EFFECT OF TANK MIXED ADJUVANTS ON THE DRIFT POTENTIAL OF PHENMEDIPHAM FORMULATIONS

C. STAINIER A, M-F. DESTAIN A, B. SCHIFFERS B & F. LEBEAU A

Gembloux Agricultural University,

A Unité de Mécanique et Construction, B Laboratoire de phytopathologie
Passage des Déportés 2, BE-5030 Gembloux, Belgium
E-mail: stainier.c@fsagx.ac.be

ABSTRACT

The aim of this paper is to analyse the effect of adjuvants and formulations on drift. The spray liquids consisted of four adjuvants (Actirob 0.4%, Tensioflex 0.2%, Break-thru 0.2%, Silwet L-77 0.1%) with water and with two formulations of Phenmedipham (CuH2N2O4, 4.45%): an emulsion-forming (EC) and a suspension concentrate (SC). A standard flat fan nozzle at a pressure of 3 bar was used. The droplet size spectrum of each combination was determined using a Malvern granulometer. The droplet size was characterized by the volume median diameter (VMD) and the percentage of spray volume contained in droplets <100 μm (%<100). The relative drift potential was measured for each combination of formulation and adjuvant in a wind-tunnel. This latter has a working section 2.0 m wide by 2.0 m high by 6.0 m long. The air-stream is drawn by a 1.2 m diameter axial flow fan, powered by a 22 kW electric motor. Wind speed was 5 m/s. Its uniformity was controlled by a three-dimensional sonic anemometer able to move on a linear translation beam placed in the tunnel cross section. The wind-tunnel was operated under ambient conditions and three repetitions were performed randomized in order to eliminate variations in temperature and humidity for each combination. The ground spray deposits were measured on glass fiber collectors using a fluorescent tracer dye (sodium fluorescein). The statistical analysis of the droplet spectrum showed that the Phenmedipham SC formulation generated droplets of higher size than the EC. The mean VMD values were respectively equal to 228±11 μm and 185±11 μm for these formulations. For SC formulation, Break-thru decreased the VMD while Tensioflex increased the %<100. This confirmed that the degree to which an adjuvant influences spray characteristics is very variable. The drift profiles produced by the different combinations were similar, but the relative drift potential was significantly different comparing SC and EC formulations: it respectively reached 0.8±0.08% and 1.2±0.08%, whatever the adjuvant used in the liquid.

Clearly, when using a flat fan nozzle to spray Phenmedipham, the droplet size and the drift potential are mainly governed by the kind of formulation, even if an interaction between the formulation and the adjuvant exists.

Keywords: drift; formulation; droplet size; adjuvant

INTRODUCTION

Spray drift is now thoroughly considered because it can affect human health and the environment. It has become an important aspect in the registration process of pesticides. Drift of sprayer has been studied over years by using different techniques. Field studies are designed mainly to measure actual drift as a function of meteorological variables (wind speed, temperature and relative humidity), of
application parameters (nozzles kind, boom height and speed) and of vegetation structure (Ganzelmeier et al., 1995, Weisser et al., 2002, Koch et al., 2003). These studies involve a great amount of field trials and consequently are time-consuming and expensive, further more the number of variables involved makes interpretation difficult. Wind-tunnel techniques have been developed (Miller et al., 1993, Parkin & Wheeler, 1996, Waldlake et al., 2000, Murphy et al., 2000) and are being further used to characterize independently the effect of operating parameters on the drift risk in controlled conditions. Whatever the technique used, it appears that drift increases when a high proportion of the spray is produced in fine drops. Several parameters are used to characterise the droplet size spectrum, but the main basic parameter used to explain the drift potential of an application technique are the Volume Median Diameter (VMD) and the volume delivered in droplets smaller than 100 µm (Göbel & Pearson, 1993, Koch et al., 2003). Nevertheless, according to Miller & Butler Ellis (2000), these measurements could lead to misleading information when comparing the risk of drift for different nozzles types. For a given pressure, the droplet size spectrum depends on the nozzle design, on the physical properties of the spray liquid and on the interaction between these two factors. From the Silsoe Research Institute studies on the effect of the physical properties of spray liquid on spray formation (Miller and Butler Ellis 2000, Butler Ellis et al. 2001), it appears that the main properties influencing the spray formation process are the dynamic surface tension and the viscosity, even if other factors have to be taken into account. It also appears from Miller and Butler Ellis results that the effect of emulsion based tank-mixed additive on the sprays is to increase the droplet size while surfactant based tank-mixed additive have the opposite effect. The interaction between nozzle and spray liquid was also investigated by Butler Ellis and Tuck (1999) with a study on the formation of sprays for five hydraulic nozzles with seven spray liquids. Even if spray formation mechanism are similar for a spray liquid through each nozzles, changes in droplet size were not the same for all nozzles. The consequence is that the development of a model predicting the droplet size of sprays as a function of the spray liquid remains difficult.

