

Modeling potential natural vegetation

Bringing to light an old concept to guide nature conservation in fragmented and degraded landscapes

Axel Bourdouxhe¹, Lionel Wibail², Hugues Claessens³ and Marc Dufrêne¹

¹Biodiversity and Landscape Unit, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium; ²Département de l'Etude du milieu naturel et agricole – DEMNA, Service Public de Wallonie, Gembloux, Belgium; ³Gestion des ressources forestières et des milieux naturels, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium;

Method

Results

Discussion

A dramatic context

- Survey with biotope identification
- Survey without biotope identification
- Walloon Region

29% of biodiversity hotspots **are not** identified at biotope scale

0

Biotope distribution model

Model potential biotope distribution to

- 1. guide further biotope surveys
- 2. guide restauration of biotopes to increase their conservation state and species habitats availability

Method

Results

Discussion

Biotope distribution models

Vegetation communities evolve through time

Open biotope are mainly maintained by human activities

Overlapping ecological niches

Method

Results

Discussion

Potential Natural Vegetation (PNV)

Sub-Atlantic calciphile *Quercus* -*Carpinus betulus* forests

Calcareous thermophile thickets

Sub-Atlantic dry calcareous grassland

Atlantic *Quercus robur -Betula* woods

Peaty heathland with *Vaccinium* and *Erica tetralix*

Moist or wet oligotrophic grassland

Sphagnum Betula woods

>८

Raised bogs

>< opposing ecological contexts in modeling

And 60 other biotopes of interest

Method

Results

Discussion

PNV prerequisites

Need of validated PNV typology

A long history of studying local vegetation communities and their dynamics...

Noirfalise A. (1984). *Forêts et stations forestières en Belgique* (Les Presses Agronomiques, Vol. 1). Persée - Portail des revues scientifiques en SHS. Delescaille L.-M., Wibail L., Claessens H., Dufrêne M., Mahy G., Peeters A., & Sérusiaux E. (2021). *Les Habitats d'Intérêt Communautaire de Wallonie*.

Method

Results

Discussion

PNV prerequisites

Need of validated mapping of biotopes belonging to PNV

Method

Results

Discussion

PNV prerequisites

Need of precise environmental predictor mapping

A small region with fine scale environmental data

Method

Results

Discussion

PNV definitions

Atlantic Quercus robur -Betula woods

PNV definition made using literature and expert knowledge

Keep biotopes that can be linked to only one PNV

Sphagnum Betula woods

Northern wet heaths

EUNIS Code	Habitat directive code	Biotopes names	Potential Natural Vegetation	Code
D1.1	7110	Raised bogs		
D2.3	7140	Transition mires and quaking bogs	Calandar Batalana da	CD.
F4.11	4010	Northern wet heaths	Spragnum Betula woods	30
G1.51	91D0	Sphagnum Betula woods		
D5.21e		Beds of large Carex spp.		
G1.4		Broad-leaved swamp woodland not on acid peat	Alnus swamp woods	AS
E3.5	6410	Moist or wet oligotrophic grassland		
F4.11	4010	Northern wet heaths		
F4.11b	4010	Peaty heathland with Vaccinium and Erica tetralix	<i>Quercus</i> and <i>Betula</i> forests with <i>Molinia</i>	овм
F4.13		Molinia caerulea wet heath		-
G1.81	9190	Atlantic Quercus robur - Betula woods		
G1.911a	9190	Betula facies of Quercus robur forests		
E2.2	6510	Low and medium altitude hay meadows		
E5.4	6430	Moist or wet tall-herb and fern fringes and meadows		
F9.12	91E0	Lowland and collinar riverine Salix scrub	Riparian and gallery woodland	RG
G1.1	91E0	Riparian and gallery woodland, with dominant Alnus, Betula, Populus or Salix		0
G1.2	91F0	Mixed riparian floodplain and gallery woodland		J

Method

Results

Discussion

PNV definitions

13 PNV defined from very wet to xeric conditions

Sphagnum Betula woods Alnus swamp woods Quercus and Betula forests with Molinia *R*iparian and gallery woodland Fammenian Quercus and Carpinus forests Neutrophile Quercus and Fraxinus forests Acidophilous Quercus and Carpinus forests Neutrophile *Fagus* forests Wet and shady ravine forests Acidophilous Fagus forests Calcareous *Fagus* and *Quercus* forests Thermophile acidophilous *Quercus* forests Xerophile Fammenian *Quercus* and *Carpinus* forests

