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Abstract 

The way faces become familiar and what information is represented as familiarity develops 

has puzzled researchers in the field of human face recognition for decades. In this paper, we 

present three experiments serving as proof of concept for a cost-efficient mechanism of 

face learning describing how facial representations form over time and accounting for 

recognition errors. We propose that the encoding of facial information is dynamic and 

modulated by the intrinsic stability in individual faces’ appearance. We drew on a robust 

and ecological method using a proxy of exposure to famous faces in the real world and 

manipulated test images to assess the prediction that recognition of famous faces is 

affected by their relative stability in appearance. We consistently show that stable facial 

appearances (like Tom Cruise’s) facilitate recognition in early stages of familiarisation but 

that performance does not improve much over time. In contrast, variations in appearance 

(like Jared Leto’s) hinder recognition at first but improve performance with further media 

exposure. This pattern of results is consistent with the proposed cost-efficient face learning 

mechanism whereby facial representations build on a foundation of large-scale diagnostic 

information and refine over time if needed. When coarse information loses its diagnostic 

value through the experience of variations in appearance across encounters, diagnostic 

facial details and/or their spatial relationships must receive more weights, leading to refined 

representations that are more discriminative and reliable than representations of stable 

faces. 

Keywords: face recognition, familiarisation, representational weight, identification, face 

processing 
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Highlights 

- We propose that face learning is cost-efficient and modulated by the relative 

stability of individual faces’ appearance over episodic encounters, over and beyond 

changes in viewing conditions, and that encoding of facial information operates in a 

flexible and coarse-to-fine manner. 

- We predicted that actors’ stability in appearance and their levels of media exposure 

should interact to produce representations that are more or less reliable in a face 

recognition task. 

- Results suggest a contribution of the most typical peripheral information to holistic 

facial representations. 

- Data show an overall recognition advantage for famous faces with a stable 

appearance compared to faces displaying more variable looks. 

- This advantage is due to stability facilitating recognition in earlier stages of 

familiarisation but performance is reversed to the benefit of variable faces with 

higher degrees of media exposure. 

- This pattern is in line with a cost-efficient encoding mechanism yielding coarser 

representations for stable faces and promoting refinement when variations in 

appearance are observed over episodic encounters. 

- This pattern seems in contrast with demonstrated benefits of exposure to variations 

during face learning but we discuss the role of learning supervision or lack therefore 

in laboratory and real-world conditions to explain the unexpected benefits of 

stability in appearance we found. 

- Research on familiar face recognition and face learning must consider individual facial 

characteristics to help refine existing theoretical accounts.  
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The impact of stability in appearance on the development of facial representations  

While most of us recognise a large number of familiar faces effortlessly and with great 

accuracy  (Brédart & Devue, 2006; Devue et al., 2007; Jenkins, Dowsett, & Burton, 2018; 

Tong & Nakayama, 1999), learning new faces is difficult and highly error-prone (Hancock et 

al., 2000; Young & Burton, 2018). Understanding this transition in performance between 

these extremes is the number one challenge to move research on face learning and 

recognition forward (O’Toole et al., 2018; Young & Burton, 2018).  

In fact, we know surprisingly little about which facial cues we memorise and draw on 

to recognise people, and whether and how what we memorise changes over time. Seminal 

research showed that upon viewing novel faces, we rely by default on external or peripheral 

features, like hairstyle, even if this strategy is suboptimal and leads to poor recognition 

performance (Ellis, Shepherd, & Davies, 1979; Patterson & Baddeley, 1977; Young, Hay, 

McWeeny, Flude, & Ellis, 1985; see also Bruce et al., 2001; Hill et al., 1997; Longmore et al., 

2017; White et al., 2014). By contrast, recognition of highly familiar faces would rely on both 

internal and external features or favour the former (R. Campbell et al., 1995; Ellis et al., 

1979; Kramer, Manesi, et al., 2018). The two categories of features would be part on the 

same holistic representation (see e.g., Andrews, Davies-Thompson, Kingstone, & Young, 

2010), even though when presented in isolation, internal features are judged as more 

diagnostic of identity than external features (Kramer, Manesi, et al., 2018). The way 

representations transition from a suboptimal reliance on external features to a more 

optimal reliance on both internal and external features in familiar faces thus remains to be 

established. 
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One obstacle to understanding how familiarity with faces develops has been a 

tendency to study the processing of new faces and familiar faces separately (Burton, 2013). 

A possible reason for that tendency is an interpretation of observed differences in 

performance between unfamiliar and familiar faces as the manifestation of qualitatively 

different processes (for a review, see Johnston & Edmonds, 2009). Upon encounter with 

new faces, we would form simplistic pictorial representations that do not generalise well to 

new views and that fail to match new percepts of the same face resulting from changes in 

lighting or physical appearance (Burton, Bruce, & Hancock, 1999; Longmore et al., 2017). 

Once familiar, faces would benefit from face-specialized processing—i.e., view-invariant, 

holistic, or centred on inner-features and their configuration, depending on theories—

allowing their recognition despite changes in viewing conditions. However, this dichotomy 

between unfamiliar and familiar faces may be the by-product of unfair comparisons. Unlike 

famous or personally familiar faces that have been learned in rich conditions (e.g., in 

motion, with changes in lighting and context), unfamiliar faces have traditionally been 

learned from one or a limited number of photographs in artificial laboratory conditions. The 

latter learning conditions are insufficient to form three-dimensional representations of 

complex objects like faces and it was established that exposure to multiple viewpoints 

and/or movement improves learning (Etchells et al., 2017; Johnston et al., 2013; Lander & 

Bruce, 2003; Pilz et al., 2006). Therefore, it is plausible such dichotomy does not apply to 

real-world situations where we learn new faces in rich circumstances similar to those in 

which we also encountered faces that have become familiar. Recent studies examining 

neural changes produced after brief real-life encounters with new persons suggest these 

encounters are sufficient to yield activation in areas devoted to perception and memory for 
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faces and image-independent representations (Campbell & Tanaka, 2021; Popova & Wiese, 

2023; Sliwinska et al., 2022). 

