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Abstract
Aim: Understanding how grain size affects our ability to characterize species re-
sponses to ongoing climate change is of crucial importance in the context of an in-
creasing awareness for the substantial difference that exists between coarse spatial 
resolution macroclimatic data sets and the microclimate actually experienced by or-
ganisms. Climate change impacts on biodiversity are expected to peak in mountain 
areas, wherein the differences between macro and microclimates are precisely the 
largest. Based on a newly generated fine-scale environmental data for the Canary 
Islands, we assessed whether data at 100 m resolution is able to provide more accu-
rate predictions than available data at 1 km resolution. We also analysed how future 
climate suitability predictions of island endemic bryophytes differ depending on the 
grain size of grids.
Location: Canary Islands.
Time period: Present (1979–2013) and late-century (2071–2100).
Taxa: Bryophytes.
Methods: We compared the accuracy and spatial predictions using ensemble of small 
models for 14 Macaronesian endemic bryophyte species. We used two climate data 
sets: CHELSA v1.2 (~1 km) and CanaryClim v1.0 (100 m), a downscaled version of the 
latter utilizing data from local weather stations. CanaryClim also encompasses future 
climate data from five individual model intercomparison projects for three warming 
shared socio-economic pathways.
Results: Species distribution models generated from CHELSA and CanaryClim ex-
hibited a similar accuracy, but CanaryClim predicted buffered warming trends in 
mid-elevation ridges. CanaryClim consistently returned higher proportions of newly 
suitable pixels (8%–28%) than CHELSA models (0%–3%). Consequently, the propor-
tion of species predicted to occupy pixels of uncertain suitability was higher with 
CHELSA (3–8 species) than with CanaryClim (0–2 species).
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1  |  INTRODUC TION

Earth system models have played a crucial role for documenting 
climatic conditions at large spatial scales and predicting the conse-
quences of past and future climate change (Moss et al., 2010; Thuiller 
et al.,  2019). The availability of such data anywhere has boosted 
biological, ecological and conservation research over the past de-
cades (Pereira et al.,  2010). However, earth system models often 
smooth topographical and other associated environmental gradients 
(Rummukainen, 2010; Tapiador et al., 2020). The coarse spatial reso-
lution of the resulting climatic data has increasingly raised concerns 
regarding the mismatch between the microclimatic conditions that 
organisms actually experience in the wild and the macroclimate 
(Rummukainen,  2010). In fact, macroclimatic conditions are often 
downscaled at 1 km2 or more from coarser grids (25–100 km; Karger 
et al., 2017), thereby failing to capture the spatiotemporal variability 
in microclimate driven by, for instance, terrain, wind and vegetation 
(Maclean, 2020). Differences between macro- and microclimate are 
expected to increase in response to increasing differences in local el-
evation and topographic complexity. In particular, mountain rugged 
regions are expected to exhibit very decoupled macro- and microcli-
matic conditions, where microclimate can vary noticeably over very 
short distances (Dobrowski,  2011; Dobrowski et al.,  2009; Graae 
et al., 2018; Lembrechts, Nijs & Lenoir, 2019). Spatial variability in 
microclimate greatly exceeds the magnitude of climate change ex-
pected in the upcoming century. Ignoring this variation has led to 
conflicting predictions of climate change impacts on species distri-
butions (Maclean, 2020; Moudrý et al., 2023).

Regional climate models provide a complementary approach to 
generate fine-scaled climate data from tens to a few hundreds of 
meters (Giorgi, 2019). In practice, regional climate models are pro-
duced by dynamically downscaling earth system model outputs (e.g. 
by using the latter as boundary conditions and resolving local cli-
mate processes at a higher spatial resolution). An increasing num-
ber of studies have compared the accuracy and performance of 
species distribution models depending on the spatial resolution of 
the climate data (e.g., Ashcroft et al., 2012; Chauvier et al., 2022; 
Finocchiaro et al.,  2023; Lenoir et al.,  2017; Potter et al.,  2013). 
Even if the idea that finer scale models lead to an improvement of 
model accuracy has not been consistently supported (e.g. Connor 
et al.,  2018; Guisan et al.,  2007; Manzoor et al.,  2018; Moudrý 
et al., 2023; Stark & Fridley, 2022), the need for fine-scale climate 

data becomes evident in mountain areas, where climate can vary at 
short scales of 10–100 m. In such rugged areas, topographic vari-
ation locally brings about suitable conditions for the existence of 
small, sheltered areas against climate change. These areas, whose 
local conditions are to some extent decoupled from the prevailing 
macroclimate (Dobrowski, 2011), can play an important role as mi-
crorefugia, namely for warm- and drought-sensitive organisms in 
a warming world (Finocchiaro et al.,  2023; Hylander et al.,  2015; 
Suggitt et al., 2018).

The availability of fine-scale climatic data, in order to identify 
putative microrefugia under global climate change, is particularly rel-
evant in oceanic islands (Harter et al., 2015). These insular systems 
typically represent biodiversity hotspots for hosting large arrays of 
species characterized by both high rates of endemism and small pop-
ulation sizes and, hence, potentially high threat levels (Whittaker & 
Fernández-Palacios, 2007). While fine-scale microclimatic data were 
generated for the oceanic archipelagos of the Azores and Madeira 
(Azevedo et al., 1999; Santos et al., 2004) and Hawai'i (Berio Fortini 
et al., 2022), this is not the case for a number of other key archipel-
agos, such as the Canary Islands. Moreover, comparative studies of 
climatic models at different spatial resolutions remain virtually inex-
istent in the island literature.

The wide elevational, size, and climate variations among the 
islands of the Canarian archipelago shape the diversity of hab-
itats they host, ranging from desert and semi-arid vegetation to 
montane cloud (humid) laurel forests and alpine scrublands. In the 
montane cloud forest, for example, the topographic transition from 
ravines to montane ridges is associated with strong turnover rates 
of plant communities across distances less than 500 m (del Arco-
Aguilar et al., 2010; del Arco-Aguilar & Rodríguez-Delgado, 2018). 
The wide range of environmental conditions, coupled with geo-
graphic isolation among islands and between islands and conti-
nents, have triggered the evolution of high levels of endemicity. 
Specifically, no less than 94% of terrestrial mollusc, all reptile, and 
almost 50% of native spermatophyte species are endemic to the 
Canary Islands (for a review see Florencio et al., 2021). The Canary 
Islands are therefore part of one of the world's 25 recognized bio-
diversity hotspots, and one of the most relevant floristic regions 
within the Mediterranean-type climate regions (Brooks et al., 2006; 
Mittermeier et al., 2005).

