 |geff | · |r|
geff · r

dµdφ. (19)

In Eq. (19), |geff | denotes the norm of the effective gravity pre-
sented in Eq. (1), and r(µ, φ) is the radial position of the chosen
isobar in the direction (µ, φ). The analytical expression of the
effective gravity in our new models is developed in Appendix B.
Equation (18) can be integrated and combined to Eqs. (17)
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and (19) to obtain the volume under an isobar:

Vp =

∫ Ψtot

Ψtot,c

dΨtot

∫
Ψtot

|geff |
−1dσ

=

∫
µ,φ

dµdφ
∫ Ψtot

Ψtot,c

r(µ, φ)2 ∂r
∂Ψtot

dΨtot (20)

=
1
3

∫
µ,φ

r(µ, φ)3dµdφ,

where Ψtot,c is the total potential at the centre of the star. Finally,
the mass between two isobars is expressed as

dmp = ρ

∫
Ψtot

dndσ = ρdΨtot

∫
Ψtot

|geff |
−1dσ. (21)

Therefore, the equation of hydrostatic equilibrium can be
expressed as

dP
dmp

=
dP

dΨtot

dΨtot

dmp
= −

(∫
Ψtot

|geff |
−1dσ

)−1

, (22)

which can be written as

dP
dmp

= − fp
Gmp

4πr4
p
, (23)

where,

fp =
4πr4

p

Gmp

(∫
Ψtot

|geff |
−1dσ

)−1

. (24)

3.3. Transport of energy

In this section, we assume that the chemical composition of each
star is constant on each isobar. Therefore, the isobars become
isotherms.

In the radiative zone, the norm of the local flux is given by

F = −
4acT 3

3κρ
dT
dn
, (25)

where T is the temperature of a given isobar, κ is its opacity, a
is the radiation constant, and c is the speed of light in the vac-
uum. Equation (25) can be rewritten using Eq. (17), and the mass
conservation equation (Eq. (16)) can be rewritten as

F = −
4acT 3

3κ
dT
dmp

(∫
Ψtot

|geff |
−1dσ

)
|geff |, (26)

which is the classical formulation of the gravity darkening.
By integrating on an entire equipotential, we obtained the

luminosity:

Lp = −
4acT 3

3κ
dT
dmp

∫
Ψtot

|geff |
−1dσ

∫
Ψtot

|geff |dσ. (27)

The temperature gradient could thus be expressed as

dT
dmp

= −
3κLp

4acT 3

(∫
Ψtot

|geff |
−1dσ

∫
Ψtot

|geff |dσ
)−1

(28)

= − fT
3κLp

64π2r4
pacT 3

, (29)

where we introduced the corrective factor

fT = 16π2r4
p

(∫
Ψtot

|geff |
−1dσ

∫
Ψtot

|geff |dσ
)−1

. (30)

Finally, the correction of the radiative gradient is

∇rad,p =
fT
fp
∇rad. (31)

To find the boundaries of convective zones, this corrective fac-
tor had to be applied to the radiative gradient. We note that the
computed 3D deformations are mainly significant in the upper
regions of stars, which means that fT/ fp ≈ 1 close to the convec-
tive boundaries for most of the stars.

3.4. Conservation of energy

The energetic balance of a shell of mass mp is trivial and gives
the classical equation

dLp

dmp
= ε − T

ds
dt
, (32)

where ε denotes the net energy production rate and s is the
entropy. We note that to couple MoBiDICT to 1D stellar evo-
lution codes, the computation of the effective gravity is required.
The analytical expression of this effective gravity in our new
models is given in Appendix B. Other main requirements
included the detection of the equipotential and the interpolation
of different quantities on each equipotential, assuming that the
potential of each star in the direction (µcrit, φcrit) corresponds to
the reference 1D stellar input model. In this work, fT and fp
are also employed as structural deformation indicators in order
to study the differences between models, as these quantities are
isobar averages of the stellar deformation over the entire stellar
structure.

4. Comparison with the Roche model

One classical way of describing the total potential in a binary
system is the Roche model. While this model makes strong
assumptions regarding stellar structure, it also allows for sim-
ple analytical expressions of the total potential at a given point
of a system.

In this section, we explore the Roche model, looking in par-
ticular for the differences between the Roche model and our
more accurate models. Section 4.1 is dedicated to a theoretical
presentation of the Roche model and the different assumptions
made by this model. In Sect. 4.2, we present the different stellar
models and binary systems that we model and compare in later
sections.

Section 4.3, we study the difference in surface deformation
between the Roche model and our models for different types of
stars. Section 4.4 is focussed on the differences of surface gravity
that are essential to not only the computation of the gravity dark-
ening but also the interpretation of binary system observations.
Finally, in Sect. 4.5, we explore the differences in structural mod-
elling of the Roche model and our modelling for different types
of stars composing the binaries we selected.

4.1. Theoretical formulation of the Roche model

The Roche potential describes the total potential on a given point
of the system that is produced by two point-like gravitationally
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interacting bodies and the consequent centrifugal potential cre-
ated. The main advantage of the Roche model is the possibility to
have simple analytical expression of the total potential. To obtain
such expressions, several assumptions are made: The orbits of
the stars are assumed to be circular, and the stellar rotation is
assumed to be synchronised to the orbital rotation. The stars are
assumed to behave in a point-like manner, which means that the
mass of their envelope is neglected to compute the tidal poten-
tial. The stars are also assumed to have a spherically symmetric
density profile, even in the most distorted cases.