More recently, computational models have refined what plausible mechanisms of 

familiarisation might entail. They suggest that we come to remember familiar faces by 

focusing on stable inner features (e.g., eyes, nose, mouth) and ignoring changeable 

peripheral ones (Burton, Jenkins, Hancock, & White, 2005; Burton, Bruce, & Hancock, 1999; 

Jenkins & Burton, 2011; Kramer, Young, & Burton, 2018; Robins, Susilo, Ritchie, & Devue, 

2018). Somehow, we would incorporate or average out variations in lighting, viewpoint, 

appearance, and expression to form robust memory representations that include stable 

inner aspects and unique ways in which a given face varies (Jenkins & Burton, 2011). Once 

formed, these abstract representations would enable recognition of novel instances of an 

individual (Burton, Kramer, Ritchie, & Jenkins, 2016; Kramer et al., 2018). Principal 

component analysis (PCA) models predict that the quantity and the quality of variations 

observers are exposed to should gradually improve recognition performance (Kramer, 

Young, et al., 2018). 

Recent human data partly support this rationale in research focused on the 

development of familiarity in more ecological conditions. For example, we showed that 

increased exposure times to faces of actors learned incidentally in a TV show led to linear 

increases in recognition (Devue et al., 2019). Moreover, familiarisation with new faces in 

laboratory conditions is facilitated by exposure to large ranges of variations in natural 

images, mixing environmental (e.g., lighting, background, camera lens, camera angle) and 

facial (e.g., expression, age, weight, look/appearance) factors, and more so than by mere 

increases in exposure time (Baker, Laurence, & Mondloch, 2017; Menon, Kemp, & White, 
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2018; Menon, White, & Kemp, 2015; Murphy, Ipser, Gaigg, & Cook, 2015; Ritchie & Burton, 

2017; Robins, Susilo, Ritchie, & Devue, 2018). Interestingly, a recent study shows that a 

combination of changes in facial appearance, clothing and context help yield more reliable 

and durable facial representations than just systematic changes in viewpoints (Corpuz & 

Oriet, 2022). 

However, conclusions drawn from PCA models on the crucial role of inner features are 

sometimes in conflict with human data. Most strikingly, people occasionally fail to recognise 

highly familiar people, including themselves, when peripheral features deviate from their 

usual appearance, even if inner features are clearly visible (Brédart & Young, 2004; Carbon, 

2008; Devue et al., 2019; Sinha & Poggio, 1996). Further, some famous individuals are better 

recognised from their peripheral features alone than from their inner features alone (see 

Table 1 in Ellis and Davies, 1979). These observations are incompatible with the notion that 

representations of familiar faces heavily and universally rely on invariant internal features. 

This inconsistency between human and computer data could occur partly because most 

computational models ignore peripheral features by design, thereby discounting 

information valuable to humans. It seems that in humans, inner features are not always 

necessary nor sufficient to trigger recognition of familiar faces and so they might not always 

carry the most diagnostic information for a given face. 

To resolve these apparent contradictions and explain how facial representations 

evolve as familiarity unfolds, we propose a parsimonious mechanism of face learning that 

integrates multiple aspects of existing theoretical accounts. First, we assume that any 

feature (e.g., hair colour, ear or nose shape) can be more or less diagnostic of individual 

facial identity, regardless of its location and of the face’s familiarity (see also Abudarham & 
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Yovel, 2018). Rather than systematically relying on a costly encoding of all inner features 

and their details, representations are weighted based on the relative stability of different 

features over time, which make them more or less diagnostic (e.g., invariable nose vs. 

changing aspect of eyes due to variable makeup). Second, we take limitations in storage 

abilities inherent to humans into account and assume that the encoding of coarser 

information (e.g., head silhouette, hairstyle and colour, light/dark pattern of inner features) 

is prioritised over that of finer details (e.g., details of the lips) because a coarse-to-fine 

prioritisation during encoding should incur fewer storage resources (Gao et al., 2013). This 

flexible and dynamic encoding mechanism would create cost-effective memory 

representations that start off as coarse but refine over time, particularly if changes in 

appearance are encountered (Corpuz & Oriet, 2022) and/or if demands for recognition out 

of context increase. 

From these two basic assumptions, we hypothesise that the relative stability of 

changeable aspects (e.g. hairstyle, hair colour, facial hair) of people’s facial appearance 

affects the quality of facial representations, specifically in terms of their spatial resolution. 

Coarse-to-fine processing is ubiquitous in scene, object, and face perception and depends 

on factors such as the type of categorisation task (e.g., Morrison & Schyns, 2001; Nakashima 

et al., 2008; Schyns & Oliva, 1994; Yan et al., 2022). Therefore, we propose that the scale of 

information encoded for a given face depends on its intrinsic characteristics, and on what is 

diagnostic enough to distinguish it from other faces. We further assume that the refinement 

of facial representations unfolds over longer time scale than the coarse-to-fine processing 

occurring during visual perception, and that memory refinement takes place across episodic 

encounters as a function of one’s relative stability in appearance. When we view a face with 

a stable appearance, large-scale peripheral features and coarse information (e.g. hair colour 
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and style) are diagnostic and receive substantial representational weight. Moreover, details 

of inner features need not be encoded, yielding low-resolution representations. By contrast, 

when we observe that people change their appearance frequently through variations in 

hairstyle, hair colour, makeup or facial hair, the set of large-scale diagnostic features one 

might rely on decreases. Therefore, finer aspects that remain stable over time or that are 

less likely to be occluded by changes in hair, facial hair or make-up must receive more 

representational weight, thereby producing representations that include areas with higher 

resolution. In this framework, recognition errors like a failure of recognition following 

unexpected changes in appearance in a well-known person or false recognitions of strangers 

based on gross resemblance with familiar faces are thus viewed as the flipside of an 

otherwise efficient mechanism. 

