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Abstract 18 

Relating individual brain patterns to behavior is fundamental in system neuroscience. Recently, 19 

the predictive modeling approach has become increasingly popular, largely due to the recent 20 

availability of large open datasets and access to computational resources. This means that we can 21 

use machine learning models, and interindividual differences at the brain level represented by 22 

neuroimaging features to predict interindividual differences in behavioral measures. By doing so, 23 

we could identify biomarkers and neural correlates in a data-driven fashion. Nevertheless, this 24 

budding field of neuroimaging-based predictive modelling is facing issues that may limit its 25 

potential applications. Here, we review these existing challenges, as well as those that we 26 

anticipate as the field develops. We focus on the impact of these challenges on brain-based 27 

predictions. We suggest potential solutions to address the resolvable challenges, while keeping in 28 

mind that some general and conceptual limitations may also underlie the predictive modeling 29 

approach.  30 
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The study of the relationships between individual differences in brain phenotypes and individual 32 

behaviors is fundamental in neuroscience, both from a basic scientific perspective and an applied 33 

perspective. The term ‘predictive modeling’ refers to the use of machine learning techniques to 34 

build a statistical model for the estimation of behavioral variables from brain-based neuroimaging 35 

data, either structural or functional1,2. More precisely, a prediction model is trained to predict 36 

particular behavioral variables from brain-based data from a number of individuals (the training 37 

set), and its performance is then evaluated on unseen data (test set). 38 

The potential practical applications promised by such prediction approaches in precision medicine, 39 

healthcare, human resources and education1,3-5 are certainly exciting. Potential future applications 40 

may include prediction of individual treatment outcomes to guide treatment choices and dosage, 41 

classification of clinical subgroups with different brain pathology and thus different treatment 42 

requirements, as well as prediction of future cognitive abilities and mental health at developmental 43 

stage. As concrete examples that could be envisioned, brain-based predictions may provide 44 

objective biomarkers when evaluating the effect of cognitive training or cognitive-behavior 45 

therapies (e.g., for mild functional cognitive alterations and anxio-depressive phenotypes, 46 

respectively). While the effect of these interventions could be more readily investigated with 47 

standard cognitive tests and interview/questionnaires respectively, such approaches are prone to 48 

many biases (e.g., practice effects, subjectivity biases, expectations biases). As a recent working 49 

example, a prediction model of sustained attention provided a neuromarker of sustained attention6. 50 

This neuromarker can be used both for predicting attention deficit symptoms, and for localizing 51 

targets of potential brain-based treatments. Ultimately, brain-based prediction could be expected 52 

to provide objective biomarkers that can inform us about the brain mechanisms behind the effects 53 

under scientific investigations. Aided by the publicly available large neuroimaging datasets, 54 

accessible computational resources, as well as code sharing practices, predictive modeling has 55 

become a powerful tool towards these future outlooks. 56 

Among the various types of neuroimaging data, functional data may be an intuitive choice for 57 

relating brain organization to behavioral functions. In particular, task-free resting-state functional 58 

Magnetic Resonance Imaging (rs-fMRI) scans can be readily collected for large groups of subjects7, 59 

making them popular choices for neuroimaging-based predictions.  In the last ten years, RSFC has 60 

been the most popular input features to brain-behavior prediction models2, in predictions of various 61 

phenotypes including fluid intelligence8-10, attention6,11,12, and working memory13-15. Brain-based 62 

psychometric prediction using other features such as task-based functional connectivity, gray 63 

matter volume, cortical thickness, and structural connectivity has also been investigated in 64 

predictions of general cognitive abilities16-18, attentional control19, and working memory20,21. 65 

However, and although this may be expected to change in the future, as far, the majority of studies 66 

forming the scientific literature have used RSFC alone or in combination with other features, for 67 

psychometric prediction2.  68 

As a budding and growing field, brain-based psychometric predictions remain to be improved and 69 

validated. Many reviews have analyzed methodological options based on the current state of the 70 

field and given guidance for future studies1,2,4,5,22-24. Practical tutorials have also been published 71 
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for guidance on specific implementation details22,25. Nevertheless, the field also faces general and 72 

conceptual issues that are likely to limit the future usefulness of predictive modeling.  73 

