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Abstract

Unconstrained Binary Polynomial Programs (UBPs) are a class of optimization problems relevant
in a broad array of fields. In this paper, we examine an example from communication engineering,
namely low autocorrelation binary sequences and propose a new dynamic programming approach
that is particularly effective on UBP instances that have a limited so-called reach, which is the
maximum difference between any two variable indices in the problem. Based on the reach, the
dynamic programming approach decomposes the problem into a number of overlapping stages that
can be solved in parallel. On a set of publicly available low autocorrelation binary sequence problems,
we demonstrate the superiority of the approach by showing that the method solves to optimality for
the first time several previously unsolved instances. In particular, we provide a direct comparison
between the proposed method and a modern version of a previously proposed dynamic program
for UBPs. We give a detailed analysis of the connection between the two different algorithms and
demonstrate that the advantage of the proposed dynamic program is in its ability to implicitly
identify the multilinear polynomials that are required in the recursive steps of the two dynamic
programs. For perspective, a comparison to several other methods is also provided.

Keywords: unconstrained binary polynomial program, dynamic programming, low autocorrelated
binary sequences

1. Introduction

Consider a set of variables xj ∈ {0, 1} for j ∈ J = {1, . . . , n} and a set of monomials Mi ⊆ J
for i ∈ I. The unconstrained binary polynomial program (UBP) is defined as follows:

min{
∑
i∈I

ci
∏
j∈Mi

xj , x ∈ {0, 1}n} (1)

where ci for i ∈ I are the coefficients of the monomials. Problem (1) is NP-hard in general, as
it encompasses in particular unconstrained quadratic binary programming. The objective function
of (1) is multilinear, that is, it does not contain squares or higher powers of single variables because
for binary variables xj = x2

j is satisfied. Note that the term monomial usually refers to a product
of variables

∏
j∈Mi

xj . For the sake of simplicity, we abuse the terminology slightly and refer to the
subsets Mi of variable indices as monomials.
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Problem (1) is very general, and finds its relevance for example in classical operations research
applications such as uncapacitated facility location (Hammer, 1968; Dearing et al., 1992; Goldengorin
et al., 2003) or the p-median problem (Goldengorin and Krushinsky, 2011), but also in applications
coming from different fields such as computer vision (Fix et al., 2015; Freedman and Drineas, 2005;
Ishikawa, 2011; Kolmogorov and Zabih, 2004) or statistical mechanics (Bernasconi, 1987; Liers et al.,
2010). When the objective function of (1) is quadratic, the problem is equivalent to a 0–1 linear
programming problem whose set of feasible solutions is defined by the Boolean Quadric Polytope,
which is isomorphic to the Cut Polytope (Padberg, 1989; De Simone, 1990). The quadratic case has
attracted much interest on its own and can be used to model classical combinatorial optimization
problems such as maximum cut, maximum stable set or minimum vertex cover, among others.
However, in this paper we limit ourselves to the higher-degree case. Moreover, every pseudo-Boolean
function, that is, every mapping f : {0, 1}n → R admits a unique multilinear representation
(Hammer et al., 1963b; Hammer and Rudeanu, 1968). This is easy to see since a pseudo-Boolean
function with n variables will have exactly 2n possible inputs and it can thereby be represented
by a table with an entry for each possible input. Once the table representation is established it is
easy to construct the corresponding multilinear polynomial. Consider for example the two variable
pseudo-polynomial function given by the table

(x1, x2) (0,0) (0,1) (1,0) (1,1)
f(x1, x2) 7 9 13 42

We can then write the corresponding multilinear polynomial as

f(x1, x2) = 7(1− x1)(1− x2) + 9(1− x1)x2 + 13x1(1− x2) + 42x1x2

= 7(1− x1 − x2 + x1x2) + 9(x2 − x1x2) + 13(x1 − x1x2) + 42x1x2

= 7− 7x1 − 7x2 + 7x1x2 + 9x2 − 9x1x2 + 13x1 − 13x1x2 + 42x1x2

= 7 + 6x1 + 2x2 + 27x1x2.

However, finding a multilinear expression of a given mapping f using a tabulation approach may
be extremely time consuming since the table size grows exponentially with n. Using the pseudo-
Boolean formalism, (1) finds relevance in even more applications, such as maximum satisfiability
(for a detailed list of applications see for example Boros and Hammer (2002); Crama and Hammer
(2011). The relation between pseudo-Boolean functions and UBPs also implies that every UBP can
be in principle expressed as an unconstrained non-linear binary optimization problem.

In this paper, we develop a new dynamic programming algorithm that is designed to address
instances of (1) that have limited reach. The reach of (1) is a metric that states the maximum
difference between any two variable indices across all monomials in the problem. Formally, we
define the reach w of (1) to be w = maxi∈I{w(Mi)}, where w(Mi) = max{Mi} − min{Mi} + 1.
As an example, the monomial Mi = {x1, x2, x4, x9} has a reach of 9. Obviously, the reach of a
monomial Mi, and of an instance of (1), depends on the indexation order of the variables; however,
we do not consider the problem of reordering the variable indices in this paper. (In view of the
relation between reach and bandwidth outlined hereunder, determining a reordering of the variables
that minimizes the reach is NP-Complete; see e.g., Papadimitriou (1976).) The proposed dynamic
programming algorithm exploits the limited reach of an instance to decompose the problem into a
sequence of stages that can be solved, potentially in parallel.

One particular class of UBPs where the notion of reach is inherently relevant in the structure of
the instances is the Low (off-peak) Autocorrelation Binary Sequences (LABS) problem. Applications
of this problem can be found in communication engineering (Bernasconi, 1987; Mertens, 1996)
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or statistical mechanics (Liers et al., 2010) among others. On a set of publicly available LABS
instances (MINLPLib, 2020; POLIP, 2020), our dynamic programming algorithm outperforms
existing approaches, solving several previously unsolved instances. The algorithm does bear some
similarity to a previously proposed dynamic program of Hammer et al. (1963a,b) known as the
Basic Algorithm. We therefore discuss the connection between these two dynamic programming
approaches in detail and explain the improved computational performance of the new approach.

Similar to Crama et al. (1990) we can associate an undirected graph G = (V,E) with (1). Here,
V = {1, . . . , n} and the set E contains an edge (j, k) if there exists i ∈ I such that {j, k} ⊆Mi (in
other words, (j, k) ∈ E if xk and xj occur together in at least one of the monomials of the UBP).
This graph is called the co-occurrence graph of the UBP. The reach of a UBP is related to well-
known graph theoretical metrics such as treewidth, pathwidth and bandwidth of the co-occurrence
graph (see Bodlaender (1998) for definitions). In particular, we have that

treewidth(G) ≤ pathwidth(G) ≤ bandwith(G) = reach(G)− 1,

which implies that a UBP with limited reach has an associated graph with limited treewidth. The
first and second inequality follow from Lemma 3 and Theorem 44 of Bodlaender (1998), respectively,
while the third inequality follows from the definitions of reach and bandwidth. The relation between
reach and treewidth implies that UBP instances with limited reach can be solved in polynomial
time by the Basic Algorithm, following results in Crama et al. (1990). The proposed dynamic
programming algorithm also solves instances with limited reach in polynomial time.

Note also that for the specific case of the LABS problem, Liers et al. (2010) make the following
claims (in their paper, R denotes the reach): “For finite R the model can be solved in a time of order
O(N22(R−3)) by transfer matrix methods”. (See Conway (2017) for the relation between dynamic
programming and transfer matrix methods.) The authors do not provide further details and have
apparently not attempted an implementation.

