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ABSTRACT

The nonuniqueness of the solution to the geophysical inverse
problem can lead to misinterpretation while characterizing the
subsurface. To tackle this situation, ground-truth information
from excavations and wells can be used to improve, calibrate,
and interpret inverted models. We refer to quantitative interpre-
tation as the decision analysis based on probability theory, which
is focused on solving a classification problem. First, we present a
probabilistic approach to classify the different types of materials
or “categories” observed in borehole logs using multiple data
sources: inverted 2D electrical resistivity tomography and in-
duced polarization data and the positions (x, z) of these boreholes.
Then, using the Bayes’ rule and permanence of ratios, we com-
pute the joint conditional probabilities of each category, given
all data sources in the whole inverted model domain. We validate
this approach with synthetic data modeling for a complex

anthropogenic-geologic scenario and using real data from an old
landfill. Afterward, we assess the performance of the probabilistic
approach for classification and compare it with the machine learn-
ing algorithm of multilayer perceptron (MLP). In addition, we
analyze the effect that the different data sources and the number
of boreholes (and their distribution) have on both approaches with
the synthetic case. Our results indicate that the MLP performance
is better for delineating the different categories where the lateral
contrasts in the synthetic resistivity model are small. Never-
theless, the classification obtained with the probabilistic approach
using real data seems to provide a more geologically realistic
distribution. We conclude that the probabilistic approach is robust
for classifying categories when high spatial heterogeneity is ex-
pected and when ground-truth data are limited or not sparsely
distributed. Finally, this approach can be easily extended to inte-
grate multiple geophysical methods and does not require the
optimization of hyperparameters as for MLP.

INTRODUCTION

Geophysical imaging has been widely used to derive insights into
subsurface structures and processes by mapping physical parameters
through noninvasive techniques. After processing and interpretation
of geophysical measurements, this information can be translated into
geologic structures, quantification of volumes, and geometries, or can
be used to provide insight into groundwater processes (Romero-Ruiz
et al., 2018; Whiteley et al., 2019; Slater and Binley, 2021). To obtain

these images or physical models, an inverse problem, which is usu-
ally ill-posed and presents a nonunique solution, is solved (Aster
et al., 2018). Inverse problems may be solved using prior information
in the form of structural or geostatistical constraints in the higher di-
mensional space of the model parameters (Kaipio et al., 1999;
Chasseriau and Chouteau, 2003; Caterina et al., 2014) and more re-
cently in lower dimensional spaces using machine learning methods
provided that generative models may be trained to enforce consistent
spatial patterns (Lopez-Alvis et al., 2021, 2022). Interpretation of

Manuscript received by the Editor 8 March 2022; revised manuscript received 14 December 2022; published ahead of production 23 January 2023; published
online 20 April 2023.

1University of Liege, Urban and Environmental Engineering, Liege, Belgium. E-mail: iisunza@uliege.be (corresponding author); david.caterina@uliege.be;
f.nguyen@uliege.be.

2Ghent University, Department of Geology (WE13), Gent, Belgium. E-mail: thomas.hermans@ugent.be.
© 2023 The Authors. Published by the Society of Exploration Geophysicists. All article content, except where otherwise noted (including republished

material), is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). See https://creativecommons.org/
licenses/by-nc/4.0/. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its digital object
identifier (DOI). Commercial reuse is not permitted. The same license does not have to be used for derivative works.

B151

GEOPHYSICS, VOL. 88, NO. 3 (MAY-JUNE 2023); P. B151–B166, 18 FIGS., 1 TABLE.
10.1190/GEO2022-0133.1

D
ow

nl
oa

de
d 

05
/2

5/
23

 to
 1

34
.1

57
.3

2.
21

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

22
-0

13
3.

1

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2022-0133.1&domain=pdf&date_stamp=2023-04-20


geophysical images can be achieved with several approaches ranging
from a qualitative analysis that might be validated by correlation with
ground-truth data (Yannah et al., 2017; Magiera et al., 2019) to
automated quantitative processes to directly assist interpretation
when a large amount of data are available, for example, using deep
learning approaches (Wang et al., 2018) or when the translation from
bulk geophysical properties to properties of interest is sufficiently
linear (e.g., Hermans et al., 2012). In the following, we focus on
the quantitative approaches to improve data interpretation.
In geosciences, there is a recent increase in the use of machine

learning, deeply rooted in applied statistics, in which computational
models are built using inference and pattern recognition (Dramsch,
2020). In this context, supervised and unsupervised learning algo-
rithms of linear and nonlinear methods also have been developed
and adapted (Scheidt et al., 2018).
For example, Moghadas and Badorreck (2019) used neural net-

works to successfully link time-lapse electrical resistivity tomography
(ERT) data to soil moisture, collecting reference data via an excavated
pit and using the reference electrical conductivity and temperature val-
ues as data sources or inputs to train the supervised learning algorithm.
To solve a classification problem also using supervised learning,
Lysdahl et al. (2022) applied the algorithm of multilayer perceptron
(MLP) to extract the depth to bedrock from airborne electromagnetics
and sparse drillings. Training data were pairs of known depth points
and resistivity data. The former approach was used in a field case with
postglacial geomorphology, yet the authors concluded that the geo-
logic complexity was the main limitation on the MLP performance.
Combining two or more geophysical methods based on different

physical properties can greatly reduce the ambiguities inherent to
each method (Hellman et al., 2017), improving the interpretation
and geophysics-based characterization. Paasche et al. (2006) adopted
a statistical approach to integrate the physical models from individu-
ally inverted georadar and seismic data into one multiparameter
model and to estimate the spatial distribution of petrophysical param-
eters (from limited geophysical and petrophysical databases) using
fuzzy c-means clustering. Another example of unsupervised learning
to solve a classification problem is given by Whiteley et al. (2021),
who use a Gaussian mixture model algorithm to classify geophysical
data into cluster groups to build a ground model and characterize
landslide materials. They use three geophysical variables as data
sources: resistivity, P- and S-wave velocities, and a spatial variable:
depth from the ground surface. In the context of landfill investiga-
tions, Inauen et al. (2020) apply several algorithms of supervised
learning to classify geoelectric and seismic data according to the ma-
terials observed in several trial pits and boreholes. The main goal was
to derive a model of a solid waste landfill, for which the algorithm of
MLP presented a good classification performance.
In the literature, we find fewer applications for the interpretation of

geophysical data based on statistics or probability theory exclusively.
For example, Dewar and Knight (2020) develop a methodology for
estimating the top of the saturation zone from airborne electromag-
netic data (1D resistivity models) and measurements from nearby
wells. The methodology included the optimization of two parameters:
(1) a search radius to integrate resistivity data within this area and
(2) statistical properties of the resistivity distribution that best cap-
tures the transition from an unsaturated to a saturated zone, i.e.,
the minimum, the maximum, the difference between the minimum
and maximum, the mean, the difference between the 75th and the
25th percentiles, and the standard deviation.

In most of the cases discussed previously, the interpretation of geo-
physical data provides a single model representing the physical reality in
which the uncertainty often is not considered. In this regard, the Baye-
sian framework has become one of the leading paradigms to quantify
uncertainty in geophysical modeling, inversion, and data interpretation,
which can be translated into more rigorous decision making in subsur-
face systems, especially under noisy data (Ray et al., 2018; Scheidt et al
., 2018; Bobe et al., 2020; Parsekian et al., 2021). The Bayesian analysis
or inference refers to all procedures that use the Bayes’ theorem, where
a quantitative relation is introduced to link predefined knowledge to new
observations, thus comprising the computation of posterior distributions
of a set of priors given a likelihood function (Piana Agostinetti and
Bodin, 2018). For instance, Wellmann et al. (2018) combine the pre-
existing geologic modeling with additional geologic considerations and
gravity data simulations, applying the Markov chain Monte Carlo to
evaluate and sample from the posterior distributions to obtain suitable
geophysical models. This approach successfully addressed uncertainty
and optimized the geologic model of a sandstone greenstone belt. More
recently, Fossum et al. (2022) use the ensemble randomized maximum
likelihood to update the subsurface uncertainty in earth models and sim-
ulate electromagnetic logs generated with generative adversarial net-
works and a forward deep neural network, respectively.
In line with the Bayesian framework, another approach for the in-

terpretation of already inverted geophysical data was used by Hermans
and Irving (2017), where the inverted parameters were expressed in
terms of categories defined by the probability distributions of hydro-
facies. They assess the use of ERT to identify and classify the hydro-
facies in alluvial aquifers, using colocated inverted data and boreholes
records, integrating the effect of the sensitivity spatial variation.
In this contribution, we use a probabilistic approach as an alterna-

tive to performing a rapid quantitative interpretation by classifying
geophysical data according to the materials observed in a limited num-
ber of colocated borehole logs (hereafter referred to as categories or
classes). The method is based on the previously mentioned approach
used by Hermans and Irving (2017). We extend it to account for more
than one geophysical model (i.e., ERT and time-domain induced
polarization [IP]) and to include spatial trends in the colocated
data. For comparison, we also apply the supervised machine learning
algorithm ofMLP and include the same data sources or input for train-
ing. We apply both approaches in a synthetic case of study and ana-
lyze the effect that the data sources and the number of boreholes (and
their distribution) have on the probabilistic approach and MLP. Fi-
nally, we compare and validate the approaches using the geophysical
data acquired in an old landfill with available colocated trial pits. Such
systems are notably difficult to characterize with geophysics due to the
strong heterogeneity and physical contrasts encountered and with
boreholes due to the increased contamination risks. We observed that
the probabilistic approach is suitable to classify inverted models that
are highly variable along the whole domain, with predictions consis-
tent with the prior sampling information and the integration of the
prediction uncertainty. Note that a robust characterization is crucial
in decision making for sustainable management, e.g., estimate the in-
ternal structure of a landfill to assess the potential for resource recov-
ery and to prevent or evaluate the associated environmental pollution
and prioritize (re)development scenarios (Jones et al., 2018; Van De
Vijver et al., 2020, 2021). Next, we first present the methods used for
the classification after inversion, the results are then presented for the
synthetic case and the field data, followed by the “Discussion” and
“Conclusion” sections.
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METHODS OF CLASSIFICATION: PROBALISTIC
APPROACH AND MLP

Input data

To compare the probabilistic approach and MLP, we used the same
input or training data. These are the colocated inverted resistivity ρ,
chargeability C, the position (x, z) of the boreholes, and target cat-
egories. In these data, a relative cumulative sensitivity threshold is
used to keep only parts of the tomograms (ρ and C) that are suffi-
ciently well covered (e.g., Beaujean et al., 2014). Consequently, this
also contributes to keeping reliable training data and reduces misclas-
sification in the final model (Hermans and Irving, 2017).

Probabilistic approach

In the classification of the probabilistic approach, we first use the
training data to define individual probability distributions, and then
we compute the joint conditional probabilities of each category,
given ρ, C, x, and z in the whole domain of the inverted models.
The results are given in terms of probability maps that belong to
each predefined category which can be translated into classes. In
the following sections, we first introduce the permanence of ratios,
which is an alternative to computing joint conditional probabilities
of different sources in the presence of data interdependence
(Journel, 2002). Then, we describe the procedure of the probabilis-
tic approach where the permanence of ratios is used.