Sphagnum Betula woods

Calcareous Fagus and Quercus forests

Method

Results

Discussion

PNV modeling

Context

Presence/absence calibration dataset

19 uncorraleted predictors (topography, soil and climate)

Individual PNV Modeling

Dominant PNV Classification

Method

Results

Discussion

Quality assessment

Biotope approach vs. PNV

	Habitats	
EUNIS Code	Directive	Biotopes names
	code	
E1.26	6210 [*]	Sub-Atlantic semi-dry calcareous grassland
F3.1b		Calcareous thermophilic thickets and scrub
G1.66	9150	Medio-European limestone Fagus forests
G1.71		Western Quercus pubescens woods and related communities
G1.A17	9150	Sub-Atlantic calciphile Quercus - Carpinus betulus forests

Sub-Atlantic semi-dry calcareous grassland

Calcareous thermophilic thickets and scrub

Sub-Atlantic calciphile Quercus and Carpinus betulus forests

Presence = biotope modeled Absence = all other biotopes Comparison of additive presence based on producer accuracy

Equation 1.

Method

Results

Discussion

Quality assesment

Floristic data dependance to PNV

Independent assessment based on naturalist observation platforms data sets

Using Chi² test to evaluate dependence between species observations and PNV classification results

Equation 2.

$$T = \sum_{ij} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$$

where O_{ij} is the number of observations of a taxon i in a PNV j

Comparison of Chi² test results with existing lists of biotope indicative species

$$E_{ij} = \frac{O_{i+} \times O_{+j}}{N}$$

where O_{i+} is the total number of observations for a taxon, O_{+j} is the total number of observations in a PNV j and N is the total number of observations in all PNV.

Asplenium scolopendrium

Helianthemum nummularium

Biotope approach vs. PNV Biotopes Biotopes Biotopes	Context	Meth	od	Re	sults	Discussion
BiotopesBiotopes (EUNIS code)PA of individual biotopes predictionsPA of individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictionsPA individual biotopes predictions inside grouped areaPA individual biotopes predictions inside PNVPA individual biotopes predictions inside PNVPA <b< th=""><th>Quality ass Biotope approach vs.</th><th>Sessmer PNV</th><th>nt _{Re}</th><th>Biotope</th><th>PNV</th><th>Sub-Atlantic semi-dry calcareou grassland</th></b<>	Quality ass Biotope approach vs.	Sessmer PNV	nt _{Re}	Biotope	PNV	Sub-Atlantic semi-dry calcareou grassland
Sub-Atlantic semi-dry calcareous grasslandE1.260.6090.8430.905Calcareous thermophilic thickets and scrubF3.1b0.4880.7100.861Medio-European limestone Fagus forestsG1.660.6150.7200.817Western Quercus pubescens woods and related communitiesG1.710.3040.7810.871Sub-Atlantic calciphile Quercus and Carpinus betulus forestsG1.A170.8570.8630.859	Biotopes	Biotopes (EUNIS cod	PA of individual biotopes predictions	f PA of individual biotopes predictions inside grouped area	PA individual biotopes predictions inside PNV	
Calcareous thermophilic thickets and scrubF3.1b0.4880.7100.861Medio-European limestone Fagus forestsG1.660.6150.7200.817Western Quercus pubescens woods and related communitiesG1.710.3040.7810.871Sub-Atlantic calciphile Quercus and Carpinus betulus forestsG1.A170.8570.8630.859	Sub-Atlantic semi-dry calcareous gras	ssland E1.26	0.609	0.843	0.905	Calcareous thermophilic thicket
Medio-European limestone Fagus forestsG1.660.6150.7200.817Western Quercus pubescens woods and related communitiesG1.710.3040.7810.871Sub-Atlantic calciphile Quercus and Carpinus betulus forestsG1.A170.8570.8630.859	Calcareous thermophilic thickets and	scrub F3.1b	0.488	0.710	0.861	and scrub
Western Quercus pubescens woods and related communitiesG1.710.3040.7810.871Sub-Atlantic calciphile Quercus and Carpinus betulus forestsG1.A170.8570.8630.859	Medio-European limestone Fagus fore	ests G1.66	0.615	0.720	0.817	
Sub-Atlantic calciphile Quercus and Carpinus G1.A17 0.857 0.863 0.859	Western Quercus pubescens woods a communities	nd related G1.71	0.304	0.781	0.871	
	Sub-Atlantic calciphile Quercus and C betulus forests	Carpinus G1.A17	0.857	0.863	0.859	