The Roche model is overly used in the literature to com-
pute the gravitational potential of distorted binaries at their sur-
face and outside of stars (Siess et al. 2013; Palate et al. 2013;
Fabry et al. 2022). In the most extreme cases, this potential is
even used to compute structural deformation of the components
of binary systems through the coefficients fp and fT, as presented
Sects. 3.2 and 3.3.

In its classical formulation, the total Roche potential of a
given point in the grid of the arbitrarily chosen primary of the
system is given by

Ψtot,i = Ψ1 + Ψ2 + Ψcentri, (33)

where Ψ1 and Ψ2 are, respectively, the gravitational potential of
the primary and secondary stars, expressed as

Ψi = −
Gmi(ri)

ri
or Ψi = −

GMi

ri
, (34)

depending on the author and the utilisation of the models. The
same assumptions that were made in our code were made con-
cerning the circular orbits and the synchronised rotation. Thus
Ψcentri is given by Eq. (13).

The gravitational potential inside a star given by the Roche
model as expressed in Eq. (34) is not a solution of Poisson’s
equation (this can be directly seen by inserting Eq. (34) in
Eq. (2)). Therefore, using this formulation of the Roche poten-
tial to correct a stellar structure at the hydrostatic equilibrium, as
done in Sect. 3, can be problematic. To solve this particular issue,
we derived a “refined” version of the Roche model, guaranteeing
that the gravitational potential is a solution of Poisson’s equation
while keeping it untouched outside of the star and expressed as
in Eq. (34). This version of the Roche potential, which we call
the “refined Roche” in the rest of this article, is expressed as

Ψi =

∫ ri

R0,i

Gmi(r)
r2 dr −

GMi

R0,i
. (35)

In the following sub-section, we focus on the differences in sur-
face and structural deformations as well as the surface gravity
obtained by the classical Roche model, our refined Roche model,
and our non-perturbative modelling done with MoBiDICT.

4.2. Types of stars studied

In this work, we studied the surface deformation given by our
models and the Roche model for several types of stars. We made
four 1D stellar models with the Code Liegeois d’Evolution Stel-
laire (CLES; Scuflaire et al. 2008) in order to represent a diver-
sity in the types of stars studied and compared in the work. The
stellar properties of each model are presented in Table 1. Our
method is not limited to these particular types of stars or bina-
ries. As long as a 1D density profile of each star composing a
system can be provided, the deformation can be computed. In
the most extreme cases, our method is even able to model the

Table 1. Summary of the stellar properties of the 1D input models used
in this work.

Stellar parameters Model 1 Model 2 Model 3 Model 4

Mass [M�] 0.2 1.0 1.5 20.0
Radius [R�] 0.22 1.03 11.1 6.01
Age [Gyr] 2.0 2.0 2.0 0.002
Evolutionary stage MS MS RGB MS
Effective temperature [K] 3342 6080 4621 35 859
Luminosity [L�] 0.005 1.31 51.1 53 921
Metallicity Z0/X0 0.014 0.014 0.014 0.014
Core hydrogen Xc 0.693 0.469 0 0.582
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Fig. 1. 1D input density profile normalized by the core density and mass
profile of each component of the twin binary systems studied in this
article. The upper panel corresponds to the stellar density profile while
the bottom panel corresponds the mass profile normalized by the total
mass of each star.

deformations of systems with compact objects, such as white
dwarfs.

In this article, we focussed on twin systems with two iden-
tical stars in order to have a point of reference to compare the
distortions of different stellar models, as the deformation of a
binary system component depends on the stellar structure of its
companion. However, MoBiDICT also works perfectly with two
non-identical components. In MoBiDICT, the type of star stud-
ied is only defined by the input density profile of each star, then
associated to a total potential along the direction (µcrit, φcrit). We
illustrated the different 1D density profiles normalised by the
core density and the mass profiles in function of the normalised
radius of each star studied in this article in Fig. 1.

Two groups of models can be distinguished in Fig. 1: mod-
els with high or low envelope mass fractions. While massive and
solar-like stars have a nearly negligible envelope mass, for low-
mass and red giant branch (RGB) stars, most of their mass is
located in their envelope. In particular, the mass of about 80% of
our RGB star is located in the convective envelope, with the tran-
sition from the radiative core to the convective envelope located
at r/R1D ∼ 0.05 for this star.

In the following sections, we compare the deformations
obtained from the different types of stars presented above with
the Roche models and with our new type of models. We then
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Fig. 2. Surface deformation of the twin binary system of our 0.2 M�
stars with a separation of 2.8 R1D (corresponding to a period of 2 h
and 11 min) as viewed from the side of the system. The black curve
corresponds to the Roche lobe of the system, the yellow curve is the
surface of each star given by the Roche model while the purple curve
corresponds to the surface of each star given by the modelling with
MoBiDICT. In this particular case, the filling of the Roche lobes is of
81.7% with each model.

relate those differences directly to their 1D density and mass pro-
files presented in Fig. 1.