The contributions of this paper are hence threefold: 1) We develop a new dynamic programming
algorithm that is effective on UBPs with limited reach and demonstrate through computational
experiments the superior performance of this approach on a publicly available set of LABS instances.
The proposed approach is able to optimally solve several instances for which no optimal solution has
been previously reported. The asymptotic running time of the dynamic programming algorithm is
linear in the number of variables when solving instances with a fixed reach. 2) We provide a detailed
description of the connection between the proposed dynamic programming algorithm and the Basic
Algorithm as well as a modern implementation of the Basic Algorithm. In doing so, we highlight the
similarities and differences between the two respective algorithms and identify what the improved
computational performance can be attributed to. 3) We provide a comparison of several different
solution methods on a publicly available set of LABS instances.

The rest of this paper is structured as follows. We provide a review of relevant literature
in Section 2, and we present the proposed dynamic programming algorithm in Section 3. In
Section 4, we review the Basic Algorithm of Hammer et al. (1963a) and analyze its connection
to the proposed dynamic program. Numerical results are discussed in Section 5 and conclusions are
drawn in Section 6.

2. Literature Review

In this paper, we directly compare the performance of the proposed dynamic programming
algorithm with the performance of a modern implementation of the so-called Basic Algorithm.
The Basic Algorithm was first introduced in (Hammer et al., 1963a,b). A detailed description
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of the algorithm can be found in (Crama et al., 1990; Boros and Hammer, 2002). The general
idea of this algorithm is to eliminate the variables of the multilinear objective function of (1)
one by one, leveraging dynamic programming principles and local optimality conditions. Each
iteration of the Basic Algorithm defines a multilinear polynomial with one less variable than the
polynomial of the previous iteration, such that the optimal values of both polynomials are equal.
In this way, one can optimize the polynomial corresponding to any of the iterations without losing
optimality. The optimization problem of the last iteration can be trivially solved (as it contains a
single variable) and the optimal values of all variables can then be reconstructed using backtracking.
The key difficulty of the Basic Algorithm as originally introduced in Hammer et al. (1963a,b) lies
in computing the multilinear polynomial of each intermediate iteration in an efficient way. Crama
et al. (1990) observed that this step can be carried out in constant time on graphs of bounded
tree-width. For the general case, they proposed an efficient branch-and-bound algorithm to perform
the computation. To carry out the numerical experiments of the present paper, we implemented the
algorithm presented in (Crama et al., 1990), as the original implementation was no longer available.
We refer the reader to Section 4 for a detailed explanation of the Basic Algorithm and its connection
with our dynamic programming algorithm.

An algorithm based on a dynamic programming-type of recursion for UBP was recently presented
in Del Pia and Di Gregorio (2022). This algorithm guarantees to optimally solve a UBP only if the
hypergraph associated with its objective function satisfies a certain property, which we discuss in
the following. A hypergraph is a generalization of the notion of a graph, where the edges (called
hyperedges) can contain more than two vertices (see for example Berge (1976)). In other words, a
hypergraph H = (V,E) can be viewed as a set of vertices V together with a set E of subsets of V .
The polynomial objective function of (1) can be naturally associated with a hypergraph, where the
vertices correspond to the variables of the polynomial (V = J) and the hyperedges correspond to
the monomials (E = {Mi : i ∈ I}). The notion of cycles in graphs can be generalized in different
ways when considering hypergraphs, the most common definitions being Berge-cycles, α-cycles, β-
cycles and γ-cycles (see Anstee (1983); Beeri et al. (1983); Fagin (1983)). The property required
by the algorithm in Del Pia and Di Gregorio (2022) to optimally solve (1) is that the hypergraph
associated with the multilinear objective function must be β-acyclic. A β-cycle of length ` ≥ 3 is
a sequence of vertices and hyperedges (v1, e1, v2, e2, . . . , v`, e`, v`+1 = v1) such that all vertices vi,
i ∈ {1, . . . , `} are distinct, all hyperedges ei, i ∈ {1, . . . , `} are distinct, and vi ∈ ei−1, ei and is not
contained in any other edge from the sequence. The LABS instances considered in this paper do
not satisfy β-acyclicity, as these instances can contain many β-cycles. The algorithm presented in
Del Pia and Di Gregorio (2022) can also be applied to instances containing β-cycles, but in this
case it does not solve the problem to optimality; it only reduces the size of the problem by fixing
the values of a subset of variables and provides a rule to extend a given optimal solution of the
reduced instance to an optimal solution of the general instance. However, obtaining an optimal
solution of the reduced instance can be a complex task in general, as the reduced problem can still
be very difficult to solve. Moreover, it is shown in Del Pia and Di Gregorio (2022) that, as the ratio
of monomials per variables increases in the set of instances considered, the number of variables
fixed by the algorithm decreases. This is consistent with the observation made in the current and
previous papers (Buchheim and Rinaldi (2007); Crama and Rodríguez-Heck (2017); Elloumi et al.
(2021)), that the most difficult UBP instances are the denser instances, i.e., those with higher ratios
of monomials per variables. Moreover, the dynamic programming algorithm presented in this paper
is especially good at solving dense instances, when compared to other approaches in the literature.

Many other algorithms have been proposed in the literature to solve UBPs. Linearization-
based approaches were first introduced in (Fortet, 1959; Watters, 1967; Zangwill, 1965; Glover and
Woolsey, 1973, 1974) and have attracted much interest in the last few years with recent publications
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presenting polyhedral results (Buchheim et al., 2019; Del Pia and Khajavirad, 2016, 2018; Fischer
et al., 2018; Buchheim and Rinaldi, 2007), families of valid inequalities (Crama and Rodríguez-Heck,
2017; Del Pia and Khajavirad, 2018; Del Pia et al., 2020; Khajavirad, 2023) and decomposability
results (Del Pia and Khajavirad, 2018). Approaches based on quadratic reformulations were first
introduced in (Rosenberg, 1975), and have gained recent attention (Anthony et al., 2016, 2017;
Verma and Lewis, 2020; Boros et al., 2020; Elloumi et al., 2021) due to their theoretical interest,
but also because of their applicability in fields like computer vision (Ishikawa, 2011; Freedman and
Drineas, 2005) or quantum computing (Glover et al., 2019). Dantzig-Wolfe decomposition-based
approaches have been recently considered for linearizations of (1) by Clausen (2021). The author
considers applications in image restoration and instances of the LABS problem. The structure of
the LABS instances, in particular, is such that the application of Dantzig-Wolfe decomposition
leads to a reformulation of the linearized (1) with particularly appealing computational properties.
Clausen (2021) also proposes an enumeration approach to solve the resulting subproblems and
shows that this can be advantageous when the size of the subproblems is small. The structure of
the LABS instances and the enumeration strategy inspired the development of the proposed dynamic
programming algorithm. Finally, general purpose algorithms to solve mixed-integer nonlinear
programming (MINLP) problems such as the well-known α-branch-and-bound algorithm (Adjiman
et al., 1998) can also be applied in this case.

3. Dynamic programming

In this section we present a dynamic programming algorithm (see Cormen et al. (2009) for an
introduction to dynamic programming) for solving UBP instances with limited reach w. At each
stage the algorithm works on a subset, of cardinality w, of all variables. Stage 1 includes variables
x1, . . . , xw, while stage s includes variables xs, . . . xw+s−1. The final stage is s̄ = n − w + 1 and
includes the variables xn−w+1, . . . xn. A partial solution for stage s is an assignment of 0/1 values
to the variables included in stage s. Each monomial Mi, i ∈ I, is assigned to one of the stages that
includes all the variables of the monomial. Note that there could be more than one such stage. We
assign a monomial to a stage based on the lowest variable index in the monomial. If min{Mi} ≤ s̄
then we assignMi to stage min{Mi}, otherwiseMi is assigned to stage s̄. For example, if s̄ = 6 then
the monomial {3, 4, 6} would be assigned to stage 3 while the monomial {8, 9} would be assigned
to stage s̄ = 6. We let Is be the set of monomials that are assigned to stage s.