The unique terrestrial biodiversity of the Canary Islands is, 
however, under considerable threat due to habitat loss, biological 

Ecológica y el Reto Demográfico, 
Grant/Award Number: 2941/2022; 
Schweizerischer Nationalfonds zur 
Förderung der Wissenschaftlichen 
Forschung, Grant/Award Number: 197777

Editor: Boris Leroy

Main conclusions: The resolution of climate data impacted the predictions rather than 
the performance of species distribution models. Our results highlight the crucial role 
that fine-resolution climate data sets can play in predicting the potential distribution 
of both microrefugia and new suitable range under warming climate.

K E Y W O R D S
bryophytes, Canary Islands, climate warming, microrefugia, range shift, species distribution 
models
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    |  3PATIÑO et al.

invasions and climate change. The Canary Islands are in fact within 
a climate change hotspot that has been projected to be highly im-
pacted by climate warming and associated changing disturbance–
climate interactions (Cos et al.,  2021; Giorgi & Lionello,  2008). 
These climate change impacts have been suggested to be more 
pervasive in both alpine habitats and mid-elevation ridges (Martín 
et al., 2012; Patiño et al., 2016). Despite the long-standing interest 
in Canarian biodiversity (Florencio et al., 2021), our knowledge of 
the fine-scale climatic conditions species experience, how these 
conditions varied in the past, and whether they are likely to vary 
in the future, is still very limited. Such a limitation jeopardizes our 
ability to establish a clear link between species distributions and 
climatic conditions, and forecast their future ranges under chang-
ing climatic conditions. To bridge this gap, we present CanaryClim, 
a new climatic model at 100-m resolution for the Canary Islands. 
As a case study, we revisited previous assessments of climate 
change impacts on the Macaronesian endemic bryophyte flora in 
the Canary Islands based on 1-km resolution climatic data (Patiño 
et al., 2016), using the newly generated CanaryClim layers under 
three contrasted shared socio-economic pathways of warming cli-
mate (O'Neill et al., 2016).

Bryophytes are spore-producing land plants, whose distinctive 
ecophysiological traits make them ideal candidates for exploring the 
impact of climate change (Patiño et al., 2022). First, bryophytes are 
poikilohydric, which means that their water content is directly reg-
ulated by environmental humidity and precipitation. During periods 
of desiccation, bryophytes enter dormancy and stop physiological 
activity. Bryophyte species, however, exhibit important differences 
in the degree of desiccation they can tolerate. For instance, certain 
cloud forest species often exhibit anatomical adaptations for water 
storage. Such traits have been, however, proved to be suitable for 
coping with short-term drought resistance rather than long-term 
desiccation tolerance (reviewed in Proctor et al.,  2007). Second, 
while they cope well with low-temperature regimes, bryophytes are 
more sensitive to moderately high temperatures. As an example, 

a selection of boreal and temperate species die after a few weeks 
if temperatures are maintained above ca. 30°C (reviewed in He 
et al., 2016). Therefore, bryophytes typically occur in microhabitats 
with specific local climatic conditions, making them able to survive 
in areas where higher plants vanished due to climate change (He 
et al., 2016; Tuba et al., 2011).

In this context, the primary goal of this study was to assess 
the predictive performance of two climate data sets with different 
spatial grains (sensu Moudrý et al., 2023). This task was performed 
under warmed climate scenarios, including the macroclimate model 
from CHELSA v2.1 at 30-arc-second resolution (~1 km) and the 
newly downscaled climate grids from CanaryClim v1.0 at 100-m res-
olution. Based on these two climate data sets, we also analyse spatial 
and temporal differences in predicted climate suitability depending 
on grid size. Specifically, we tackle the following questions by com-
paring the CanaryClim and CHELSA data sets: Is there a difference 
of accuracy among species distribution models (SDMs) depending on 
the resolution of the climatic data? How do the projections of these 
models vary spatially under present and future conditions? To what 
extent does the newly generated, higher resolution CanaryClim data 
set allow for the identification of climate change microrefugia (sensu 
Bennett & Provan, 2008; De Frenne et al., 2021; Rull, 2009), or for 
the prediction of new climatic habitat range?

2  |  METHODS

2.1  |  Study area and species occurrence data

The study area covered the oceanic archipelago of the Canary 
Islands with a total area of 7492 km2, eight main islands and a num-
ber of islets (Figure  1). The archipelago is characterized by a gen-
eral subtropical Mediterranean climate with strong gradients in 
temperature and precipitation depending on elevation, topogra-
phy and longitude (del Arco-Aguilar et al., 2010; del Arco-Aguilar & 

F I G U R E  1  Study area and current distribution of the montane cloud laurel forest, one of the main zonal ecosystems in the archipelago of 
the Canary Islands.
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4  |    PATIÑO et al.

Rodríguez-Delgado, 2018). Thus, while the western and central is-
lands are characterized by high, complex topographies and relatively 
humid climates, the eastern ones are flatter, topographically simpler 
and drier. Such differences explain the broader array of zonal ecosys-
tems found on the highest islands compared with the lowest ones, 
wherein the first ones include from arid and semi-arid coastal scrubs, 
through semi-arid thermophilous woodlands, montane cloud laurel 
forests and xeric pine forests to summit alpine scrubs (del Arco-
Aguilar et al., 2010; del Arco-Aguilar & Rodríguez-Delgado, 2018). 
The lower, eastern islands only preserve a representation of arid and 
semi-arid coastal scrubs.

To test the performance of species distribution models at con-
trasted spatial resolutions, we considered the 19 Macaronesian 
endemic bryophyte species present in the Canary Islands, except 
Rhynchostegiella macilenta which is now considered to be conspe-
cific with R. tenerifae (Patiño, Hedenäs et al.,  2017). The endemic 
element of the Canarian bryophyte flora is largely restricted 
(ca. 87%) to the montane cloud laurel forest (Patiño et al.,  2014; 
Vanderpoorten et al.,  2011). Species distributions were obtained 
from Patiño et al.  (2016). This database was updated and addi-
tionally complemented for this work with recent verified herbar-
ium records, thorough literature reviews and field observations 
(Figure S1 and Table S1). In total, 697 occurrences were obtained 
for 17 endemic bryophyte species. To avoid geographical sam-
pling bias (sensu Syfert et al., 2013), we only retained occurrences 
that were separated by at least 100 m from each other, matching 
the resolution of the CanaryClim data. Species occurring in <10 
100 m grid cells were removed (Jiménez-Valverde, 2020), including 
Orthotrichum handiense and Aloina humilis. We thus ended up with 
14 Macaronesian endemic species, namely: Cololejeunea schaeferi, 
Exsertotheca intermedia, Fissidens coacervatus, Frullania polysticta, 
Grimmia curviseta, Homalothecium mandonii, Leptodon longisetus, 
Leucodon canariensis, L. treleasei, Pelekium atlanticum, Plagiochila ma-
derensis, Rhynchostegiella bourgaeana, R. pseudolitorea and R. tricho-
phylla. Nomenclature (Table S1) follows Hodgetts et al. (2020). The 
final species data set comprised 10–100 occurrences (with a me-
dian of 26.5), which was kept constant through the two resolutions 
allowing that the exact same number of occurrences is used for 
CHELSA SDMs. Although occurrence repetition can impact SDMs 
at 1 km (Varela et al., 2014), the number of duplicate occurrences in 
a pixel of 1 km was only, in median, two for nine out of 14 species. 
This represents approximately 7% of the total data set, suggesting 
limited autocorrelation.