In this review, we discuss the current and anticipated future challenges in psychometric prediction 74 

based on neuroimaging features. For each challenge, we identify both inherent limitations in brain-75 

based psychometric predictions which may not be readily solved based on current resources and 76 

aspects that could be addressed with potential solutions. In the following sections, we discuss the 77 

general challenges of low prediction accuracies, followed by two core issues, generalizability and 78 

interpretability. Finally, we briefly discuss the potential vulnerability of brain-based prediction 79 

models to enhancement and adversarial attacks.  80 

Low prediction accuracies  81 

Low prediction accuracies limit any potential application of the model. The general procedure of 82 

prediction model development and validation is described in Fig 1. A prediction model is assessed 83 

by applying it in a validation sample separate from the training sample, and by measuring the 84 

similarity or dissimilarity between the values predicted for the subjects in this sample and the truly 85 

observed values of the psychometric variable for these subjects (Box 1).   Fig. 2 shows three 86 

examples of the most commonly used measure of model accuracy (Pearson’s correlation 87 

coefficient), and the predicted-observed relationships underlying the accuracies. This measure 88 

indicates the global linear trend between predicted and observed values, but cannot identify 89 

systematic biases and size of errors. Presently, prediction accuracies of various psychometric 90 

variables have been reported from as low as 0.06 to as high as 0.9081,2. This wide range of 91 

accuracies with both low and high values close to the value bound reflects the complexity of brain-92 

based psychometric prediction study design, as model accuracy can be affected by methodological 93 

decision and data characteristics (e.g., the amount of relevant variance in behavioral and/or brain 94 

data). While many studies that showed high prediction accuracies also appear to have used very 95 

small samples, in studies using large samples, the prediction accuracies are usually reported in the 96 

range of 0.2 to 0.426-29, implying a generally lower accuracy when evaluating brain-based 97 

predictions in population-representative samples. A recent literature survey have evidenced a 98 

correlation of r=-0.265 between the sizes of the training sample and the reported prediction 99 

accuracies, demonstrating the generality of this trend. 100 

While big data and deep learning has enabled substantial successes in many fields, neither has 101 

been particularly helpful in improving the performance of brain-based prediction models. To begin 102 

with, even the easy-to-collect rs-fMRI data are considerably more difficult to collect than pictures 103 

or texts typically used in the field of computer vision and natural language processing, respectively. 104 

The lack of truly big data in cognitive neuroscience may explain why deep learning has often been 105 

reported to not outperform simpler models1,24,27. The potential of deep learning as more powerful 106 

models would thus depend on the possibility of collecting truly big neuroimaging datasets.  107 

Alternatively, techniques such as few-shot learning could inspire new solutions to utilize deep 108 

learning without acquiring big data. From the data perspective, the few-shot learning strategy 109 

called data augmentation can be employed to artificially increase the sample size. Furthermore, 110 

simulated rs-fMRI and RSFC data have been used to generate additional datasets recently30-33. 111 
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Their applications for predictive modeling of behavior remain to be further investigated. From the 112 

parameter perspective, the meta-learning paradigm of few-short learning can be useful by training 113 

a generalized model on a large dataset, which can be used for prediction of different targets in 114 

smaller datasets34. Nevertheless, both strategies impose some requirements and may not appear 115 

beneficial for all types of brain-based predictions. Augmented or simulated data are limited by the 116 

characteristics of the existing data used for augmentation or simulation. Accordingly, a 117 

nonrepresentative dataset (e.g., including only a certain age group or ethnicity) cannot become 118 

population representative through augmentation. As for the meta-learning strategy, its 119 

performance depends on the similarity of the prediction target in the large dataset and the 120 

prediction target in the smaller dataset34. This means that the meta-learning model would only be 121 

beneficial for smaller datasets which use the same or very similar instrument for behavioral 122 

measurement as those existing in the larger datasets in which the original model is developed. 123 