 

Figure 1. Illustration of differences in stability in appearance in two individuals in 
terms of hairstyle, make-up and accessories (variable appearance on top and 
stable appearance at the bottom), over and beyond natural variations in facial 
expression, viewpoint, lighting, clothing and context, or variations due to camera 
artefacts. [Due to copyright restrictions, pictures used in the experiments are not 
shown. The people depicted here have provided permission.] 
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As a first step for testing the assumptions of this model, we present a series of three 

recognition experiments using actors’ faces. One advantage of using actors is that their 

faces were learned through a rich variety of viewing conditions, over extended time periods, 

and without explicit instructions to do so, leading to very ecological encoding conditions 

compared to classical lab-based face learning tasks. Simultaneously, we can operate a strict 

selection of individual actors based on their physical appearance (see an illustration on 

Figure 1). Half of the actors had a stable appearance (e.g., Tom Cruise) and half had a 

variable appearance (e.g., Jared Leto). Further, to probe the nature of representations 

observers relied on during recognition, we manipulated the type of information available in 

test images, and measured how this affected recognition performance. 

We examined whether and how the relative stability of one’s appearance over 

encounters changes the likelihood that they are recognised. If efficient face encoding relied 

on averaging inner features as a group, as implicitly suggested by PCA models, one could 

expect comparable recognition performance regardless of variations in facial appearance, 

because recognition should rest upon robust representations of invariant inner features. 

Instead, we predicted different recognition performance for actors with a stable appearance 

and those with a more variable appearance. This pattern would in and of itself demonstrate 

that face encoding operates in a flexible and dynamic manner as a function of a face’s 

relative stability. 

Finally, to examine how stability in appearance modulates the evolution of 

representations over time and with increased exposure, we drew on a method developed 

recently that uses a proxy of exposure to actors in the real world (see Devue et al., 2019). 

Specifically, we controlled that the amounts of media exposure stable and variable actors 
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had received were comparable, based on an objective measure of public visibility available 

on the Internet Movie Database (IMDb). To get a snapshot of how reliable representations 

may be at different levels of exposure, we compared recognition performance for actors 

with two levels of popularity (popular and less popular). Based on previous research that 

suggests a shift of focus from external features for newly encountered faces, towards a 

conjoint use of internal and external features or favouring the former as a face becomes 

familiar (Ellis et al., 1979; Young et al., 1985), we hypothesised that representational 

weights initially set on large-scale external features would converge towards inner features 

and their details over time. In other words, the encoding and consolidation of 

representations would operate based on statistical learning of stable elements of varying 

scales over encounters. We thus expected that stability would interact with popularity. 

General Methods 

Participants. Based on power analyses (see Supplementary Materials) and to 

minimise the impact of individual differences in face recognition skills or in individual 

exposure to individual actors amongst participants, we recruited a large sample of 100 first 

year psychology students in Experiment 1 (i.e. ten times more than needed from a priori 

power calculations). Sample sizes were adapted in subsequent experiments. In all 

experiments, we excluded participants who did not comply with instructions (i.e., who failed 

more than 50% of attention checks; see procedure below), and/or who responded too fast 

(<600 ms or under -2SD from the sample’s overall mean reaction time). The study was 

approved by the local Ethics Committee. 

Materials. Actor selection. Stability in appearance of prospective actors within given 

ranges of popularity based on StarMeter ranks (see below) was determined from a visual 
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inspection by authors CD and SD of the pictures on the right-hand side thumbnails returned 

from a Google web search and in the first five to six rows of Google image searches. 

Prospective actors were first rated by the authors as displaying low, moderate or high levels 

of variations based on the appearance of changeable dimensions like hairstyle, hair colour, 

facial hair, makeup, and accessories (e.g., glasses, hats) across images in the two search 

results. CD and SD then agreed on a selection based on those ratings while ensuring 

equivalent sex and age distributions in four different conditions (2 stability x 2 popularity). 

For the stable condition, we selected 48 actors (24 women, 24 men; Mean age = 41.65 

years, SD = 13.04) whose pictures showed similar appearance on changeable dimensions 

(e.g. similar hairstyle, hair colour, facial hair across photos and no changes involving several 

dimensions). For the variable condition, we selected 48 actors (24 women, 24 men; Mean 

age = 40.77 years, SD = 10.5) whose pictures markedly varied through various combinations 

of changes on changeable dimensions. Actors’ popularity was determined via the StarMeter 

ranks on IMDb pro, which reflect current popular interest for an actor and their visibility or 

exposure in the media—smaller ranks reflect higher popularity. Since we could not measure 

individual participants’ exposure to individual actors, the logic here is that the more media 

exposure an actor has, the more likely it is that participants as a group will have been 

exposed to them, and so the better they should be recognised. These ranks were found to 

predict recognition performance of actors’ faces in a recent study (Devue et al., 2019). We 

selected 48 actors (24 variable, 24 stable) with starMeter ranks between 1 and 500 for the 

“popular” condition. Importantly, startMeter ranks of variable actors (Mean = 170.5 ± 104.5, 

range = 1 - 385) and of stable actors (Mean = 168.5 ± 116, range = 5 - 407) were overall 
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similar1. We selected 48 actors (24 variable, 24 stable) with starMeter ranks between 1000 

and 1500 for the “less popular” condition, so that the ranks of variable (Mean = 1208.2 ± 

162, range = 1006 - 1480) and stable actors (Mean = 1199.6 ± 114, range = 1015 - 1470) 

were overall similar. Actors and their ranks are listed in Table S1. 