Principle of permanence of ratios

LetA be an unknown event that can be assessed with two data events
from different sources, B and D, through its conditional probability
PðAjB;DÞ. For instance, A may represent a category, such as inert
waste, and events B and D represent resistivity and chargeability.
The easiest way to recombine these probabilities is to assume inde-
pendence of the data events in which case the joint probability is
the product of the marginal probabilities. However, this is a strong hy-
pothesis as B andD are related to the common event A. To take this into
account, Journel (2002) proposes an alternative to combine probabil-
ities of different sources based on the permanence of updating ratios
while guaranteeing all limit conditions (e.g., PðAjB;DÞ ∈ ½0; 1�) even
in the presence of complex data interdependence. The principle of per-
manence of ratios indicates that the rates or ratios of increments are
typically more stable than the increments themselves. For simplicity,
let us consider only two data events from different sources B and D,
then the logistic-type ratio of the marginal probability of the unknown
event A is

a ¼ 1 − PðAÞ
PðAÞ ¼ Pð ~AÞ

PðAÞ ∈ ½0;∞�; (1)

where ~A is the complement of A. And similarly,

b ¼ 1 − PðAjBÞ
PðAjBÞ ¼ Pð ~AjBÞ

PðAjBÞ ; d ¼ Pð ~AjDÞ
PðAjDÞ ;

X ¼ 1 − PðAjB;DÞ
PðAjB;DÞ ¼ Pð ~AjB;DÞ

PðAjB;DÞ ≥ 0: (2)

Then, the ratio a can be seen as a measure of prior uncertainty
about A: a = 0 if A is certain to occur and a ¼ ∞ if A is an impos-

sible event. Similarly, d can be seen as the distance to A occurring
after observing the data event D. The ratio d/a is then the contri-
bution of D to that distance starting from the prior distance a.
Finally, X would be the distance to A occurring after observing
events B and D, and the ratio X/b is the incremental contribution
of D starting from the distance b. The permanence of ratio assumes

X
b
≅
d
a
; (3)

which means that the incremental contribution of data eventD to the
knowledge of A is the same after or before knowing B. Then, the
joint conditional probability of the two events B and D can be ex-
pressed as PðAjB;DÞ ¼ 1=ð1þ XÞ ¼ a=ðaþ bdÞ.
We can generalize the previous expression to n data events Gi,

i ¼ 1; : : : ; n. Denoting by jGi, i ¼ 1; : : : ; n the joint conditioning
to all n data events, the conditional probability provided by a suc-
cession of ðn − 1Þ permanence of ratios is

PðAjGi; i ¼ 1; : : : ; nÞ ¼ 1

1þ X
∈ ½0; 1�; (4)

with

X ¼
Q

n
i¼1 gi
an−1

≥ 0⇔ LnðXÞ−LnðaÞ ¼
Xn

i¼1

½LnðgiÞ− LnðaÞ�;

(5)

a ¼ 1 − PðAÞ
PðAÞ ; gi ¼

1 − PðAjGiÞ
PðAjGiÞ

; i ¼ 1; : : : ; n; (6)

which is an expression that verifies all limit properties, and it only
requires the knowledge of the prior probability PðAÞ and the n
elementary single data event-conditioned probabilities PðAjGiÞ,
which can be evaluated independently one from another using
colocated data.

The procedure of the probabilistic approach

Let Ai be the different categories (materials) found in the bore-
holes along the inverted sections. First, we estimate a prior proba-
bility or material proportion PðAiÞ based on the area they occupy
in the boreholes colocated in the 2D inverted sections. Then, we
determine unimodal distributions of the training data given each cat-
egory Ai, i.e., fðρjAiÞ, fðCjAiÞ, fðxjAiÞ, and fðzjAiÞ. These distri-
butions define the parameters, i.e., shape, locations, and scales,
which we use afterward to estimate the distributions in an extended
data set, i.e., ρ, C, x, and z in the whole inverted model domain. In
the next step, we compute the conditional probability of each
material using the Bayes’ rule. For instance, to compute the condi-
tional probability of a category Ai, given the resistivity, we use

PðAijρÞ ¼
fðρjAiÞPðAiÞP
fðρjAiÞPðAiÞ

; (7)

and similarly, for the conditional probability of Ai given C, x, or z.
At this stage, we need to combine the prior probabilities PðAiÞ

with the conditional probabilities of Ai given the data sets into the
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joint conditional probabilities PðAijρ; C; x; zÞ. To this aim, we
use equation 4 where the event A becomes the categories Ai,
n = 4 and the data events Gi are ρ, C, x, and z. Therefore, the ratios
gi ¼ ð1 − PðAjGiÞÞ=ðPðAjGiÞÞ will be given in terms of the mar-
ginal probabilities PðAijρÞ, PðAijCÞ, PðAijxÞ, and PðAijzÞ for each
category. The joint conditional probabilities are then normalized
(divided by

P
iPðAijρ; C; x; zÞ) to ensure the closure condition,

i.e., PðAjð·ÞÞ þ Pð ~Ajð·ÞÞ ¼ 1. Then, the results are given in terms
of probability maps for each category in the whole inverted model
domain, and therefore may be used to assess the interpretation
uncertainty. Finally, we also may derive a map in terms of the
categories by comparing the normalized joint conditional probabil-
ities of Ai and selecting the category corresponding to the largest
probability value, i.e., classification model.

Supervised machine learning: MLP

Classification and regression methods are part of statistical learn-
ing and machine learning for which numerous methods have been
developed, from simple linear regression to nonlinear methods such
as neural networks or deep learning (Scheidt et al., 2018). Here, we
focus on the multiclass classification problem, where we want to pre-
dict discrete class labels or categories for unlabeled patterns based on
observations. We used the algorithm of MLP or a feedforward neural
network, which proved to have a good performance for classification
in the context of landfill investigations (Inauen et al., 2020).

Description of MLP

As explained by Goodfellow et al. (2016), the goal of MLP is
to approximate some function f�. For a classifier, the function
Ai ¼ f � ðf·gÞ maps input data f·g to a category Ai. This algorithm
defines a mapping Ai ¼ fðf·g; θÞ and learns the value of the param-
eters θ (weight and bias coefficients of the transformation function)
that result in the best approximation. MLP or feedforward neural
networks are models where the information flows through the func-
tion from the input data, through the intermediate computations
(linear and nonlinear data transformations followed by an activation
function) used to define f and finally to the output Ai. They are
networks because they can be composed of many different func-
tions connected in a chain, i.e., fðf·gÞ ¼ fð3Þðfð2Þðfð1Þðf·gÞÞÞ,
where superscript 1 refers to the first layer of the network, 2 refers
to the second layer, and the final layer is called the output layer. The
overall length of the chain gives the depth of the model: the more
layers the “deeper” the model. In this contribution, we are dealing
with a small amount of geophysical data, thus as shown in the next
sections, a simple neural network (few layers in the chain) proves to
be enough.
The neural network makes use of training data to drive fðf·gÞ to

match f�. These data provide approximations of f� evaluated at
different training points, which are accompanied by a category ðAiÞ.
Then, the learning algorithm decides how to use the other layers to
produce the desired output, and as we cannot see the intermediate
output of each of these layers, they are referred to as the hidden
layers. Finally, each hidden layer of the network is composed of
several units or neurons that can act in parallel representing a vec-
tor-to-scalar function.
In the multiclass classification, the output layer receives the val-

ues from the last hidden layer and transforms them into different
classes, commonly with the Softmax function. This activation

function of the last layer normalizes the data and transforms them
into an output probability vector, based on which the output classes
are selected (e.g., Williams and Barber, 1998). Therefore, the output
is quite similar to the probabilistic approach.

MLP architecture

To design and optimize the architecture of MLP in terms of the
hyperparameters (such as the number of hidden layers, neurons, or
regularization), the total training data are divided into a validation
data set (10%–20%) and a remaining training data set (70%–80%).
The partition is done randomly but preserves the relative frequency
of the categories.
To tune the hyperparameters, we trained the MLP algorithm using

combinations of different numbers of hidden layers (from 1 to 10),
a number of neurons (1–100), a solver for weight optimization, and
an activation function for the hidden layers computing the accuracy
score or the fraction of correct predictions in the validation data set.
Then, we select three MLP architectures from which the highest
scores were obtained and compare them with the accuracy scores
of the prediction in the training data set for several regularization val-
ues. We select the regularization parameter where the gap between
the accuracies (from validation and training) is reduced while still
preserving a relatively large accuracy score, i.e., generalization. In
addition, as we have a multiple-classes problem, we first applied
one-hot encoding to define each class (Potdar et al., 2017; Fu
et al., 2019; Liu et al., 2021). This means we encoded the categories
as a binary (one-hot) numeric array. Once the hyperparameters are
selected and the architecture of the algorithm is defined, the training
data set is the same as the one used for the probabilistic approach (or
validation plus training data as indicated here).

Classification performance assessment

For both methods, we evaluate the performance of the classifi-
cation or prediction of classes using a test data set. In the synthetic
case, these are the categories known at the whole model space (ex-
cluding the data at the boreholes), and in the field case, a percentage
of the training data where the categories are known. Then, we com-
pute two classification scores to compare the results of this classi-
fication or “prediction” with the original categories of the test data
set. First, we use the accuracy score, which computes the fraction of
correct predictions. Given a predicted class Âi for a sample i, the
accuracy score can be expressed as

accuracyðA; ÂÞ ¼ 1

n

Xn−1

i¼0

1ðÂi ¼ AiÞ; (8)

where Ai is the true category, n is the number of samples, and 1ðxÞ is
the indicator function, which maps the elements of a subset to one
and the rest of the elements to zero (Pedregosa et al., 2011). We
selected this accuracy score as we want to assess the classification
performance of both methods when considering a model with a pre-
dominant material or class. In addition, we used the confusion ma-
trix to assess the performance of the classification. In this matrix,
the elements on the diagonal are the percentage of categories that
are correctly predicted, and the off-diagonal elements are the mis-
classified percentage. In the synthetic and field case examples, the
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categories for the classification are nonorganic waste deposits, soil,
lime, backfill, and limestone bedrock.

RESULTS

Synthetic case study

Model generation and inversion

The synthetic model is inspired by a real near-surface scenario
composed of anthropogenic materials deposited on a limestone
quarry. The data were simulated for resistivity and chargeability dis-
tributions composed of five regions derived from nonorganic waste
deposits, soil, lime, and backfill on a limestone quarry (Figure 1). In
this geometry, we defined a surficial and continuous layer of waste,
as this material was observed on the ground surface in the real land-
fill. We included two types of backfills: neutral soil and crushed
limestone (here referred to as the backfill) to investigate if these
materials were discriminated using ERT and IP data. Then, we de-
fined two bodies of lime at different positions (x, z) and with differ-
ent thicknesses to test the effect that including spatial trends has on
the classification approaches. Finally, the upper limit of the bedrock
has a step-like shape, which might be close to a limestone quarry
structure. The resistivity and chargeability values that we used for
the different regions are shown in Table 1. Then, similar to the field
measurements, we created a dipole-dipole acquisition scheme with
64 electrodes spaced 1.5 m. For the numerical modeling of ERTand
time-domain IP data sets, we used the open-source library pyBERT,
which is based on the framework of pyGIMLI (Rücker et al., 2017).
The ERT data were modeled by adding a 3% voltage dependent

noise plus 1 μVabsolute error (e.g., Costall et al., 2020). Then, the

apparent chargeability was modeled following Seigel’s formulation,
carrying out two DC resistivity forward models: the inverted resis-
tivity of the medium and a decreased resistivity modified by the
intrinsic chargeability (chargeability model, Table 1) (Seigel, 1959;
Oldenburg and Li, 1994).
Finally, the synthetic data were inverted using the commercial soft-

ware RES2DINV (Loke, 1997, 2004) to avoid the pitfall of using the
same forward solver in the reconstruction algorithm (Lionheart,
2004). Here, we incorporated the data noise estimate for the apparent
resistivity by subtracting the synthetic data modeled with and without
added noise. We used a robust least-squares inversion with the Gauss-
Newton method and an initial damping factor of 0.25. The inverted
ERT and TDIP models are shown in Figure 2 together with the nor-
malized sensitivity represented in the logarithmic scale and the real
interfaces from Figure 1.
In the resistivity model, low values delineate the shallower lime

deposit but the deeper lime cannot be imaged. There is no clear con-
trast of resistivity between the heterogeneous waste and the soil and
backfill underneath. The upper limit of the bedrock is better imaged
from x ∼ 20 m to the end of the profile. Nevertheless, the resistivity
values of the bedrock have a strong lateral variation as an effect of the
regularization (there was a tradeoff between the damping factor and
the root-mean-square [rms] error) and low sensitivity.
In the chargeability model, the surficial layer of waste is well

delineated with large values. Nevertheless, the horizontal interface
of the backfill/soil and the lime cannot be clearly distinguished. Ar-
tifacts of large chargeability are present at the locations of the lime
and larger artifacts in the bedrock area centered at x ∼ 10 and 30 m.
For the assessment of the inverted models’ reliability, we used the

normalized sensitivity in logarithmic scale (hereafter referred to as
the sensitivity), which shows how the data are influenced by the
respective resistivity of the model cells. In Figure 2, we can observe
a general sensitivity decrease with depth, particularly below the
shallowest lime deposit.
In addition, we present the crossplots of the inverted resistivity