It may instead be more feasible to capitalize on existing data, including neuroimaging features 124 

from multiple modalities, to boost prediction accuracies. Structural, functional, and diffusion MRI 125 

probe different neurobiological aspects, offering complementary information for psychometric 126 

prediction. In prediction studies based on functional MRI, resting-state and task functional MRI 127 

features are often combined13,35-37. However, the benefit of combining these features in terms of 128 

prediction performance has not been comprehensively investigated. Prediction studies using 129 

multimodal data have found different type of features to contribute to the prediction, including 130 

local connectome18, cortical area18, cortical thickness17, gray matter volume21, RSFC17,38-40, and 131 

task functional connectivity39,41. Some studies reported that integrating multimodal MRI data did 132 

not actually improve the prediction performance than using a single modality21,39. Furthermore, 133 

combining multimodal features inevitably increases the feature dimension and in turn the risk of 134 

overfitting, requiring feature selection or reduction techniques, such as stacking18,38,41. Generally, 135 

a systematic evaluation of multimodal psychometric prediction across multiple distinct cohorts, 136 

with an extensive set of neuroimaging features, psychometric measures, and model design, would 137 

be an important next step for validating this research direction. 138 

Moreover, psychometric prediction accuracies are dependent on the target psychometric variable 139 

to predict. For behavioral traits in cognition and socioaffective domains, the definition of the 140 

abstract constructs measured by many behavioral variables and relatedly the construct validity of 141 

these variables are still debated42-44. The reliability and validity of these behavioral traits require 142 

improvement through both theoretical and experimental validations. Interestingly, many studies 143 

have reported higher prediction accuracies for cognitive measures compared to mental health 144 

traits5,34,38,45,46. It may be assumed that prediction of mental health would be particularly difficult 145 

in healthy population because the participants would show very limited variations in mental health 146 

measures. As the largest and highest neuroimaging quality datasets open to the research 147 

community include mainly healthy population, studies attempting to develop predictive models of 148 

mental health may be limited either by data availability and quality for clinical populations, or 149 

lower prediction accuracies when using easily accessible data. Relatedly, low test-retest reliability 150 

of functional MRI measures may be another source of poor prediction accuracies47,48. As the 151 

reliability of connectivity features computed may depend on data collection protocols49-51, the 152 

selection of reliable data would further restrict the available sample size. 153 
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One pessimistic view is that current modeling approaches may not be able to handle the 154 

heterogeneity of the population-representative samples, or that the brain-behavior relationships 155 

captured in neuroimaging datasets may simply be too weak52-55. Neuroimaging patterns may be a 156 

reduced summary of endogenous factors and the exposome that has a limited power to explain 157 

interindividual variability in behavior. Crucially, brain-based prediction models need to be 158 

justified based on the additional predictive power not already provided by non-neuroimaging 159 

features that can be easily collected by questionnaires and interviews, especially considering the 160 

high cost of MRI. From a practical standpoint, it may be useful to investigate the prediction 161 

performance of hybrid models making use of all types of data available in a realistic situation. For 162 

instance, RSFC patterns may vary with age due to developmental effects in younger population 163 

and due to aging in older population. Similarly, cognitive measures may be affected by age 164 

differently in different age subgroups. Allowing the prediction model to learn these interactions 165 

across a large age range would thus help the model to predict the target variable more accurately 166 

in general. Finally, the variability of brain-behavior association patterns across different subgroups 167 

brings forth another crucial challenge: model generalizability.  168 

Generalizability of prediction models 169 

The utility of a prediction model depends on its generalizability. That is, its ability to make accurate 170 

predictions on unseen data, firstly the test set data and ultimately data from the broader population. 171 

In the context of brain-based psychometric predictions, we discuss generalizability both in terms 172 

of generalizing to completely new cohorts and of generalizing to different subgroups of the 173 

population. 174 

Cross-cohort generalizability 175 

Cross-cohort generalizability can be defined as the prediction performance of a model in a different 176 

dataset from the training dataset (Fig. 1). Generalizable models are important both for discovering 177 

neurobiological insights general to the population and for deploying prediction models to broader 178 

settings. In most present brain-based prediction studies, the training and test sets are drawn from 179 

the same cohort under a cross-validation scheme2. While cross-validation helps to evaluate model 180 

performance without requiring additional datasets, to rigorously test the cross-cohort 181 

generalizability of a model, it is necessary to evaluate the model on completely unrelated datasets. 182 