2.2  |  Climate variables

In order to generate the CanaryClim v1.0 climate data set, we down-
scaled the global climate model of CHELSA v1.2 (Karger et al., 2017) 
and generated an ensemble of high-resolution climate data within 
the Sixth Assessment Report of the Intergovernmental Panel on 
Climate Change (CMIP6). The methodology applied is explained in 
the following sections.

2.2.1  |  Precipitation downscaling

We used 207 meteorological stations, which recorded mean precipi-
tation rates (pr) between 1972.5 ± 18.3 and 2017.0 ± 13.62. For the 
subsequent analyses, we only used the observations within the pe-
riod 1979–2013 to match CHELSA v1.2. The data of these stations 
were checked for errors in locations or in observations. Specifically, 
we removed four stations that were considered extreme outliers 
by showing >10 times higher observed precipitation rates than the 
modelled ones by CHELSA v1.2.

The bias correction using station data followed the methodology 
described by Karger et al.  (2021). In a first step, the bias between 
observed monthly precipitation rates at meteorological stations 
probs and the model based on monthly precipitation rates prmod from 
CHELSA v1.2 is calculated as the ratio:

with c being a constant of 0.01 kg m−2 month−1 to avoid division by zero. 
The resulting point data are then spatially interpolated using a multi-
level B-spline interpolation (Lee et al., 1997) with 14 error levels and 
optimized using a B-spline refinement to a horizonal resolution of 30 
arc-seconds (hereafter ~1 km). This multilevel B-spline approximation S 
(Lee et al., 1997) applies a B-spline approximation to Rm starting with 
a coarsest grid �0 from a total set of 14 control grids �0,�1,�2, … ,�n 
with n = 14 that have been generated using optimized B-spline refine-
ment (Press et al., 1989). The resulting B-spline function:

gives the first spatial approximation of the model bias R. However, 
f0
(
Robs
mod

)
 leaves a first deviation Δ1Robs

modc
 between interpolated values 

at the control grid and Robs
mod

 being:

at each grid cell location 
(
xc, yc ,R

obs
modc

)
. Then the next control grid �1 is 

used to approximate f1
(
Δ1Robs

modc

)
. This approximation is then repeated 

n times on the sum of

at each grid cell 
(
xc, yc ,R

obs
modc

)
 resulting in the gap free interpolated bias 

surface Rint (Press et al., 1989). The bias corrected precipitation at 1 km 
resolution is then calculated using:

2.2.2  |  Boundary layer height adjusted 
downscaling of monthly precipitation rates

A main driver of precipitation gradients is the mesoscale oro-
graphic configuration that can induce precipitation by the lifting 

Robs
mod

=
probs + c

prmod + c

f0
(
Robs
mod

)

Δ1Robs
modc

= Robs
mod

− f0
(
xc, yc

)

f0 + f1 = Robs
mod

− f0
(
xc, yc

)
− f1

(
xc, yc

)

prcor
c

= prmod × Rint
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    |  5PATIÑO et al.

and cooling of air masses over topographically complex terrain. Both 
the CHELSA v1.2 data and the station measurements do already in-
clude these effects. Orography, however, still affects precipitation 
rates at very fine scales that are hidden by their coarse resolution. 
In the Canary Islands, for example, clouds often form at mid eleva-
tions, leaving the high elevations cloud free. Additionally, below the 
clouds, fine-scale orography does not influence precipitation rates 
anymore, as rain clouds usually have a size larger than 1 km. To cor-
rect for this elevation-dependent effect, we included a boundary 
layer height correction of precipitation rates in the downscaling 
(Karger et al., 2017, 2020). We used the boundary layer height plan-
etary boundary layer (PBL) from the ERA-Interim climate data set, 
a global atmospheric reanalysis produced by the European Centre 
for Medium-Range Weather Forecasts (Dee et al., 2011). PBL is then 
used to calculate the distance of the orography to the boundary 
layer �z by

And further adjusted by:

where the exponent of d represents the scaled high-resolution orog-
raphy using Δzmax being the maximum distance to the boundary layer 
and Δzmin the minimum distance to the boundary layer. The parame-
ter d is a tuning parameter that has been adjusted based on the fit of 
the subsequent downscaling using a sensitivity analysis (Figure S2) 
and set to a value of 100. It adjusts the strength of the orographic 
terrain effect of precipitation below the boundary layer using a loga-
rithmic function. The high-resolution precipitation rates at coarse 
resolution prcor

c
 are then calculated using:

where zh is the orography at 5 m resolution, zc is the orography at 
1 km resolution B-spline interpolated (S) to 5 m resolution.

2.2.3  |  Temperature downscaling

We used 101 meteorological stations, which recorded mean maxi-
mum and minimum near-surface 2-m air–temperature (tasmax, tas-
min) between 1986.6 ± 17.2 and 2011.4 ± 13.6. For the subsequent 
analyses, we only used the observations within the period 1979–
2013. The data of these stations were checked for errors in loca-
tions or in observations. We only used stations with a minimum of 
10 years of records.

We used a lapse-rate based downscaling of temperatures fol-
lowing the methodology of Karger et al.  (2017). We calculated 
monthly mean temperature lapse rates from ERA-Interim for the 

period 1979–2013 based on a linear regression between tempera-
tures and geopotential heights at all pressure levels from 1000 to 
300 hPa from ERA-Interim. As lapse rate Γ we used the parameter 
estimate of the regression for temperature. The lapse rate has then 
been B-spline interpolated to a 5-m resolution. The grid elevation 
at 1-km resolution and the station elevation can deviate substan-
tially due to differences in spatial resolution. To account for this 
potential artefact, we corrected the temperature measured at the 
station with the elevational difference Δz between the 1-km grid 
cell elevation from GMTED2010 (Danielson & Gesch,  2011) and 
the elevation of the meteorological station, as well as the lapse 
rate Γ by using:

and:

The bias Rint has then been calculated in the exact same way as 
for precipitation. At the 1-km resolution the bias corrected maxi-
mum and minimum near-surface 2-m air–temperatures have then 
been calculated by:

and:

And further downscaled to 5 m resolution using:

and:

where S denotes a B-spline interpolation, zh is the orography at 5 m 
resolution, zc is the orography at 1 km resolution.

