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Machine learning based binding contingency
pre-selection for AC-PSCOPF calculations
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Abstract—We propose to use off-line machine learning to train
an oracle predicting the set of binding contingencies for an Alter-
nating Current Preventive Security-Constrained Optimal Power
Flow (AC-PSCOPF) solver. On-line, the oracle’s predictions are
used instead of the full set of all postulated contingencies, as an
input to the PSCOPF solver. A Steady-State Security Assessment
(SSSA) is applied to the resulting PSCOPF solution to check the
absence of false negatives. Our oracle is a deep neural network
multi-label classifier that uses as inputs active and reactive loads,
generations, and power flows, computed by an OPF using the
same cost function and base-case constraints as the PSCOPF.
The proposal is show-cased on the Nordic32 benchmark.

Index Terms—machine learning, multi-label classification,
security-constrained optimal power flow, security assessment.

I. INTRODUCTION

The AC-PSCOPF is a nonlinear optimization problem aim-
ing at finding an optimal operating point of a power system
that is also secure with respect to a set of contingencies [1]. For
large power system models with tens of thousands of buses,
lines, and contingencies, this leads to nonlinear optimization
problems with billions of variables and constraints, which are
currently not solvable accurately in a tractable way.

A way to make PSCOPF calculations more tractable would
be to use an oracle to guess the subset of binding contingen-
cies; the latter are contingencies that at the PSCOPF solution
have at least one non-zero Lagrange multiplier associated
to their branch loading or bus voltage limits. Solving the
PSCOPF with only these contingencies explicitly modelled
may be much more efficient and would yield a solution that
would also be secure for the non-binding contingencies.

In order to identify an as small as possible subset of con-
tingencies containing all the binding ones, heuristic iterative
approaches have been proposed in the literature [2]. These
methods progressively grow the subset of covered contingen-
cies, until the resulting PSCOPF solution is found to be secure
against all other (not explicitly modelled) contingencies. They
typically need several iterations and converge to a superset of
the subset of binding contingencies. In practice however, the
number of potentially binding contingencies they find remains
less than a few tens, even for very large systems [3].

While Machine Learning (ML) has been proposed recently
to enhance AC-PSCOPF in various ways [4], [5], we propose
in this letter, for the first time, to use ML, namely supervised
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learning of deep neural network based multi-label classifiers,
to pre-select binding contingencies for the AC-PSCOPF.

Our method works in the following way:
1) in off-line mode, we generate a dataset of solved

PSCOPF instances and use supervised ML to train an
oracle that can predict binding contingencies,

2) in on-line mode,
a) we run the PSCOPF with the subset of binding

contingencies predicted by the learnt ML-oracle,
b) we run SSSA, to check whether some of the

other postulated contingencies lead to security vi-
olations; if this is the case, we add them to the
contingency subset and return to step a.

3) we continuously enrich the training set with the subsets
of binding contingencies found in on-line mode and, if
needed, we retrain the ML-oracle in off-line mode.1
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Fig. 1. On-line use of the ML-oracle to speed up PSCOPF computations

II. ML-BASED BINDING CONTINGENCY DETECTION

In Fig. 1, we present the on-line workflow for using our
classifier-assisted PSCOPF solver. It begins with computing
an OPF solution (i.e. without any contingency) by applying
a physics-based alternating-current solver on the given load
profile. This OPF solution is then fed into the contingency
classifier, which works as an oracle predicting the set of
binding contingencies. The predicted set is used as input for a
physics-based alternating-current PSCOPF solver, generating
the ML-assisted PSCOPF solution. In the final step, the
SSSA identifies contingencies for which the classifier-assisted
PSCOPF solution is found to be insecure.

A. Proposed multi-label classification formulation

Our primary objective is to predict potentially binding
contingencies for a given load profile. We formulate this

1Retraining would be needed as soon as the accuracy of binding contin-
gency detection shows a significant degradation. This could be caused by
important system topology changes and/or by significant drifts in demand
patterns or in the cost functions or constraints used by the PSCOPF [5].
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problem as a multi-label classification task, each label being
dedicated to one of the postulated contingencies. To construct
a multi-label binding contingency classifier, we extract features
from solutions obtained using alternating-current formulations
of OPF and PSCOPF solvers (see Fig. 2).