Among studies which employed both internal and external validation, many studies found similar 183 

prediction accuracies in internal and external test sets9,13,56-59. Nevertheless, most of these studies 184 

had small external test samples (N < 200), calling into question the representativeness of these test 185 

cohorts. In two studies with large test cohorts (N ~ 1000), drops in prediction accuracies were 186 

observed when generalizing to new cohorts26,60. It has been suggested that reproducible brain-187 

behavior association may only be found using samples with thousands of participants55,61. 188 

However, it has also been shown that generalizable associations and predictions can be achieved 189 

with much smaller samples in some specific cases62,63. Additionally, it should be noted that 190 

generalizability of the statistical model is not a direct indication of the generalizability of brain-191 

behavior association derived from the model, the latter showing a low to moderate extent of 192 

generalizability across cohorts60.  193 



 

6 

 

At present, the main challenge from the perspective of cross-cohort generalizability is the lack of 194 

awareness from scientific investigators and hence the lack of assessment. The need for large 195 

external test cohorts for evaluating prediction models is often overlooked during the planning 196 

phase of a study, and later dismissed on the grounds that such large cohorts are not available for 197 

the specific psychometric measure investigated. More generally, cross-cohort generalizability of 198 

prediction models may be affected and limited by the similarity of data collection and processing 199 

protocols in the different cohorts60. The need for large datasets has led to researchers’ reliance on 200 

whatever data is provided by the several publicly (or semi-publicly) shared datasets. Many studies 201 

have trained and evaluated prediction models using the Human Connectome Project Young Adult 202 

data, which were processed with a specific pipeline not always adopted or viable in other 203 

datasets64,65. Ideally, standardizing data collection protocols and processing pipelines would 204 

improve model generalizability in both research and practical situations. However, imaging 205 

conditions in samples involving children or older adults would often result in lower scan duration, 206 

making it difficult to achieve the same standards that can be set in healthy young samples66. The 207 

need for large cohorts and varied data specification may not be fully reconcilable. Partial solutions 208 

would be more robust preprocessing strategies and prediction models to harmonize data 209 

differences or to extract generalizable information despite the data differences. 210 

Generalizability across subgroups (within a single dataset) 211 

Typically, the test set for evaluating a prediction model is randomly selected from the cohort or 212 

taken from an external validation cohort. The composition of the test set may be completely 213 

random or stratified for balanced distributions of age, gender, and other variables of interest. While 214 

the model performances reflect the average performance in the test cohort population, they are not 215 

informative of potential prediction biases between test subjects. In both medical and non-medical 216 

applications, model bias has been reported for potential mistreatments of subgroups based on 217 

gender, ethnicity and socioeconomic status67-69. In connectivity-based prediction, ethnicity-based 218 

bias has been reported where prediction accuracies were lower in African American subjects in 219 

comparison to White American subject, even if models were trained on only African American 220 

subjects70. Moreover, models tend to predict lower cognitive scores and higher negative social 221 

behavior scores for African American subjects70, demonstrating the potential biases in applications 222 

of the prediction models. Such robust biases call for more balanced samples in scientific 223 

approaches, including not only more data collection in underrepresented population, but also the 224 

development of brain templates, atlases, and preprocessing tools based on balanced samples.  225 

Common concepts used to define population subgroups like gender and ethnicity are complex 226 

notions themselves often entangled with socioeconomic factors. Relatedly, brain-based prediction 227 

models do not see the population divided into distinct gender-based or ethnic groups but have been 228 

shown to learn complex profiles relating brain measures, covariates, and psychometric variables70. 229 

It was recently demonstrated that individuals that do not follow the majority trend of brain-230 

phenotype relationships in the training sample can cause consistent prediction failure71. For 231 

instance, if most older subjects in the training sample scored lower for a cognitive test, a few older 232 

subjects in the validation sample who scored high for the cognitive test would become outliers and 233 

lead to prediction failures. In other words, model bias may be caused by any form of stereotypical 234 
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brain-behavior relationships in the training sample, not specific to an ethnic or gender group. This 235 

could lead to further difficulty in collecting balanced samples since these stereotypical 236 

relationships can hardly be anticipated during data collection phase.  237 

In the case where differences in brain-behavior relationships can be assumed across different 238 

subgroups in the sample, group-specific models have been used to improve prediction accuracies 239 

within certain subgroups or provide insights into the differences in brain-behavior association 240 

across subgroups17,37,72,73. Nevertheless, the validity and potential bias in subgroup definition, for 241 

instance ambiguity in ethnicity reporting, could limit the validity of any insights generated. 242 