Unfamiliar faces (48 women and 48 men) were actors with very low popularity on 

IMDb (i.e., ranks >100,000; Mean = 246,309; SD = 354,212) from non-English speaking 

countries and/or who worked in theatre, so that they would not be known by our 

participants. Their average age (Mean age = 39.49 years, SD = 11.04) overall matched that of 

known actors (Mean age = 41.21 years, SD = 11.8). 

Image stimuli. For each of the 96 actors, we selected one image showing their most 

typical appearance—where the aspect of changeable features shows the most overlap 

across Google search images (e.g., no facial hair and short grey hair for Harrison Ford; blond 

short beard and semi long hair for Brad Pitt). For Experiment 3, we also selected 96 atypical 

pictures. We used the same approach as in Devue et al. (2019) and selected pictures with 

the most deviations possible from the usual appearance, including hair length, colour, 

and/or style, presence of facial hair, glasses, and differences in make-up that did not conceal 

internal features (e.g., goatee and earring for Harrison Ford; dark short hair and moustache 

for Brad Pitt). 

The set of 288 images (96 typical images of actors, 96 atypical images of actors, and 96 

images of strangers) showed faces in a frontal or slightly angled view and with a neutral or 

                                                           
1Note that since individual ranks are by definition unique, it is not feasible to pair stable and variable actors 
based on exact matched ranks. Moreover, actors that follow one another in the ranking do not necessarily 
display the desirable degree of stability/variability in appearance, gender, or age to achieve a perfect 
matching. 
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happy expression (all evenly distributed across conditions). Images were rotated to align the 

eyes on a horizontal axis. They were then cropped, so that the hairstyle was apparent while 

minimising the amount of visible clothing, and resized to 399 by 476 pixels. 

We created a “headshot” version of each image, in which the background was 

concealed with a grey field. For Experiment 1 and 2 we also created a “cropped inner 

features” version of typical images, where inner features appeared within a truncated 

ellipse (width = 264, height = 260 pixels), so that bangs and other external features were 

concealed by a grey field. 

Procedure. Participants performed a recognition test online via Testable.org. The 96 

pictures of actors and 96 pictures of strangers were presented in a random order at the 

centre of the screen—until a response was provided or for up to 3 seconds—and 

participants judged as accurately and fast as possible if they knew the face (i.e. yes, the face 

looks familiar, it has been seen before) or not via two response keys (1 = yes and 2 = no). 

Instructions thus emphasised visual familiarity with a face and specified that there was no 

need to remember the person’s name or identity to judge that their face was familiar. A 

1500-ms central fixation cross separated individual trials. Four attention checks—image 

with instructions to press a specific key (i.e., 5, 6, 7, or 8) instead of the two response keys—

and four breaks were dispersed randomly through the trials. Participants performed three 

practice trials before the test. 

Design and measures. Popularity (popular, less popular) and appearance (variable, 

stable) were manipulated within-subject in all experiments. Image condition (inner 

features/headshot, typical/atypical) was manipulated between-subject in experiments 2 and 

3a, and within-subject in Experiment 3b. We calculated d’ based on hit rate (i.e., proportion 
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of “familiar” responses to actors) in each famous actor face category (i.e. popular variable, 

popular stable, less popular variable, less popular stable) and on false alarm rate (i.e., 

proportion of “familiar” responses to unfamiliar faces) in the corresponding image 

condition. Descriptive statistics (means and standard deviations) for familiarity judgments 

(i.e. hit and false alarm rates) and reaction times of all experiments, as well as reaction 

times analyses for Experiments 2 and 3 appear in Supplementary materials. 

Transparency and openness. We preregistered the experimental design, analyses and 

hypotheses for the three experiments with in-built replication on the Open Science 

Framework before data collection, the document is visible at 

[https://osf.io/qd5y3/register/564d31db8c5e4a7c9694b2be - 31 July 2018]. Following 

unexpected results in Experiment 1, analyses plans for Experiments 2 and 3 were amended 

and preregistered on 10 September 2018 

[https://osf.io/h5f6s/register/564d31db8c5e4a7c9694b2c0 ]. The use of a within-subject 

design for Experiment 3b was preregistered on 5 December 2018 [https://osf.io/afm4e]. 

Image stimuli and datasets for all experiments are available on [https://osf.io/8znw5/files/].  

Experiment 1 

Methods. Participants were all tested with cropped images of inner features and so 

familiarity judgments relied exclusively on those features. Of the 100 participants recruited, 

96, aged between 18 and 40 years (72 women, 22 men, 2 non-binary; Mean age = 19.81 

years, SD = 3.62), completed the experiment in exchange of course credits. None of them 

was excluded. 

https://osf.io/qd5y3/register/564d31db8c5e4a7c9694b2be
https://osf.io/h5f6s/register/564d31db8c5e4a7c9694b2c0
https://osf.io/8znw5/files/
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Figure 2. Results of Experiment 1. Discrimination performance (d’) for images of 
cropped inner features as a function of popularity and appearance. Red circles 
show the mean, and boxplots show distribution in quartiles. Violin size is 
proportional to the distribution of performance in each condition. Values on the 
plot are effect sizes (Cohen’s d) for paired-comparisons. 