For each s = 1, . . . , s, let us define the (simplecost) function scs obtained by retaining only the
monomials of Is in the objective function of Problem (1), that is,

scs(xs, . . . , xs+w−1) ,
∑

Mi∈Is

ci
∏
j∈Mi

xj

(we use , to denote a definition). Let us next define the (partialcost) function pct obtained by
retaining only the monomials of I1, . . . , It:

pct(x1, . . . , xt+w−1) ,
t∑

s=1

scs(xs, . . . , xs+w−1) =
t∑

s=1

∑
Mi∈Is

ci
∏
j∈Mi

xj . (2)

We remark that the definition implies that pc0(x1, . . . , xw−1) = 0. Note that trivially, in view of (2),

pct(x1, . . . , xt+w−1) = pct−1(x1, . . . , xt+w−2) + sct(xt, . . . , xt+w−1). (3)

5



Moreover, pcs =
∑

i∈I ci
∏

j∈Mi
xj is the original objective function of (1). In the following, we focus

on minimizing pcs by dynamic programming. We define accordingly the auxiliary (cost) function

Ct(xt, . . . , xt+w−1) , min{pct(x̃1, . . . , x̃t−1, xt, . . . , xt+w−1) : (x̃1, . . . , x̃t−1) ∈ {0, 1}t−1}. (4)

In words, Ct(xt, . . . , xt+w−1) is the minimum value of pct(X̃) among all vectors X̃ that are compatible
with (xt, . . . , xt+w−1). In particular, C1(x1, . . . , xw) = pc1(x1, . . . , xw) and

min{Ct(xt, . . . , xt+w−1) : (xt, . . . , xt+w−1) ∈ {0, 1}w} = min{pct(X) : X ∈ {0, 1}t+w−1},

so that we can solve Problem (1) by computing the value of Cs(xs, . . . , xs+w−1) for all 2w assignments
of its variables and retaining the minimum value achieved.

Now, we claim that Ct can be computed by the following recursion:

Proposition. For t > 1,

Ct(xt, . . . , xt+w−1) = min{Ct−1(0, xt, . . . , xt+w−2), Ct−1(1, xt, . . . , xt+w−2)}
+sct(xt, . . . , xt+w−1).

Proof. In view of Eq. (4),

Ct(xt, . . . , xt+w−1) = min{pct(x̃1, . . . , x̃t−2, 0, xt, . . . , xt+w−1),

pct(x̃1, . . . , x̃t−2, 1, xt, . . . , xt+w−1) :

x̃1, . . . , x̃t−2 ∈ {0, 1}}

and hence, by Eq. (3),

Ct(xt, . . . , xt+w−1) = min{pct−1(x̃1, . . . , x̃t−2, 0, xt, . . . , xt+w−2) + sct(xt, . . . , xt+w−1),

pct−1(x̃1, . . . , x̃t−2, 1, xt, . . . , xt+w−2) + sct(xt, . . . , xt+w−1) :

x̃1, . . . , x̃t−2 ∈ {0, 1}}.

Using again Eq. (4), we find

min{pct−1(x̃1, . . . , x̃t−2, 0, xt, . . . , xt+w−2) : x̃1, . . . , x̃t−2 ∈ {0, 1}} = Ct−1(0, xt, . . . , xt+w−2)

and

min{pct−1(x̃1, . . . , x̃t−2, 1, xt, . . . , xt+w−2) : x̃1, . . . , x̃t−2 ∈ {0, 1}} = Ct−1(1, xt, . . . , xt+w−2).

Proposition 3 follows immediately.

The dynamic programming algorithm for computing Cs follows from Proposition 3 and is shown
in Algorithm 1.

Lines 1 to 3 of Algorithm 1 can be computed in time O(w2w|I1|), and results can be stored in an
array of size 2w: indeed, we have to compute C1 for each of the 2w partial solutions and computing
C1 for a single partial solution takes O(w|I1|). Similarly, lines 5 to 7 can be computed in time
O(w2w|It|) and stored in an array of size 2w. The minimization in line 9 can be done while computing
Ct(xt, . . . , xt+w−1) in the last iteration of lines 5 to 7 and does therefore not contribute to the running
time. Overall the computational complexity is O(

∑s̄
1w2w|It|) = O(w2w

∑s̄
1 |It|) = O(w2w|I|) or

simply O(|I|) for a fixed reach w and therefore polynomial in the input size for fixed w. We note
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Algorithm 1 Dynamic programming algorithm
1: for (x1, . . . , xw) ∈ {0, 1}w do
2: Compute and store C1(x1, . . . , xw)
3: end for
4: for t = 2 : s̄ do
5: for (xt, . . . , xt+w−1) ∈ {0, 1}w do
6: Compute Ct(xt, . . . , xt+w−1) using Proposition 3 and store results.
7: end for
8: end for
9: return min(xs,...,xs+w−1)∈{0,1}w C

s(xs, . . . , xs+w−1)

that |It| ≤ 2w − 1 for all t, assuming that I contains no duplicate monomials. This means that the
computational complexity can also be expressed as O(w2w

∑s̄
1 2w) = O(w2ws̄2w) = O(nw4w) or

O(n) for a fixed w. We also note that in the instances considered in this paper, |It| is much smaller
than the upper bound 2w − 1.

The algorithm can be modified to return the solution (x1, . . . , xn) that minimizes the objective
function by backtracking through the tables with stored results. This does not change the algorithm’s
computational complexity.

3.1. Dynamic programming algorithm: example
We demonstrate the dynamic program on the following UBP:

min 64x1x2x3 + 64x2x3x4 + 64x3x4x5 − 32x1x2 − 32x1x3 − 64x2x3

− 32x2x4 − 32x3x5 − 64x4x5 + 16x1 + 32x2 + 48x4

xi ∈ {0, 1} ∀i ∈ {1, 2, 3, 4, 5}

The reach of this instance is w = 3, and the dynamic programming algorithm has s̄ = 5− 3 + 1 = 3
stages. The first (resp. second and third) stage includes variables x1, x2, x3, (resp. x2, x3, x4 and
x3, x4, x5) and we have

I1 = {M1 = {1, 2, 3},M2 = {1, 2},M3 = {1, 3},M4 = {1}},
I2 = {M5 = {2, 3, 4},M6 = {2, 3},M7 = {2, 4},M8 = {2}},
I3 = {M9 = {3, 4, 5},M10 = {3, 5},M11 = {4, 5},M12 = {4}}.

Figures 1a, 1b, and 1c display the information that is calculated in each of the three stages. Looking
at Figure 1a, the first column gives the partial solution index. The second column shows that partial
solution (i.e., the assignment of values to variables x1, x2, and x2). The last column shows the value
of C1(x1, x2, x3).

As an example C1(1, 1, 0) = −32 + 16 = −16 since M2 and M4 are the only active monomials
from I1 when (x1, x2, x3) = (1, 1, 0). One may notice that M8 also is active for this partial solution,
but this monomial is assigned to I2, not I1, and is therefore not considered at this point.

The calculations for the second stage are shown in Figure 1b. The first two columns are
interpreted as in Figure 1a. The output of the stage, C2(x2, x3, x4) is shown in column 5. To compute
C2(x2, x3, x4) using Proposition 3 one needs to compute sc2(x2, x3, x4) and min{C1(0, x2, x3),
Ct−1(1, x2, x3)}. The value of sc2(x2, x3, x4) is shown in column 3, while column 4 points to the rows
of Figure 1a that contain C1(0, x2, x3) and Ct−1(1, x2, x3), where the underlined value indicates the
minimum of the two.
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a) Stage 1
X1 C1

# x1, x2, x3

1 0,0,0 0
2 0,0,1 0
3 0,1,0 0
4 0,1,1 0
5 1,0,0 16
6 1,0,1 -16
7 1,1,0 -16
8 1,1,1 16

b) Stage 2
X2 sc2 comp. C2

# x2, x3, x4

1 0,0,0 0 1,5 0
2 0,0,1 0 1,5 0
3 0,1,0 0 2,6 -16
4 0,1,1 0 2,6 -16
5 1,0,0 32 3,7 16
6 1,0,1 0 3,7 -16
7 1,1,0 -32 4,8 -32
8 1,1,1 0 4,8 0

c) Stage 3
X3 sc3 comp. C3

# x3, x4, x5

1 0,0,0 0 1,5 0
2 0,0,1 0 1,5 0
3 0,1,0 48 2,6 32
4 0,1,1 -16 2,6 -32
5 1,0,0 0 3,7 -32
6 1,0,1 -32 3,7 -64
7 1,1,0 48 4,8 32
8 1,1,1 16 4,8 0