ðρÞ and chargeability I values (Figure 3). For comparison, we also
plot the mean of the inverted data μi ¼ ðρμ; CμÞ together with the
initial values for modeling (Table 1) for each category. First, we can
notice that the mean of the inverted data for the bedrock presents a
largely underestimated value of resistivity compared with the initial
value. The second category where we can see a large variation is the
lime, where the mean of the inverted resistivity was larger than the
initial modeling values. In addition, we notice that all the clusters’
categories are largely overlapping, especially the bedrock and lime,
whose ρ and C values are widely distributed. This gives an insightFigure 1. Geometry for the ERT and time-domain IP modeling.

Table 1. Resistivity and chargeability values for the different regions used for modeling.

Region
marker Material Resistivity (Ωm) Chargeability (mV/V)

1 Soil 300 (Wang et al., 2017) 15 (Kiberu, 2002)

2 Limestone 9000 (Sun et al., 2017) 10 (Johansson et al., 2017)

3 Backfill 800 (crushed limestone backfill,
e.g., Qiao et al., 2019)

15 (North-West Europe, 2020)

4 Heterogeneous waste
(nonorganic)

500 (Dumont et al., 2017) 100 (Elis et al., 2016)

5 Lime 3 (sample measured in the
laboratory, this study)

1.3 (see Moreira et al. [2019] for chargeability values
in dolomitic deposits, used as raw material for lime production)
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into the ability of ERT and IP for resolving the features of this com-
plex anthropogenic scenario and the uncertainty associated with the
inversion process.

Synthetic borehole sampling

In this synthetic case, we assume a sampling scenario composed
of several equidistant boreholes along the inverted 2D section.

Notice that in real study cases, we want to reduce the number of
excavations to mitigate costs and environmental and health risks.
Then, to select and justify an optimum number of boreholes we
follow a statistical analysis. We used the mean of the inverted data
for each class i, i.e., μi ¼ ðρμ; CμÞ (see Figure 3, represented with
triangles), and computed the mean of the inverted data within a var-
iable number of boreholes b. For each class i, this was represented
as μiðbÞ. Then, we compute a summation of the difference between
μi and μiðbÞ over all the classes i, i.e.,

P
iðμi − μiðbÞÞ. Figure 4

shows the plot of the summation versus the number of boreholes
b. As b increases (and tends to cover the entire domain), the sum-
mation is closer to zero as μiðbÞ → μi. The first points of this plot
vary depending on the location of the selected boreholes, and for
b < 6, the summation’s rate decreases more significantly. Therefore,
in the following sections, we start by using five boreholes equidis-
tantly distributed (Figure 5) and test the effect of changing b in the
probabilistic approach and the MLP model.

Interpretation — Classes prediction using a probabilistic
approach

The training data were composed of fρ; C; x; zg at the borehole
locations, which resulted in a matrix of 158 × 4, and their respective
known categories (vector of 158 × 1). In this case, we used a sen-
sitivity threshold of 10−1.7 to keep only parts of the tomograms that
are sufficiently reliable. The threshold was chosen based on the
maxima of the sensitivity gradient, taking the average sensitivity
values located beneath the area of the shallowest local maxima (be-
low the conductive zone corresponding to the lime deposit). This
threshold leads to the use of 38% of the data, which supports the
assumption of testing this approach on heterogeneous models (few
reliable data).
For each category observed in the boreholes’ logs, Ai = soil,

waste, backfill, lime, and bedrock, we estimate a prior probability
PðAiÞ based on the area that they occupy on the boreholes (see
Figure 5). The proportions of Ai are 9.57%, 5.5%, 2.5%, 7.3%,
and 74.9%, respectively. Note that if the boreholes are limited in
depth, one would naturally assume the vertical continuity of the
bedrock once encountered. Then, we computed unimodal Gaussian

Figure 2. (a) Inverted resistivity and (b) chargeability models with
the (c) associated normalized sensitivity. The rms errors of the in-
version were 4.57% and 6.72%, respectively. Red boundaries re-
present the real model from Figure 1.

Figure 3. Crossplot of the inverted chargeability versus the inverted
resistivity in logarithmic scale. The stars represent the original val-
ues for modeling, and the triangles represent the mean of the in-
verted data for each category, i.e., μi ¼ ðρμ; CμÞ. The inverted
data corresponding to the different categories are represented with
different colors.

Figure 4. Summation of the difference between μi and μiðbÞ over
all the classes versus the number of boreholes. Notice that initially
b ¼ 2 as we need to have all the category types.
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distributions of the training data given each category Ai and com-
puted the corresponding conditional probabilities according to
equation 7. We selected this type of distribution as it can integrate
the overall uncertainty from data noise, inversion artifacts, and scar-
city of the colocated data. If a lot of colocated data are available,
empirical distribution can be built without requiring any assumption
about their shape. Figure 6 shows the conditional probabilities with
and without considering the sensitivity threshold.
The distributions of Figure 6 show the impact of the large prior

probability considered for the bedrock. This category presents the
largest probability values for log10 ρ > 0.5, for log10 C > 0, at the
largest depths z < −6 and nearly along the whole model domain in
x. Yet, it can be observed that the resistivity model was able to dis-
criminate between the bedrock and the lime. With the chargeability
model, we can only discriminate the soil from the bedrock, due to
the heterogeneities of large values distributed in the bedrock. This is
the reason why it was not possible to clearly distinguish the waste
(material with the largest chargeability modeling values) from the
other categories.
The conditional probabilities given the spatial coordinates show a

trend on the vertical (z) and lateral (x) distribution of the materials
according to the location of the boreholes, i.e., the probabilities are
impacted by the spatial distribution and the number of boreholes.
Given the depths, several categories are clearly resolved: bedrock at
the largest depths, the soil at intermediate depths, and waste at the
shallowest zone. However, these distributions
cannot discriminate between different categories
at similar depths. In the distributions given the
distance x, we can roughly differentiate between
the soil (maximum probability at shorter x) and
the backfill with larger probabilities at the end
of the profile. Note the impact that the small
sampled region of backfill has on its conditional
probability (large probabilities in a reduced range
of x).
Afterward, we computed the joint conditional

probabilities for each category PðAijρ; C; x; zÞ
using equation 4 and normalized them so that
they sum to one. Hereafter, we refer to the normal-
ized joint conditional probability as a joint prob-
ability. Wework with the ratios of each data event,
gi ¼ ð1 − PðAjGiÞÞ=ðPðAjGiÞÞ, whose corre-
sponding conditional probability can be independ-
ently estimated, i.e., PðAijρÞ, PðAijCÞ, PðAijxÞ,
and PðAijzÞ. The results are presented as proba-
bility maps, see, for instance, Figure 7, where the
joint probabilities of the waste and the bedrock are
represented in the whole model domain. The sur-
ficial layer of waste was accurately delineated,
whereas the upper limit of the bedrock was over-
estimated at the beginning of the profile x < 20 m.
We derived a map in terms of the categories by

comparing the joint probabilities of the materials
and selecting the category corresponding to
the largest probability value (Figure 8). In this
map, we added transparency which indicates the
decrease in probability values: total opacity repre-
sents a probability of 1 and the strongest transpar-
ency represents a minimum probability of 0.25 for

four categories. Finally, we computed the classification scores com-
paring the results with the test data, i.e., categories of the synthetic
model (excluding the data at the boreholes). We obtained an accuracy
score of 0.87 and the confusion matrix is shown in Figure 8.

Figure 5. Resistivity and chargeability inverted models plotted with
the boreholes. Where bedrock is present, we assume it reached the
bottom of the models.

Figure 6. The conditional probability of Ai given (a and b) ρ and C, respectively, and (c
and d) z and x from the boreholes. The solid lines represent the probabilities derived
using the whole data within the boreholes and the dashed lines represent the distributions
using a sensitivity threshold.
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First, we can notice that the bedrock could be predicted along the
entire model and especially in the deeper areas, although its occur-
rence was slightly overestimated. The waste deposit could be accu-
rately delineated, whereas the soil and the lime deposit in the central
part of the profile were roughly delimitated laterally and vertically.
This is represented in the confusion matrix, as we found that the
bedrock obtained the largest number of correct predictions followed
by the categories of waste, soil, and lime. The backfill could only be
predicted in the area immediately around the borehole. This is

mostly an effect of integrating the horizontal tendency x of the bore-
holes in the joint probabilities, and this is the reason why in the
confusion matrix the lowest percentage of correct classifications
corresponds to backfill. The largest percentage of incorrectly pre-
dicted categories corresponded to the backfill which was misclas-
sified as bedrock.
The second lime body, close to the origin of the profile, could not

be detected, first because the inverted geophysical models could not
resolve this feature and second because this category has consider-
ably lower prior probability values compared with the bedrock. This
is the reason why this zone was predicted as bedrock.
The transparency added in Figure 8 allows us to identify the

zones where there is a larger uncertainty in defining the categories,
e.g., the lateral interface between the soil and the lime.

Interpretation — Classes prediction using MLP

We apply the MLP algorithm using the python library of scikit-
learn (Pedregosa et al., 2011). The training data were composed
of fρ; C; x; zg at the borehole locations, resulting in a matrix of
158 × 4, and their respective known categories (vector of 158 × 1).
Similar to the probabilistic approach, we consider a sensitivity thresh-
old of 10−1.7 on the selected training data. To optimize the architecture
of MLP, we use a validation data set that is composed of 15% of the
total training data and the remaining 85% of the data are used to train
the algorithm. Several combinations of hyperparameters showed
equally large accuracy scores. From the hyperparameters that showed
the highest scores, we selected the simplest, two hidden layers of 100
neurons each, a regularization parameter of 0.15, a stochastic gradient-

based optimizer, and the rectified linear unit as the
activation function of the hidden layers.
At this step, we used the training data and

the validation data to train the algorithm, i.e., the
same input data as for the probabilistic approach.
The category predictions in the whole model do-
main are shown in Figure 8, in which we also
added transparency which represents the proba-
bility values from the activation function of the
output layer (Softmax). Total opacity represents a
probability of one, whereas total transparency
represents a probability of zero. In Figure 8, we
can see that the waste, the soil, one lime deposit,
and the backfill were well delineated. The lime
body located at the origin of the profile was par-
tially imaged. To assess the performance of this
algorithm, we also used the real model defined in
Figure 1 as the test data set (excluding the data on
the boreholes) and obtained an accuracy score of
0.95. Figure 8 shows the confusion matrix, where
the largest numbers of correct predictions is the
ones from waste, bedrock, and soil. The category
that was incorrectly classified the most was the
lime (predicted as bedrock). Yet, we can observe
that the classification of the lime and backfill im-
proved using MLP.