 

Results and discussion. We conducted a two-way repeated measure Analysis of 

Variance (ANOVA) with appearance (stable, variable) and popularity (popular, less popular) 

as within-subject factors on d’. As expected, popular actors (Mean = 1.36, SD = 0.85) were 

better discriminated from strangers than less popular actors (Mean = 0.74, SD = 0.58), 

F(1,95) = 226.755, p < .001, ηp
2 = .705. The predicted main effect of appearance (i.e., 

variable > stable) was not significant, F(1,95) = .342, p = .56, ηp
2 = .004, because of a crossed 

interaction with popularity, F(1,95) = 132.184, p < .001, ηp
2 = .582, see Figure 2. 

Benefit of increased media exposure/popularity. We followed up the interaction with 

one-tailed paired sample Student t-tests. As expected, sensitivity improved with increased 

exposure in both variable, t(95) = 16.825, pone-tailed < .001, d = 1.717 (95% C.I.two-tailed = 1.4 – 

2.031), and stable actors, t(95) = 6.775, pone-tailed < .001, d = 0.691 (95% C.I.two-tailed = 0.467 – 
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0.913). Cohen’s d values and the lack of overlap between their respective confidence 

intervals2 suggest that benefits of increased media exposure were significantly larger for 

variable than for stable faces. 

Impact of appearance. As predicted, for popular actors, inner features of variable 

faces were better recognised than those of stable faces, t(95) = 7.958, pone-tailed < .001, d = 

0.812 (95% C.I. = 0.58 – 1.041). Unexpectedly, for less popular actors, sensitivity to inner 

features was higher for stable faces than for variable faces, and so the one-tailed test based 

on our expectation of the opposite pattern was not significant, even if Cohen’s d indicates a 

large effect, t(95) = -9.029, pone-tailed = 1, d = 0.921 (95% C.I. = 0.681 – 1.159). This advantage 

for stable faces contrasts with findings in face learning studies where exposure to increased 

levels of variability leads to immediate increases in recognition rates compared to less 

variable viewing conditions (Baker et al., 2017; Corpuz & Oriet, 2022; Ritchie & Burton, 

2017). We assume that this difference is due to unsupervised learning conditions in which 

actors’ faces are often learned, contrasting with face learning in typical lab situations. 

Before actors become extremely famous, we might see them in multiple support roles 

without the explicit knowledge that they are the same person. In that situation, stability 

could help “put faces together” in that we are more likely to recognise someone who had 

similar appearances in different movies than someone who has changed. Stability may thus 

allow us to consolidate the representation of newly learned faces and of their inner features 

across episodic encounters. 

                                                           
2 We present two-tailed confidence intervals for comparison purposes as the one-tailed version’s upper limit is 
infinite. 
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Although the interaction between appearance and popularity did not take the 

anticipated shape—where a disadvantage of stable faces compared to variable faces would 

decrease over time if representations of all faces converged towards the same levels of 

refinements—the results of this experiment remain consistent with a cost-efficient face 

encoding mechanism. Faces that vary more are ultimately better recognised from inner 

features than faces that are more stable, suggesting that these features are represented in a 

more reliable manner—at a higher resolution. The larger improvement in recognition 

performance that variable faces display over time compared to stable faces suggests that 

their representations develop to be more fine-tuned than representations of stable faces, 

which tend to remain coarser. 

Experiment 2 

This experiment replicates and expands on Experiment 1. We compared recognition 

from images of inner features and headshots where external features are visible. We 

expected that in popular actors, the presence of coarse external features would reduce the 

disadvantage of stable faces in compensating for lower resolution representations of inner 

details. 

Methods. Because of the unexpected pattern with less popular actors in Experiment 

1, we pre-registered an amended analysis plan before data collection 

[https://osf.io/h5f6s/register/564d31db8c5e4a7c9694b2c0 – 10 Sept 2018]. The design and 

variables remain identical to those described in the original pre-registration.  

We used sequential analyses (Lakens, 2014)—details are presented in Supplementary 

Materials—and recruited a total of 123 participants, 3 of whom replaced participants who 

did not follow instructions (N = 2) or responded too fast (N = 1). Participants completed an 

https://osf.io/h5f6s/register/564d31db8c5e4a7c9694b2c0
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online recognition task either in the “inner features” condition (39 women, 18 men, 3 non-

binary; Mean age = 18.9 years, SD = 1.32) or in the “headshot” condition (41 women, 19 

men; Mean age = 19.15 years, SD = 1.87). 

Results and discussion. The critical p value for our sequential analyses was set at 

.0182. We present uncorrected p values and so an effect must be interpreted as significant 

when p < .0182. We conducted a three-way mixed effect ANOVA with appearance (variable, 

stable) and popularity (popular, less popular) as within-subject factors, and image condition 

(inner features, headshot) as between-subject factor on d’. We found the expected main 

effect of image condition, F(1,118) = 73.97, p < .001, ηp
2 = .385, as sensitivity was higher 

with headshots (Mean = 2.023, SD = 0.59) than with images of inner features (Mean = 1.121, 

SD = 0.556). The three-way interaction between appearance, popularity, and image 

condition was significant3, F(1,118) = 9.875, p = .002, ηp
2 = .077, see Figure 3. We then 

examined performance separately in each image condition and tested whether we 

replicated findings of Experiment 1 in the inner features condition. 

Inner features. As in Experiment 1, a two-way repeated measure ANOVA showed a 

main effect of popularity, F(1,59) = 216.173, p < .001, ηp
2 = .786, qualified by an interaction 

with appearance, F(1,59) = 43.161, p < .001, ηp
2 = .422. The main effect of appearance was 

not significant, F(1,59) = 1.539, p = .22, ηp
2 = .025. 