4.3. Surface deformation

The surface deformation of binary stars is directly related to its
total potential. In our models, the surface of a star composing
the binary system is defined by the equipotential corresponding
to the photosphere of our 1D input stellar model in the direction
(µcrit, φcrit), as presented in Sect. 2.3.

Both formulations of the classical Roche model and our
refined version give the same deformations at the surface, as the
total potentials have the same expressions outside of the star.
In order to study the deformation given by the Roche model,
we assumed, as done in our models, that the volumetric average
radius coincides with the 1D input average radii, meaning that
the volume and mass of the models are conserved. Using this
property, we could define the surface given by the Roche model
with the same criterion as our models. In Fig. 2, the position of
the surface as given by the Roche model and our model is com-
pared in the case of the 0.2 M� star with an orbital separation of
2.8 R1D. The R1D denotes the radius of the 1D spherically sym-
metric model.

Figure 2 shows a visible difference in surface deformation
between our models and the Roche model. To quantify this dif-
ference, we introduced a new quantity:

∆R =
Rs,MoBiDICT(µ = 0, φ = 0) − Rs,Roche(µ = 0, φ = 0)

Rs,Roche(µ = 0, φ = 0) − R1D
. (36)

This quantity represents the difference in deformation at the
closest point normalised by the deformation between the Roche
model and the 1D input model. For the system presented in
Fig. 2, this factor is ∆R = 0.368, which means that we have
36.8% more deformation with MoBiDICT than with the Roche
model at the closest surface point to the Lagrangian point L1.
The difference in surface deformation is a function of the orbital
separation between the two components of the binary system. To
draw a comparison between the different types of stars, we used
the ratio of orbital separation to initial 1D stellar radius a/R1D as
an indicator of the orbital separation with respect to the type of
stars in the system.

While we focus on the most distorted region in the rest of
this deformation study, Fig. 2 also shows that surface defor-
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Fig. 3. Difference in deformation at the closest point ∆R between Roche
and our models as a function of the orbital separation of the components
normalized by the input 1D stellar radius a/R1D.

mation discrepancies appeared at the poles, where our model
is more contracted than the Roche model. To study the signif-
icance of the modifications to the surface deformation obtained
with MoBiDICT for the different types of stars, we computed a
grid of deformed models of twin binary systems composed of
each stellar type previously presented. For each system, we var-
ied the orbital separation to explore the dependency of the defor-
mation discrepancy to the orbital separation of the components.
The results obtained with this grid of models are presented in
Fig. 3.

Figure 3 shows that the differences of the deformations are
extremely dependent on the type of star studied. In the case of a
massive and solar-like MS star, Fig. 3 shows minor discrepancies
of surface deformation, even when the stars are close to filling
their Roche lobes. At most, the deformation discrepancy reaches
7% before a common envelope or mass transfer phase occurs.

As showed in Fig. 3, RGB stars are significantly more
deformed by our modelling (up to ∼35%) than with the Roche
model when a/R1D . 3. Moreover, this discrepancy remains
significant even at large a/R1D with an asymptotic value of
∆R = 0.10.

Finally, we observed that the corrections are the most sig-
nificant for low-mass stars. As can be seen in Fig. 3, when
a/R1D . 3.5, the Roche model totally underestimates the defor-
mations up to ∼80% just before reaching a common envelope or
mass transfer phase.

One would expect that for RGB stars, our new modelling
does not significantly change the surface deformation obtained
with the Roche model, as RGB stars evolve with a high density
contrast between the radiative core and convective envelope, jus-
tifying the point-like assumption of the Roche model. In practice
with our modelling, we saw that by comparing Figs. 1 and 3,
deformation discrepancies are directly related to the 1D mass
profiles of each star. Stars with the largest mass fraction in their
upper layers are the most impacted by our modelling. In particu-
lar, in our RGB model, the low density of the envelope is totally
compensated by its significant volume, leading to an envelope
mass of about 0.8 Mtot (see Fig. 1). MoBiDICT is necessary to
model deformations of close binaries composed of stars with a
high envelope mass fraction, such as RGB or low-mass stars.

All the differences previously presented can have a signifi-
cant impact on the theoretical evolution of binary stars, as mass
transfer occurs at higher orbital separation than predicted by the
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Roche model. Therefore, mass transfers and common envelope
phases can occur in earlier system evolutionary stages than with
the Roche model, impacting the future evolutionary path of such
systems. In that respect, the significant deformation discrepancy
found for RGB stars is crucial, as most of the mass transfers
are expected to occur during late evolutionary stages, due to
the rapid radius inflation resulting from stellar evolution. For
example, in the system presented in Fig. 2, a common envelope
phase is expected to occur when the orbital period reaches 2 h
and 05 min with our modelling, while with the Roche model an
orbital period of 2 h is required.

In Sect. 2.4, we mentioned and presented the different read-
justments made at the end of each modelling iteration. One of
these readjustments, presented in Appendix A, concerns modify-
ing the computation of the system orbital period so that the non-
spherical shapes of deformed binaries are taken into account.
In the case of low-mass binaries, we saw an approximately 1%
increase in the orbital period for a given orbital separation. Com-
pared to the usual uncertainties in the determination of orbital
periods, this effect dominates the uncertainties when linking the
orbital period of a system to its orbital separation.