Figure 1: Dynamic programming example

Consider, for example, partial solution 7 from stage 2. To compute C2(x2, x3, x4) for this choice
of x2, x3, x4 we need to compute

C2(1, 1, 0) = min{C1(0, 1, 1), C1(1, 1, 1}+ sc2(1, 1, 0).

sc2(1, 1, 0) evaluates to −32 since monomials M6 = {2, 3} and M8 = {2}, with objective coefficients
-64 and 32, are active for this choice of x2, x3, and x4. The value of C1(0, 1, 1) and C1(1, 1, 1} can
be found in rows 4 and 8 of Figure 1a and C1(0, 1, 1) = 0 is the smaller of the two, as indicated in
row 7, column 4 of Figure 1b. We then get C2(1, 1, 0) = 0− 32 = −32, as indicated in column 5.

Figure 1c is for stage 3 and is similar to Figure 1b. From column 5 of Figure 1c, we see that the
optimal solution has value -64 (partial solution 6) and backtracking from partial solution 6 in stage
3 we see that the optimal solution is (x1, x2, x3, x4, x5) = (0, 1, 1, 0, 1).

Notice that the computation done for a particular row in any of the tables in Figure 1 is
independent of the other rows in the table and only uses the information from the previous stage.
This means that the rows can be computed in parallel and this parallelization has been used in the
implementation of the dynamic programming algorithm.

4. Basic Algorithm

We recall here the Basic Algorithm from Hammer and Rudeanu (1968), using the notation and
presentation of Crama et al. (1990). Defining f(x1, x2, . . . , xn) =

∑
i∈I ci

∏
j∈Mi

xj , we write a
generic UBP as

min
(x1,x2,...,xn)∈{0,1}n

f(x1, x2, . . . , xn). (5)

We can rewrite f(x1, x2, . . . , xn) as

f(x1, x2, . . . , xn) = x1g1(x2, . . . , xn) + h1(x2, . . . , xn),

where the functions g1 and h1 are readily derived from (5). Based on g1 we construct a new
pseudo-Boolean function

ψ1(x2, . . . , xn) =

{
g1(x2, . . . , xn) if g1(x2, . . . , xn) < 0

0 otherwise
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and we define f2(x2, . . . , xn) = ψ1(x2, . . . , xn) + h1(x2, . . . , xn). Clearly,

f2(x2, . . . , xn) = min
x1

f(x1, . . . , xn),

since there is an optimal solution (x∗1, x
∗
2, . . . , x

∗
n) to (5) where x∗1 = 1 if g1(x∗2, . . . , x

∗
n) < 0 and

x∗1 = 0 otherwise. Consequently,

min
(x1,x2,...,xn)∈{0,1}n

f(x1, x2, . . . , xn) = min
(x2,...,xn)∈{0,1}n

f2(x2, . . . , xn).

The problem has been simplified by eliminating one variable and the procedure can be recursively
applied on f2 until we reach a function with just one variable that can be solved by inspection. The
general procedure is shown in Algorithm 2. The time consuming step in Algorithm 2 is constructing
ψ1(x2, . . . , xn) based on g1(x2, . . . , xn) in line 7. Crama et al. (1990) propose a branch-and-bound
algorithm for this step. This algorithm is outlined in Appendix A.

Algorithm 2 Basic Algorithm
1: function BasicAlg(f(x1, x2, . . . , xn))
2: if n = 1 then
3: return arg minx1∈{0,1} f(x1)
4: else
5: // Eliminate variable x1

6: construct g1 and h1 such that

f(x1, x2, . . . , xn) = x1g1(x2, . . . , xn) + h1(x2, . . . , xn)

7: construct pseudo-Boolean functions

ψ1(x2, . . . , xn) =

{
g1(x2, . . . , xn) if g1(x2, . . . , xn) < 0

0 otherwise
and then

f2(x2, . . . , xn) = ψ1(x2, . . . , xn) + h1(x2, . . . , xn)

8: (x∗2, . . . , x
∗
n) = BasicAlg(f2(x2, . . . , xn))

9: if g1(x∗2, . . . , x
∗
n) < 0 then

10: return (1, x∗2, . . . , x
∗
n)

11: else
12: return (0, x∗2, . . . , x

∗
n)

13: end if
14: end if
15: end function

4.1. Basic Algorithm: example
To further illustrate the workings of the Basic Algorithm, we demonstrate the first iteration

and show how x1 can be eliminated from the pseudo-Boolean function given in the example in
Section 3.1. The function to be minimized is:

f1(x1, x2, x3, x4, x5) = 64x1x2x3 − 32x1x2 − 32x1x3 + 16x1

+ 64x2x3x4 + 64x3x4x5 − 64x2x3 − 32x2x4 − 32x3x5 − 64x4x5 + 32x2 + 48x4.

9



This can be restated as:

f1(x1, x2, x3, x4, x5) = x1 · g1(x2, x3) + h(x2, x3, x4, x5),

where

g1(x2, x3) = 64x2x3 − 32x2 − 32x3 + 16, and
h1(x2, x3, x4, x5) = 64x2x3x4 + 64x3x4x5 − 64x2x3 − 32x2x4 − 32x3x5 − 64x4x5 + 32x2 + 48x4.

The highest indexed variable that is part of any monomial that involves x1 is x3. Given g1(x2, x3),
we can construct the multilinear polynomial ψ1(x2, x3) = −16x2− 16x3 + 32x2x3 (see Appendix A
for more details), and use it to obtain the following pseudo-Boolean function:

f2(x2, x3, x4, x5) = ψ1(x2, x3) + h1(x2, x3, x4, x5).

Minimizing f1(x1, x2, x3, x4, x5) is equivalent to minimizing f2(x2, x3, x4, x5), where the optimal
value of x1 is encoded in the function ψ1(x2, x3). One would then repeat the process, eliminating
x2 from f2(x2, x3, x4, x5), x3 from f3(x3, x4, x5), and so on until the value of x5 can be determined
by inspection.

4.2. Connection to the proposed dynamic programming algorithm
The Basic Algorithm and the proposed dynamic program are similar but inherently different.

At each stage of each algorithm a single variable is eliminated. The Basic Algorithm minimizes a
pseudo-Boolean function f1(x1, x2, . . . , xn) by recursively identifying a pseudo-Boolean function ψ1,
expressed as a multilinear polynomial, which can be used to obtain a new pseudo-Boolean function
that has one less variable. The proposed dynamic program minimizes a pseudo-Boolean function
by partitioning its terms into subsets of monomials based on the reach, w. Each subset corresponds
to a stage and has an associated pseudo-Boolean function of w variables. Consecutive stages have
w − 1 variables in common. The method iteratively enumerates the solutions to each stage k and,
for all stages k > 1, recursively identifies the best setting of variable xk−1. In what follows, we show,
by way of the example in Section 3.1, that the proposed dynamic program implicitly identifies the
subfunctions that are used in the recursive step of the Basic Algorithm, without explicitly generating
their algebraic, multilinear polynomial representation. Recall that the example is:

min f1(x1, x2, x3, x4, x5) = 64x1x2x3 + 64x2x3x4 + 64x3x4x5 − 32x1x2 − 32x1x3 − 64x2x3

− 32x2x4 − 32x3x5 − 64x4x5 + 16x1 + 32x2 + 48x4

xi ∈ {0, 1} ∀i ∈ {1, 2, 3, 4, 5}.