As it comes that the modelling of the spray drift including effect of properties of liquid is hazardous, direct measurements performed in wind tunnels with realistic sprays formulations and wind controlled conditions are the most appropriate solution to obtain accurate quantification of drift. Within this scope, the work reported in this paper analyses the potential drift of a phenoxy carbamate herbicide, Phenmedipham (C₁₆H₁₂N₂O₄). Two formulations of this low toxicity herbicide are used: an emulsifiable concentrate (EC) and a suspension concentrate (SC), with four different additives. In general, EC formulations are less expensive, easier to formulate but more toxic regarding to the solvents needed to maintain emulsion than SC formulations. These latter contain more surfactant than can improve adhesion and coverage of the crop and are more stable in water than EC. The chosen tank-mix additives are not dedicated to one particular formulation but for several applications. In the study, a standard flat fan nozzle type is used to determine how the spray mixture effect on spray formation and on spray drift is influenced.

Materials and Methods

Spray mixtures and nozzles

Two phenmedipham (C₁₆H₁₂N₂O₄) formulations were evaluated: Betanal (Bayer Crop Science), an emulsifiable concentrate (EC, 157 g/l), and Kemifam SC (Bayer Crop Science), a suspension concentrate (SC, 160 g/l). Each formulation of this sugar beet widely used phenoxy carbamate herbicide was mixed at the rate 4.45 % of mass which is within the Belgian authorized concentration. Four additives belonging to different chemical families were selected: Actirob B (esterified crop oil, 0.40 %), Tensiofix D03 (non-ionic surfactant, 0.20 %), Break-thru S-240 (organosilicone surfactant, trisiloxane, 0.15 %), Silwet L-77 (organosilicone surfactant, heptamethyilsiloxane, 0.10 %). Fifteen combinations were tested, including the two phenmedipham formulations alone or with the additives. (Table 1). Water alone and water mixed with the additives were used as reference. A F110/0.8/3.0 flat fan nozzle was used to spray the mixtures at a constant 3 bars pressure using a centrifugal pump (0.80 l/min).

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation</td>
<td>KEMIFAM SC</td>
<td>Suspension Concentrate of Phenmedipham (160g/l)</td>
</tr>
<tr>
<td></td>
<td>BETANAL</td>
<td>Emulsion Concentrate of Phenmedipham (154g/l)</td>
</tr>
<tr>
<td>Tank mix additive</td>
<td>Actirob B</td>
<td>Esterified crop oil</td>
</tr>
<tr>
<td></td>
<td>Tensiofix D03</td>
<td>Non-ionic surfactant</td>
</tr>
<tr>
<td></td>
<td>Break-thru S-240</td>
<td>Organosilicone surfactant (Trisiloxane)</td>
</tr>
<tr>
<td></td>
<td>Silwet L-77</td>
<td>Organosilicone surfactant (Heptamethyilsiloxane)</td>
</tr>
<tr>
<td>Spray mixtures</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water + Tensiofix D03</td>
<td>Kemifam SC + Tensiofix D03</td>
</tr>
</tbody>
</table>

Spray characteristics

The droplet size spectra were measured using a Malvern Particle Analyser (Mastersizer S) (University of Gent, Belgium). As the droplets diameter is known to be variable across the spray, three measurements were performed to sample the spray plume at 30 mm spacing, 150 mm down the nozzle tip, perpendicular to the main nozzle axis for the elliptical sprays of flat-fan nozzle. Measurements of spray droplets size distributions were analysed to determine the Volume Median Diameter (VMD) and the percentage of liquid volume contained in droplets less than 100 µm (%<100µm).