2.2.4  |  Statistical validation of CanaryClim

Bias correction of CanaryClim variables was validated using a 10-
fold cross validation with 10 iterations that randomly removes one-
fold of the data as test and leaves ninefolds as training. We then 
repeated the bias correction for temperature and precipitation using 
the training data and tested the resulting climatological surfaces 
using the test set of stations for several metrics.

We used the correlation between a simulated data set (xsim), such 
as the downscaled precipitation or temperature surfaces, with the 
values observed at meteorological stations (xobs) that overlap with a 
grid cell of the simulated data set. The correlation is calculated based 
on Pearson's correlation coefficient,

where xobs represents the observed time series at a meteorological 
station xsim the downscaled timeseries, cov the covariance, and � the 

Δz = PBL − z

Δzcor
h

=

⎧
⎪⎨⎪⎩

0, z<PBL

d

�
Δz−Δzmin

Δzmax−Δzmin

�
, z≥PBL

prh = prcor
c

(
zh +

(
S
(
zc
)
− zh

)(
1 − Δzcor

h

))

S
(
zc
)

tasmaxcor
obs

= tasmaxobs + (Δz ∙ Γ)

tasmincor
obs

= tasminobs + (Δz ∙ Γ)

tasmaxcor
c

= tasmaxmod × Rint

tasmincor
c

= tasminmod × Rint

tasmaxh = S
(
tasmaxcor

c

)
+
((
S
(
zc
)
− zh

)
∙ Γ

)

tasminh = S
(
tasmincor

c

)
+
((
S
(
zc
)
− zh

)
∙ Γ

)

� =
cov

(
xsim, xobs

)

�
(
xsim

)
�
(
xobs

)

 14724642, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13757 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [30/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6  |    PATIÑO et al.

standard deviation. Additionally, we used root mean squared error 
(RMSE) defined as:

where n is the number of time steps of a timeseries. Furthermore, the 
mean absolute error (MAE) was computed according to:

Additionally, we used the Kling–Gupta efficiency (KGE) to cal-
culate a combined score based on the bias component 𝛽, the ratio 
of estimated and observed means, and the variability component γ 
by the ratio of the estimated and observed coefficients of variation:

where:

KGE, r, β, and γ values all have their optimum at 1 KGE values 
between −0.41 and 1 indicate that the model estimates are better 
than just taking the mean of the observations (Knoben et al., 2019).

2.2.5  |  Future climate variables

As the present periods of CHELSA v.2.1 (1981–2010) and CanaryClim 
v1.0 (1979–2013) slightly differs, we first generated present (1979–
2013) and future (2071–2100) maps at 1-km resolution in the Canary 
Islands for monthly minimum, maximum and mean temperatures and 
monthly amount of precipitation using the chelsa_cmip6 algorithm 
available at https://gitla​bext.wsl.ch/karge​r/chelsa_cmip6 (Karger 
et al., 2023). This step was performed for five Earth system mod-
els, which show different levels climate sensitivity and, therefore, 
the amount of global surface warming that will occur in response to 
a rising of atmospheric CO2 concentrations (Tokarska et al., 2020). 
This step is relevant because it allows us to avoid bias in the analysis 
results towards a certain climate model (Hemer et al., 2013). From 
higher to lower climate sensitivity, we selected UKESM1-0-LL, 
IPSL-CM6A-LR, GFDL-ESM4, MRI-ESM2-0 and MPI-ESM1-2-LR. 
Each model was associated with three shared socio-economic path-
ways (hereafter termed as SSP): SSP1-2.6, SSP 3–7.0 and SSP 5–8.5 
(Table  S2). These three SSPs provide contrasted projected socio-
economic global changes in the near future, under which the global 
mean temperature changes will range from approximately 1.5–5°C 
in 2100 (O'Neill et al., 2016). From a different angle, these three SSP 
scenarios represent the low, medium and high range of future forc-
ing pathways, implementing radiative forcing levels of 2.6, 7.0 and 
9.5 Wm−2 in 2100 (O'Neill et al., 2016).

Then, we calculated the anomaly (Δ) between the 1979 and 2013 
present reference period (ref) and the 2071–2100 future period (fut) 

for a given variable at the spatial resolution of the climate model 
(Arnell et al.,  2001). For mean daily 100-m air temperatures (tas), 
as well as daily maximum (tasmax) and minimum (tasmin) 100 m air 
temperatures, a delta change method is applied so that the anomaly 
is given by:

This calculation is performed at a 1-km resolution (low). The 
anomaly Δtasref

fut
 is then interpolated to the spatial resolution of the 

high-resolution (high) reference climatology using a cubic-spline in-
terpolation (CS) (Hall & Meyer, 1976) and subtracted to the high res-
olution reference climatology (tasref

high
), so that:

The same applies for tasmax and tasmin. This calculation is made 
separately for each month from January to December. For precipi-
tation (pr), an additive delta change method can potentially generate 
negative values. To derive anomalies, we used a reduction method, 
and adding a constant c of 10−7 kg m−2 day−1 to both the reference 
and the future data to avoid division by zero:

As for temperature, the anomalies are then interpolated using a 
cubic-spline interpolation to a 1 km resolution and divided to a high-
resolution reference climatology using:

The delta change method as applied here is relatively insensitive 
regarding individual model bias of the climate model used, as it only 
uses the difference (ratio) for a given variable between a reference 
period and a future period. Following the definitions of CHELSA 
(Karger et al., 2017, 2023), the 19 CanaryClim bioclimatic variables 
(BIO1-BIO19) were then generated using SAGA-GIS.

2.3  |  Topographic variables

To generate topographic variables using the software SAGA-GIS 
v.7.9.1, digital elevation maps (DEM) of the Canary Islands were 
downloaded at 2-m resolution from IGN (https://marti​ngonz​alez.
net/ign-dem-grabb​er/). Slope, aspect and five types of curvatures 
were generated at 2-m resolution via the method of 9 parameter 
second-order polynom (Zevenbergen & Thorne, 1987). The aspect 
map was then decomposed into two axes: North–South (norther-
ness) and East–West (easterness), which correspond to the cosine 
and sine of the aspect, respectively. The topographic wetness index 
(TWI) with the related catchment area and slopes were computed at 

RMSE =
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n
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2-m resolution via the ‘TWI’ module (Beven & Kirkby, 1979; Böhner 
& Selige, 2006; Moore et al., 1991; Zevenbergen & Thorne, 1987). 
All the topographic variables were afterwards resampled to 
100 m (EPSG:32628; extent: 183,460 m, 3,057,114 m; 655,860 m, 
3,255,114 m [xmin, ymin; xmax, ymax]) and 30 arc-seconds (~1 km; 
EPSG: 4326; extent: −20°, 27°; −12°, 30° [xmin, ymin; xmax, ymax]) 
resolution applying a mean via the “terra” R package (Hijmans, 2022). 
This strategy was performed to match the resolutions of both cli-
matic data sets (CanaryClim vs. CHELSA). The final list of topo-
graphic variables generated are presented in Table S3.