Furthermore, brain-behavior relationships inferred from group-specific models should not be 243 

simplified in terms of causal relations with the subgroups, lest we fall into the trap of model bias 244 

and mistreatment again70. Alternatively, an ensemble learning technique called boosting may be 245 

useful for capturing different brain-behavior relationships without defining subgroups. In boosting, 246 

a sequence of models is trained where each model assigns more importance to subjects that were 247 

wrongly predicted by previous models, thereby automatically identifying the outlying subjects.  248 

From a basic neuroscience perspective, the insights gained from a biased prediction model may 249 

lead to false conclusions regarding behavior and social identities, while from a practical 250 

perspective, a biased model deployed for social applications would easily lead to inequitable 251 

treatment of target populations. In order to develop a fair prediction model, both dedicated study 252 

design and model transparency are vital. This hence calls for more population-representative 253 

samples, clearly documented study and model parameters, as well as interpretable models. 254 

Model interpretability 255 

While accuracy and generalizability are requirements of any predictive model, interpretability is 256 

another crucial goal, if less easy to quantify. From a basic neuroscience perspective, prediction 257 

models need to be interpretable to contribute to our knowledge about brain-behavior relationships, 258 

while from a practical perspective, interpretability is required to evaluate the neurobiological 259 

validity of the model and, relatedly, its trustworthiness. A model with lower accuracy but higher 260 

interpretability may be preferred to a black-box model with higher accuracy, as the transparency 261 

of the former model allows assessments of the model trustworthiness. For instance, model bias 262 

against an ethnic minority could be identified earlier if the model can be interpreted easily. 263 

Nonetheless, achieving good model interpretability is not trivial and sometimes requires 264 

compromise in prediction performance22. 265 

Many early studies provided an illusion of interpretability by treating regression weights from 266 

machine learning models as feature importance for neuroscientific interpretation. Later studies 267 

have demonstrated that these weights are neither stable across cross-validation folds46,74, nor 268 

conceptually valid as brain feature importance75. It may still be possible to interpret the regression 269 

weights after transforming them into corresponding forward model weights using the Haufe 270 

transform75. While stable predictive networks may be identified for cognition45, the stability in 271 

cross-validation and generalizability to new cohorts of the transformed weights were still reported 272 

to be low60,74. The reliability of transformed weights may improve with larger sample size76, 273 

making this technique potentially suitable in large cohorts. Nevertheless, when using functional 274 
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connectivity as features, it may be difficult to align the connectivity edges to brain mapping 275 

literature, or to summarize the feature importance values into practically useful information. 276 

Feature importance of connectivity edges may be more easily visualized and interpreted by 277 

grouping the connectivity edges in networks or finding the top connections. For instance, Fig. 3a 278 

shows groups of important connections for predicting cognition within the visual network, within 279 

the default mode network, as well as between the default mode network and other networks, while 280 

Fig. 3b shows that the most important connections for predicting fluid intelligence tend to be cross-281 

hemispheric between medial regions or between temporal regions. 282 

Many other solutions have been proposed for interpreting prediction models. Using a feature-283 

dropping concept used in random forests77, feature importance for each feature can be quantified 284 

as the decrease in prediction performance when that feature is removed from the feature set62,78-80. 285 

This has been sometimes referred to as a ‘virtual lesion’ approach in the computational 286 

neuroimaging field. Such simple implementations may not, however, scale well to large feature 287 

sets as each feature is delt with independently. Alternatively, using sparse regression models, only 288 

a small subset of features is selected by the regression algorithm for prediction. This leads to an 289 

inbuilt binary interpretation where only the small set of selected features is considered important. 290 