For reference, we also restate the sets of monomials Ik for k = 1, 2, 3:

I1 = {{1, 2, 3}, {1, 2}, {1, 3}, {1}}
I2 = {{2, 3, 4}, {2, 3}, {2, 4}, {2}}
I3 = {{3, 4, 5}, {3, 5}, {4, 5}, {4}}.

In the first stage of the proposed dynamic program, only monomials in I1 are considered. The
corresponding pseudo-Boolean function to minimize is therefore:

C1(x1, x2, x3) = 64x1x2x3 − 32x1x2 − 32x1x3 + 16x1.
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The proposed dynamic program begins by enumerating all of the possible solutions to C1(x1, x2, x3).
By retaining the information regarding the possible choices for x1, the variable can be eliminated
from explicit consideration in the second stage. This is equivalent to applying the first iteration
of the Basic Algorithm to C1(x1, x2, x3) and eliminating x1, with the key difference being that the
algebraic form of the function ψ1(x2, x3) is not identified. Instead, its values are obtained through a
comparison of tabulated entries. Let us consider applying the first iteration of the Basic Algorithm
to C1(x1, x2, x3). We know that C1(x1, x2, x3) can be rewritten as

C1(x1, x2, x3) = x1 · g1(x2, x3),

where g1(x2, x3) = 64x2x3 − 32x2 − 32x3 + 16. Note that in the first stage, all monomials depend
on x1. As such, there is no h1(x2, x3) function. Based on g1(x2, x3), we can construct the following
multilinear polynomial:

ψ1(x2, x3) = −16x2 − 16x3 + 32x2x3.

Since the optimal value of x1 is encoded in the function ψ1(x2, x3), this could be used instead of
the alternative tabulated form employed by the proposed dynamic program. The advantage of the
tabulated form, however, is that one can avoid identifying the algebraic form of ψ(x2, x3), which
is computationally demanding in general. By eliminating variable x1, we can formally define the
pseudo-Boolean function that is considered at the second stage of the proposed dynamic program
as:

C2(x2, x3, x4) = ψ1(x2, x3)︸ ︷︷ ︸
comp

+ 64x2x3x4 − 64x2x3 − 32x2x4 + 32x2︸ ︷︷ ︸
sc2

(6)

For ease of reference, we underline components of the equation that correspond to columns of the
tables given in the example in Section 3. This function contains a component that arises from
the elimination of x1 and a component that corresponds to the monomials in I2, since the latter
appear when proceeding to the second stage. The proposed dynamic algorithm does not identify
the algebraic form of C2(x2, x3, x4); its values are computed using the tabulated form of ψ1(x2, x3)
and the pseudo-Boolean function specifically associated with the monomials of set I2.

The second stage of the proposed dynamic program proceeds similarly. With an enumerated
set of values for C2(x2, x3, x4), variables x1 and x2 need not be explicitly considered in the third
stage. This enumeration procedure is equivalent to applying an iteration of the Basic Algorithm on
C2(x2, x3, x4) and eliminating x2. We note that C2(x2, x3, x4) can be rewritten as

C2(x2, x3, x4) = x2 · g2(x3, x4) + h2(x3, x4),

where g2(x3, x4) = −32x3 + 64x3x4 − 32x4 + 16 and h2(x3, x4) = −16x3. We can then construct
the pseudo-Boolean function

ψ2(x3, x4) = −16x3 − 16x4 + 32x3x4

and use it to define the pseudo-Boolean function that is implicitly considered at the third stage as:

C3(x3, x4, x5) = ψ2(x3, x4) + h2(x3, x4)︸ ︷︷ ︸
comp

+ 64x3x4x5 − 32x3x5 − 64x4x5 + 48x4︸ ︷︷ ︸
sc3

Like (6), this contains a part that encodes the optimal setting of the eliminated variables x1 and
x2, given x3 and x4, and a part that contains all monomials that appear when moving to the third
stage. Note that the algebraic forms of the functions ψ2(x3, x4) and h2(x3, x4) are not identified. The
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proposed dynamic program provides an enumerated set of values for ψ2(x3, x4)+h2(x3, x4) through
a comparison of tabulated entries for the eliminated variable x2. Since C3(x3, x4, x5) considers
the same set of monomials and either explicitly or implicitly considers all variables, minimizing
C3(x3, x4, x5) is equivalent to minimizing f1(x1, x2, x3, x4, x5). The implementation of the proposed
dynamic algorithm is given below. We have included the ψ(.) and h(.) functions for comparison.

Stage 1

x1 x2 x3 C1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 16
1 0 1 -16
1 1 0 -16
1 1 1 16

Stage 2

x2 x3 x4 comp. ψ1(x2, x3) h1(x2, x3) sc2 C2

0 0 0 min{0, 16} 0 0 0 0
0 0 1 min{0, 16} 0 0 0 0
0 1 0 min{0,−16} -16 0 0 -16
0 1 1 min{0,−16} -16 0 0 -16
1 0 0 min{0,−16} -16 0 32 16
1 0 1 min{0,−16} -16 0 0 -16
1 1 0 min{0, 16} 0 0 -32 -32
1 1 1 min{0, 16} 0 0 0 0

Stage 3

x3 x4 x5 comp. ψ2(x3, x4) h2(x3, x4) sc3 C3

0 0 0 min{0, 16} 0 0 0 0
0 0 1 min{0, 16} 0 0 0 0
0 1 0 min{0,−16} -16 0 48 32
0 1 1 min{0,−16} -16 0 -16 -32
1 0 0 min{−16,−32} -16 -16 0 -32
1 0 1 min{−16,−32} -16 -16 -32 -64
1 1 0 min{−16, 0} 0 -16 48 32
1 1 1 min{−16, 0} 0 -16 16 0

In summary, the proposed dynamic program is similar to the Basic Algorithm in that it iteratively
eliminates a single variable. However, unlike the Basic Algorithm, it does not identify the algebraic
forms of the multilinear polynomials that are needed in the recursive step. Instead, an enumeration
of the values of these functions is available in tabulated form. In general, the comparison step at stage
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k of the proposed dynamic program provides an enumeration of the values of ψk−1(xk, . . . , xk+w−2)+
hk−1(xk+1, . . . , xk+w−2). Not needing to identify the algebraic forms of the multilinear polynomials
may alleviate some of the computational burden of the Basic Algorithm. We also note, however,
that for general pseudo-Boolean functions (i.e., not necessarily with limited reach) an enumeration
in tabulated form can be very expensive. A limited reach controls the level of enumeration needed,
and this is what the dynamic programming algorithm exploits.

5. Computational results

We test the proposed dynamic programming approach on a publicly available set of benchmark
LABS instances and compare its performance with that of several other approaches. In particular,
we compare it with solutions provided by a modern implementation of the Basic Algorithm, by the
commercial solver CPLEX on the standard linearization, by CPLEX on the standard linearization
with 2-link inequalities added as a pool of cuts (Crama and Rodríguez-Heck, 2017), and by CPLEX
given a simple quadratization. As is the case for linearizations, there exist many possibilities to
define a quadratization (see for example Anthony et al. (2017); Boros et al. (2020); Crama et al.
(2022); Fix et al. (2015); Freedman and Drineas (2005); Ishikawa (2011); Verma and Lewis (2020)).
In this paper, we use the so-called to Lex quadratization, since it has been shown to work well in
the experiments performed by Elloumi et al. (2021). Furthermore, we also include the results for
the Partial Quadratic Convex Reformulation (PQCR) approach reported in Elloumi et al. (2021).
We refer readers to the above-mentioned references for additional details.