2.4  |  Selecting environmental climatic variables for 
species distribution modelling

In order to avoid multicollinearity, we computed Pearson's correla-
tion coefficient in the ‘terra’ R package among all the climatic and 
topographic variables considered (Table S3) to identify highly corre-
lated variables (|r|) > 0.7) at 100-m resolution (Dormann et al., 2013; 
Guisan et al., 2017; Zurell et al., 2020). We kept the eight follow-
ing present time variables: BIO1 (mean annual air temperature, 
°C), BIO2 (mean diurnal air temperature range, °C), BIO12 (annual 
precipitation amount, kg m−2), BIO15 (precipitation seasonality, 
kg m−2), BIO18 (mean monthly precipitation amount of the warm-
est quarter, kg m−2), TWI, northerness, and easterness; for perfor-
mance comparison purposes, the same variables were selected from 
CHELSA data set. Inclusion of the variables related to precipitation 
(i.e. BIO12, BIO15, BIO18) and relative humidity (i.e. TWI, north-
erness, easterness) is supported by the importance of water avail-
ability for bryophytes due to their poikilohydric condition (Patiño 
et al., 2022; Patiño & Vanderpoorten, 2018) and, in particular, for 
the bryophyte flora endemic to Macaronesia due to its overall af-
finity for montane cloud forests (Patiño et al., 2014; Vanderpoorten 
et al., 2011). BIO1 and BIO2 can further contribute to control for the 
relevance of high temperatures on mortality rates in temperate and 
subtropical bryophytes (He et al., 2016; Patiño et al., 2016; Patiño & 
Vanderpoorten, 2018).

2.5  |  Modelling approach: Ensemble of 
small models

Assumptions underlying our species distribution models are de-
scribed in Table  S4 according to Zurell et al.  (2020). Independent 
models were generated using the selected CanaryClim and CHELSA 
variables at 100-m and 1-km resolution, respectively, together with 
the selected topographic variables as predictors. As we had be-
tween 10 and 100 occurrences per species, we employed ‘ensemble 
of small models’ (ESMs), which have been specifically developed for 
small data sets (Breiner et al., 2015, 2018; Erickson & Smith, 2023; 
Lomba et al., 2010); ESMs have been successfully implemented in 
bryophytes in recent studies (Cerrejón et al., 2022; Collart, Hedenäs 

et al., 2021). Ensemble of small models consist in generating bivari-
ate models with all possible pairs of predictors, which are subse-
quently combined into an ensemble. Such an approach thus avoids 
overfitting without losing explanatory power (Breiner et al., 2015). 
Based on the recommendations provided by Breiner et al.  (2015), 
we employed Gradient Boosting Machine (Jerome,  2001) with 
the default parameters in ‘ecospat’ R package (Broennimann 
et al., 2022). Models were calibrated from the species occurrence 
data and 10,000 background points randomly selected in the 
Canary Islands with the ‘sp’ R package (Bivand et al., 2008; Pebesma 
& Bivand, 2005). Species occurrences and background points were 
equally weighted, and the latter were kept constant for the model-
ling at the two spatial resolutions.

We generated species response curves for each environmental 
variable using the ‘ecospat’ R package (Broennimann et al.,  2022) 
by projecting all bivariate models, successively keeping one vari-
able and setting the other ones at their median values. The resulting 
probabilities were then combined into an ensemble and plotted to 
obtain the mentioned response curves.

Models were then evaluated from 10 replicates of 28 bivariate 
models. In each replicate, 70% of the data were used for model train-
ing (training set) and the remaining 30% for model testing (test set). 
Bivariate models were afterwards combined together, applying a 
weighted mean based on their Somer's D values (2 × AUC-1) and re-
moving models with a Somer's D lower or equal to 0. Model accuracy 
was assessed by pooling the suitability values from the 10 test sets 
to obtain an independent series of suitability values with roughly 
the same size as the initial data set, as recommended by Collart and 
Guisan (2023). We measured model accuracy using the Boyce Index, 
which was designed for presence-only data. Although AUC and 
MaxTSS require presence-absence data and can be misleading with 
presence-only data sets (Leroy et al., 2018), we also computed them 
for comparison purpose because they remain the most widely used 
metrics (Guisan et al., 2017).

Models were projected under present (1979–2013) and future 
(2071–2100) climate conditions. For the future, we used two out 
of the five individual model intercomparison projects included in 
the CanaryClim data set and the three SSPs. The selected global 
circulations models were UKESM1-0-LL (hereafter UKESM) and 
GFDL-ESM4 (hereafter GFDL), which correspond to high and low 
climate sensitivity, respectively (Lange, 2019, 2021). These two proj-
ects resulted to be the most distant ones regarding their quartiles 
(minimum, first quartile, median, third quartile and maximum values 
across the 19 bioclimatic variables and the three SSPs (Figure S3 and 
Tables S5 and S6).

The resulting habitat suitability maps were binarized using 
the threshold that maximizes the TSS, as recommended by Liu 
et al.  (2013). Percentages of lost and gained probably suitable pix-
els in 2071–2100 compared to present time were computed using 
the ‘biomod2’ R package (Thuiller et al., 2022). To compare the out-
puts obtained using CanaryClim and CHELSA, the binarized maps 
obtained with CanaryClim were aggregated to reach the same 
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8  |    PATIÑO et al.

resolution as CHELSA. A 1-km pixel was thus considered probably 
suitable if at least one of its 100 m constitutive pixels was considered 
as such. Because binarization represents a loss of information and is 
uncertain in the context of presence-only data (Leroy et al., 2018; 
Santini et al., 2021), we complemented it by producing histograms 
of suitability values obtained with CanaryClim and CHELSA-based 
models. In particular, we compared suitability histograms between 
present and future conditions and histograms of future suitability 
with CanaryClim and CHELSA, respectively.

3  |  RESULTS

The high-resolution climate data set, CanaryClim v1.0 and the to-
pography data set, both generated in the present study are available 
at https://doi.org/10.6084/m9.figsh​are.22060340 and https://doi.
org/10.6084/m9.figsh​are.22060433, respectively.