Effect of data sources as input

In this section, we show the effect the data
sources or elements of the training data have

Figure 7. Joint probabilities of (a) the waste PðAwastejρ; C; x; zÞ and
(b) the bedrock, using a sensitivity threshold of −1.7.

Figure 8. Category predictions from the (a) probabilistic approach and (b) MLP with bore-
hole locations and corresponding confusion matrices. Minimum probability values (higher
transparencies) are 38% for the probabilistic approach and 43% for MLP. In the confusion
matrices, “w” refers to waste, “bedr” refers to bedrock, and “back” refers to backfill.
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on the probabilistic approach and MLP. Figures 9, 10, and 11 show
the category predictions of both methods and the respective confusion
matrix when we use only the resistivity inverted data ρ colocated with
the boreholes, the resistivity together with the chargeability inverted
data ρ and C, and these two inverted data sets together with the depth
z, respectively.
First, we can notice that when we only use ρ or ρ and C (with a

sensitivity threshold of 10−1.7) as training data in MLP, the predic-
tions are strongly influenced by the artifacts from the model inver-
sion leading to several misclassified zones (see Figures 9 and 10).
Some categories remain correctly identified such as the waste de-
posit and part of the soil. However, the probabilistic approach over-
estimates the distribution of the bedrock (largest prior probability).
It partially distinguishes one lime deposit when using only ρ and
delineates most of the waste layer and partially the soil when using
ρ and C (Figures 9 and 10). Although the probabilistic approach is
not able to predict all the categories in the whole domain, the results
are still in line with the material proportions estimated from sam-
pling and thus more realistic. This is not the case for MLP, where
the waste, soil, backfill, and lime are predicted at larger depths.
When we use additionally the depth from the colocated boreholes

(i.e., ρ, C, and z), the results of both methods largely improve (see
Figure 11), and the categories are well delineated overall. Yet, the
probabilistic approach indicates a larger uncertainty (more transpar-
ency) in the deposits of backfill, and partially, the soil. In addition,
the classifications of both methods present few
locations where the soil and backfill are misclas-
sified. This is the improvement that we can ob-
serve when we use all the data sets: ρ, C, z, and
x, especially for MLP where the soil is only
predicted at x < 50 m and the backfill only for
x > 75 m (see Figure 8).
The probabilistic approach presents some

changes when using {ρ, C, z} and {ρ, C, z, x}.
The method proves better for classifying the
backfill deposit when using only {ρ, C, z}
(accuracy score of 0.89). However, when x is
included, the probabilistic approach is strongly
impacted and, even though it reduces misclassi-
fication between the soil and backfill at a few
locations, the backfill is only resolved roughly
in the area of a borehole and the accuracy score
is reduced to 0.87.
In general, including spatial information on the

training data should be done carefully. In the prob-
abilistic approach, the conditional probabilities are
clearly impacted by the spatial distribution of the
boreholes. Therefore, highly localized sampling
of certain materials may lead to small classifica-
tion zones in the immediate vicinity of a borehole.
Although MLP presents large accuracy scores
using the spatial training data, which indicates that
the distribution of the boreholes reflected the real
material distribution of the synthetic case, this
is rarely the case in the field (Gahegan, 2000;
Cracknell and Reading, 2014; Baasch et al.,
2018), especially in heterogeneous landfills where
abrupt vertical and lateral variations of materials
may be present.

Effect of borehole sampling

In this section, we assess the effect that the number of available
boreholes and their distribution has on both methods. We use the
training data set {ρ, C, z}, which led to a larger accuracy score in the
probabilistic approach as compared with {ρ, C, z, x}. First, we as-
sume a sampling survey with boreholes uniformly distributed along
the whole domain (Figure 5). Second, we assume a survey com-
posed of boreholes whose distribution does not map all the model
domains in the x- and z-directions, i.e., boreholes might be concen-
trated in an area of the model and/or boreholes might not go deep
enough to map the bedrock upper interface (see Figure 12).
Figure 13 shows the plot of the accuracy score against the number

of boreholes for both sampling scenarios. Despite the fact that the
minimum number of boreholes to capture all categories is two, this
number leads to a highly variable accuracy depending on the dis-
tribution of the boreholes. Yet, this variability is largely reduced
when b > 3. In Figure 13, we can note that the accuracy scores
of the probabilistic approach using the uniform or nonuniform sam-
pling scenarios are very similar. However, MLP predicts correctly
the classes at most locations of the model under the uniform bore-
hole distribution. Nevertheless, if the boreholes do not cover the
whole domain in x and z and, therefore, the training samples do
not reflect the real distribution of the materials (preferential sam-
pling), the classification performance decreases. In addition, we

Figure 9. Category predictions of (a) probabilistic approach and (b) MLP algorithm
using only ρ. The minimum probability values are 50% for the probabilistic approach
and 40% for MLP, and the accuracy scores were 0.53 and 0.68, respectively. The con-
fusion matrices also are displayed next to each model. The MLP model was built using
two hidden layers with 100 neurons each, a regularization parameter of one, the rectified
linear unit as an activation function of the hidden layers, and an optimizer based on the
quasi-Newton method. In the confusion matrices, “w” refers to waste, “bedr” refers to
bedrock, and back refers to backfill.

Probabilistic data interpretation B159

D
ow

nl
oa

de
d 

05
/2

5/
23

 to
 1

34
.1

57
.3

2.
21

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

22
-0

13
3.

1



observed that MLP can lead to unrealistic classifications that under-
estimate the bedrock distribution even if the accuracy scores are
similar to those of the probabilistic approach. See, for example, Fig-
ure 14, where we show the comparison between both approaches
using three boreholes of a nonuniform sampling scenario (shown
in Figure 12). Note that the lime deposit was predicted at the deepest
regions of the model.

Field case study: Onoz landfill

Site description

The study site is in a former limestone quarry in Onoz (Walloon
Region, Belgium) that produced lime until 1967. At the end of the
quarry activities, the eastern part of the site was filled with slaked
lime and fly ash. The area of interest here is the central part of the
site, which was used as a landfill where different types of waste
were deposited: inert waste, household, industrial waste, backfill,
etc. (see Figure 15).
Since the landfill’s closure, several sampling surveys mostly

composed of trial pits and different geophysical measurements have
been conducted. Here, we focus on one high-resolution 2D profile
which has ERT and IP data (profile P2) and presents the largest
number of colocated excavations where bedrock was reported.
Profile P3 has only ERT data and profiles P1 and P3 present a very

similar distribution of resistivity and chargeability (Caterina et al.,
2019).

Data acquisition and inversion

ERT and IP measurements were collected with an ABEM Terra-
meter LS. The profile presented here was acquired using 64 elec-
trodes at 1.5 m electrode spacing. We used a dipole-dipole array
configuration and a stack of n = 2 and a protocol sorted to limit
electrode polarization. For the IP measurements, the electrical cur-
rent was injected for 2 s, using an integration window of 1.7 s for the
electrical resistance measurements, and the decay of electrical
potential after current shut off was measured for 3 s.
Data were first filtered by removing the resistance measurements

that presented variations larger than 5% from the measurements re-
peated two times. This is commonly referred to as the repetition
error (e.g., Robert et al., 2011). On the IP data, the curves of incon-
sistent decay were also removed, which represented 18% of the
original data points. Inversion of data was performed with RE-
S2DINV (Loke, 1997, 2004). We also used a robust least-squares
inversion with the Gauss-Newton method and an initial damping
factor of 0.25. The inverted ERT and IP models are shown in Fig-
ure 16 together with the normalized relative sensitivity. We obtained
an rms of 4.74% and 3.36% for the resistivity and chargeability
models, respectively, after seven iterations.

The inverted resistivity section shows a con-
ductive body on the top of a resistive horizon
and a strong lateral contrast at approximately x
= 30 m (Figure 16). The IP model presents scat-
tered bodies of large chargeability on the surface
and a smoother lateral contrast beneath. Similar
to the synthetic model, the sensitivity of these in-
verted data presents a vertical decrease in the
central part, below the conductive body.

Sampling

Several trial pits have been excavated in the
landfill area (Figure 15). To test the probabilistic
approach and the MLP algorithm, we consider
the six trial pits that are colocated with the
ERT/IP profile, and which do not cover the entire
model domain. Only two shallow pits, not reach-
ing the bedrock, are in the first half of the profile.
We assume that once the bedrock is reached, it
extends further at depth (in z) (see Figure 17).

Interpretation — Classes prediction using a
probabilistic approach

As observed in the synthetic case, the training
data set {ρ, C, z} led to a larger accuracy score in
the probabilistic approach and MLP. Therefore,
here we interpreted the inverted models using
as input data the values of {ρ, C, z} colocated
with the boreholes and ignore the variable x. This
defines a matrix of 149 × 3 and a corresponding
vector of categories of 149 × 1. We divided the
input data in a training data set (87%) and a test
data set (13%) to assess the classification perfor-

Figure 10. Category predictions of (a) probabilistic approach and (b) MLP algorithm
using resistivity and chargeability data. For the former approach, minimum and maxi-
mum probability values are 44% and 100%, respectively, and 30% and 100% for MLP.
The accuracy score for the probabilistic approach was 0.68 and 0.57 for MLP. The con-
fusion matrices are displayed next to each model. The MLP model was built using three
hidden layers with 50 neurons each, a regularization parameter of one, the rectified lin-
ear unit as an activation function of the hidden layers, and an optimizer based on the
quasi-Newton method. In the confusion matrices, “w” refers to waste, “bedr” refers to
bedrock, and back refers to backfill.
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mance. First, we define the material proportions PðAiÞ based on the
area of the trial pits. These were 11.33%, 1.78%, 4.67%, and
82.20% for waste, soil, lime, and bedrock, respectively. Then,
we computed the joint probabilities PðAijρ; C; zÞ and derived the

classification maps. Note that the MLP algorithm intrinsically uses
the prior distribution in its training step (if one class has a higher
probability, the algorithm will more often classify an unknown point
in that category).

Interpretation — Classes prediction
using MLP

Similar to the probabilistic approach, the train-
ing data were the values of {ρ, C, z} colocated
with the boreholes, which defined a matrix of
149 × 3 and a corresponding vector of categories
of 149 × 1. The training data set was then divided
into 72% of the total data, the validation data set
to optimize the hyperparameters was 15%, and
the test data set was the remaining 13%. From
the three MLP architectures that showed the larg-
est classification performance, we selected the
simplest one. It was composed of one hidden
layer with 50 neurons, a regularization value of
0.01, the rectified linear unit as an activation
function of the hidden layers, and a quasi-New-
ton-based optimizer as the solver.

Comparison between the probabilistic ap-
proach and MLP

We use the same training data for the probabi-
listic approach and MLP (training and validation
after tuning hyperparameters) and we use the
same test data set to assess their performance.
Figure 18 shows the category predictions for
the probabilistic approach andMLP, the accuracy
scores (which were 0.63 and 0.68, respectively),
and the confusion matrices. In both approaches,
the confusion matrix indicates that only the cat-
egories of waste and bedrock could be partially
predicted.