4.4. Effective surface gravity

On the observational side, more than having significantly larger
deformations than the Roche model, with MoBiDICT the surface
effective gravity is directly impacted, as the topology of the total
potential is modified. The local brightness of a star as given, for
example, in Eq. (26) is proportional to the surface local effective
gravity. Therefore, a modification of the total potential topol-
ogy can directly be seen in the light curves of eclipsing binary
systems and impact the derivation of the orbital parameters, for
example. As we focus on the surface effective gravity and both
our refined Roche model and the classical Roche model give the
same result, only one of them is considered in the rest of this
section.

In our models, the effective gravity has an integral expres-
sion, given in Appendix B, and for the Roche model, the effec-
tive gravity is given by |geff | = |∇Ψtot,Roche|, where Ψtot,Roche is
given in Sect. 4.1. For the Roche model and our models, Fig. 4
compares the surface effective gravity along the meridian pass-
ing by the most distorted point and the poles of the stars for a
twin system composed of two 0.2 M� stars with an orbital sepa-
ration of 2.8 R1D.

Figure 4 shows that a difference of surface effective gravity
exists between the Roche model and our modelling. The most
significant geff discrepancies are located at the region closest to
the L1 point, where we have a normalised the geff difference of
12% with respect to the Roche model.

The discrepancies found can be explained by several factors.
First, as our models are noticeably more distorted than the Roche
model, the surface effective gravity is consequently significantly
lower at the surface. To a lesser extent, not correcting the Roche
model for the redistribution of mass in the star can impact the
surface geff .

To summarise the differences obtained, we computed the
effective gravity of the grid of models presented in Sect. 4.3 and
quantified the differences of surface effective gravity between
our models with the quantity ∆geff,surface, defined as

∆geff =
geff,MoBiDICT(µ = 0, φ = 0) − geff,Roche(µ = 0, φ = 0)

GM?/R2
1D

.

(37)
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Fig. 4. Surface effective gravity of the meridian passing by the most
distorted point of the star, its opposite, and the pole. The orange curve
corresponds to the surface effective gravity given by the Roche model
while the purple curve corresponds to the effective gravity obtained with
our modelling. The system modelled here is a twin system composed
of two 0.2 M� stars with an orbital separation of 2.8 R1D. The absence
of points near θ = 0 is explained by the Gauss-Legendre quadrature
method that is not creating any points in this region of our grids. θ > 0
corresponds the direction where the stars are facing each other, while
the direction θ < 0 corresponds to the back of the system.
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Fig. 5. Difference of surface effective gravity of the most distorted point
as a function of orbital separation for the four types of twin binaries
studied.

In Fig. 5, we summarise all the differences of surface effective
gravity for the twin binary systems presented in Sect. 4.3 and for
a wide diversity of orbital separations. Figure 5 shows the same
overall results as Fig. 3. The models with most surface deforma-
tion discrepancies compared to the Roche model are the same
models exhibiting the stronger surface effective gravity differ-
ences. In particular, Fig. 5 shows that higher discrepancies of geff

are found for the RGB and low-mass stars when a/R1D . 3.2, as
the other MS stars have limited corrections from our modelling.

For the interpretation of observations, the modifications of
geff can, in theory, strongly impact the light curves of close
binary systems , as the local effective temperature of a star is
directly proportional to the surface effective gravity. With our
modelling, we expected that a star would appear colder than
with the Roche model. In particular, the equator is the region that
would appear noticeably colder and thus redder. To confirm these
considerations, simulations of binary light curves using models
from MoBiDICT have to be developed.
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Fig. 6. Normalized total potential Ψtot and effective gravity geff in the
stellar interior along the axis joining the centre of the two stars. The
system studied here is a twin binary system composed of 0.2 M� stars
with an orbital separation of a = 2.8R1D. The blue and green curves are
corresponding to the classical Roche model while the orange and violet
curves are respectively our refined Roche model and our new types of
models.

4.5. Structural deformation

The last point of comparison between the Roche model and our
models is the structural deformation of the bodies composing the
binary system. For this study, we compared the classical Roche
model, our refined Roche model, and the model obtained through
MoBiDICT. The structural discrepancy can be first seen in the
total potential Ψtot and the effective gravity geff , as these quan-
tities define the structural properties of our models. Figure 6
illustrates the evolution of Ψtot and geff in a particular direc-
tion, the axis linking the centre of both stars, and the system
centre of mass for the 0.2 M� stars with an orbital separation of
a = 2.8R1D.

Figure 6 illustrates the limitations of Roche models to study
the stellar structure of deformed binaries. Classical ways of com-
puting the Roche potential (Eqs. (33) and (34)) are inaccurate
when modelling the stellar interior, while the surface properties
are well reproduced. In addition, Fig. 6 shows that our refined
Roche model is particularity accurate in obtaining both Ψtot and
geff , even if discrepancies can be seen in the entire star.

In the work of Fabry et al. (2022), the potential used to com-
pute the fp and fT factors, Eqs. (24) and (30), corresponds to the
green curve in Fig. 6. However, with assumptions on its deriva-
tive, the corresponding effective gravity used is the expression
given by our refined Roche model. Even if the effective gravity
is correct and able to obtain some fp and fT, the potential used
to identify the equipotentials on which the average quantities are
computed is not representative of the stellar deformed structure.
Corrections can therefore be expected on the averaged internal
quantities fp and fT in Fabry et al. (2022), for example.