● Input Features: With a load profile represented by
PD,QD ∈ Rd for d aggregate demands, calculate an
OPF solution in the absence of contingencies. Obtain
vectors of generation schedules, denoted as PG,QG ∈ Rg ,
representing the power output of g power sources, and
branch flows denoted as PF ,QF ∈ Rf for f lines and
transformers. Concatenate all vectors to obtain an input
feature vector as [PD,QD, PG,QG, PF ,QF ].

● Output Features: For the same load profile PD,QD ∈

Rd, and given a set of postulated contingencies M,
compute a PSCOPF solution (with the same objective
function as used in OPF computations). Obtain the set of
binding contingencies as a bit-vector B ∈ {0,1}∣M∣. B is a
vector of (binary) output features, indicating the binding
(1) or non-binding (0) nature of each contingency.
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Fig. 2. Dataset construction pipeline for off-line training of the ML-oracle

Our decision to utilise OPF solutions to compute input-
features used by our oracle is driven by three reasons:

1) Optimization problem awareness: OPF solutions tell
us something about how the cost function selects the set
of binding constraints of the optimization problem.

2) Physics awareness: OPF solutions provide branch flows
and generation schedules that comply with system topol-
ogy and physical characteristics. (In the case of voltage
limited systems, we could similarly include voltage
profiles computed by the OPF as input-features.)

3) Availability: OPF results without considering the pos-
tulated contingency set should normaly be available in
any on-line context where a PSCOPF is to be used.

The process of constructing datasets for the multi-label classi-
fier training thus involves performing both OPF and PSCOPF
computations, for both training and test samples.

B. Machine learning setting

We illustrate our approach on the Nordic32 test system,
as shown in Fig. 3. A comprehensive system description,
the non-linear PSCOPF formulations, and the precise dataset
generation assumptions can be found in [5].

Dataset generation: We generated 14,000 load profiles
ranging between their peak and lowest values, and introduced
bus-wise independent Gaussian noises in both real power de-
mands and power factors. Exactly 12,031 resulted in feasible
PSCOPF solutions when considering 33 line-based and 19
generator-based (single-outage) contingencies, i.e., ∣M∣ = 52.

Fig. 3. Binding contingencies observed for the Nordic32 system: Red:
binding for > 99% of the 12,031 samples, Lavendar: binding for 22%−96%
of the samples, Blue: binding for 2.2% − 10.9% of the samples

OPF solutions with the same cost function were computed for
these latter. In our study all SCOPF/OPF runs are based on
the IPOPT solver via the JuMP framework, as in [5].

Preprocessing: Consider Fig. 3. Out of 12,031 PSCOPF
solutions, 3 line-based contingencies (marked in red) were
consistently observed as binding in over 99% of 12,031
samples. Then, 8 line contingencies (highlighted in lavender)
exhibited a binding occurrence in 22% to 96% of 12,031
samples. Finally, 5 line and 1 generator failures (accentuated
in blue) were found to be binding in 2.2% to 10.9% of the
total samples. For classifier training, we consider contingen-
cies with a minimum 2% minority class labels. Specifically,
we exclude contingencies that were either binding or non-
binding in less than 2% of 12,031 PSCOPF solutions. For
instance, we assume 3 red-highlighted line contingencies to be
always binding and the non-highlighted ones as never binding.
Effectively, we reduced in this way the dimension of the output
feature vector B ∈ {0,1}52 to Br ∈ {0,1}14.

Class Imbalances: A major challenge in multi-label classi-
fication is the substantial diversity in the underlying distri-
butions of binary labels (binding or non-binding) for each
label (plausible contingency). For example, line 4011 − 4021
is identified as a binding contingency in 11,910 out of 12,031
samples. In contrast, tripping of generator g6 is observed
to be binding in only 1064 out of 12,031 samples. The
dataset is severely imbalanced, in different ways for different
contingencies. Traditional methods such as over-sampling of
minority class [6], under-sampling of majority class [7], or
a combination of both [8] are invoked for class balancing,
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Fig. 4. Histograms showing the number of test operating conditions (y-axis)
for different binding contingency set cardinalities (x-axis): PSCOPF solver-
determined (∣Si∣, in Blue); ML based classifier-predicted (∣Ci∣, in Pink)

often altering the underlying distributions. Instead, we found
it more suitable in our multi-label context to utilise weighted
binary cross entropy as a loss function to address class
imbalance. Herein, incorrect predictions for minority labels are
naturally penalised higher compared to imperfect predictions
for majority labels. For each output label, we assigned different
weights to its binary labels based on their frequencies in the
dataset. This ensured that the trained classifier accorded equal
emphasis on correct prediction of less-frequent labels, while
preserving the underlying joint distribution of binary labels.