Sub-Atlantic calciphile Quercus and Carpinus betulus forests

+21%

+8%

Method

Results

Discussion

Quality assesment

Floristic data dependance to PNV

Potential Natural Vegetation	Five most dependent species					
Wet and shady ravine forests	Asplenium scolopendrium ^F , Polystichum aculeatum ^F , Asplenium trichomanes ^M , Mercurialis perennis ^F , Biscutella laevigata ^O					
Acidophilous Fagus forests	Pteridium aquilinum ^M , Teucrium scorodonia ^F , Cytisus scoparius ^O , Vaccinium myrtillus ^M , Luzula luzuloides ^F					
Neutrophile Quercus and Fraxinus forests	Lythrum salicaria ^M , Alnus glutinosa ^M , Filipendula ulmaria ^M , Glechoma hederacea ^M , Phragmites australis^M					

Asplenium scolopendrium

Vaccinium myrtillus

Filipendula ulmaria

Discussion

Case of acidophilous beech forest

	Prediction													
		SB	AS	QBM	RG	FQC	NQF	AQC	NF	WSR	AF	CFQ	TAQ	XFQC
	SB	83%	2%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	AS	0%	68%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	QBM	14%	2%	83%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	RG	0%	1%	0%	69%	0%	0%	0%	0%	1%	0%	0%	0%	0%
	FQC	0%	4%	0%	5%	93%	1%	0%	1%	0%	0%	2%	2%	9%
	NQF	0%	1%	0%	5%	0%	89%	2%	0%	0%	0%	1%	0%	0%
Reference	AQC	0%	0%	0%	0%	0%	0%	73%	0%	0%	0%	0%	0%	0%
	NF	0%	2%	0%	4%	0%	2%	1%	91%	8%	0%	5%	3%	1%
	WSR	0%	0%	0%	1%	0%	0%	0%	0%	69%	0%	2%	2%	0%
	AF	3%	21%	15%	15%	6%	8%	24%	5%	11%	99%	2%	33%	3%
	CFQ	0%	0%	0%	0%	0%	0%	0%	1%	11%	0%	88%	2%	2%
	TAQ	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	58%	0%
	XFQC	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	84%
	Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

High confusion of other predicted PNV with acidophilous beech forest reference polygons

Hypotheses:

- 1. Most dominant PNV with coarser mapping
- 2. Long-term management of beech forest

Discussion

Biotope ecological niches in human dominated landscapes

PNV better represent original ecological niches?

Can we tend to the original ecological niches in a landscape dominated by human activities?

Thank you for your attention

Contact: axel.bourdouxhe@uliege

Gembloux Agro-Bio Tech Université de Liège

Method

Results

Discussion

Context

Walloon region = **16 900km²** (5% of Poland)

Context Method Results

Potential natural vegetation Model potential biotope distribution to

- 1. guide further biotope surveys
- 2. guide restauration of biotopes to increase their conservation state and species habitats availability

Discussion

- 3. model numerous biotopes on a whole region
- 4. consider natural disturbance to perform a dynamic ecosystem management

Method

Results

Discussion

PNV modeling

Individual PNV prediction

Model : Random forest

Calibration data: Eunis polygon map , presence/ absence (PNV modeled/other PNV)

Predictors: uncorrelated environmental predictors (climate, topography, soil)

Balancing dataset: SMOTE algorithm

Accuracy metrics: AUC, overall accuracy, producer accuracy, user accuracy

Dominant PNV classification

Model : Random forest

Calibration data: Eunis polygon map , classes : different PNV

Predictors: individual PNV predictions

Balancing dataset: weighted class importance

Accuracy metrics: AUC, overall accuracy, producer accuracy, user accuracy

Individual PNV Modeling

Dominant PNV Classification