To quantify the structural differences on the entire stellar
structure, we used the coefficients fp and fT presented in Sect. 3.
As our work considers the entire deformed structure as a func-
tion of the radius, we limited our study to twin binary sys-
tems composed of our four types of stars presented in Sect. 4.2
with an orbital separation of 2.7 R1D. The resulting fp and fT
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Fig. 7. Evolution of fp as a function of the radius of stars in twin binary
systems for the different models compared. From top to bottom, each
panel respectively represents fp for the 0.2, 1.0, 1.5 and 20.0 M� stars in
twin binary systems. The orange curves are the results with our refined
Roche model while the purple curves are the results from MoBiDICT.

obtained with the different models are respectively illustrated in
Figs. 7 and 8. As classical expressions of the Roche model lead
to unphysical results on the majority of the stellar structure, fp
and fT were not studied for these models.

Figures 7 and 8 show that models with the most deformation
discrepancies with respect to the refined Roche model are also
the models with the highest fp and fT differences. This structural
difference can mainly be seen in the upper layers of the 0.2 and
1.5 M� stars, as these bodies have the largest deformation dis-
crepancies as compared to the Roche model. Moreover, in the
case of the 0.2 M� binary system, a discrepancy in the entire
structure can be seen. By predicting a lower fp and fT, our mod-
elling impacts the structure of binary stars. Combined with the
discrepancies seen in deformations, our modelling can signifi-
cantly alter the evolutionary path of binary systems. Finally, as
previously seen, for MS massive and solar-like stars, our mod-
elling does not significantly change their structural depiction.

5. Comparison with perturbative models

The principle of perturbative models is to treat the centrifugal
and tidal forces as perturbations of the spherical symmetry by
only accounting for the leading terms. The potentials and den-
sities of the models are also projected on a basis of spherical
harmonics by only taking the leading order, namely, the ` = 0
and ` = 2 terms. The objectives of this section are to determine
the precision limits to only account for the leading order terms
in the spherical projections and to see whether the treatment of
deformations by a perturbative approach is justified in the most
distorted cases.

A22, page 9 of 14



Fellay, L., and Dupret, M.-A.: A&A 676, A22 (2023)

0.90

0.95

1.00

f T

M = 0.2 M , MS
refined Roche model MoBiDICT

0.90

0.95

1.00

f T

M = 1.0 M , MS
refined Roche model MoBiDICT

0.90

0.95

1.00

f T

M = 1.5 M , RGB
refined Roche model MoBiDICT

0.0 0.2 0.4 0.6 0.8 1.0
rp/R1D

0.90

0.95

1.00

f T

M = 20.0 M , MS
refined Roche model MoBiDICT

Fig. 8. Evolution of fT as a function of the radius of stars in twin binary
systems for the different models compared. From top to bottom, each
panel respectively represents fT for the 0.2, 1.0, 1.5 and 20.0 M� stars in
twin binary systems. The orange curves are the results with our refined
Roche model while the purple curves are the results from MoBiDICT.

In Sect. 5.1, we present the theoretical formulation of the
perturbative models. Section 5.2 is dedicated to the exploration
of the limitations of the selection of spherical harmonic projec-
tions of the gravitational potential, while in Sect. 5.3 we study
the limit of the perturbative approach in the treatment of the tidal
and centrifugal forces.

5.1. Theoretical formulation of perturbative model

As explained previously, the perturbative models are a class of
models treating the centrifugal and tidal forces as a first order
perturbation to the spherical symmetry. The gravitational poten-
tial is obtained, as in MoBiDICT, through Eq. (11) but only tak-
ing in account the first order terms: the ` = 0 and ` = 2. With this
perturbative modelling, the feedback process where the modi-
fication of the potential leads to a redistribution of the masses
(therefore impacting the potential that requires updating in an
iterative process) is not present. Without going through a detailed
demonstration of the equations used in the perturbative model,
we mention that the assumptions made allowed us to simplify the
expression of the deformations that are related to the structural
coefficient η`. These coefficients are linked to the deformations
of a star through their definition

ηm
` (r) =

r
rm
`

(r)
drm

` (r)
dr

, (38)

where r is the average radius of an isobar that is defined as

r =
1∫

Ψtot
dσ

∫
Ψtot

r(µ, φ)dσ, (39)

and that is different from rp corresponding to the radius of the
sphere with a volume identical to the one under an isobar. The
radii of the equipotentials r(µ, φ) projected on the spherical har-
monics basis are noted as rm

` and expressed as done in Eq. (9):

rm
` (r) =

1
r

∫ 1

0

∫ π

0
r(r, µ, φ)Pm

` (µ) cos(mφ)dφdµ. (40)

The overall deformation of a given point in a model can thus be
obtained by projecting back these rm

` (r) on the spherical coordi-
nates basis as follows:

r(r, µ, φ) = r
(`−p)/2∑

k=0

rm
` (r)Pm

` (µ) cos(mφ), (41)

with p = 0 if ` is even, p = 1 otherwise, and m = 2k + p.
With the coefficient η` and using a simple integration, rm