III. ML-ASSISTED AC-PSCOPF SOLVER RESULTS

In this section we provide, in the context of the Nordic32
benchmark, a concise overview of the multi-label classifier
training setting and we outline the main results in terms of
accuracy of the trained classifier.

Features: Non constant Input Features - PD,QD ∈ R22

for 22 loads, PG ∈ R22, QG ∈ R23 for 21 synchronous
generators, a tie-line flow, and one synchronous condenser,
PF ,QF ∈ R72 for 36 branches (at both ends); Reduced
Output Features - a bit-vector Br ∈ {0,1}14 corresponding
to contingencies marked in lavender and blue in Fig. 3 (red-
marked contingencies are assumed to be always binding).

Neural Network Architecture: A fully-connected feed for-
ward neural network architecture was selected with the follow-
ing hyper parameters: an input layer with 233 neurons and two
hidden layers with 700 neurons each, all with ReLU activation
functions, the output layer with 14 neurons uses sigmoid
activation functions. For training, the Adam optimiser was
harnessed with a weighted binary cross-entropy loss function.
The input features were standardised towards zero mean and
unit standard deviation. PyTorch-1.13.1 was used to train the
multi-label classifier Ĉr ∶ R233 → {0,1}14 with 1400 epochs,
a mini-batch size of 25, and a learning rate of 3 ⋅ 10−4.

Training, Validation and Testing: The dataset was split into
80 ∶ 20 ratio, with 80% allocated for training and 20% unseen
ones for testing. During training-validation steps, the training
set was further split into 80 ∶ 20 ratio for hyper-parameter tun-
ing. Our parameter tuning objective was to minimise incorrect
predictions of observed binding contingencies. To achieve this,
we tuned 14 positive weights within the loss function to reduce
the number of false negatives (FN ). It is important to note
that false positives (FP ) are undesirable from a computational
perspective. But, unlike FN , presence of FP do not adversely

TABLE I
ACCURACY STATISTICS OF THE BINDING CONTINGENCY CLASSIFIER

OVER THE TEST SET OF 2431 UNSEEN OPERATING CONDITIONS

Contingency Accuracy Recall Specificity Precision MCC
1021-1022 99.5% 94.3% 99.7% 91.1% 0.924
1042-1044 95.8% 97.3% 92.6% 96.5% 0.903
1042-1045 95.6% 95.5% 95.7% 92.1% 0.905
1043-1044 99.2% 89.0% 99.5% 85.5% 0.869
2031-2032 99.3% 95.2% 99.5% 91.5% 0.930
4021-4032 98.3% 96.7% 98.8% 95.9% 0.952
4022-4031 97.9% 98.1% 97.6% 98.6% 0.955
4041-4044 99.5% 99.7% 94.5% 99.8% 0.932
4041-4061 98.6% 69.6% 99.2% 61.5% 0.647
4042-4043 93.2% 78.9% 94.9% 64.5% 0.676
4042-4044 97.6% 99.5% 95.1% 96.3% 0.951
4043-4044 95.2% 97.0% 86.9% 97.3% 0.834
4062-4063 99.0% 98.4% 99.3% 98.8% 0.978

G6 99.2% 97.6% 99.3% 93.1% 0.949
All 97.7% 97.4% 97.9% 96.1% 0.950

MCC: Matthews correlation coefficient.

affect the security of classifier-assisted PSCOPF solutions. Of
course a perfect predictor would result in only true positives
(TP ) and true negatives (TN ). Other hyper-parameters were
tuned to ensure a smoother convergence of validation losses
within each epoch. The final multi-label classifier was trained
using the complete training dataset, i.e., with 9600 samples.

Accuracy assessment of the learnt oracle

For an operating condition i amongst the 2431 unseen test
operating conditions, we consider two sets of contingencies:
set Si, which contains the ground-truth of binding contin-
gencies determined via conventionally-computed all-plausible-
contingency PSCOPF solutions, and set Ci, which contains
classifier-predicted binding contingencies. Fig. 4 contrasts the
distributions of cardinalities for sets Si and Ci over the 2431
test samples. We observe that the distribution for ∣Ci∣ (in pink)
is slightly more skewed towards the y-axis.