3.1  |  Present and future climate data sets

The climate model performances are available in Tables S7 and S8. 
The mean correlations between the predicted climate and weather 
stations measurements were on average 0.74 ± 0.22, 0.85 ± 0.05 and 
0.82 ± 0.07 for maximal monthly temperature, minimal monthly tem-
perature and monthly precipitation, respectively. General patterns 
in temperature and precipitation between CHELSA and CanaryClim 
data sets showed relevant differences across space and time. Under 
present conditions, annual mean temperature varied, on average, 
from 17.8 ± 3.2°C to 19.3 ± 2.9°C, with CHELSA predicting colder 
temperatures than CanaryClim. Annual precipitation showed impor-
tant differences, with an average across pixels of 245.6 ± 133.8 mm 
in CHELSA versus 300.1 ± 209.3 mm in CanaryClim. When scanning 
all 1-km pixels, a difference of up to 59 mm was observed between 
the value predicted by CanaryClim in the wettest 100 m constitutive 
pixel and CHELSA. These temperature and precipitation discrepan-
cies were mostly located in northern slopes and montane ridges, 
as the example represented in Figure 2 for the Anaga Peninsula in 
Tenerife island (Figure S4).

On average, predicted annual mean temperature increase in 2100 
was higher with CanaryClim than CHELSA data set. Specifically, under 
the warming scenarios SSP 1–2.6, SSP 3–7.0 and SSP 5–8.5 and the 
GFDL (UKESM) global circulations models, we predicted average 
temperature increases with CHELSA of 0.9 ± 0.05°C (1.8 ± 0.2°C), 
2.2 ± 0.06°C (3.3 ± 0.2°C), and 2.3 ± 0.06°C (4.1 ± 0.2°C) (Figure  S3). 
With CanaryClim, these values were 1.2 ± 0.02°C (2.2 ± 0.04°C), 
2.4 ± 0.01°C (4.0 ± 0.05°C), and 2.9 ± 0.01°C (4.7 ± 0.04°C), respec-
tively. For annual precipitation, a higher decrease in 2100 was 
predicted by CHELSA compared with CanaryClim (Figure S3). The re-
sulting ratios (i.e., future precipitation/present precipitation) when fu-
ture and present precipitation regimes were estimated and compared 
ranged on average from 1.03 ± 0.02 to 0.91 ± 0.02 in CanaryClim and 
from 1.00 ± 0.03 to 0.82 ± 0.01 in CHELSA (Figure S4).

3.2  |  Present and future species distribution 
predictions

Species distribution prediction maps are available at https://
doi.org/10.6084/m9.figsh​are.22776545. Based on CHELSA and 
CanaryClim data as predictors, SDMs exhibited similar accu-
racy (average CHELSA SDM Boyce Index = 0.866 ± 0.129, aver-
age CanaryClim SDM Boyce Index = 0.854 ± 0.106 across species; 
Figure 3). Although all the species had AUC values >0.8, two and 
six species showed Boyce index <0.8 and, seven and nine showed 
MaxTSS <0.8 for CHELSA and CanaryClim SDMs, respectively 
(Table S9). In addition, response curves were relatively similar be-
tween CHELSA and CanaryClim SDMs across species (Figure S5), 
at least for species with similar ecological requirements. For in-
stance, montane cloud laurel forest species tended to exhibit alike 
response curves compared with the only alpine species in our 
study, G. curviseta. In addition, response curves seemed to display 
certain levels of overfitting, particularly for precipitation variables 
(Figure S5).

The percentage of exclusive 1-km-resolution pixels predicted 
by CanaryClim or CHELSA SDMs as likely suitable environmentally 
reached 55.9% and 21.9%, respectively (Figure 4 and Table S10). 
Only 22.2% of the pixels were in common to the two climatic 
SDMs under present conditions. These differences in environmen-
tally (likely) suitable areas are even more pronounced when SDMs 
were projected onto future climatic layers. Specifically, 79.8%–
99.3% of all pixels identified as likely suitable by either CanaryClim 
or CHELSA models were exclusive to the former (Figure  4 and 
Table S10). The percentage of probably suitable pixels exclusively 
predicted by CHELSA or predicted by the two climate data sets 
only reached 0.04%–11.9% and 0.01%–8.3%, respectively (Figure 4 
and Table S10).

There was a further, strong spatial discrepancy between the 
projections generated with CanaryClim and CHELSA SDMs. The 
proportion of pixels predicted to become likely suitable in 2100 as 
compared to the present was substantially higher with CanaryClim 
(8.1%–28.3% depending on climate change scenarios) than with 
CHELSA (0.0%–2.7%) models (Figure 5). These patterns based on 
binarized suitability maps were mirrored by the distributions of 
suitability values at time present and in 2100, with higher propor-
tions of pixels with high suitability values obtained under present 
conditions than in 2100 (Figure S6). Regarding the loss of probably 
suitable range, CanaryClim and CHELSA predictions were globally 
more similar, with high rates of predicted loss of the probably suit-
able range at present time, reaching between 70.6% and 96.0% 
across species for CanaryClim and between 68.6% and 99.7% for 
CHELSA (Figure 5).

This trend was only partially reflected by the distribution of suit-
ability values in 2100, with higher suitability values with CanaryClim 
(suitability averaged across pixels: 0.105 ± 0.056–0.113 ± 0.06 de-
pending on future scenarios) than with CHELSA (0.054 ± 0.045–
0.064 ± 0.051) (Figure S6). Moreover, these differences, in suitability 
change between present and future, were not consistent across all 
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the species (Table S11). As an example, >99% of the current poten-
tial distribution range was predicted to become probably unsuitable 
for four species under the GFDL 5–8.5 scenario in CanaryClim, 
while the number reaches 12 out of 14 species in CHELSA. In fact, 
a number of species showed high probability of persistence in small 
areas across mid-elevation ridges with CanaryClim SDMs, but not 
with CHELSA SDMs (Figures 6, S7 and S8). Among these species, 
C. longisetus, E. intermedia, F. polysticta, L. canariensis or R. pseudoli-
torea matched the commented pattern under CanaryClim, while we 
only found persisting areas under CHELSA models for E. intermedia 
(Figures 6, S7 and S8).

Using CHELSA, no likely suitable pixels remain in 2100 for 3–11 
species depending on the scenario implemented (Table S11). With 
CanaryClim SDMs, none of the studied species was predicted to 
lose all their suitable pixels in the future under the scenario GFDL 
1–2.6, no likely suitable pixels remain suitable for one species with 

the scenarios GFDL 3–7.0, UKESM 1–2.6 and 3–7.0, and for two spe-
cies with the scenario UKESM 5–8.5 (Table S11). Under the UKESM 
5–8.5 scenario, the predicted loss of suitable range tended to be 
worse, reaching at least 99% in six and 10 species with CanaryClim 
and CHELSA models, respectively (Table S11).

4  |  DISCUSSION

Our study demonstrates the importance of considering high-
resolution climate data sets to forecast climate change responses of 
small plants and identify potential future climate microrefugia and 
range expansion across areas that might become climatically suit-
able in the near future (Patiño et al., 2022). We further showed that 
SDMs projected at fine-scale resolution do not necessarily lead to 
better model accuracy.