` (r)
can be obtained, and thus the deformation of a model can be
computed. Physically, these coefficient η` correspond to the
structural answer of a body if a perturbative potential is applied.
Using simplifications performed in the perturbative approach, η`
become independent from the deformation undergone by a star
and are only related to its unperturbed structure. In the pertur-
bative approach, η` can be obtained by solving the well-known
Clairaut-Radau second order differential equation expressed as

r
dη`
dr

+ 6
ρ(r)
ρ(r)

(η` + 1) + η`(η` − 1) = `(` + 1) (42)

using the boundary conditions

η`(0) = ` − 2. (43)

To compute the perturbative models, we developed a small
feature in MoBiDICT to solve the Clairaut-Radau equation
(Eq. (42)) with an order two Rung-Kutta method and using the
1D input stellar models given in this tool.

For comparison with the model obtained with MoBiDICT,
we decided to directly compare the η` of the two models. To
obtain these coefficients with our models, we computed the
deformations as described in Sect. 2. Then we obtained r and
projected the deformations on a basis of spherical harmonics
(Eq. (40)) to have the rm

` (r) that were used in Eq. (38) to compute
the ηm

` (r) coefficients directly given by MoBiDICT. We mention
that when using these equations, none of the assumptions of the
perturbative approach were made.

5.2. Gravitational potential

One main approximation of perturbative models is to only
account for the leading order terms (` = 0 and ` = 2) on
the projections of the potential and densities. Verifying these
assumptions with MoBiDICT is straightforward, as our mod-
elling directly gives the spherical expansion of the gravitational
potential of each deformed star as an output of the code. Figure 9
illustrates the gravitational potential projected on the spherical
harmonics basis of the twin binary system composed of the
0.2 M� stars at an orbital distance of a = 2.8R1D. This is the
exact system configuration illustrated in Fig. 2.

Figure 9 illustrates the amplitude hierarchy of gravitational
potential spherical terms. As assumed by the perturbative model,
the leading order terms are the ` = 0 and ` = 2 terms. The
dipolar term (` = 1) is the next most important term, especially
outside of the star, as each spectral term is proportional to r−`.
In these regions, the dipolar term is included in the computation
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Fig. 9. Normalized gravitational potential projected on the spherical
harmonics of a star of 0.2 M� in a twin binary system with an orbital
separation of a = 2.8R1D. The dotted lines are corresponding to the
surface of each star of the system in the direction including the most
distorted point of each star and the Lagragian point L1 (µ = 0, φ = 0).

of the tidal potential applied to the opposite star. Neglected by
the perturbative model, the ` = 1 term is less than one order
of magnitude smaller than the ` = 2 term, meaning that the tidal
force is significantly greater with our models and the assumption
to neglect the ` = 1 is not justified for the perturbative models
in the most distorted cases. The next order terms (` = 3, 4) have
amplitudes similar to the ` = 1 term inside the star, while they
are one order of magnitude smaller than this same dipolar term
outside the star.

5.3. Validity of the Clairaut-Radau equation

In this section, we verify the limits of the perturbative approach
for close binaries, in particular when the stars undergo high
deformations. To compare the different models, as explained
in Sect. 5.1, we directly looked at the coefficient η` obtained
through Eq. (42) for perturbative models. With our models, these
quantities are computed with a projection on the spherical har-
monics of the deformations. More details are given in Sect. 5.1.
We also compared these models to our refined Roche model
through the same coefficients η` obtained in the same way as
with our models. We focussed our work on the ` = 2 term, as this
coefficient is assumed by the perturbative model to be the leading
contribution to the apsidal motion of a binary system, and it is
used, for example, in Rosu et al. (2020, 2022a,b) to constrain the
stellar structure. The evolution of η2 as a function of the average
radius is illustrated in Fig. 10 for the extensively studied system
of this article, the twin binary system composed of 0.2 M� stars
at an orbital distance of 2.8R1D.

Figure 10 illustrates the different significant results from our
modelling. First, comparing the Roche model to other models,
we observed that both perturbative and MoBiDICT models pre-
dict an important difference of η2 in all the stars. These results
can be interpreted as difficulties of the Roche model to precisely
depict the stellar deformations. These limitations originate from
the assumptions on the stellar gravitational potential.

The second major result illustrated in Fig. 10 is the com-
parison between our new models and the perturbative models.
First, in the less distorted regions of the star (when r < 0.5R1D),
the same results were obtained with the models, indicating that
our modelling gives a good depiction of stellar deformation in
these regions, as we expected to be in the limit of validity of the

0.0 0.2 0.4 0.6 0.8 1.0
r/R1D

0

1

2

3

4

2

MoBiDICT
Roche model
Perturbative model

Fig. 10. Evolution of η2 as a function of the average radius for the dif-
ferent models studied in this work. The system studied here is a twin
binary system composed of two 0.2 M� stars with an orbital distance of
2.8R1D.
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Fig. 11. Evolution of the surface ∆η2 for different types of stars com-
posing the binaries and with different orbital separation.

perturbative modelling. Then, after r > 0.5R1D, non-negligible
differences between the two models appeared, with discrepan-
cies increasing with r, as the upper layers of the star are more
deformed. These differences can be explained by the limitations
of the perturbative approach in these regimes of deformation,
while our model is designed to study cases with high stellar
deformations.