Figure 11. Category predictions of (a) probabilistic approach and (b)MLP algorithm using
ρ, C, and the depth z. For the former, minimum and maximum probability values are 30%
and 100%, respectively, and 41% and 100% for MLP. The accuracy score for the prob-
abilistic approach was 0.89 and 0.93 for MLP. The confusion matrices also are displayed
next to each model. The MLP model was built using three hidden layers with 100 neurons
each, a regularization parameter of one, the rectified linear unit as an activation function of
the hidden layers, and a stochastic gradient-based optimizer. In the confusion matrices, “w”
refers to waste, “bedr” refers to bedrock, and back refers to backfill.

Figure 12. Nonuniform sampling scenario composed of three bore-
holes plotted with the inverted models.

Figure 13. Plots of the accuracy score against the number of bore-
holes for the probabilistic approach (in black) and MLP (in red).
The solid lines represent the sampling scenario of a uniform distri-
bution of boreholes and the dashed lines represent the scenario of
sparsely distributed boreholes.
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First, we can observe that the MLP predicted model is strongly
influenced by the inversion. The bedrock is predicted in the largest
resistivity values and the lime is roughly predicted in the area of
very low resistivities. The soil is predicted at some small areas of
high chargeability (which might be artifacts in the inverted model),
and as it was the class found at the largest depth of a pit at x ∼ 0 m,
then the soil was predicted in the area nearby at larger depths. This
is a consequence of including spatial training data that are not dis-
tributed over the entire survey area (Baasch et al., 2018) and which
may not reflect the real distribution of the materials deposited in the
landfill. The waste also is predicted at larger depths in the model and
might be influenced by the intermediate resistivity values. In addi-
tion, this model presents large areas of transparency representing
probability values of approximately 30%. This means that there are
large uncertainties in the prediction of classes in nearly the whole
model except in the area of the predicted bedrock.
The classification derived from the probabilistic approach is com-

posed of a much simpler model. It mainly presents three nearly con-
tinuous deposits: a surficial layer of waste (with interspersed soil),
an underlying layer of lime, and the bedrock at the bottom, which is
continuous along the whole model. Here, the zones of transparency
are distributed in the shallowest layers along the profile, at a depth
corresponding to the intersection between the lime and the waste.
Nevertheless, this classification might present a more realistic geol-

ogy, with continuous bedrock and a nearly continuous surficial
layer of heterogeneous waste on the top of a lime deposit. In gen-
eral, the anthropogenic-geologic scenario from the probabilistic ap-
proach might be more realistic as it agrees with the additional trial
pit logs excavated near the profile’s origin, where bedrock was
found at depths similar to those presented here.

DISCUSSION

We analyzed the performance of both approaches using a realistic
synthetic benchmark and a field case where only few ground-truth
data are available. First, the MLP algorithm requires a previous
optimization of the hyperparameters using a validation data set (typ-
ically approximately 15% of the available data set). Thus, when lit-
tle data are available, optimizing the hyperparameters with a
validation set can be difficult and yield highly variable results. For
instance, several MLP architectures for the synthetic case led to
large accuracy scores using the validation set (which may be a con-
sequence of having little data). Nonetheless, the use of the algorithm
on new data requires again an optimization of hyperparameters us-
ing a validation data set (e.g., Aszemi and Dominic, 2019; Yu et al.,
2020). Oppositely, in the field case, the accuracy scores were, in
general, smaller during the optimization of hyperparameters and
only a few architectures presented scores of more than 0.7. In both

cases, we selected relatively simple neural net-
works with a small number of hidden layers
and neurons to remain in agreement with a small
number of training data and to be comparable
with the probabilistic approach where no data
transformations are performed. In addition, dur-
ing the optimization of hyperparameters, we ob-
served larger accuracy scores in neural networks
with smaller hidden layers and neurons.
Second, in the synthetic case, the entire model

domain was available to assess the performance
of the algorithm. This was not the case for the
field site, where the test data were only 13%
of the ground-truth data. For the latter, the clas-
sification predictions were compared with the
observation from excavations nearby. Finally,
the transparency applied in this classification is
derived from the probabilities of the output layer
and derived from the Softmax function. Note,
however, that this function transforms the data
into a probability vector with values between
zero and one and whose elements add up to
one. As it is a normalized exponential function,
then the largest values are transformed into
values close to one, whereas the smallest are
into values close to zero. Therefore, the results
may not represent exact probabilities as derived
from the probabilistic approach (e.g., Gal and
Ghahramani, 2016).
The probabilistic approach does not require an

initial tuning of parameters. The prior probability
of the different categories or the categories’ pro-
portion can be defined from the volumes obtained
in the excavations. This information is essential to
ensure that the conditional probabilities of each
category are in line with the ground-truth data.

Figure 14. Category predictions of (a) probabilistic approach and (b) MLP algorithm
using ρ, C, and z. The minimum probability values (higher transparencies) are 30% for
the probabilistic approach, 45% for MLP, and 100% for the maximum probability values
in both. The accuracy score for the probabilistic approach was 0.79 and 0.67 for MLP.
The confusion matrices also are displayed next to each model. The MLPmodel was built
using four hidden layers with 20 neurons, a regularization parameter of 0.1, the rectified
linear unit as an activation function of the hidden layers, and a stochastic gradient-based
optimizer. The distribution of nonuniform borehole sampling is shown in Figure 12. In
the confusion matrices, “w” refers to waste, “bedr” refers to bedrock, and back refers to
backfill.
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If one category dominates the prior probability, whereas the geo-
physical data are poorly informative, this can lead to a final classi-
fication favoring the most probable facies. This is the reason why, in
the field case, the bedrock lies across most of the model domain (es-
pecially in comparison with MLP classification). Finally, the trans-
parency applied in this classification shows joint probabilities of the
selected category, indicating specific zones of larger classification un-
certainty. The probabilistic approach also is less dependent on the
location and number of the colocated data.
The integration of more (inverted) data that increase the training

data set is likely to improve the performance of MLP while not nec-
essarily the performance of the probabilistic approach. When the
physical properties of the categories in the inverted model(s) are
highly variable along the whole domain mapped, the classification
uncertainty is likely to increase. Nevertheless, the predictions would
still be in line with the material proportions or prior information
from sampling. Note that the better the materials are resolved in
the conditional probabilities given the geophysical or spatial vari-
ables, the better the performance of the probabilistic approach. Con-
sequently, in highly heterogeneous environments, the probabilistic
approach is likely to improve when it is applied locally, i.e., per
profile if multiple profiles are available or in areas of a 3D model,
depending on the heterogeneity observed in the conditional prob-
abilities. Regardless, a representative sampling based on geophysi-
cal data (e.g., Van De Vijver et al., 2019) could improve data

interpretation and therefore the classification performance of both
methods.
Another option to increase the training data of the field case may

be to use the data of the synthetic case. It is a common practice to
create synthetic data to train artificial neural networks (Yu and Ma,
2021). Nevertheless, this contribution aims to present a probabilistic
approach as an alternative to performing a rapid quantitative inter-
pretation of site-specific anthropogenic environments incorporating
ground-truth data.
We also studied the effect that the use of different data sources as

training has on the probabilistic approach and MLP. Here, we can
notice that the category predictions derived from MLP are highly
influenced by the spatial heterogeneity of the inverted models when

Figure 15. Map of the Onoz landfill, whose extension is indicated
with the solid red line. The zone in orange is the lower part of the
quarry, where heterogeneous waste was deposited, and the zone in
yellow corresponds to the upper level of the quarry mainly com-
posed of slacked lime and ash. P1, P2, and P3 show the locations
of the ERT/IP profiles acquired in the lower part of the quarry. The
square green symbols represent the position of trial pits colocated
with a profile and used here, and the white circles are the trial pits
excavated in the zone of the geophysical acquisition. The method-
ology that we present here was applied to profile P2 (in green) which
is colocated with six trial pits.

Figure 16. (a) Inverted resistivity model, (b) chargeability, and
(c) associated sensitivity. The rms is 4.74% and 3.36% for the re-
sistivity and chargeability models, respectively.

Figure 17. Colocated trial pits in the ERT and IP inverted sections.
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we only use the geophysical data as input. This leads to several
misclassification zones, most of which are nonrealistic. However,
because the probabilistic approach relies on a Bayesian framework,
it integrates the uncertainty related to data noise and inversion ar-
tifacts overall into the results. Therefore, the probabilistic approach
is less sensitive to the heterogeneities of the inverted models when
using only ρ and C, although it overestimates the distribution of the
bedrock due to the large prior probability of this category. When
we also include spatial training data (x, z), both approaches largely
improve the classification, in particular MLP. However, including
position x in the probabilistic approach leads to a high degree of
influence on the sampled location.
In addition, we analyzed the effect that the number of boreholes

and their distribution has on both approaches using the synthetic
case. The distribution of a low number of boreholes can lead to var-
iable accuracy scores (in particular for MLP). The accuracy scores
of the probabilistic approach are very similar under the uniform and
nonuniform sampling scenarios.
Here, we only compared the probabilistic approach with one algo-

rithm of supervised learning, both of which presented (overall) similar
classification models. Unsupervised learning also has been used for
data interpretation in cases with minimal prior knowledge or where
few ground-truth data are available (Delforge et al., 2021; Sabor et al.,
2021; Whiteley et al., 2021). These approaches have proven useful for
the interpretation of geophysical data in geologic environments com-
posed of layered models or when the geophysical method(s) resolve
zones or structures that can be evidenced in intrusive data. The
motivation of this probabilistic approach is to quantitatively interpret

geophysical data in complex anthropogenic environments with
extreme heterogeneity not only in terms of the spatial distribution
of deposited wastes but also in terms of the high contrasts in physical
properties that may lead to noisy data and artifacts in the inverted
models. Because it provides probability values, its integration within
other model types or in decision-making is relatively straightforward
(e.g., Hermans et al., 2015).
The probabilistic approach and MLP classify zones with large un-

certainty. If the classification improves when adding the x and z in-
formation, this also can lead to local improvement while degrading
the overall accuracy score. Another option is then to improve the in-
verted model by adding the prior information from boreholes in the
inversion process (Linde et al., 2015; Ronczka et al., 2015). For ex-
ample, adding the depth of the bedrock, located in a low sensitivity
zone, can improve the interfaces in the other part of the model
(Caterina et al., 2014; Thibaut et al., 2021). However, adding such
information bears the same limitation as it is highly dependent on the
available boreholes and can lead to erroneous inverted models
(Caterina et al., 2014). Nevertheless, using more advanced inversion
methods does not prevent the use of the probabilistic approach or the
MLP algorithm for post-inversion classification. Hermans and Irving
(2017) show that an appropriate regularization could lead to an in-
crease in the confidence of the classification (higher probabilities).