F I G U R E  2  Comparison of mean annual air temperature (BIO1; left panels) and annual precipitation amount (BIO12; right panels) from 
1979 to 2013 predicted from two climatic datasets with different resolutions (~1 km in CHELSA and 100 m in CanaryClim). Values are 
provided for the Anaga Peninsula (Tenerife, Canary Islands) as an example.
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10  |    PATIÑO et al.

4.1  |  Fine versus coarse-grain climate data sets

We showed that downscaling temperature and precipitation grids 
based on widely available climate station data can be envisioned as a 
reliable and advisable approach (Meineri & Hylander, 2017). Indeed, 
the downscaling approach performed well with noteworthy correla-
tions between predicted and observed monthly amount of precipita-
tion, minimum and maximal air temperature. However, we anticipate 
that these performances can be further improved by increasing the 
number of weather stations or by complementing the data using in 
situ microclimate measurements (Gril et al., 2023). From a topograph-
ical perspective, CanaryClim data provides temperature and pre-
cipitation estimates more strongly correlated with topography and 
aspect than what CHELSA data does, even when both data sets use 
digital elevation models to perform corrections (Karger et al., 2017). 
For instance, at the summit areas of the Anaga Peninsula in Tenerife 
(Figure 2), temperature and precipitation amounts are expected to 
reach the lowest and the highest values, respectively, in the region 
(del Arco-Aguilar & Rodríguez-Delgado, 2018; Marzol et al., 2011). 
This expectation seems to be better reproduced by the high reso-
lution CanaryClim than the coarser-resolution CHELSA data set. 
This outcome is not unexpected as mounting literature has recently 
demonstrated the ability of downscaling climate data sets in order 
to reproduce fine-scale microclimatic gradients in mountain areas 
(Dobrowski, 2011; Lenoir et al., 2017).

On average, we found that CanaryClim predicts slightly higher 
temperatures and precipitations than CHELSA data set, under both 
present and future conditions. Since important differences in tem-
perature and precipitation are explained by landscape physiography 
(Dobrowski, 2011; Dobrowski et al., 2009; Meineri et al., 2015), it 
seems reasonable to assume that coarser climatic data sets might 
experience limitations in identifying local ecological features that 
promote deviations from regional climatic patterns in rugged land-
scapes (Randin et al., 2009). Such a limitation can eventually homog-
enize the climatic gradients imposed by elevation, topography and 
slope, having a poor representation of rare microclimates (Moudrý 
et al., 2023). This is in line with the idea that climatic conditions for 
a given pixel using databases at coarse resolution represent better 
the conditions that actually prevail at low rather than high eleva-
tion within that pixel. As proposed by Meineri and Hylander (2017), 
this phenomenon can have two complementary explanations. First, 
the available surface area often decreases with elevation (Elsen 
et al.,  2020; Elsen & Tingley,  2015). Second, since different topo-
graphic factors are best represented at small grain size, the proba-
bility of representing environmental conditions of ridges decreases 
with increasing grain-size (Randin et al., 2009).

4.2  |  The potential and limitations of CanaryClim 
for modelling the impacts of a changing climate

In contrast to previous studies suggesting that increasing the res-
olution of climate data improves model performances (Chauvier 
et al.,  2022; Franklin et al.,  2013; Manzoor et al.,  2018; Meineri 
& Hylander,  2017), we did not find relevant differences in terms 
of model accuracy (Lembrechts, Lenoir et al.,  2019; Stark & 
Fridley,  2022). This result suggests that: (i) spatial resolution of 
CanaryClim might not be sufficient to depict environmental gra-
dients relevant to small organisms (Potter et al., 2013; Scherrer & 
Körner, 2010); (ii) apparent overfitted precipitation curves can gen-
erate uncertainty in the future predictions of bryophyte suitabili-
ties (see Figure S5); and (iii) while microtopography and vegetation 
data can be important to predict bryophyte distribution (Cerrejón 
et al.,  2020; Jiang et al.,  2014), they cannot totally replace in situ 
measurements (Man et al., 2022). In this context, CanaryClim would 
be usefully complemented by field measurements of microclimate 
recorded with sensor networks (Bramer et al., 2018; Lembrechts & 
Lenoir, 2020) that, coupled with detailed information on topography 
and vegetation structure, can serve as complementary predictors of 
the climatic conditions prevailing at the level of microhabitats (e.g., 
Haesen et al., 2021). Since the networks and timespan of georefer-
enced microclimate stations remain limited, particularly for insular 
regions, such improvement calls for the need of long-term standard-
ized microclimate sampling approaches (Lenoir et al., 2017; Patiño, 
Hedenäs et al., 2017; Patiño, Whittaker et al., 2017).

Despite the similar accuracy shown by CHELSA and CanaryClim 
SDMs, the use of either climate data set had substantial conse-
quences on predictions of extinction risks in the Macaronesian 

F I G U R E  3  Distribution and boxplots of performances for the 
ensemble small models realized using data at 100 m (CanaryClim) 
and ~1 km (CHELSA) resolutions. The boxplots show the 1st and 
3rd quartiles (upper and lower bounds), 2nd quartile (centre), 
1.5 × interquartile range (edges of the box).

 14724642, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13757 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [30/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11PATIÑO et al.

endemic bryophyte flora across the Canary Islands. This discrepancy 
originates from the much higher proportion of newly likely suitable 
pixels in 2100 predicted with CanaryClim, coupled with the substan-
tial, but somewhat different predicted rate of loss of likely suitable 
range with both climatic data sets. Projections based on CHELSA and 
CanaryClim SDMs for 2100 had only 0.01%–8.3% of the newly likely 
suitable pixels in common, while 79.8% and 99.3% of the latter were 
identified by CanaryClim only. In turn, SDMs generated using CHELSA 
and CanaryClim both revealed substantial losses of probably suitable 
areas at present time. As an example, there were mosses such as F. co-
acervatus, G. curviseta, L. treleasei and R. bourgaeana and the liverworts 
C. schaeferi and P. maderensis, which were forecasted to probably be-
come near extinct or vanished at the end of 21st century by the two 
climatic data sets (Table S10) and a former study using bioclimatic vari-
ables from WorldClim at the resolution of ~1 km (Patiño et al., 2016).