We provide a brief description of the LABS problem and of the available instances in Section 5.1,
and then report on the performance of the different approaches in Section 5.2

5.1. LABS instances
As defined in Liers et al. (2010), the 1-dimensional Low Autocorrelation Binary Sequence

problem with tunable interaction range w for n Ising spins (or LABS problem for short) is the
following optimization problem:

Ew(s) = min
s∈{−1,1}n

n−w+1∑
i=1

w−1∑
d=1

i+w−1−d∑
j=i

sjsj+d

2

. (7)

Although s ∈ {−1, 1}n, a conversion to the domain x ∈ {0, 1}n can be made with the usual
transformation xi = si+1

2 for i = 1, . . . , n, hence the LABS problem is a particular case of the
Unconstrained Binary Polynomial Program (1) with degree at most 4 and reach w. (The constant
term that occurs after the transformation of (7) from (−1, 1) to (0, 1)-variables is usually discarded
from the resulting UBP instances, and their optimal value is therefore negative.)

In our experiments, we consider instances of LABS for different values of n ∈ {20, . . . , 60} and
of w ∈ {3, . . . , n}. This instance set is publicly available at (MINLPLib, 2020; POLIP, 2020). The
structure of the instances is described by the scheme "n.w", e.g., 20.3, or 40.5, where n is the number
of original variables in the instance and w is the reach. The LABS instances are not complete, in
the sense that they do not necessarily include all monomials of reach w, they are simply limited to
monomials of reach w or less. As an illustration, Figure 2 shows the structure of the co-occurrence
graph of instance 20.5. All but two of our instances have a degree of four. Exceptions to this are
20.3 and 25.3, which each have a degree of two. Despite the rather small number of variables, the
largest LABS instances are remarkably difficult to solve by classical integer programming methods.
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Remark. For unexplained reasons, we are not able to recreate the instances from the POLIP library
using formula (7) when w > n

2 . We find a small number of discrepancies between the coefficients of
the POLIP instances and those computed by (7). The results mentioned in Section 5.2 refer to the
solution of the instances downloaded from POLIP.

5.2. Performance comparison
Table 1 compares the performance of the different methods when applied to the LABS instances.

All tests, except the PQCR experiments, were performed on a computer with a 2.9GHz Intel Xeon
Gold 6226R dual-processor (32 cores) with 756 GB memory, while all algorithms were limited to
using one thread/core. A time limit of three hours was enforced and CPLEX 12.10 was used. The
results for the PQCR experiments was obtained in Elloumi et al. (2021) where a server with 64GB
of RAM and two 2.5GHz Intel CPUs (24 cores in total) is used. The time limit for the PQCR
experiments is three hours as well and the algorithms are, to the best of our understanding, allowed
to use all cores/threads.

The first column of Table 1 shows the name of the instance, the second column shows the
optimal objective value when known (up to a positive constant due to the change of variables from
si to xi). The objective values for 10 instances that have been solved to optimality for the first
time are displayed in bold. Objective values that are underlined indicate 3 additional instances that
have been optimally solved for the first time; however, they have been solved with the parallelized
version of the dynamic programming algorithm and they will be discussed separately. Columns
three to five show results from CPLEX. These columns either show the time to solve the instance
to optimality or the optimality gap if the problem isn’t solved to optimality within the time limit.
Column three shows results from the standard linearization of the UBP, column four shows results
from the standard linearization plus the 2-link inequalities suggested in Crama and Rodríguez-Heck
(2017). Column five shows results from letting CPLEX solve a quadratic binary problem resulting
from the Lex quadratization (see Elloumi et al. (2021)). Column six shows results from the PQCR
method as described in Elloumi et al. (2021). (We note that instance 20.20 is missing from the
results presented in (Elloumi et al., 2021) and is, at the time of writing, not displayed on the web
pages of POLIP and MINLPLib. It is, however, available when downloading the complete set of
instances from (POLIP, 2020).) Dashes indicate that PQCR didn’t compute a lower bound within
the time limit. Columns seven and eight show the computation time for the dynamic programming
algorithm and the Basic Algorithm, respectively. Dashes indicate that the instance was not solved
within the time limit or that the method ran out of memory. Results in columns seven and eight
were produced using one thread. For all methods the running time is rounded to one decimal.
The last row shows the number of instances solved to optimality for each method. We note that
the PQCR method is able to solve three more instances to optimality (22 in total) if allowed a
running time of 10 hours, and that the instances solved by the parallelized version of the dynamic
programming algorithm are not counted in the last row.

To the best of our knowledge, the PQCR method is the algorithm that has been able to solve
the largest number of LABS instances to optimality before the present paper. Table 1, however,
clearly shows that both the dynamic programming algorithm and the Basic Algorithm solve more
instances to optimality compared to PQCR, and that the methods also outperform a generic solver
like CPLEX. Even in its simplest, non parallelized version, the dynamic programming algorithm
computes 10 previously unknown optimal values, when compared to the best results presented by
Elloumi et al. (2021). The difference in running time between the previous state-of-the-art and the
two algorithms studied in this paper can be tremendous. Instance 40.10 is a good example of this.
PQCR solves the instance in 10550 seconds. The dynamic programming algorithm needs less than
0.05 seconds and the Basic Algorithm uses 0.3 seconds. Comparing the dynamic programming to

14



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

Figure 2: Shows the structure of auto-correlated sequence instance 20.5, nodes (variables) are connected with edges
if they appear in a monomial together.
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the Basic Algorithm we see that the dynamic programming algorithm clearly does better, being
able to solve 5 more instances to optimality and often being more than a magnitude faster on the
instances both algorithms can solve.

Of course, as expected, the performance of the dynamic programming algorithm deteriorates
when the reach increases. When w = n, in particular, the algorithm only involves one stage which
boils down to assigning all (2n) possible binary values to the variables. More generally, when w is
close to n, dynamic programming has no clear advantage over complete enumeration. In practice,
with the computational resources used in our experiments, values of the reach above w = 30 cannot
be efficiently handled by the algorithm.

Table 2 provides detailed results for the Basic Algorithm and gives some insight into why the
dynamic programming algorithm performs better on the LABS instances. Columns two and three of
the table show the number of variables and monomials in each instance, respectively, while column
four indicates time spent. Columns five and six show statistics from the branch-and-bound method
described in Appendix A. The branch-and-bound method is called n − 1 times. Column five
states the maximum number of branch-and-bound nodes in any of these n − 1 invocations, while
column six shows the total number of branch-and-bound nodes over all n − 1 calls. Looking at
instance 20.20 as an example, we see that almost 200,000 branch-and-bound nodes are explored
in the most difficult call, which most likely is the first since g1 contains most variables in this
case (note that the reach is n in this particular instance). Since g1 depends at most on n − 1
variables, we know that the full branch-and-bound tree for the computation of ψ1 in the first call
contains at most 2n − 1 nodes (of which 2n−1 are leaves). So in the worst case the branch-and-
bound tree might contain 220 − 1 = 1, 048, 575 nodes, whereas it only contains around 200,000
nodes in the actual computation. We conclude that the lower and upper bounds have pruned
some parts of the tree; however, this reduction is too insignificant to make the method competitive
with the dynamic programming algorithm on these instances. The dynamic programming method
will, on the 20.20 instance, enumerate the objective function corresponding to all 220 = 1, 048, 576
possible assignments of 0/1 values to the 20 variables in the instance. The computation needed for
testing one variable assignment in the dynamic programming algorithm is in general much simpler
than the work needed to evaluate one branch-and-bound node that entails lower and upper bound
computations as well as combining two UBPs in each of the internal nodes. Column 3 of Table 2
shows that |I| is much lower than the maximum possible for a UBP instance with the same reach
and confirms that the LABS instances are sparse, which is beneficial for the dynamic programming
algorithm (see discussion on computational complexity in Section 3).

Table 3 shows the effect of the simple parallelization of the dynamic programming algorithm,
suggested in Section 3. The table displays results from allowing the algorithm to use 1,2,4,8,16 or
32 threads. The one thread results are identical to those reported in Table 1. Times reported are
"wall-clock" time. We report the speedup relative to the one-thread result for the results obtained
using more than one thread. If tx is the wall clock time for solving a specific instance using x
threads, then the speedup using x threads is calculated as

t1
tx
.