Spray drift trials

The drift of the 15 spray mixtures was determined in the aerodynamic wind tunnel facility at Gembloux Agricultural University, Belgium. This is a closed loop re-circulating wind tunnel designed around a 1200 mm diameter axial blower driven by a 22kW electric motor with variable speed controller. To minimise inherent turbulence intensity, the wind tunnel has a 1 m long honeycomb of 200*200 mm square tubes with a monoplane wind-break grid upstream and a porous textile sheet downstream to produce the desired turbulence intensity and uniform mean velocity profile. The test section of the wind tunnel is 2 m wide, 2 m high and 6 m long and located 1 meter downstream of the fabric. The blower located at the loop opposite to the test section drew air through the tunnel at the desired velocity within the range 0-6 m/s. The wind tunnel is mainly constructed of galvanised sheet metal and contains several clear plexiglass windows along the test section.

The nozzle under test was mounted in the wind tunnel on a computer controlled servo-motor traversing mechanism that move the nozzle horizontally at a 2 m/s speed, perpendicular to the air flow, 10 times across the working section of the wind tunnel (Figure 1).

![Wind tunnel test section diagram](image)

Figure 1. Wind tunnel trial setup for drift measurements

Three repetitions were made for each nozzle-mixture combination. The drift was evaluated by measuring the ground spray deposits on glass fiber collectors using a fluorescent tracer dye technique for 5 m/s wind to maximise drift. The deposits were measured every 1 meter from 2 to 6 m downstream the nozzle, for a total of 5 sampling points. Four 25*100 mm fiber glass collector were fixed to a clean tile with a rubber band for each sampling point to avoid unwanted contamination of the sampler with some residue on the tunnel floor. The rubber band was parallel to the air flow to limit the effect on the collector efficiency. The samplers were collected directly after the trial in 50 ml plastic tubes and stored in darkness. Fluorescein sodium salt (Sigma-Aldrich) was extracted by washing for 5 minutes in potassium phosphate buffer solution and quantified using a LS-50b Perkin-Elmer fluorometer using a combination of a primary and secondary filters of respectively 490 nm and 510 nm. From the reading of the fluorometer, the calibration line, the collector surface area, the dye concentration and the volume of solution, the amount of spray deposit per unit area was calculated. To allow statistical analysis of the wind tunnel trials, the curve obtained for spray deposits recovered on the sampler (Figure 2) has been reduced to one number. Herbst (2001) defined such a number for vertical drift profiles (DIX).

![Drifted Part (%) = Collected Volume / Theoretical Volume](image)

Figure 2. Horizontal drift curve and Drifted Part Illustration, flat-fan nozzle, 3 bar pressure, 50 cm height, 2 m/s boom speed and 5 m/s wind speed.

For our horizontal drift measurements, a Drifted Part (DP) parameter was defined as the part of the sprayed volume drifted between 2 and 6 meters. DP was computed from the spray deposits as follow:

\[
DP = \frac{100 \times v \times D \times \left(\frac{d_{40} + d_{50}}{2} + d_{60} + d_{70} + d_{80} \right)}{q}
\]

With:
- DP : Drifted Part between 2 and 6 m (%)
- \(d_{40}\) : Spray drift deposit on collector located 1 meters downstream from the nozzle (ml/m²)
- v : nozzle speed across the tunnel (m/s)
- D : distance between two collectors (m)
- q : nozzle flow output (ml/s)

RESULTS AND DISCUSSION

Droplet size measurements

The statistical analysis is based on ANOVA to highlight interactions between parameters and Newman & Keuls multiple comparisons stepwise method to determine limits of groups of same behaviour. Table 2 first and second column are relative respectively to the VMD measurements and group classification while the third and fourth column shows values and groups for the %<100 µm measurements for all 15 mixtures these statistical tests gave two levels of interactions effects. The spray droplet spectra was mainly affected by the kind of formulation and to a lesser extend by the tank-mixed additive. Some differences appeared between both formulations with this nozzle whatever the adjuvant mixed. Regarding to water mixtures, EC formulation mix-
tures generated a mean VMD increase of 28% while SC formulation VMD were similar to that of water with a 4% variation. These former results vary between tank mixed additives for each formulation. A statistical classification between additives for each formulation is given Table 2. The droplet distribution shows significant differences between additives while they are tested in water alone. However, when mixed with SC or EC formulation, the additive effects are hidden except for SC + Tensiofix spray mixture. Table 2 also show that VMD and %<100μm are highly related, what result in a similar classification.