For instance, Fig. 3c shows the feature importance assignment for predicting novelty seeking by a 291 

sparse algorithm, helping the model interpretations to focus on frontal-subcortical, parietal-frontal, 292 

and within-frontal connections. This approach identifies predictive features in a data-driven 293 

manner, albeit limited to research questions where sparsity can be safely assumed. When using 294 

highly correlated features like functional connectivity, some algorithms may fail to include all 295 

important features that are correlated to each other81. Considering a large set of features without 296 

feature selection, it may still be possible to assess feature importance using Shapley Additive 297 

exPlanation (SHAP)82,83. SHAP determines each feature’s contribution similar to the ‘virtual 298 

lesion’ approach, but in all possible subsets of features, providing a distribution of feature 299 

importance for each feature. Finally, using a recently proposed region-wise framework, each brain 300 

region’s features set can be assessed instead of individual features. Concretely, a region-wise 301 

model is trained and tested to provide a model accuracy specific to the brain region60. 302 

Interpretations based on region-wise models are easy to illustrate (Fig. 3d) and to some extent align 303 

with the brain mapping literature. Nevertheless, the distributed aspect of brain organization is not 304 

modeled by the region-wise models, limiting strong interpretations to mostly region-specific 305 

properties.  306 

Ultimately, useful model interpretations are reliant on the prediction accuracy and generalizability 307 

of the model. With very low accuracies, the interpretations generated from the models may be 308 

arbitrary at best, while with low generalizability the interpretations may be valid only for the 309 

training sample. The challenge hence lies in designing models where interpretability can be 310 

achieved with minimal or no compromise in accuracy. Potential directions may include more 311 

powerful generative models, more informative priors, and interpretable deep neural networks. 312 

Generative models and deep neural network models may be combined into deep generative models 313 

to bring forth the benefits of both interpretability and accuracy, with specific approaches including 314 

variational autoencoders84, generative adversarial networks85, and autoregressive models86,87. With 315 

traditional machine learning models, feature importance based on existing models can help to 316 
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reduce feature dimensionality in new models in new cohorts, which offers new interpretations to 317 

validate against the existing model’s interpretation. In this way, a positive reinforcement loop may 318 

exist between boosting prediction accuracy and interpretability, reducing the need to sacrifice one 319 

for the other.  320 

Enhancement and adversarial attacks 321 

Enhancement and adversarial attacks can threaten the trustworthiness of neuroimaging-based 322 

predictive models. Enhancement attacks are those where purposeful data alterations can lead to 323 

falsely enhanced model performance, while adversarial attacks are those where specifically 324 

designed noise are added to the data to cause a model to fail88. An artificially enhanced model may 325 

be the result of scientific malpractice or fraud which, if not discovered, could lead to large amount 326 

of time and resources wasted in the wrong research direction. Successful adversarial attacks on 327 

deployed models mean that prediction outcomes would become unreliable. In biomedical 328 

development for example, the effect of a treatment or of a drug could be faked or exaggerated with 329 

data manipulation of the machine learning model to mislead financial investors. . Similar to the 330 

issue of generalizability, the main challenge of these attacks in the field of neuroimaging-based 331 

psychometric prediction is the lack of awareness. As practical applications of neuroimaging-based 332 

prediction models are still far-fetched at present, there is a lack of motivation for researchers to 333 

anticipate models that are robust to these attacks. Furthermore, replication studies that might detect 334 

enhancement attacks are still rather lacking in the field. While there is no evidence of existing 335 

enhancement or adversarial attacks in the field and no practical solution proposed against them 336 

currently, these are crucial issues to address in the perspective of the deployment of brain-based 337 

prediction models for applications in the society. 338 

Simple data enhancement can be done by biased subject selection. Subjects may be retroactively 339 

selected based on their individual prediction outcome, or only chosen if they follow certain brain-340 

phenotype stereotypes. Such manipulations can be detected if data characteristics and exclusion 341 

criteria are reported faithfully, especially when outliers are excluded based on a threshold. A more 342 

advanced approach involves adding patterns correlated to the behavioral variable of interest to the 343 

imaging features, boosting the prediction accuracies to almost perfect accuracies without causing 344 

the features to become significantly different from the original features88. Furthermore, it is 345 

possible to design data enhancements to cause machine learning models to learn brain-behavior 346 

relationships not existing in the original data. This means that enhancement attacks may also be 347 

detrimental from a basic neuroscience perspective as conclusions drawn would not be valid. This 348 

type of attack may be detected when a replication study fails to generalize the model to new cohorts 349 

but can only really be confirmed if the raw data and data processing code can be openly examined. 350 