CONCLUSION

In this study, we presented a probabilistic approach that can be
used in a classification problem including uncertainty estimation

from site-specific multiple geophysical data sets
and when only a few ground-truth data are avail-
able. The classification is based on two geo-
physical models (ERT and IP) and spatial data
colocated with boreholes or trial pits. We com-
pare this approach with a machine learning ap-
proach, the MLP, in a synthetic model and in
a real field case. In addition, we tested the effects
that the types of (training) data sources and the
borehole sampling have on both approaches.
The probabilistic approach has proven to pro-

vide robust results regarding the position and
number of ground-truth data and the presence
of artifacts of inversion, in contrast to the MLP
algorithm whose performance is largely related to
the number of training data. Therefore, we recom-
mend the use of the probabilistic approach in com-
plex anthropogenic-geologic scenarios or other
site-specific environments where: (1) geophysical
inverted models present spatial heterogeneities
(laterally and vertically) or artifacts, (2) only few
ground-truth data are available, and (3) ground-
truth data might not be sparsely distributed nor
covering most of the area of study. The approach
can be easily extended to integrate geophysical
data from multiple methods or in three dimen-
sions. It represents a suitable alternative to per-
forming a rapid quantitative interpretation of
geophysical data by using a probabilistic classifi-
cation. Finally, as it integrates uncertainties in the
prediction results, these can be used to comple-
ment decision support tools in sustainable landfill

Figure 18. Category predictions derived for the (a) probabilistic approach and (b) MLP
algorithm using ρ, C, and z. The minimum probability values (higher transparencies) are
35% for the probabilistic approach and 33% for MLP. The maximum probability value
in both methods is 100%. Corresponding confusion matrices are shown next to category
predictions.

B164 Isunza Manrique et al.

D
ow

nl
oa

de
d 

05
/2

5/
23

 to
 1

34
.1

57
.3

2.
21

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

22
-0

13
3.

1



management. In contrast, when a large number of training data are
available, the MLP algorithm is expected to outperform the probabi-
listic approach.

ACKNOWLEDGMENTS

This work has been financed by the European Union’s program
of Interreg North-West Europe and the Wallon Region within the
framework of the multidisciplinary projects of RAWFILL and
NWE-REGENERATIS. We thank J. Whiteley, B. Baasch, an
anonymous reviewer, and editors for their valuable comments
and suggestions.

DATA AND MATERIALS AVAILABILITY

Codes necessary to reproduce the classification using the prob-
abilistic approach in the synthetic case and in the field case study are
available at https://doi.org/10.5281/zenodo.7121021.

REFERENCES

Aster, R. C., B. Borchers, and C. H. Thurber, 2018, Parameter estimation
and inverse problems: Elsevier.

Aszemi, N. M., and P. D. D. Dominic, 2019, Hyperparameter optimization in
convolutional neural network using genetic algorithms: International
Journal of Advanced Computer Science and Applications, 10, 269–
278, doi: 10.14569/IJACSA.2019.0100638.

Baasch, B., H. Müller, and T. von Dobeneck, 2018, Predictive modelling of
grain-size distributions from marine electromagnetic profiling data using
end-member analysis and a radial basis function network: Geophysical
Journal International, 214, 460–473, doi: 10.1093/gji/ggy152.

Beaujean, J., F. Nguyen, A. Kemna, A. Antonsson, and P. Engesgaard, 2014,
Calibration of seawater intrusion models: Inverse parameter estimation
using surface electrical resistivity tomography and borehole data: Water
Resources Research, 50, 6828–6849, doi: 10.1002/2013WR014020.

Bobe, C., E. Van De Vijver, J. Keller, D. Hanssens, M. Van Meirvenne, and
P. De Smedt, 2020, Probabilistic 1-D inversion of frequency-domain
electromagnetic data using a Kalman ensemble generator: IEEE Transac-
tions on Geoscience and Remote Sensing, 58, 3287–3297, doi: 10.1109/
TGRS.2019.2953004.

Caterina, D., T. Hermans, and F. Nguyen, 2014, Case studies of incorpora-
tion of prior information in electrical resistivity tomography: Comparison
of different approaches: Near Surface Geophysics, 12, 451–465, doi: 10
.3997/1873-0604.2013070.

Caterina, D., I. Isunza Manrique, C. Inauen, A. Watlet, R. De Rijdt, G. Du-
mont, J. Chambers, and F. Nguyen, 2019, Contribution of geophysical
methods to the study of old landfills: A case study in Onoz (Belgium):
17th International Waste Management and Landfill Symposium.

Chasseriau, P., and M. Chouteau, 2003, 3D gravity inversion using a model
of parameter covariance: Journal of Applied Geophysics, 52, 59–74, doi:
10.1016/S0926-9851(02)00240-9.

Costall, A. R., B. D. Harris, B. Teo, R. Schaa, F. M. Wagner, and J. P. Pigois,
2020, Groundwater throughflow and seawater intrusion in high quality
coastal aquifers: Scientific Reports, 10, 1–33, doi: 10.1038/s41598-
020-66516-6.

Cracknell, M. J., and A. M. Reading, 2014, Geological mapping using re-
mote sensing data: A comparison of five machine learning algorithms,
their response to variations in the spatial distribution of training data
and the use of explicit spatial information: Computers & Geosciences,
63, 22–33, doi: 10.1016/j.cageo.2013.10.008.

Delforge, D., A. Watlet, O. Kaufmann, M. Van Camp, and M. Vanclooster,
2021, Time-series clustering approaches for subsurface zonation and hy-
drofacies detection using a real time-lapse electrical resistivity dataset:
Journal of Applied Geophysics, 184, doi: 10.1016/j.jappgeo.2020
.104203.

Dewar, N., and R. Knight, 2020, Estimation of the top of the saturated zone
from airborne electromagnetic data: Geophysics, 85, no. 5, EN63–EN76,
doi: 10.1190/geo2019-0539.1.

Dramsch, J. S., 2020, 70 years of machine learning in geoscience in review:
Advances in Geophysics, 61, 1–55, doi: 10.1016/bs.agph.2020.08.002.

Dumont, G., T. Robert, N. Marck, and F. Nguyen, 2017, Assessment of
multiple geophysical techniques for the characterization of municipal
waste deposit sites: Journal of Applied Geophysics, 145, 74–83, doi:
10.1016/j.jappgeo.2017.07.013.

Elis, V. R., A. T. Ustra, M. C. Hidalgo-Gato, O. J. Pejon, and F. Y. Hiodo,
2016, Application of induced polarization and resistivity to the environ-
mental investigation of an old waste disposal area: Environmental Earth
Sciences, 75, 1–13, doi: 10.1007/s12665-016-6157-5.

Fossum, K., S. Alyaev, J. Tveranger, and A. H. Elsheikh, 2022, Verification
of a real-time ensemble-based method for updating earth model based on
GAN: Journal of Computational Science, 65, 101876, doi: 10.1016/j.jocs
.2022.101876.

Fu, Q., D. Niu, Z. Zang, J. Huang, and L. Diao, 2019, Multi-stations’
weather prediction based on hybrid model using 1D CNN and bi-LSTM:
Chinese Control Conference (CCC), 3771–3775, doi: 10.23919/ChiCC
.2019.8866496.

Gahegan, M., 2000, On the application of inductive machine learning tools
to geographical analysis: Geographical Analysis, 32, doi: 10.1111/j.1538-
4632.2000.tb00420.x.

Gal, Y., and Z. Ghahramani, 2016, Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning: International Conference
on Machine Learning, 1050–1059.

Goodfellow, I., Y. Bengio, and A. Courville, 2016, Deep learning: MIT
Press.

Hellman, K., M. Roncza, T. Günther, M. Wennermark, C. Rücker, and T.
Dahlin, 2017, Structurally coupled inversion of ERT and refraction seis-
mic data combined with cluster-based model integration: Journal of Ap-
plied Geophysics, 143, 169–181, doi: 10.1016/j.jappgeo.2017.06.008.

Hermans, T., and J. Irving, 2017, Facies discrimination with electrical re-
sistivity tomography using a probabilistic methodology: Effect of sensi-
tivity and regularization: Near Surface Geophysics, 15, 13–25, doi: 10
.3997/1873-0604.2016047.

Hermans, T., F. Nguyen, and J. Caers, 2015, Uncertainty in training image-
based inversion of hydraulic head data constrained to ERT data: Workflow
and case study: Water Resources Research, 51, 5332–5352, doi: 10.1002/
2014WR016460.

Hermans, T., A. Vandenbohede, L. Lebbe, and F. Nguyen, 2012, A shallow geo-
thermal experiment in a sandy aquifer monitored using electric resistivity
tomography: Geophysics, 77, no. 1, B11–B21, doi: 10.1190/geo2011-0199.1.

Inauen, C. M., A. Brooks, D. Caterina, J. E. Chambers, B. Dashwood, A.
Dimech, D. A. Gunn, I. Isunza Manrique, O. Neal, X. Piquet, D. Scott, A.
Watlet, J. S. Whiteley, and P. B. Wilkinson, 2020, Combining an inte-
grated geophysical survey into a landfill model: A case study from Emer-
sons Green, UK: Presented at the 22nd EGU General Assembly.

Johansson, S., C. Sparrenbom, G. Fiandaca, A. Lindskog, P. I. Olsson, T. Dah-
lin, and H. Rosqvist, 2017, Investigations of a Cretaceous limestone with
spectral induced polarization and scanning electron microscopy: Geophysi-
cal Journal International, 208, 954–972, doi: 10.1093/gji/ggw432.

Jones, P. T., E. Wille, and J. Krook, 2018, 5 lessons learned, why we need to
develop a broad dynamic landfill management strategy and vision for Eu-
rope’s 500,000 landfills: 2nd ELFM Seminar in the European Parliament,
1–12.

Journel, A. G., 2002, Combining knowledge from diverse sources: An alter-
native to traditional data independence hypotheses: Mathematical Geol-
ogy, 34, 573–596, doi: 10.1023/A:1016047012594.

Kaipio, J. P., V. Kolehmainen, M. Vauhkonen, and E. Somersalo, 1999, In-
verse problems with structural prior information: Inverse Problems, 15,
713–729, doi: 10.1088/0266-5611/15/3/306.

Kiberu, J., 2002, Induced polarization and resistivity measurements on a
suite of near surface soil samples and their empirical relationship to se-
lected measured engineering parameters: M.S. thesis, ITC.

Linde, N., P. Renard, T. Mukerji, and J. Caers, 2015, Geological realism in
hydrogeological and geophysical inverse modeling: A review: Advances
in Water Resources, 86, 86–101, doi: 10.1016/j.advwatres.2015.09.019.

Lionheart, W. R. B., 2004, EIT reconstruction algorithms: Pitfalls, chal-
lenges and recent developments: Physiological Measurement, 25, 125–
142, doi: 10.1088/0967-3334/25/1/021. .

Liu, L., Y. Liu, T. Li, Y. He, Y. Du, and Y. Luo, 2021, Inversion of vehicle-
induced signals based on seismic interferometry and recurrent neural net-
works: Geophysics, 86, no. 3, Q37–Q45, doi: 10.1190/geo2020-0498.1.

Loke, M., 1997, Res2DINV Software User’s Manual: University Sains Ma-
laysia.

Loke, M., 2004, Tutorial: 2-D and 3-D electrical imaging surveys: Geotomo
Software.

Lopez-Alvis, J., E. Laloy, F. Nguyen, and T. Hermans, 2021, Deep gener-
ative models in inversion: A review and development of a new approach
based on a variational autoencoder: Computers & Geosciences, 152, doi:
10.1016/j.cageo.2021.104762.

Lopez-Alvis, J., F. Nguyen, M. C. Looms, and T. Hermans, 2022, Geophysi-
cal inversion using a variational autoencoder to model an assembled spa-
tial prior uncertainty: Journal of Geophysical Research: Solid Earth, 127,
doi: 10.1029/2021JB022581.

Lysdahl, A. K., C. W. Christensen, A. A. Pfaffhuber, M. Vöge, L. Andresen,
G. H. Skurdal, and M. Panzner, 2022, Integrated bedrock model combin-
ing airborne geophysics and sparse drillings based on an artificial neural
network: Engineering Geology, 297, doi: 10.1016/j.enggeo.2021.106484.