Follow-up t-tests showed that sensitivity to inner features increased with popularity 

for both variable, t(59) = 12.31, p < .001, d = 1.589 (95% C.I. = 1.204 – 1.967), and stable 

actors, t(59) = 8.136, p < .001, d = 1.05 (95% C.I. = 0.732 – 1.363). Effects sizes suggest 

                                                           
3 Results of the same ANOVA conducted at step 1 and step 2 of sequential analyses followed a 
similar pattern and are visible in Supplementary Materials. 
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numerically larger improvements from increased media exposure for variable than for 

stable actors but Cohen’s d confidence intervals overlap and so the size of the improvement 

is not significantly different. In popular actors, variable faces were better recognised than 

stable ones, t(59) = 4.125, p < .001, d = 0.533 (95% C.I. = 0.26 – 0.801), while in less popular 

actors, stability facilitated recognition compared to variability, t(59) = -5.967, p < .001, d = 

0.77 (95% C.I. = 0.479 - 1.056). 

 

Figure 3. Results of Experiment 2. Discrimination performance (d’) as a function 
of popularity, appearance of actors and image type(inner features vs. headshot). 
Red circles show the mean, and boxplots show distribution in quartiles. Violin 
size is proportional to the distribution of performance in each condition. Values 
on the plot are Cohen’s d for paired-comparisons. 

 

Headshots. The same ANOVA in the headshot condition yielded a roughly similar 

pattern, except that the main effect of appearance was significant, F(1,59) = 21.59, p < .001, 

ηp
2 = .268. Overall, headshots of stable faces (Mean = 2.14, SD = 0.65) were better 

discriminated from strangers than headshots of variable faces (Mean = 2, SD = 0.615). Here 
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too a significant main effect of popularity, F(1,59) = 433.31, p < .001, ηp
2 = .88, was qualified 

by an interaction with appearance, F(1,59) = 269.56, p < .001, ηp
2 = .82. 

Follow-up analyses showed that sensitivity improved with popularity for both variable, 

t(59) = 25.066, p < .001, d = 3.236 (95% C.I. = 2.598 – 3.868), and stable faces, t(59) = 7.186, 

p < .001, d = 0.928 (95% C.I. = 0.622 – 1.228). Cohen’s d values and their respective 

confidence intervals indicate that benefits of increased media exposure were much stronger 

for variable faces than for stable faces. Amongst popular actors, variable faces were better 

recognised than stable ones, t(59) = 8.05, p < .001, d = 1.039 (95% C.I. = 0.722 – 1.351), 

whereas in less popular actors, stability improved recognition compared to variability, t(59) 

= -14.665, p < .001, d = 1.893 (95% C.I. = 1.466 - 2.315). The significantly larger advantage of 

stable faces over variable faces in less popular actors relative to the advantage of variable 

faces over stable faces in popular actors must be driving the overall advantage of stable 

faces over variable faces shown in the main effect of appearance above. 

Gain from peripheral information. Figure 5 (panel A) illustrates gains in sensitivity from 

images of inner features to full headshots. We examined the gains provided by peripheral 

features in each actor category with four independent sample t-tests. We hypothesised that 

external information is more diagnostic in stable faces than in variable faces and so we 

expected larger gains—reflected by larger Cohen’s d—for stable faces than for variable 

faces. Peripheral features helped recognition in all the conditions and Cohen’s d values were 

numerically larger for less popular stable faces, t(118) = 8.853, p < .001, d = 1.616 (95% C.I. = 

1.201 – 2.027), than in the three other categories, in which gains were all in the same 

ballpark: popular variable, t(118) = 7.735, p < .001, d = 1.412 (95% C.I. = 1.009 – 1.81); 

popular stable, t(118) = 7.477, p < .001, d = 1.365 (95% C.I. = 0.965 – 1.761); less popular 
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variable, t(118) = 7.772, p < .001, d = 1.419 (95% C.I. = 1.016 – 1.817). However, the overlap 

of the four Cohen’s d confidence intervals suggest that the numerical difference was not 

significant. 

Consistent gains from inner features to headshots suggests that the presence of 

peripheral information supports recognition of both variable and stable faces, probably 

because it is part of a holistic representation(Andrews et al., 2010; Tanaka & Simonyi, 2016; 

Toseeb et al., 2012). Nevertheless, Figure 5 (panel A) suggests that proportionally, 

peripheral information seems particularly useful to both variable and stable faces in earlier 

stages of familiarisation. During that same stage, stability in appearance seems to facilitate 

familiarisation since it improves recognition compared to variable appearances. Over time 

however, further exposure to a stable appearance seems less effective in increasing the 

reliability of representations than when appearance has varied more. In other words, 

although increased variations in appearance initially slow down familiarisation, they 

eventually lead to more robust representations. 

Experiment 3 

Here we compared recognition of typical and atypical headshots, following the same 

design as Experiment 2, except that atypical headshots replaced images of inner features. 

We expected that once an actor is popular, atypical changes in appearance should be less 

disruptive for variable than for stable faces because recognition could be based on fine-

tuned representation of invariable features. 

Methods. Experiment 3a. We tested 59 first year psychology students and 67 

additional New Zealanders recruited via social media or amongst colleagues. We aimed to 

have at least 60 participants per group like in Experiment 2. We excluded two participants 
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who failed more than two attention checks and one participant whose accuracy was below 

50%. The final combined sample consisted of 123 participants (78 women, 45 men) aged 

between 18 and 55 (Mean = 22.93 years, SD = 6.8). There were 62 participants in the typical 

condition (35 women; Mean = 22.34 years, SD = 6.4) and 61 in the atypical condition (43 

women; Mean = 23.52 years, SD = 7.2). We did not find the expected advantage of 

typicality, which could have been due to individual differences in exposure to actors or in 

face recognition skills between groups. Further, this could be down to the mere fact that 

typicality effects are more subtle than effects from the removal of external features and 

that a between-subject design was underpowered in this situation despite a sample size 

similar to that in Experiment 2. To address these possibilities, we ran an additional 

experiment where image condition was manipulated within-subject. 