However, there are also important differences. First, despite 
response curves built with CanaryClim and CHELSA SDMs denote 
that both suffer from overfitting (Figure  S5), it also seems that 
the high resolution CanaryClim data set does it to a lesser extent. 
Second, the overall number of species predicted to become extinct 
(i.e. a predicted total loss of all likely suitable pixels) in the near fu-
ture was significantly lower under CanaryClim than CHELSA SDMs 
(Table S11) and the previous study based on classic SDMs (Patiño 
et al.,  2016). Lastly, the projection of SDMs employing fine-grain 
CanaryClim compared with CHELSA data set revealed a higher 
number of microrefugia across mid-elevation ridges of the central 
and western Canarian islands. These areas are potentially domi-
nated by montane cloud forests (del Arco-Aguilar et al., 2010; del 
Arco-Aguilar & Rodríguez-Delgado, 2018) and highly suitable for the 
Macaronesian endemic bryophyte assemblage (Patiño et al., 2014, 

F I G U R E  4  Comparison of the proportion of 1 km resolution pixels becoming newly suitable in 2100 under two global circulation models 
(GFDL and UKESM) and three shared socio-economic pathways (SSP 1–2.6; 3–7.0; and 5–8.5) in 14 Macaronesian endemic bryophyte 
species across the Canary Islands, as predicted by species distributions models employing 100m (CanaryClim, a 1 km pixel being identified 
as suitable if a least one of its 100-m pixels are suitable) and ~1 km (CHELSA) resolution climatic data. The boxplots [showing the 1st and 3rd 
quartiles (upper and lower bounds), 2nd quartile (centre), 1.5 × interquartile range (edges of the box), and extreme values (stars)] represent 
the proportion of suitable pixels with models based on CanaryClim only (light green), Chelsa only (blue), or both (red).
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2016; Vanderpoorten et al.,  2011). With the exception of G. cur-
viseta, a species endemic to alpine areas of La Palma and Tenerife, 
the rest of the modelled species are mostly restricted to montane 
cloud forests. Since the bulk of the Macaronesian bryophyte en-
demic element is restricted to this ecosystem, it is not possible to 
draw conclusions about what would be the floristic element more 
threatened by climate change. Nevertheless, our findings support 
the idea that cloud montane species have a high extinction risk in a 
warmer and drier Canarian region (Patiño et al., 2016).

An additional potential limitation relies on the fact that our pre-
dictions did not consider biotic interactions, nor local adaptations, 
which can significantly impact the predicted range losses and gains 
(Guisan et al., 2017; Smith et al., 2019). Nonetheless, local adapta-
tions are considered as rare for bryophytes as allopatric lineages 
can usually be explained by historical factors instead of niche 

differentiation (Collart, Hedenäs et al., 2021; Hedenäs et al., 2022) 
and some evidence of niche conservatism has also been shown at 
the community level (Collart, Wang et al., 2021; Shen et al., 2022). In 
addition, niche expansion outside the native range was not demon-
strated in invasive bryophyte species (Mateo et al., 2015).

From a conservation perspective, our findings suggest that the 
survival of the Macaronesian endemic bryophyte flora in the Canary 
Islands will greatly depend on its capacity to migrate into newly suit-
able areas. Such a dynamic scenario could, at first sight, seem compat-
ible with the presumed high long-distance capacities of bryophytes 
(but see Zanatta et al., 2020). Our projections based on CanaryClim 
SDMs can therefore serve to identify and locate future, new key areas 
for bryophyte conservation, which in some cases are identified out-
side the current range of the Canarian montane cloud forest. Within 
this context, a key next step will be to validate the conservation value 

F I G U R E  5  Percentage of pixels becoming likely unsuitable or newly suitable in 2100 as compared to the present across 14 endemic 
bryophyte species across the Canary Islands, as predicted by the projection of species distribution models calibrated from climatic data at 
100 m (CanaryClim) and ~1 km (CHELSA) resolutions. Analyses performed under two global circulation models (GFDL, UKESM) and three 
shared socio-economic pathways (1–2.6, 3–7.0, 5–8.5). Percentages are shown in boxplots, showing the 1st and 3rd quartiles (upper and 
lower bounds), 2nd quartile (centre), 1.5 × interquartile range (edges of the box), and extreme values (stars).
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and viability of these putative areas to actually persist or play a role 
as microrefugia for the Macaronesian bryophyte flora under ongoing 
climate change (Finocchiaro et al., 2023; Greiser et al., 2020).

5  |  CONCLUSIONS

The limited potential of island species to respond to climate 
change is of major concern to scientists, conservationists and 

managers (Harter et al., 2015; Martín et al., 2012; Patiño, Whittaker 
et al.,  2017). Our findings suggest that projections using climate 
data sets at different spatial resolution can lead to extremely dif-
ferent predictions at the local scale, reinforcing the need for caution 
when selecting the appropriate grain size in studies evaluating the 
potential impacts of climate change (Chauvier et al., 2022; Franklin 
et al., 2013; Guisan et al., 2007; Seo et al., 2008). This is reflected 
in the lower proportion of pixels becoming suitable in 2100 with 
CHELSA than CanaryClim SDMs, and the ability of the latter data 

F I G U R E  6  Examples of potential microrefugia in Anaga Peninsula (Tenerife, Canary Islands). Lost, kept and gained climatically suitable 
areas for three Macaronesian bryophyte species in the Canary Islands under the GFDL 5–8.5 scenario are depicted. Stable habitat in 
CanaryClim (100 m) and CHELSA (~1 km) is mostly predicted at mid-elevation ridges. New climatically suitable ranges are mostly identified at 
higher elevations, but mainly by CanaryClim models. Absent denotes climatically unsuitable pixels under present and future conditions.
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set to identify climatic microrefugia by 2100. We highlighted the po-
tential of CanaryClim data set to fulfil key related tasks in order to: (i) 
improve impact evaluation of climate change and make predictions 
of species distributions at spatial scales that are actually relevant 
for conservation and management; (ii) identify suitable putative mi-
crorefugia and understand their dynamics; and (iii) revisit the level 
of protection of valuable sites to mitigate the loss of biodiversity. 
More specifically, CanaryClim SDMs predicted much larger buffered 
warming trends in mid-elevation ridges than the SDMs performed 
using CHELSA data set. Despite these differences and the fact that 
CanaryClim is restricted to the Canary Islands, the probability of be-
coming extinct was relatively similar with CHELSA and CanaryClim 
data sets only for a few species. This outcome supports the rele-
vance of global data sets such as CHELSA, but also highlights that 
modelling results might vary widely among species and geographic 
contexts when compared with finer resolution data sets.

Our study provides evidence to the relevance of developing 
fine resolution predictions under future climate change scenarios, 
by means of local meteorological station data, which can account 
for the effects of topography and landscape in complex oceanic 
islands. In practice, CanaryClim exemplifies the idea that finer cli-
mate predictors can reproduce better strong gradients of environ-
mental complexity, wherein coarser environmental variables can 
often lead to an underrepresentation of rare environments (Moudrý 
et al., 2023). In conclusion, this study encourages the need of consid-
ering future climatic changes at finer spatial and temporal resolution, 
which will provide more robust and realistic SDM projections under 
future climate change scenarios.
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