Table I provides various standard accuracy indicators over
the set of 14 contingencies covered by the trained multi-
label binding contingency classifier.2 While the overall perfor-
mances are very good, the table shows that for the outage of
line 4041-4061 or of line 4042-4043 the multi-label classifier
is less precise than for the other 12 contingencies.

Further analysis shows that solver-determined binding con-
tingency sets Si and classifier-predicted binding contingencies
sets Ci are identical for 1496 out of 2431 test samples.
More importantly, when solving the PSCOPF with only the
classifier-predicted binding contingencies and then applying
SSSA to check security, we find that for about 84% of the test
samples (i.e. 2032) the resulting PSCOPF solution is actually
secure with respect to all 52 postulated contingencies; among
the remaining 399 cases (about 16%), 280 are found to be
insecure only with respect to a single postulated contingency,
while 119 (less than 5%) are found to be insecure for 2
(mostly) or more plausible contingencies.

Let us also notice that in our study the thermal line
constraint violations were the most common cause of insecure
classifier-assisted PSCOPF solutions. For instance, the thermal
constraint for transmission line between buses {2031,2032}
was violated in 100 samples, and 96 violations for the line

2The precise definition of these accuracy indicators can be found at https:
//en.wikipedia.org/wiki/Phi coefficient.

https://en.wikipedia.org/wiki/Phi_coefficient
https://en.wikipedia.org/wiki/Phi_coefficient
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connecting buses {4022,4031} were detected by the SSSA
module. Besides, voltage violations were detected in classifier-
assisted PSCOPF solver for 23 samples, with 20 corresponding
to those at bus 4062.

IV. CONCLUSIONS

This letter proposes for the first time to use supervised
machine learning in order to construct an oracle to predict
binding contingencies for the AC-PSCOPF problem.

Our preliminary case study on the classical Nordic-32
benchmark shows that this may be addressed by training a
single multi-label neural-network classifier with two hidden
ReLU layers and sigmoid activation functions in the output
layer. Our results also showed a very good level of accuracy
in terms of binding contingency prediction capability. While
we considered in the empirical study of this work only single-
outage contingencies, our method could also be applied to
multiple outages to the same extent as classical PSCOPF
solvers can do this. Yet, novel research directions need to be
pursued to investigate computationally-demanding scenarios
resulting from numerically larger values of N and k, wherein
scalability emerges as a core challenge.

In our investigation, we however covered in our training and
test samples only variations in terms of active and reactive
demand patterns. It remains a challenge to leverage machine
learning so that it can take into account all relevant variations
in the system topology (grid, generation, substations), and ide-
ally even the expected variabilities in the cost-function terms,
the line ampacities, and other constraints of the PSCOPF [5],
that can arise seasonally and within an operating hour. Further
work is clearly needed to address all these issues.

Perhaps, a potential solution is to leverage graph neural net-
work (GNN) techniques to account for topological variations
in the grid [9]. By employing GNN techniques, classifiers
could harness their inherent ability to model and reason about
complex spatial and physical relationships in data, which is
particularly useful for addressing power system optimization
and control.
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https://ieeexplore.ieee.org/document/4075418
https://ieeexplore.ieee.org/document/4349062
https://ieeexplore.ieee.org/document/4349062
https://ieeexplore.ieee.org/document/4349062
https://ieeexplore.ieee.org/abstract/document/6670108
https://ieeexplore.ieee.org/abstract/document/6670108
https://ieeexplore.ieee.org/abstract/document/6670108
https://ieeexplore.ieee.org/document/9709643
https://ieeexplore.ieee.org/document/9709643
https://hdl.handle.net/2268/304498
https://hdl.handle.net/2268/304498
https://dl.acm.org/doi/10.5555/1622407.1622416
https://dl.acm.org/doi/10.5555/1622407.1622416
https://ieeexplore.ieee.org/document/4309452
https://tel.archives-ouvertes.fr/tel-03624628/document

	Introduction
	ML-based binding contingency detection
	Proposed multi-label classification formulation
	Machine learning setting

	ML-assisted AC-PSCOPF solver results
	Conclusions
	References