Probabilistic data interpretation B165

D
ow

nl
oa

de
d 

05
/2

5/
23

 to
 1

34
.1

57
.3

2.
21

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

22
-0

13
3.

1

https://doi.org/10.5281/zenodo.7121021
https://doi.org/10.5281/zenodo.7121021
https://doi.org/10.5281/zenodo.7121021
https://doi.org/10.5281/zenodo.7121021
10.14569/IJACSA.2019.0100638
10.14569/IJACSA.2019.0100638
10.14569/IJACSA.2019.0100638
10.14569/IJACSA.2019.0100638
10.1093/gji/ggy152
10.1093/gji/ggy152
http://dx.doi.org/10.1002/2013WR014020
http://dx.doi.org/10.1002/2013WR014020
http://dx.doi.org/10.1109/TGRS.2019.2953004
http://dx.doi.org/10.1109/TGRS.2019.2953004
http://dx.doi.org/10.1109/TGRS.2019.2953004
http://dx.doi.org/10.1109/TGRS.2019.2953004
http://dx.doi.org/10.1109/TGRS.2019.2953004
http://dx.doi.org/10.3997/1873-0604.2013070
http://dx.doi.org/10.3997/1873-0604.2013070
http://dx.doi.org/10.3997/1873-0604.2013070
http://dx.doi.org/10.1016/S0926-9851(02)00240-9
http://dx.doi.org/10.1016/S0926-9851(02)00240-9
http://dx.doi.org/10.1038/s41598-020-66516-6
http://dx.doi.org/10.1038/s41598-020-66516-6
http://dx.doi.org/10.1038/s41598-020-66516-6
http://dx.doi.org/10.1016/j.cageo.2013.10.008
http://dx.doi.org/10.1016/j.cageo.2013.10.008
http://dx.doi.org/10.1016/j.cageo.2013.10.008
http://dx.doi.org/10.1016/j.cageo.2013.10.008
http://dx.doi.org/10.1016/j.cageo.2013.10.008
http://dx.doi.org/10.1016/j.cageo.2013.10.008
http://dx.doi.org/10.1016/j.jappgeo.2020.104203
http://dx.doi.org/10.1016/j.jappgeo.2020.104203
http://dx.doi.org/10.1016/j.jappgeo.2020.104203
http://dx.doi.org/10.1016/j.jappgeo.2020.104203
http://dx.doi.org/10.1016/j.jappgeo.2020.104203
http://dx.doi.org/10.1190/geo2019-0539.1
http://dx.doi.org/10.1190/geo2019-0539.1
http://dx.doi.org/10.1190/geo2019-0539.1
http://dx.doi.org/10.1016/bs.agph.2020.08.002
http://dx.doi.org/10.1016/bs.agph.2020.08.002
http://dx.doi.org/10.1016/bs.agph.2020.08.002
http://dx.doi.org/10.1016/bs.agph.2020.08.002
http://dx.doi.org/10.1016/bs.agph.2020.08.002
http://dx.doi.org/10.1016/bs.agph.2020.08.002
http://dx.doi.org/10.1016/j.jappgeo.2017.07.013
http://dx.doi.org/10.1016/j.jappgeo.2017.07.013
http://dx.doi.org/10.1016/j.jappgeo.2017.07.013
http://dx.doi.org/10.1016/j.jappgeo.2017.07.013
http://dx.doi.org/10.1016/j.jappgeo.2017.07.013
http://dx.doi.org/10.1016/j.jappgeo.2017.07.013
http://dx.doi.org/10.1007/s12665-016-6157-5
http://dx.doi.org/10.1007/s12665-016-6157-5
http://dx.doi.org/10.1016/j.jocs.2022.101876
http://dx.doi.org/10.1016/j.jocs.2022.101876
http://dx.doi.org/10.1016/j.jocs.2022.101876
http://dx.doi.org/10.1016/j.jocs.2022.101876
http://dx.doi.org/10.1016/j.jocs.2022.101876
http://dx.doi.org/10.23919/ChiCC.2019.8866496
http://dx.doi.org/10.23919/ChiCC.2019.8866496
http://dx.doi.org/10.23919/ChiCC.2019.8866496
http://dx.doi.org/10.23919/ChiCC.2019.8866496
http://dx.doi.org/10.1111/j.1538-4632.2000.tb00420.x
http://dx.doi.org/10.1111/j.1538-4632.2000.tb00420.x
http://dx.doi.org/10.1111/j.1538-4632.2000.tb00420.x
http://dx.doi.org/10.1111/j.1538-4632.2000.tb00420.x
http://dx.doi.org/10.1111/j.1538-4632.2000.tb00420.x
http://dx.doi.org/10.1111/j.1538-4632.2000.tb00420.x
http://dx.doi.org/10.1111/j.1538-4632.2000.tb00420.x
http://dx.doi.org/10.1016/j.jappgeo.2017.06.008
http://dx.doi.org/10.1016/j.jappgeo.2017.06.008
http://dx.doi.org/10.1016/j.jappgeo.2017.06.008
http://dx.doi.org/10.1016/j.jappgeo.2017.06.008
http://dx.doi.org/10.1016/j.jappgeo.2017.06.008
http://dx.doi.org/10.1016/j.jappgeo.2017.06.008
http://dx.doi.org/10.3997/1873-0604.2016047
http://dx.doi.org/10.3997/1873-0604.2016047
http://dx.doi.org/10.3997/1873-0604.2016047
http://dx.doi.org/10.1002/2014WR016460
http://dx.doi.org/10.1002/2014WR016460
http://dx.doi.org/10.1002/2014WR016460
http://dx.doi.org/10.1190/geo2011-0199.1
http://dx.doi.org/10.1190/geo2011-0199.1
http://dx.doi.org/10.1190/geo2011-0199.1
http://dx.doi.org/10.1093/gji/ggw432
http://dx.doi.org/10.1093/gji/ggw432
http://dx.doi.org/10.1023/A:1016047012594
http://dx.doi.org/10.1023/A:1016047012594
http://dx.doi.org/10.1088/0266-5611/15/3/306
http://dx.doi.org/10.1088/0266-5611/15/3/306
http://dx.doi.org/10.1016/j.advwatres.2015.09.019
http://dx.doi.org/10.1016/j.advwatres.2015.09.019
http://dx.doi.org/10.1016/j.advwatres.2015.09.019
http://dx.doi.org/10.1016/j.advwatres.2015.09.019
http://dx.doi.org/10.1016/j.advwatres.2015.09.019
http://dx.doi.org/10.1016/j.advwatres.2015.09.019
http://dx.doi.org/10.1088/0967-3334/25/1/021
http://dx.doi.org/10.1088/0967-3334/25/1/021
http://dx.doi.org/10.1190/geo2020-0498.1
http://dx.doi.org/10.1190/geo2020-0498.1
http://dx.doi.org/10.1190/geo2020-0498.1
http://dx.doi.org/10.1016/j.cageo.2021.104762
http://dx.doi.org/10.1016/j.cageo.2021.104762
http://dx.doi.org/10.1016/j.cageo.2021.104762
http://dx.doi.org/10.1016/j.cageo.2021.104762
http://dx.doi.org/10.1016/j.cageo.2021.104762
http://dx.doi.org/10.1029/2021JB022581
http://dx.doi.org/10.1029/2021JB022581
http://dx.doi.org/10.1016/j.enggeo.2021.106484
http://dx.doi.org/10.1016/j.enggeo.2021.106484
http://dx.doi.org/10.1016/j.enggeo.2021.106484
http://dx.doi.org/10.1016/j.enggeo.2021.106484
http://dx.doi.org/10.1016/j.enggeo.2021.106484


Magiera, T., B. Żogała, M. Szuszkiewicz, J. Pierwoła, and M. M. Szuszkie-
wicz, 2019, Combination of different geophysical techniques for the
location of historical waste in the Izery Mountains (SW Poland): Science
of the Total Environment, 682, 226–238, doi: 10.1016/j.scitotenv.2019.05
.180.

Moghadas, D., and A. Badorreck, 2019, Machine learning to estimate soil
moisture from geophysical measurements of electrical conductivity: Near
Surface Geophysics, 17, 181–195, doi: 10.1002/nsg.12036.

Moreira, C. A., E. G. Dos Santos, L. M. Ilha, and R. Paes, 2019, Recognition
of sulfides zones in Marble Mine through comparative analysis of elec-
trical tomography arrangements: Pure and Applied Geophysics, 176,
4907–4920, doi: 10.1007/s00024-019-02243-y.

North-West Europe, 2020, Co-funded by the Walloon region Landfill char-
acterization: The landfill of Onoz (Wallonia, Belgium), https://www
.nweurope.eu/media/10049/onoz_draft_website-version.pdf.

Oldenburg, D. W., and Y. Li, 1994, Inversion of induced polarization data:
Geophysics, 59, 1327–1341, doi: 10.1190/1.1443692.

Paasche, H., J. Tronicke, K. Holliger, A. G. Green, and H. Maurer, 2006,
Integration of diverse physical-property models: Subsurface zonation and
petrophysical parameter estimation based on fuzzy c-means cluster analy-
ses: Geophysics, 71, no. 3, H33–H44, doi: 10.1190/1.2192927.

Parsekian, A. D., D. Grana, F. D. A. Neves, M. S. Pleasants, M. Seyfried, B.
G. Moravec, J. Chorover, A. M. Moraes, N. Y. Smeltz, J. H. Westenhoff,
and T. Kelleners, 2021, Hydrogeophysical comparison of hillslope critical
zone architecture for different geologic substrates: Geophysics, 86, no. 5,
WB29–WB49, doi: 10.1190/geo2020-0438.1.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A.
Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay,
2011, Scikit-learn: Machine learning in Python: Journal of Machine
Learning Research, 12, 2825–2830.

Piana Agostinetti, N., and T. Bodin, 2018, Flexible coupling in joint inver-
sions: A Bayesian structure decoupling algorithm: Journal of Geophysical
Research: Solid Earth, 123, 8798–8826, doi: 10.1029/2018JB016079.

Potdar, K., T. Pardawala, and C. D. Pai, 2017, A comparative study of cat-
egorical variable encoding techniques for neural network classifiers:
International Journal of Computer Applications, 175, 7–9, doi: 10
.5120/ijca2017915495.

Qiao, C., M. K. Moradllo, H. Hall, M. T. Ley, and W. J. Weiss, 2019,
Electrical resistivity and formation factor of air-entrained concrete:
ACI Materials Journal, 116, 85–93, doi: 10.14359/51714506.

Ray, A., S. Kaplan, J. Washbourne, and U. Albertin, 2018, Low frequency
full waveform seismic inversion within a tree based Bayesian framework:
Geophysical Journal International, 212, 522–542, doi: 10.1093/gji/
ggx428.

Robert, T., A. Dassargues, S. Brouyère, O. Kaufmann, V. Hallet, and F.
Nguyen, 2011, Assessing the contribution of electrical resistivity tomog-
raphy (ERT) and self-potential (SP) methods for a water well drilling pro-
gram in fractured/karstified limestones: Journal of Applied Geophysics,
75, 42–53, doi: 10.1016/j.jappgeo.2011.06.008.

Romero-Ruiz, A., N. Linde, T. Keller, and D. Or, 2018, A review of geo-
physical methods for soil structure characterization: Reviews of Geophys-
ics, 56, 672–697, doi: 10.1029/2018RG000611.