To study the apsidal motion of a binary system, one would
require the apsidal motion constant k2 that is usually obtained
through η2 evaluated at the surface of the primary star. To study
how our new modelling procedure impacts this apsidal motion
constant in regard to the twin binary system studied and orbital
separation, we introduced a new quantity ∆η2 defined as the dif-
ference of η2 at the stellar surface between our model and the
perturbative model. The quantity ∆η2 is expressed as

∆η2 = η2,MoBiDICT(Rs) − η2,pert.(Rs). (44)

The comparison of ∆η2 from the grid of the twin binary models
presented in Sect. 4.2, as a function of their orbital separation, is
illustrated in Fig. 11.

Figure 11 illustrates that the differences of η2 between
the perturbative and MoBiDICT models are almost indepen-
dent from the type of star composing the binary system and
only dependent on the orbital separation of the components.
Significant differences of surface η2 can only be seen in the
most distorted cases, when a < 5R1D. Otherwise, the pertur-
bative treatment of the tidal and centrifugal forces is justified
to compute η2. We expect the differences we found to directly
impact the apsidal motion computation, resulting in corrections
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to apsidal motion constant k2 and adding k1 constant to account
for neglected dipolar terms. The impact of our improved mod-
elling on apsidal motion will be more deeply investigated in a
forthcoming article.

6. Conclusion

In this work, we developed a new tool called MoBiDICT to com-
pute 3D static models of close synchronised binaries in hydro-
static equilibrium in a non-perturbative way. Sections 2 and 3
were respectively dedicated to giving a technical description of
this code and presented the post-treatment done in our models
to couple, in the future, MoBiDICT to classical 1D evolution
codes. We then compared our new type of modelling to classical
models, namely, the Roche and perturbative models.

First, for the Roche model, our study showed in Sect. 4 that
the differences of deformation mainly arise in very close binaries
(when a < 5R1D). The discrepancies are significant for low-mass
and RGB stars in twin binary systems where the deformation
differences can reach, at most, 80% for our 0.2 M� stars. Massive
and solar-like MS stars are less distorted, with a difference of
7% at most. The envelope mass is the key parameter controlling
these deformation discrepancies. Stellar models with the largest
envelope masses compared to the total mass were observed to be
the most modified by MoBiDICT. All the quantities studied were
impacted by this difference. In particular, significant changes of
the surface effective gravity were seen, which directly affected
gravity darkening and thus the interpretation of the observations
of such stars. In the lower deformation regime, the Roche model
provides a good approximation of the stellar surface properties,
although we would not favour using Roche to study the structural
properties of stars.

The discrepancies with respect to the perturbative approach
were discussed in Sect. 5. Our work showed that the assumption
of the perturbative model to only account for the leading terms
of the projected gravitational potential (` = 0 and ` = 2) is not
justified in the high-distortion cases (when a < 5R1D). In partic-
ular, the dipolar term (` = 1) represented 31% of the quadrupolar
term (` = 2) outside of the studied star and 14% at its surface. In
addition, we showed that in such regimes of distortion, the per-
turbative approach reaches its limit and significant deformation
discrepancies can be seen, particularly in the upper layers of the
stars (when r > 0.5R1D). These differences of deformation were
seen through the quantity η2 that was evaluated at the surface to
estimate the apsidal motion of binary systems. In such a distor-
tion regime, the theoretical apsidal motion from the quadrupolar
term is generally considerably underestimated, and an additional
term from the dipolar component is likely to arise. In the least
distorted regime (a > 5R1D), the perturbative approach remains
valid, and accurate η2 values were obtained.

A few conclusions can be drawn from our work. First, in
least distorted regimes, the classical modelling methods for bina-
ries are valid, at the surface for the Roche model and in the
entire structure for perturbative models. In the most distorted
regimes, however, both the perturbative and Roche models fail to
describe the structural and surface properties of stars with high
envelope masses. In particular, significant deformation discrep-
ancies were observed for low-mass stars, in agreement with the
results of Landin et al. (2009). Our work highlights the necessity

of non-perturbative modelling to study close binary interactions
and evolution, as mass transfer is expected to occur earlier in
the lifetime of a system under our modelling approach. In that
regard, deformation discrepancies found for RGB stars signifi-
cantly facilitate mass transfer occurrence during a stellar evolu-
tionary phase already believed to be a source of mass transfer.

Our method, while effective in modelling highly distorted
cases, has demonstrated limitations when deformations are
extremely weak. Specifically, we observed numerical noise aris-
ing from higher spherical orders of the potential and densities
that impact the derived η`. To address these issues, we plan
to implement a coupling of MoBiDICT, in the least distorted
regions, to a refined perturbative approach accounting for all
the spherical orders and for terms of the tidal and centrifugal
potential that are usually neglected. The advantage of this new
form of the perturbative model is the possibility to study solid-
body non-synchronised systems that are also easily generalised
in MoBiDICT. All these modifications will be the subject of a
forthcoming article.
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Appendix A: Verification of Kepler’s third law

In this section, we show the system of equations solved at the
end of each modelling iteration in order to readjust the centre
of mass and the orbital period of our models. We consider an
arbitrary synchronised binary system with an orbital separation
a, an orbital rotation rate Ω?, and a centre of mass noted CM.
This system can be illustrated as in Fig. A.1.