Experiment 3b. Here we aimed to collect data from 80 participants and tested 89 

Mechanical Turk workers located in the US. We excluded eight participants who failed 

attention checks, responded too fast, and/or whose accuracy was below 50%. The final 

sample consisted of 81 participants (35 women, 45 men, 1 non-binary) aged between 18 

and 67 (Mean = 37.19 years, SD = 10.62). As this sample had different demographics than 

those in the other experiments, it also provides an opportunity to test the generalisability of 

our findings. 

We presented typical and atypical headshots of the 96 actors to the same participants 

in a random order. Images of the 96 strangers were presented twice to maintain the ratio of 

trials with actors and strangers, giving a total of 348 trials. Eight breaks and four attention 

checks were dispersed throughout. The instructions specified that familiarity judgments 
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concerned pre-experimental familiarity, and that any person that appeared multiple times 

but was unknown prior the experiment should still be judged unfamiliar. 

Results. Experiment 3a. We conducted a three-way mixed effect ANOVA with 

appearance (variable, stable) and popularity (popular, less popular) as within-subject 

factors, and image condition (typical, atypical headshot) as between-subject factor on d’. 

Although performance was numerically lower with atypical headshots (Mean = 1.74, SD = 

0.7) than with typical ones (Mean = 1.91, SD = 0.09), we did not find the expected typicality 

effect, F(1,121) = 1.595, p = .21, ηp
2 = .013. There was a main effect of popularity, F(1,121) = 

813.399, p < .001, ηp
2 = .871, and of appearance, F(1,121) = 22.705, p < .001, ηp

2 = .158, with 

stable faces (Mean = 1.92, SD = 0.83) overall being better recognised than variable ones 

(Mean = 1.82, SD = 0.95). The three-way interaction between appearance, popularity, and 

image condition was not significant, F(1,121) = 1.491, p = .224, ηp
2 = .012. Nevertheless, 

Figure 4 (top panel) shows a similar pattern in each image type as in Experiment 2. For the 

sake of space, we do not report follow-up analyses and move on to Experiment 3b. 

Experiment 3b. Using a fully within-subject design, we found the expected main effect 

of image type, F(1,80) = 210.898, p < .001, ηp
2 = .725. Typical images (Mean = 1.62, SD = 

0.86) were now significantly better discriminated from strangers than atypical images (Mean 

= 1.37, SD = 0.86). There was a main effect of popularity, F(1,80) = 203.147, p < .001, ηp
2 = 

.717, and of appearance, F(1,80) = 8.673, p = .004, ηp
2 = .098, with an overall advantage for 

stable faces (Mean = 1.52, SD = 0.81) compared to variable ones (Mean = 1.47, SD = 0.92). 

The three-way interaction between image type, popularity and appearance was significant, 

F(1,80) = 7.652, p = .007, ηp
2 = .087, see Figure 4 (bottom panel). 
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Figure 4. Results of Experiment 3a (top) and 3b (bottom). Discrimination 
performance (d’) as a function of popularity and appearance, for typical and 
atypical images of actors. Red circles show the mean, and boxplots show 
distribution in quartiles. Violin size is proportional to the distribution of 
performance in each condition. Values on the plot are Cohen’s d from paired-
comparisons. 

 

Atypical headshots. A follow-up 2-way ANOVA on atypical headshots showed a main 

effect of popularity, F(1,80) = 115.579, p < .001, ηp
2 = .591, and of appearance, F(1,80) = 

5.092, p = .027, ηp
2 = .06, and an interaction between the two, F(1,80) = 88.601, p < .001, ηp

2 

= .526. Paired comparisons showed that sensitivity improved with increased popularity for 
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all actors, with a significantly larger improvement for variable faces, t(80) = 14.563, p < .001, 

d = 1.618 (95% C.I. = 1.284 – 1.948), than for stable ones, t(80) = 2.244, p = .028, d = 0.249 

(95% C.I. = 0.027 – 0.47). In popular actors, variable faces were recognised better than 

stable ones, t(80) = 6.181, p < .001, d = 0.687 (95% C.I. = 0.443 – 0.927). In less popular 

actors, stable faces were better recognised than variable ones, t(80) = -8.342, p < .001, d = 

0.927 (95% C.I. = 0.664 – 1.186). 

Typical headshots. The same 2-way ANOVA on typical headshots also showed a main 

effect of popularity, F(1,80) = 188.779, p < .001, ηp
2 = .702, and of appearance, F(1,80) = 

4.284, p = .042, ηp
2 = .051, and an interaction between the two, F(1,80) = 144.981, p < .001, 

ηp
2 = .644, replicating results with headshots in Experiment 2. Like in Experiment 2, 

performance improved with popularity for stable faces, t(80) = 2.95, p = .004, d = 0.328 (95% 

C.I. =0.103 – 0.55), and improved significantly more for variable faces, t(80) = 14.8513, p < 

.001, d = 1.65 (95% C.I. = 1.312 – 1.983). In popular actors, variable faces were better 

recognised than stable ones, t(80) = 7.26, p < .001, d = 0.807 (95% C.I. = 0.554 – 1.056). In 

less popular actors, stable faces were better recognised than variable ones, t(80) = -10.773, 

p < .001, d = 1.197 (95% C.I. = 0.909 - 1.481). 

