Printing of Starch, PLA & Lignin

3.2

Track 2 : Shery Rose Quieng, José Bolaños, Gabriel Dauchot, Pedro Antonio Navarro, Sudip Sharma Supervised by Dr. Yevgen Karpichev, Dr. Aurore Richel & Quentin De Roover

Introduction

WHY?

Reducing the environmental impacts of 3D printing materials, often fossil-based plastics.

WHAT?

Using 100 % biobased materials : starch, PLA, lignin, citric acid, glycerol.

HOW?

Formulating optimal filament compositions, assessing their thermo mechanical properties.

Figure 1. 3D printer with PLA filament

Materials & Methods

Results & Discussion

ii. Polarized Optical Microscopy and Scanning Electron Microscopy (SEM)

Figure 6. Optical miscroscopy (top) & SEM of each sample (bottom)

- Bright spots, dark spots, and colorful Native starch forms granular spots observed.
- Darker areas \rightarrow Amorphous structures
- Colorful areas \rightarrow Crystalline structures
- Agglomerates formed due to non-uniform ingredient distribution (PLA and MS) \rightarrow suggests plasticization of starch.
- structures.
- Mixing native starch with hydrophilic glycerol at higher T \rightarrow resulted into microcrystals spreading & separation

Citric acid

Lignin extraction and characterization

• Lignin was extracted from Barley straw (BS) using organosolv process. Lignin was characterized by Klason lignin, Fourier-transform infrared spectroscopy (FTIR), Heteronuclear Single Quantum Coherence (HSQC) Nuclear Magnetic Resonance (NMR), and differential scanning calorimetry (DSC) (Jõul et al., 2022).

Formulation of composites and characterization.

- The composite was produced following the process in Figure 2, using Modified starch (35.6% - 55.7%), PLA (44% - 0%), lignin (4%), and citric acid (16.4%) (Ju et al.,2022; Zhang et al., 2020).
- The composite/ filament was characterized by Electron Microscopy (SEM), Scanning Polarized optical microscopy (POM), DSC, and tensile properties.

Results & Discussion

3.

Figure 3. FTIR spectra of ethanol-extracted Figure 4. (a) 2D HSQC for aliphatic region of extracted lignin samples from various batches of BS. lignin from BS; (b) structures of the monolignols

Method	Method Results & Discussion	
Klason Lignin	86.3% purity of sample; 3.7% impurities	(Jõul et al., 2022)
FTIR	Same lignin core structure $ ightarrow$ Homogeneous lignin	(Jõul et al., 2022)
2D HSQC NMR	Linkages between monolignols (H, G, S, PCA, Fer, T):	(Wen et al., 2013)
	β-O-4 & β-α-O linkages, cinnamyl alcohol ending groups	(Jõul et al., 2022)

Specific lignin composition \rightarrow implications for its properties & potential applications Hence, this knowledge can help find suitable applications for the bio-composite.

B. BIO-COMPOSITE FILAMENT CHARACTERIZATION i. Differential Scanning Calorimetry (DSC)

Tensile stress at Maximum Load (MPa)

33% PLA

Figure 7. Different tensile properties and measurements.

Δ

E

DO

 Results were influenced by factors such preparation, testing sample as conditions, RT, and humidity (Hamat et al., 2023).

- The higher % of PLA, the more strength the sample has (Jõul et al., 2022).
- High PLA content shows low ductility and high elasticity (Goh et al., 2020).
- Depending on the final product, desired tensile properties will vary accordingly.

0% PLA

Open LCA 2023, Agribalyse 2022, ReCiPe Mindpoint H (2016)

Figure 8. Carbon footprint contribution

Sample n°3, BioBased Plastics (BBP), PetroBased Plastics (PBP)

Table 1. Environmental impacts

	S.n°3	BBP	PBP	Unit
Carbon				kg.CO2.
footprint	2,4	2	2-3	eq /kg
Water				
footprint	54	1000	0	L/kg
				m2.crop.
Land use	1,9	5	0	eq /kg

Towards sustainable design (by turning electricity greener, scaling up, and using byproducts).

(Brizga et al., 2020)

DSC GRAPH OF SAMPLES 20 HEAT FLOW (MV) 10 100 120 140 160 180 200 60 80 TEMPERATURE (°C)

- All samples show glass transition around 55°C to 60°C, except Sample 4 (0% PLA).
- Higher peaks observed around 160°C to 170°C (melting point of PLA).
- Smaller peaks beyond the main peak indicate the disintegration or melting of other components (starch, lignin, etc.) (Cuiffo et al., 2017).

Figure 5. DSC graphs of each samples merged together

Conclusion

- Successful lignin extraction
- Filament extrusion and characterization
- Sustainable design plan
- Working on the 3D printability
- Increasing lignin %
- Testing biodegradability

Brizga, J., Hubacek, K., & Feng, K. (2020). The Unintended Side Effects of Bioplastics : Carbon, Land, and Water Footprints. One Earth, 3(1), 45-53. / Cuiffo, M., Snyder, J., Elliott, A., Romero, N., Kannan, S., & Halada, G. (2017). Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Applied Sciences, 7, 579./ Goh, G. D., Yap, Y. L., Tan, H. K. J., Sing, S. L., Goh, G. L., & Yeong, W. Y. (2020). Process-Structure-Properties in Polymer Additive Manufacturing via Material Extrusion: A Review./ Hamat, S., Ishak, M. R., Sapuan, S. M., Yidris, N., Hussin, M. S., & Abd Manan, M. S. (2023). Influence of filament fabrication parameter on tensile strength and filament size of 3D printing./ Joul, P., Ho, T. T., Kallavus, U., Konist, A., Leiman, K., Salm, O.-S., Kulp, M., Koel, M., & Lukk, T. (2022). Characterization of Organosolv Lignins and Their Application in the Preparation of Aerogels. Materials, 15(8), 2861. / Ju, Q., Tang, Z., Shi, H., Zhu, Y., Shen, Y., & Wang, T. (2022). Thermoplastic starch based blends as a highly renewable filament for fused deposition modeling 3D printing. International Journal of Biological Macromolecules, 219, 175–184. / Mirón, V., Ferrándiz, S., Juárez, D., & Mengual, A. (2017). Manufacturing and characterization of 3D printer filament using tailoring materials. Procedia Manufacturing, 13, 888–894. / Wen, J. L., Sun, R. C. (2013). Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials, 6(1), 359-391./ Zhang, X., Fevre, M., Jones, G. O., & Waymouth, R. M. (2018). Catalysis as an enabling science for sustainable polymers. Chemical reviews, 118(2), 839-885. Zhang, C., Nair, S. S., Chen, H., Yan, N., Farnood, R., & Li, F. (2020). Thermally stable, enhanced water barrier, high strength starch biocomposite reinforced with lignin containing cellulose nanofibrils. Carbohydrate Polymers, 230, 115626.