Ronczka, M., T. Voß, and T. Günther, 2015, Cost-efficient imaging and mon-
itoring of saltwater in a shallow aquifer by using long electrode ERT:
Journal of Applied Geophysics, 122, 202–209, doi: 10.1016/j.jappgeo
.2015.08.014.

Rücker, C., T. Günther, and F. M. Wagner, 2017, pyGIMLi: An open-source
library for modelling and inversion in geophysics: Computers & Geosci-
ences, 109, 106–123, doi: 10.1016/j.cageo.2017.07.011.

Sabor, K., D. Jougnot, R. Guerin, B. Steck, J. M. Henault, L. Apffel, and D.
Vautrin, 2021, A data mining approach for improved interpretation
of ERT inverted sections using the DBSCAN clustering algorithm: Geo-
physical Journal International, 225, 1304–1318, doi: 10.1093/gji/ggab023.

Scheidt, C., L. Li, and J. Caers, 2018, Quantifying uncertainty in subsurface
systems: John Wiley and Sons.

Seigel, H. O., 1959, Mathematical formulation and type curves for induced
polarization: Geophysics, 24, 547–565, doi: 10.1190/1.1438625.

Slater, L., and A. Binley, 2021, Advancing hydrological process understand-
ing from long-term resistivity monitoring systems: Wiley Interdisciplinary
Reviews: Water, 8, e1513, doi: 10.1002/wat2.1513.

Sun, H., M. Cheng, C. Su, H. Li, G. Zhao, M. Su, S. Li, B. Zhang, L. Zhang,
and K. Li, 2017, Characterization of shallow karst using electrical resis-
tivity imaging in a limestone mining area: Environmental Earth Sciences,
76, 1–9, doi: 10.1007/s12665-017-7112-9.

Thibaut, R., T. Kremer, A. Royen, B. Kim Ngun, F. Nguyen, and T. Her-
mans, 2021, A new workflow to incorporate prior information in mini-
mum gradient support (MGS) inversion of electrical resistivity and
induced polarization data: Journal of Applied Geophysics, 187, doi: 10
.1016/j.jappgeo.2021.104286.

Van De Vijver, E., C. Bobe, D. Hanssens, P. De Smedt, and M. Van Meirv-
enne, 2019, Representative sampling of landfills: A robust procedure for
selecting trench locations based on electromagnetic induction survey data:
Presented at the AGU Fall Meeting 2019.

Van De Vijver, E., D. Caterina, I. Isunza Manrique, C. Bobe, and F. Nguyen,
2020, Geophysical surveys for unlocking landfill resources: From past
applications to future developments: Presented at the AGU Fall Meeting
2020.

Van De Vijver, E., I. Isunza Manrique, C. Bobe, D. Caterina, T. Hermans, E.
Wille, and F. Nguyen, 2021, Geophysics in support of dynamic landfill
management: Moving beyond the challenges: Presented at the First
International Meeting for Applied Geoscience & Energy, SEG, Expanded
Abstracts, 3140–3144, doi: 10.1190/segam2021-3594435.1.

Wang, J., X. Zhang, and L. Du, 2017, A laboratory study of the correlation
between the thermal conductivity and electrical resistivity of soil: Journal
of Applied Geophysics, 145, 12–16, doi: 10.1016/j.jappgeo.2017.07.009.

Wang, Z., H. Di, M. A. Shafiq, Y. Alaudah, and G. AlRegib, 2018, Success-
ful leveraging of image processing and machine learning in seismic struc-
tural interpretation: A review: The Leading Edge, 37, 451–461, doi: 10
.1190/tle37060451.1.

Wellmann, J. F., M. De la Varga, R. E. Murdie, K. Gessner, and M. Jessell,
2018, Uncertainty estimation for a geological model of the Sandstone
greenstone belt, Western Australia — Insights from integrated geological
and geophysical inversion in a Bayesian inference framework: Geological
Society, London, Special Publications 453.

Whiteley, J. S., J. E. Chambers, S. Uhlemann, P. B. Wilkinson, and J. M.
Kendall, 2019, Geophysical monitoring of moisture-induced landslides:
A review: Reviews of Geophysics, 57, 106–145, doi: 10.1029/
2018RG000603.

Whiteley, J. S., A. Watlet, S. Uhlemann, P. Wilkinson, J. P. Boyd, C. Jordan,
J. M. Kendall, and J. E. Chambers, 2021, Rapid characterisation of land-
slide heterogeneity using unsupervised classification of electrical resistiv-
ity and seismic refraction surveys: Engineering Geology, 290, doi: 10
.1016/j.enggeo.2021.106189.

Williams, C. K. I., and D. Barber, 1998, Bayesian classification with Gaus-
sian processes: IEEE Transactions on Pattern Analysis and Machine In-
telligence, 20, 1342–1351, doi: 10.1109/34.735807.

Yannah, M., K. Martens, M. Van Camp, and K. Walraevens, 2017, Geo-
physical exploration of an old dumpsite in the perspective of enhanced
landfill mining in Kermt area, Belgium: Bulletin of Engineering Geology
and the Environment, 78, 55–67, doi: 10.1007/s10064-017-1169-2.

Yu, H., G. Chen, and H. Gu, 2020, A machine learning methodology for
multivariate pore-pressure prediction: Computers & Geosciences, 143,
104548, doi: 10.1016/j.cageo.2020.104548.

Yu, S., and J. Ma, 2021, Deep learning for geophysics: Current and future
trends: Reviews of Geophysics, 59, doi: 10.1029/2021RG000742.

Biographies and photographs of the authors are not available.

B166 Isunza Manrique et al.

D
ow

nl
oa

de
d 

05
/2

5/
23

 to
 1

34
.1

57
.3

2.
21

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

22
-0

13
3.

1

http://dx.doi.org/10.1016/j.scitotenv.2019.05.180
http://dx.doi.org/10.1016/j.scitotenv.2019.05.180
http://dx.doi.org/10.1016/j.scitotenv.2019.05.180
http://dx.doi.org/10.1016/j.scitotenv.2019.05.180
http://dx.doi.org/10.1016/j.scitotenv.2019.05.180
http://dx.doi.org/10.1016/j.scitotenv.2019.05.180
http://dx.doi.org/10.1002/nsg.12036
http://dx.doi.org/10.1002/nsg.12036
http://dx.doi.org/10.1002/nsg.12036
http://dx.doi.org/10.1007/s00024-019-02243-y
http://dx.doi.org/10.1007/s00024-019-02243-y
https://www.nweurope.eu/media/10049/onoz_draft_website-version.pdf
https://www.nweurope.eu/media/10049/onoz_draft_website-version.pdf
https://www.nweurope.eu/media/10049/onoz_draft_website-version.pdf
https://www.nweurope.eu/media/10049/onoz_draft_website-version.pdf
http://dx.doi.org/10.1190/1.1443692
http://dx.doi.org/10.1190/1.1443692
http://dx.doi.org/10.1190/1.1443692
http://dx.doi.org/10.1190/1.2192927
http://dx.doi.org/10.1190/1.2192927
http://dx.doi.org/10.1190/1.2192927
http://dx.doi.org/10.1190/geo2020-0438.1
http://dx.doi.org/10.1190/geo2020-0438.1
http://dx.doi.org/10.1190/geo2020-0438.1
http://dx.doi.org/10.1029/2018JB016079
http://dx.doi.org/10.1029/2018JB016079
http://dx.doi.org/10.5120/ijca2017915495
http://dx.doi.org/10.5120/ijca2017915495
http://dx.doi.org/10.14359/51714506
http://dx.doi.org/10.14359/51714506
http://dx.doi.org/10.1093/gji/ggx428
http://dx.doi.org/10.1093/gji/ggx428
http://dx.doi.org/10.1093/gji/ggx428
http://dx.doi.org/10.1016/j.jappgeo.2011.06.008
http://dx.doi.org/10.1016/j.jappgeo.2011.06.008
http://dx.doi.org/10.1016/j.jappgeo.2011.06.008
http://dx.doi.org/10.1016/j.jappgeo.2011.06.008
http://dx.doi.org/10.1016/j.jappgeo.2011.06.008
http://dx.doi.org/10.1016/j.jappgeo.2011.06.008
http://dx.doi.org/10.1029/2018RG000611
http://dx.doi.org/10.1029/2018RG000611
http://dx.doi.org/10.1016/j.jappgeo.2015.08.014
http://dx.doi.org/10.1016/j.jappgeo.2015.08.014
http://dx.doi.org/10.1016/j.jappgeo.2015.08.014
http://dx.doi.org/10.1016/j.jappgeo.2015.08.014
http://dx.doi.org/10.1016/j.jappgeo.2015.08.014
http://dx.doi.org/10.1016/j.jappgeo.2015.08.014
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1093/gji/ggab023
http://dx.doi.org/10.1093/gji/ggab023
http://dx.doi.org/10.1190/1.1438625
http://dx.doi.org/10.1190/1.1438625
http://dx.doi.org/10.1190/1.1438625
http://dx.doi.org/10.1002/wat2.1513
http://dx.doi.org/10.1002/wat2.1513
http://dx.doi.org/10.1002/wat2.1513
http://dx.doi.org/10.1007/s12665-017-7112-9
http://dx.doi.org/10.1007/s12665-017-7112-9
http://dx.doi.org/10.1016/j.jappgeo.2021.104286
http://dx.doi.org/10.1016/j.jappgeo.2021.104286
http://dx.doi.org/10.1016/j.jappgeo.2021.104286
http://dx.doi.org/10.1016/j.jappgeo.2021.104286
http://dx.doi.org/10.1016/j.jappgeo.2021.104286
http://dx.doi.org/10.1190/segam2021-3594435.1
http://dx.doi.org/10.1190/segam2021-3594435.1
http://dx.doi.org/10.1190/segam2021-3594435.1
http://dx.doi.org/10.1016/j.jappgeo.2017.07.009
http://dx.doi.org/10.1016/j.jappgeo.2017.07.009
http://dx.doi.org/10.1016/j.jappgeo.2017.07.009
http://dx.doi.org/10.1016/j.jappgeo.2017.07.009
http://dx.doi.org/10.1016/j.jappgeo.2017.07.009
http://dx.doi.org/10.1016/j.jappgeo.2017.07.009
http://dx.doi.org/10.1190/tle37060451.1
http://dx.doi.org/10.1190/tle37060451.1
http://dx.doi.org/10.1190/tle37060451.1
http://dx.doi.org/10.1029/2018RG000603
http://dx.doi.org/10.1029/2018RG000603
http://dx.doi.org/10.1029/2018RG000603
http://dx.doi.org/10.1016/j.enggeo.2021.106189
http://dx.doi.org/10.1016/j.enggeo.2021.106189
http://dx.doi.org/10.1016/j.enggeo.2021.106189
http://dx.doi.org/10.1016/j.enggeo.2021.106189
http://dx.doi.org/10.1016/j.enggeo.2021.106189
http://dx.doi.org/10.1109/34.735807
http://dx.doi.org/10.1109/34.735807
http://dx.doi.org/10.1109/34.735807
http://dx.doi.org/10.1007/s10064-017-1169-2
http://dx.doi.org/10.1007/s10064-017-1169-2
http://dx.doi.org/10.1016/j.cageo.2020.104548
http://dx.doi.org/10.1016/j.cageo.2020.104548
http://dx.doi.org/10.1016/j.cageo.2020.104548
http://dx.doi.org/10.1016/j.cageo.2020.104548
http://dx.doi.org/10.1016/j.cageo.2020.104548
http://dx.doi.org/10.1029/2021RG000742
http://dx.doi.org/10.1029/2021RG000742