Table 2. Measurements and statistical grouping results of the 15 spray mixtures for VMD (μm), %<100μm with a fixed flat fan nozzle (3 bar pressure) and Drifted Part (%) for a moving flat fan nozzle (3 bar pressure, 50 cm height, 2 m/s boom speed and 5m/s wind speed).

<table>
<thead>
<tr>
<th>ValueGroup1</th>
<th>ValueGroup2</th>
<th>ValueGroup3</th>
</tr>
</thead>
<tbody>
<tr>
<td>w + actirob</td>
<td>SC + EC</td>
<td>EC + actirob</td>
</tr>
<tr>
<td>water</td>
<td>SC</td>
<td>EC</td>
</tr>
<tr>
<td>w + tensiofix</td>
<td>SC</td>
<td>EC</td>
</tr>
<tr>
<td>w + break-thru</td>
<td>SC</td>
<td>EC</td>
</tr>
<tr>
<td>w + silwetL-77</td>
<td>SC</td>
<td>EC</td>
</tr>
</tbody>
</table>

Drift measurements

Figure 3 presents the flat fan nozzle horizontal drift profile measured for water, SC and EC formulation without additives. The low variability between repetitions confirms the good repeatability of the measurements. If we focus only on the formulation effect, the SC formulation increases significantly the drift level with regard to water while the EC formulation decreases drift level for the flat-fan nozzle. The Figure 4 shows the tank-mix additive effect on the drift curve with water alone (a), SC (b) and EC (c) formulation. Tested in water, Tensiofix, Break-thru and silwet L-77 give a higher drift curve than water while Actirob give a lower curve. The Neuman & Keuls test on the DP of those curves used to establish same behaviour groups, underlines three DP levels for group 1 (Table 2, 6th column): the 1a water level.

Figure 3. Mean drift curve of water, SC formulation and EC formulation for a flat-fan nozzle. 3 bar pressure, 50 cm height, 2 m/s boom speed and 5 m/s wind speed.

The 1b level having significantly smaller DP than water contains Actirob while tensiofix, break-thru and silwet L-77 are in 1c group than shows significantly higher drift potential than water. The effect of tank-mix additive is much smaller when SC formulation is present as shown in Figure 4b. The statistical test gives no significant differences between Drifted Part of the five different mixtures from the group 2. The same conclusion appears when additives are used with EC formulations where DP differences are further reduced (group 3). This main effect of formulation on mixture behaviour, whether tank-mix additives are present or not, could be explained by the high concentration of the phenmedipharm formulations (manufacturer recommended 4.45%) relatively to the range of the additive concentrations (between 0.1 and 0.5%). Indeed EC and SC phenmedipharm formulations also contain a large amount of co-formulates which concentrations can be higher than tank-mix additives, (a.e. Kemipharm SC contains 40% of vegetable oil than represent 1.78% volume compared to the 0.4% of the oil tank mix additive Actirob), leading to a moderate effect of the later ones on the droplet and drift behaviour.

Relations between droplet size distributions and drifted part

The correlation coefficient between VMD and drifted part is being quite poor (R² = 0.38), it appeared that there is no clear relations between droplet size and drift. As a matter of fact, even if it is widely known than VMD or %<100μm are good drift indicators, regarding to measurements made with the same liquid and similar spray nozzles of different flow rate, the present results confirm Butler Ellis and Bradley (2002) observations on the effect of formulations on spray drift. This poor correlation may result from the lower range of droplet size variation and influence of the formulation on other spray parameters as droplet initial velocity.
CONCLUSION

The effect of spray mixture on the droplet size spectra and drift was investigated for a flat-fan nozzle. The effect of the four tank-mix additives on whether the droplet size spectra or drift, was greater in pure water than in both formulations where their effect was damped. The mean effect of SC formulation was to decrease drift while it was increased for the EC formulation. The drift was not found highly correlated with the droplet size spectra parameters.

REFERENCES