The effects of adversarial attacks in machine learning models for clinical applications have been 351 

investigated89,90. For brain-based prediction models in healthy population, it has also been shown 352 

that very minor data manipulations can cause the classification accuracy to drop to 0%88. To design 353 

this type of attack, the model parameters must be known, hence bringing forth additional 354 

challenges in achieving both open science and practical utility. Data validation to identify 355 

manipulated data, if possible, may become paramount in the future of adversarial attacks. 356 
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Potentially, machine learning models employed in practical applications can make use of online 357 

learning where a trained model continues to receive new batches of data for additional training, 358 

while only sharing the model at baseline for scientific purposes. 359 

In face of potential enhancement and adversarial attacks, model and study reproducibility enabled 360 

by open science is necessary to detect and address these data manipulations. With transparent study 361 

design and provenance tracking, the field can benefit from multiple aspects including easier 362 

replication, enhancement attack monitoring, comparison across studies, and results pooling22,88.  363 

Conclusions 364 

Many challenges lie in the way of brain-based predictive modeling of behavior before it can be 365 

substantially useful for understanding complex brain-behavior relationships or for practical 366 

applications. While some limitations are inherent, such as smaller sample sizes in studies interested 367 

in phenotypic measure uncommon in large open datasets, others are solvable, such as assessment 368 

and improvement of generalizability. By acknowledging this and addressing the solvable issues, 369 

brain-based psychometric predictions can steadily progress towards scientific and practical utility. 370 

We encourage more comprehensive study design, comprising multiple cohorts to cover more 371 

population-representative samples, and ensuring model validity with careful confound handling. 372 

Furthermore, we advocate for model evaluation based on both accuracies and generalizability. 373 

Predictive modeling in neuroscience is a necessarily interdisciplinary field, which requires 374 

combinations of neuroscientific knowledge, statistical concepts, and machine learning techniques 375 

to achieve its potential. Beyond this interdisciplinarity, transparent models, diverse data, and 376 

rigorous study designs are the keys to move forward. 377 
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 384 

Fig. 1 | Model development and validation for neuroimaging-based psychometric predictions. A machine learning 385 
model is first trained using neuroimaging features and psychometric scores from subjects 1 to N (from the training 386 
set). The model learns a relationship between the neuroimaging features and the psychometric scores. For validation, 387 
the model takes in neuroimaging features from subjects N+1 to N+M (from the test set), and outputs predicted values 388 
for the psychometric scores. The predicted scores can then be compared to the actual scores using various accuracy 389 
measures (see Box 1) to evaluate the performance of the model. To assess the generalizability of the model, the model 390 
needs to be applied to a new dataset in a similar way to its application in the test set. 391 
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 392 

Fig. 2 | Prediction accuracies measured by Pearson’s correlation. a, Scatter plot of observed and predicted openness 393 
trait, with a Pearson’s correlation accuracy of 0.2491. Blue line shows the fitted line between observed and predicted 394 
values, while black dashed line marks the line with unit slope and zero intercept. It can be noted that, while 395 
(standardized) observed values have a wide range of variations (roughly between -20 and 15, predicted values remain 396 
tightly scattered around zero. b, Scatter plot of observed and predicted scores of meaning and purpose, with a 397 
Pearson’s correlation accuracy of 0.17 in African American subjects and 0.049 in White American subjects70. Blue and 398 
green lines show the fitted line between observed and predicted values in African American and White American 399 
subjects respectively. The correlation appears slightly higher in African American than White American, while the 400 
prediction errors may actually be greater in the former group. c, Scatter plot of observed and predicted visual working 401 
memory performance, with a Pearson’s correlation accuracy of 0.40221. Blue line shows the fitted line between 402 
observed and predicted values. Overall, from all three plots, it can be observed that the Pearson’s correlation 403 
coefficient is higher when the fitted line has a slope closer to one. It is also noteworthy that predicted values in all 404 
cases tend to have smaller variances compared to the observed values. This reflects the tendency of machine learning 405 
algorithms to generate predictions closer to the sample mean. Finally, outliers or prediction failures can be observed 406 
in all plots even when correlation accuracies are moderate. As the correlation accuracies measure the relative 407 
goodness-of-fit, they are less affected by (or reflective of) outliers compared to accuracy measures based on absolute 408 
errors. 409 
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 410 