No speedup is reported if the one-thread version did not solve a particular instance. We see that
impressive speedups are possible on the most challenging instances. Instance 30.30 is an example of
this, where a factor 29.2 speedup is obtained using 32 threads. We observe that the speedup often
is less than 1.0 for easy instances meaning that the parallel version spends a longer time compared
to the sequential version. This is to be expected due to the overhead involved in spawning multiple
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name CPLEX CPLEX CPLEX PQCR Dynamic Basic
opt 2links Lex programming algorithm

objective time (s) time (s) time (s) time (s) time (s) (s)
20.03 -72 0.0 0.0 0.0 0 0.0 0.0
20.05 -416 9.7 8.5 7.5 0 0.0 0.0
20.10 -2936 154.7 111.5 62.6 34 0.0 0.1
20.15 -5960 416.5 542.0 189.4 3435 0.1 2.7
20.20 -4648 1301.6 1189.2 323.9 missing 1.8 35.6
25.03 -92 0.0 0.0 0.0 0 0.0 0.0
25.06 -960 311.4 119.2 62.7 6 0.0 0.0
25.13 -8148 3201.2 1961.1 1232.6 3665 0.0 1.0
25.19 -14644 6.47% 1.07% 3403.6 8788 1.8 70.1
25.25 -10664 75.05% 48.5% 7353.0 4832 101.4 1930.9
30.04 -324 10.3 5.0 6.8 1 0.0 0.0
30.08 -2952 33.93% 5067.1 5358.1 857 0.0 0.0
30.15 -15744 47.71% 30.26% 14.72% 7456 0.1 6.6
30.23 -30460 >100% 95.49% 72.42% 8118 43.5 1970.2
30.30 -22888 >100% >100% >100% 9838 5303.9 -
35.04 -384 192.5 13.8 13.4 2 0.0 0.0
35.09 -5108 >100% 53.4% 48.61% 7833 0.0 0.2
35.18 -31168 >100% >100% 75.96% 0.3% 1.7 76.4
35.26 -55288 >100% >100% >100% 2.8% 501.9 -
35.35 - >100% >100% >100% 5.2% - -
40.05 -936 9.69% 2535.5 1761.8 34 0.0 0.0
40.10 -8248 >100% >100% >100% 10550 0.0 0.3
40.20 -50576 >100% >100% >100% 3.9% 8.8 448.5
40.30 -94992 >100% >100% >100% - - -
40.40 - >100% >100% >100% 10.6% - -
45.05 -1068 16.43% 8969.7 4025.1 67 0.0 0.0
45.11 -12748 >100% >100% >100% 1.3% 0.0 0.7
45.23 -85504 >100% >100% >100% 4.9% 93.2 -
45.34 -152784 >100% >100% >100% - - -
45.45 - >100% >100% >100% - - -
50.06 -2160 >100% 45.3% 30.91% 2.8% 0.0 0.0
50.13 -23792 >100% >100% >100% 1.7% 0.1 3.6
50.25 -125104 >100% >100% >100% - 468.2 -
50.38 - >100% >100% >100% - - -
50.50 - >100% >100% >100% - - -
55.06 -2400 >100% 59.55% 45.77% 3.1% 0.0 0.1
55.14 -33272 >100% >100% >100% 3.7% 0.2 8.2
55.28 -191032 >100% >100% >100% - 4780.0 -
55.41 - >100% >100% >100% - - -
55.55 - >100% >100% >100% - - -
60.08 -6792 >100% >100% >100% 3.20% 0.0 0.2
60.15 -45232 >100% >100% >100% - 0.4 20.7
60.30 -261368 >100% >100% >100% - - -
60.45 - >100% >100% >100% - - -
60.60 - >100% >100% >100% - - -
#opt 10 13 15 19 33 28

Table 1: Performance comparison on the LABS instances.
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threads. We performed the computational tests on a high-performance computing setup where
resources are shared with other users. This means that timings are associated with a degree of
uncertainty since programs from other users may have used threads not occupied by our experiment,
and such programs could have been competing with our program, e.g., for memory access.

The parallelization enables us to solve three more instances to optimality (highlighted in bold
in Table 3). The most difficult of these is instance 45.34. Solving this instance needs around 448
GB of memory to store tables. There are ways of reducing the memory footprint, but memory
consumption will be a limiting factor when attempting to solve more difficult instances using
dynamic programming.

6. Conclusion

In this paper, we have proposed a simple dynamic programming algorithm for solving UBP
instances having limited reach. The dynamic programming algorithm allows us to solve many
instances from the LABS set of instances to optimality for the first time. The LABS instances are
part of the (MINLPLib, 2020) and (POLIP, 2020) instance library and provide very difficult UBP
instances. We have shown that the dynamic programming algorithm is closely related to the Basic
Algorithm due to Hammer et al. (1963a,b), and that the Basic Algorithm also performs very well
on the LABS instances.

For future work, it could be interesting to use either the dynamic programming algorithm or the
Basic Algorithm to solve sub-problems in a decomposition algorithm for the UBP, based on either
Lagrangian decomposition or Dantzig-Wolfe decomposition with linking variables.
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name n |I| time (s) max BB nodes sum BB nodes
20.03 20 38 0.0 2 36
20.05 20 207 0.0 8 133
20.10 20 833 0.1 244 2,541
20.15 20 1494 2.7 7,317 39,109
20.20 20 1859 35.6 197,794 375,213
25.03 25 48 0.0 2 46
25.06 25 407 0.0 19 391
25.13 25 1782 1.0 1,703 19,332
25.19 25 3040 70.1 101,233 599,760
25.25 25 3677 1930.9 4,974,796 9,887,083
30.04 30 223 0.0 8 216
30.08 30 926 0.0 83 1,374
30.15 30 2944 6.6 7,317 83,440
30.23 30 5376 1970.2 1,435,147 9,054,042
30.30 30 6412 - - -
35.04 35 263 0.0 8 256
35.09 35 1381 0.2 138 3,420
35.18 35 5002 76.4 47,593 622,590
35.26 35 8347 - - -
35.35 35 9391 - - -
40.05 40 447 0.0 8 293
40.10 40 2053 0.3 244 6,614
40.20 40 7243 448.5 197,789 2,657,782
40.30 40 12690 - - -
40.40 40 15384 - - -
45.05 45 507 0.0 8 338
45.11 45 2813 0.7 523 14,607
45.23 45 10776 - - -
45.34 45 18348 - - -
45.45 45 21993 - - -
50.06 50 882 0.0 19 866
50.13 50 4457 3.6 1,703 49,635
50.25 50 14412 - - -
50.38 50 25446 - - -
50.50 50 30271 - - -
55.06 55 977 0.1 19 961
55.14 55 5790 8.2 3,441 98,347
55.28 55 19897 - - -
55.41 55 33318 - - -
55.55 55 40402 - - -
60.08 60 2036 0.2 83 2,964
60.15 60 7294 20.7 7317 210,231
60.30 60 25230 - - -
60.45 60 43689 - - -
60.60 60 52575 - - -