Fig. A.1. Schema of an arbitrary chosen binary system composed of
two stars with different masses. a1 and a2 are the orbital separation of
respectively the primary and secondary star from the centre of mass. êx1
and êx2 are the unit vectors of the x1 and x2 direction considered in this
problem.

The orbital separation of the system a is a constant of the
model. Thus, the centre of each star is at the dynamical equi-
librium, meaning that the sum of the gravitational, tidal, and
centrifugal forces is null in their centre. Mathematically this con-
dition is expressed as

limx1→0
∂Ψ1

∂x1
+
∂Ψ2

∂x1
= Ω2

?xCMa

limx2→0
∂Ψ1

∂x2
+
∂Ψ2

∂x2
= Ω2

?(1 − xCM)a

, (A.1)

where xCM is defined as a1/a.
The system given in Eq. A.1 can be summed and rewritten

as
limx1→0

∂Ψ1

∂x1
+
∂Ψ2

∂x1
= Ω2

?xCMa

limx1→0

(
∂Ψ1

∂x1
+
∂Ψ2

∂x1

)
+ limx2→0

(
∂Ψ1

∂x2
+
∂Ψ2

∂x2

)
= Ω2

?a

.

(A.2)

The second equation of this system can be solved with
MoBiDICT to obtain the Ω2

? necessary to maintain the orbital
separation of the binary system. Having Ω2

?, the first equation
can be solved to obtain the new position of the centre of mass of
the system while accounting for the redistribution of mass in the
stars.

Appendix B: Expression of the effective gravity

In this section, we develop the expression of the effective gravity
used in MoBiDICT.

The effective gravity is a vector defined by

geff = −∇Ψtot

= −∇ (Ψ1 − Ψ2 − Ψcentri)
= −(geff,r; geff,µ; geff,φ),

(B.1)

with each component of a given primary star noted as ‘star 1’
expressed as

geff,r,1 =
∂Ψtot,1

∂r1
=
∂Ψ1

∂r1
+
∂Ψ2

∂r1
+
∂Ψcentri

∂r1
, (B.2)

geff,µ,1 =
1
r1

∂Ψtot,1

∂θ1
=

1
r1

(
∂Ψ1

∂θ1
+
∂Ψ2

∂θ1
+
∂Ψcentri

∂θ1

)
, (B.3)

geff,φ,1 =
1

r1 sin(φ1)
∂Ψtot,1

∂φ1
(B.4)

=
1

r1 sin(θ1)

(
∂Ψ1

∂φ1
+
∂Ψ2

∂φ1
+
∂Ψcentri

∂φ1

)
.

In this case, all the necessary quantities are partial derivatives of
solutions to differential equations that have integral representa-
tions. Consequently, numerical methods are not required to per-
form the derivatives of the potentials. The contribution to effec-
tive gravity from gravitational potential of the primary star is
given by

∂Ψ1

∂r1
=

∑
`,m

Pm
` (µ1) cos(mφ1)

∂Ψm
1,`

∂r1
(B.5)

=
∑
`,m

Pm
` (µ1) cos(mφ1)

(
Ψm

1,`
`

r1
+ r−(`+2)

1

∫ r1

0
r′`+2

1 ρm
1,`(r

′
1)dr′

)
,

∂Ψ1

∂θ1
= −

∑
`,m

Ψm
1,`(r1) cos(mφ1)

∂Pm
` (µ1)
∂µ1

sin(θ1), (B.6)

∂Ψ1

∂φ1
= −

∑
`,m

Ψm
1,`(r1)m sin(mφ1)Pm

` (µ1). (B.7)

The contribution from centrifugal force is expressed as

∇Ψcentri = Ω2
? (xCM − r sin(θ) cos(φ))

 sin(θ) cos(φ)
r cos(θ) cos(φ)
−r sin(θ) sin(φ)

 (B.8)

−Ω2
? (r sin(θ) sin(φ))

 sin(θ) sin(φ)
r cos(θ) sin(φ)
r sin(θ) cos(φ)

 ,
Finally, the gravitational contribution originating from the

companion is written as



∂Ψ2

∂r1
∂Ψ2

∂θ1
∂Ψ2

∂φ1


= −J−1

∑
`,m

Ψm
2,`(R0,2)

(
R0,2

r2

)`+1



` + 1
r2

Pm
` (µ2) cos(mφ2)

∂Pm
` (µ2)
∂µ2

sin(θ2) cos(mφ2)

Pm
` (µ2)m sin(mφ2)


,

(B.9)
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where J−1 is the inverse of the Jacobian matrix taken between
the system of coordinates of our primary and secondary star, and
expressed as

J−1 =



∂r2

∂r1

∂θ2

∂r1

∂φ2

∂r1
∂r2

∂θ1

∂θ2

∂θ1

∂φ2

∂θ1
∂r2

∂φ1

∂θ2

∂φ1

∂φ2

∂φ1


. (B.10)

The norm of the effective gravity is simply given by

|geff | = (g2
eff,r,1 + g2

eff,µ,1 + g2
eff,φ,1)1/2. (B.11)
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