Fig. 3 | Visualizations of model interpretations. a, Feature importance of all RSFC edges for predicting general 411 
cognition in a young adult cohort with parcels grouped under networks38. Colors correspond to the Haufe transformed 412 
weight values. Important connections can be found within the visual network, within the default mode network, 413 
between the default mode network and the control network, as well as between the default mode network and the 414 
attention networks. b, Feature importance of top RSFC edges for predicting fluid intelligence in a young adult cohort 415 
shown in their corresponding positions in the brain60. Colors correspond to the Haufe transformed weight values. 416 
Most top connections can be found between medial regions or temporal regions across the hemispheres.  c, Feature 417 
importance of all RSFC edges for predicting novelty seeking in a young adult cohort when a sparse algorithm was used. 418 
Colors correspond to the mean weight values across cross-validation splits92. The sparse set of selected features 419 
mostly include frontal-subcortical, parietal-frontal, and within-frontal connections. d, Brain region importance for 420 
predicting fluid cognition in an aging cohort based on the RSFC features using the region-wise approach60. Colors 421 
correspond to the prediction accuracies achieved using brain regional connectivity profiles. The relatively more 422 
predictive regions can be identified in the cingulate cortex, the peripheral visual area, the right supramarginal gyrus, 423 
the right anterior insula, the central sulcus, and the right lateral frontal cortex. 424 

 425 
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 426 

Box 1 | Measures of model accuracy 

In order to evaluate a model in a validation sample, its predictions need to be compared against 

the actual values of the psychometric variable. The closer the predicted values are to the actual 

values, the more accurate the model is. This degree of closeness can be represented either by 

correlation metrics examining the linear trend between all predicted and observed values, or 

by error metrics examining the absolute differences between each pair of predicted and 

observed values. 

The most common metric in the literature is the Pearson’s correlation coefficient (r) between 

predicted and observed valuesError! Bookmark not defined., measuring the normalized covariance 

between the two variables (𝑟 =
𝑐𝑜𝑣(𝑝𝑟𝑒𝑑,𝑜𝑏𝑠)

𝜎𝑝𝑟𝑒𝑑𝜎𝑜𝑏𝑠
). This correlation coefficient is an indication of 

the extent to which a given increase or decrease in one variable is associated with a similar 

increase or decrease in the other variable . Similarly, Spearman’s correlation can be used to 

measure the ranked correlation between predicted and observed values, providing an indication 

of how well the two groups of values are monotonically related.  

Common error metrics include mean absolute error, mean squared error (MSE), and root mean 

squared error, measuring the average difference between predicted and observed values in the 

validation sample in slightly different manners. In general, the error values should be 

normalized by the standard deviation (or the range of predicted values for absolute errors) of 

the validation sample, so that they are comparable to standardized measures from other 

samplesError! Bookmark not defined..  

While a high correlation suggests that predicted values are generally higher when observed 

values are higher, it does not mean that predicted values are numerically close to the observed 

values. As a result, the correlation metrics cannot detect systematic biases where the predicted 

values are consistently higher (or lower) than the observed value. It may be recommended that 

high correlation accuracies should be validated with error-based accuracies to check for 

systematic bias. On the other hand, correlation metrics might be more useful when generalizing 

a model to new data where the psychometric variables are similar to but not the same as those 

in the training sample and numerical closeness between predicted and observed values may 

not be required. 

Finally, a useful metric for model evaluation is the coefficient of determination (or R2), 

providing a measure of goodness-of-fit of the model. A simple form of R2 is r2 may also be 

computed as the square of the correlation coefficient from the correlation metric. It should be 

noted that this r2 measures the goodness-of-fit between the predicted-observed relation and its 

fitted line, and hence is not a direct measure of model fit itself. Using error metrics such as 

MSE, the more general R2 can be computed as 𝑅2 = 1 −
𝑀𝑆𝐸

𝜎2
, measuring the goodness-of-fit 

of the regression equation estimated by the prediction model to the validation data. The R2 

values can also be interpreted as the ratio of explained variance by the model to the total 

variance in the sample, offering an intuitive way to explain the accuracies measured. 
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