Table 2: Basic Algorithm detailed results .
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1 thread 2 threads 4 threads 8 threads 16 threads 32 threads
Name time (s) time (s) speedup time (s) speedup time (s) speedup time (s) speedup time (s) speedup
20.03 0.0 0.0 0.7 0.0 0.6 0.0 0.2 0.0 0.1 0.0 0.1
20.05 0.0 0.0 0.6 0.0 0.6 0.0 0.4 0.0 0.2 0.0 0.1
20.10 0.0 0.0 1.0 0.0 1.0 0.0 1.5 0.0 1.7 0.0 1.2
20.15 0.1 0.0 1.4 0.0 2.2 0.0 3.5 0.0 5.3 0.0 7.7
20.20 1.8 0.9 1.9 0.5 3.7 0.3 6.9 0.1 12.5 0.1 21.1
25.03 0.0 0.0 0.5 0.0 0.6 0.0 0.2 0.0 0.1 0.0 0.1
25.06 0.0 0.0 0.7 0.0 0.7 0.0 0.4 0.0 0.3 0.0 0.1
25.13 0.0 0.0 1.0 0.0 1.5 0.0 2.6 0.0 4.1 0.0 5.0
25.19 1.8 1.1 1.6 0.6 3.0 0.3 5.8 0.2 10.9 0.1 19.4
25.25 101.4 51.5 2.0 26.2 3.9 13.4 7.6 6.9 14.7 3.7 27.7
30.04 0.0 0.0 0.7 0.0 0.6 0.0 0.3 0.0 0.1 0.0 0.1
30.08 0.0 0.0 0.7 0.0 1.0 0.0 1.1 0.0 0.5 0.0 0.2
30.15 0.1 0.1 1.3 0.1 2.3 0.0 4.0 0.0 3.8 0.0 7.4
30.23 43.5 26.4 1.6 13.6 3.2 7.0 6.2 4.6 9.4 1.9 22.4
30.30 5303.9 2705.4 2.0 1355.5 3.9 686.9 7.7 457.8 11.6 181.9 29.2
35.04 0.0 0.0 0.7 0.0 0.5 0.0 0.4 0.0 0.1 0.0 0.1
35.09 0.0 0.0 0.6 0.0 0.9 0.0 1.2 0.0 0.7 0.0 0.5
35.18 1.7 1.1 1.5 0.6 2.8 0.3 5.3 0.2 7.4 0.1 16.9
35.26 501.9 305.8 1.6 153.9 3.3 78.1 6.4 43.7 11.5 20.8 24.1
35.35 - - - - - - - - - - -
40.05 0.0 0.0 0.5 0.0 0.7 0.0 0.3 0.0 0.1 0.0 0.1
40.10 0.0 0.0 0.8 0.0 1.0 0.0 1.4 0.0 1.3 0.0 1.0
40.20 8.8 5.9 1.5 3.1 2.9 1.6 5.6 1.0 8.6 0.6 15.3
40.30 - 6611.8 - 3354.9 - 1708.2 - 949.1 - 447.7 -
40.40 - - - - - - - - - - -
45.05 0.0 0.0 0.8 0.0 0.6 0.0 0.3 0.0 0.2 0.0 0.1
45.11 0.0 0.0 0.8 0.0 1.1 0.0 1.6 0.0 1.3 0.0 1.8
45.23 93.2 60.8 1.5 31.3 3.0 16.0 5.8 9.3 10.0 4.6 20.1
45.34 - - - - - - - 9604.4 -
45.45 - - - - - - - - - - -
50.06 0.0 0.0 0.7 0.0 0.8 0.0 0.7 0.0 0.3 0.0 0.1
50.13 0.1 0.1 1.2 0.0 1.9 0.0 3.0 0.0 3.9 0.0 4.3
50.25 468.2 305.4 1.5 154.4 3.0 78.5 6.0 42.1 11.1 20.7 22.6
50.38 - - - - - - - - - - -
50.50 - - - - - - - - - - -
55.06 0.0 0.0 0.5 0.0 0.8 0.0 0.7 0.0 0.2 0.0 0.1
55.14 0.2 0.1 1.3 0.1 2.2 0.0 3.8 0.0 5.6 0.0 5.7
55.28 4780.0 3001.5 1.6 1528.2 3.1 781.1 6.1 471.4 10.1 203.9 23.4
55.41 - - - - - - - - - - -
55.55 - - - - - - - - - - -
60.08 0.0 0.0 1.3 0.0 1.3 0.0 1.3 0.0 0.5 0.0 0.3
60.15 0.4 0.3 1.4 0.2 2.5 0.1 4.4 0.1 7.2 0.1 7.3
60.30 - - - 7369.7 - 3744.4 - 2126.9 - 979.2 -
60.45 - - - - - - - - - - -
60.60 - - - - - - - - - - -

#solved 33 34 35 35 35 36

Table 3: Dynamic programming, impact of parallelization
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Appendix A. Computing ψ1(x2, . . . , xn)

The time consuming step in Algorithm 2 is constructing ψ1(x2, . . . , xn) based on g1(x2, . . . , xn)
in line 7. One way of doing this is to tabulate all the possible input values and their corresponding
output values as shown in Section 1. The corresponding pseudo-Boolean function can then be
computed from this table. Hammer et al. (1963a,b), Hammer and Rudeanu (1968) describe an
algebraic, but rather cumbersome method to obtain ψ1(x2, . . . , xn) while Crama et al. (1990) propose
a branch-and-bound algorithm for this step. We illustrate the branch-and-bound algorithm on the
example g1(x2, x3) = 64x2x3 − 32x2 − 32x3 + 16 from Section 4.1 and we refer to Crama et al.
(1990) for more details. An important ingredient in the branch-and-bound algorithm is the ability
to compute lower and upper bounds for a multilinear function. Crama et al. (1990) propose two
simple methods. The first method is:
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• Lower bound: add the constant term and all negative coefficients in the function. For g1 we
get −32− 32 + 16 = −48.

• Upper bound: add the constant term and all positive coefficients in the function. For g1 we
get 64 + 16 = 80.

The second method iterates through each variable in g1 and computes the lower bound and upper
bound found using the first method after fixing the current variable to zero or one. As an example,
if we fix x2 to zero g1 reduces to −32x3 + 16 and the lower bound increases to −16 while the upper
bound decreases to 16. If we fix x2 to one then g1 reduces to 64x3− 32x3− 16 = 32x3− 16 and the
lower bound increases to −16 while the upper bound decreases to 16. Based on this analysis our
lower bound for g1 increases to −16 and the upper bound reduces to 16 since these bounds hold no
matter what value x2 takes. We can do a similar analysis for x3, and the results are summarized in
Tables A.4 and A.5. (Due to the symmetry between x2 and x3 in g1 we get similar results for both
variables). Taking the maximum (resp. minimum) of the values in the bottom row of Table A.4
(resp. Table A.5) gives the lower (resp. upper) bound of method 2.

LB after variable fixing
x2 x3

fix to 0 −16 −16
fix to 1 −16 −16

min −16 −16

Table A.4: Improved lower bound

UB after variable fixing
x2 x3

fix to 0 16 16
fix to 1 16 16
max 16 16

Table A.5: Improved upper bound

If the upper bound is less than 0 then ψ1(x2, . . . , xn) = g1(x2, . . . , xn), and if the lower bound
is greater than or equal to 0 we have ψ1(x2, . . . , xn) = 0. In any other case we have to branch
which is illustrated in Figure A.3 for the g1 function of the example. We choose to branch on x2

first. Fixing x2 to 0 and 1 yields simpler pseudo-Boolean functions as shown in the figure. We
can again compute lower and upper bounds using the two methods described above. Since the
lower (resp. upper) bound is less than (resp. greater than) zero in both child nodes, it is necessary
to branch again in both nodes. After branching on x3 the resulting pseudo-Boolean function is a
constant and each node can be fathomed. To construct the resulting function ψ(x2, x3) we backtrack
through the tree and construct the expression shown in Figure A.4. We get

ψ(x2, x3) = x2 (0x3 +−16(1− x3)) + (1− x2) (−16x3 + 0(1− x3))

which we simplify to
ψ(x2, x3) = −16x2 − 16x3 + 32x2x3

In our implementation, we used lower/upper methods 1 and 2 and a weaker version of method 2.
The weaker version does not aggregate identical monomials after fixing a variable: in the example
above, we saw that g1 reduces to 64x3 − 32x3 − 16 after fixing x2 to one and from this expression
we can compute the weaker lower bound -48. If we gather the x3 terms the lower bound improves
to -16 as we saw above. It turned out that using the weaker bounds resulted in the lowest overall
computation time in the branch-and-bound algorithm (due to faster bound computations) despite
exploring more branch-and-bound nodes. The presented computational results are, therefore, based
on the weaker bound.
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Figure A.3: Branch-and-bound tree Figure A.4: Tree for constructing ψ
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