Gain from typicality. We examined the gain in performance from typicality (i.e., typical 

vs. atypical) in each actor category with paired sample t-tests, see Figure 5 (panel B). Typical 

facial information improved performance in all actor categories: Popular variable, t(80) = 

8.552, p < .001, d = 0.95 (95% C.I. = 0.685 - 1.211); popular stable, t(80) = 7.955, p < .001, d = 

0.884 (95% C.I. = 0.625 - 1.139); less popular variable, t(80) = 5.398, p < .001, d = 0.6 (95% 

C.I. = 0.362 - 0.835); and less popular stable, t(80) = 7.705, p < .001, d = 0.856 (95% C.I. = 

0.599 - 1.109). Effects sizes and the fact that they overlap indicate that gains from typicality 
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were comparable in all actor categories. This may suggest that although representations of 

variable actors refine over time and more so than those of stable actors, they also tend to 

incorporate more typical aspects of elements that vary (e.g., most frequent hairstyle or 

makeup) into a holistic representation. Indeed, if recognition of variable faces only relied on 

invariable internal features, recognition would have been equally good from typical and 

atypical images. 

 

 

Figure 5. Comparisons of sensitivity to actors’ faces in different image conditions, 
as a function of popularity and appearance. The top of the grey bar represents 
sensitivity to typical headshots, which was compared to recognition from inner 
features in Experiment 2 (N = 123 New Zealanders), from atypical headshots in 
Experiment 3b (N = 81 US Mechanical Turk workers). Values in the plot area 
represent Cohen’s d for paired-comparisons of performance in different image 
conditions. 

 

We note that discrimination performance was overall lower on the Mechanical Turk 

sample from the US in Experiment 3b than in other experiments, but that the pattern of 

performance with headshots seen in other experiments nonetheless replicated. 
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Exploration of the impact of actors’ sex 

In addition to initial pre-planned analyses, we explored whether the sex of the actors 

had an impact on discrimination performance (d’) by means of 3-ways repeated measures 

ANOVA with popularity, appearance and sex as within-subject factors for each type of image 

in each experiment. For the sake of space, we report descriptive statistics and results of the 

three-way interactions in Table 1. Additional figures showing performance in each image 

condition are presented in Supplementary materials (Figures S1 to S7). In all experiments 

using intact images, we found a similar pattern of performance. In less popular actors, 

stable faces were better recognised than variable faces for both female and male actors. 

However, differences were observed between female and male faces for popular actors 

with a stable appearance. Whereas discrimination performance for stable women increased 

with media exposure, discrimination of stable male faces did not improve with media 

exposure or when it did, it did not as much as women’s. Similar patterns of interaction were 

also observed with cropped images of inner features, but not with atypical images. 

Table 1. Mean discrimination performance (d’) and standard deviations (in 
italics) as a function of sex, popularity and appearance in different image 
conditions of all experiments. Results of the associated three-way interactions 
appear in the three rightmost columns. 

      Female             Male             Popularity ✻ 

Appearance ✻ Sexe       Popular Less popular Popular Less popular 

Test 
image Exp. N Variable Stable Variable Stable Variable Stable Variable Stable F(1,N-1) p η²p  

Headshot 2 60 2.5 0.9 2.5 1.0 1.1 0.7 1.7 0.7 2.9 0.7 2.3 0.6 1.5 0.7 2.3 0.6 33.418 < .001 0.362 

 3a 62 2.2 0.9 2.2 1.0 1.1 0.8 1.5 0.9 2.9 1.0 2.2 0.9 1.6 0.8 2.2 
0.80 

  0.8   48.900 < .001 0.445 

 3b 81† 1.7 0.9 1.6 0.9 0.9 0.7 1.4 0.7 2.5 1.3 1.8 0.8 1.4 0.8 1.9 1.0 14.810 < .001 0.156 

Inner 
features 1 96 1.5 1.0 1.5 1.0 0.5 0.7 0.9 0.7 1.7 1.0 1 0.9 0.6 0.6 1 0.8 28.866 < .001 0.233 

 2 60 1.5 0.8 1.5 0.8 0.6 0.7 0.9 0.7 1.8 0.9 1.3 0.8 0.6 0.6 1.1 0.8 14.300 < .001 0.195 

Atypical 3a 61 2.2 1.0 2 1.0 1 0.7 1.5 0.8 2.5 1.0 2.1 0.8 1.4 0.8 1.8 0.9 0.069 0.793 0.001 

 3b 81† 1.4 0.9 1.2 0.9 0.8 0.6 1.2 0.8 2 1.3 1.6 0.9 1.2 0.9 1.4 0.9 1.599 0.210 0.020 

† Indicates participants in a given image condition of a within-subject experiment.  



29 
 

A likely explanation for that pattern is that the appearance of stable men is even more 

stable than that of stable women. Women with long hair can present small variations in 

hairstyle, even if the colour and length are constant, for example by tying their hair up or by 

straightening/waving it. By contrast, men with shorter hair cannot display this type of small 

variations. Consequently, on average, extra-facial features and coarse information could 

carry more weight in men than in women, and small variations in the appearance of women 

could help refine the representations of their face despite a relatively stable appearance. 

 

Validation of IMDb StarMeter ranks as a proxy of exposure 

We demonstrated in Devue and colleagues (2019) that StarMeter ranks available on 

the IMDb website were a good proxy of the actual exposure of a set of actors from a specific 

TV show, as they correlated with screen times (r = -0.441, p = 0.001). Unlike here, we had 

used a selected sample of 32 participants who had watched the entirety of the TV show, 

providing an excellent control of individual participants’ exposure to individual actor faces. 

In the current situation, we were unable to calculate screen times of individual actors or to 

objectively measure individual exposure of participants to each of them. We thus calculated 

Pearson’s correlations between average hit rates per actor in each image condition of each 

experiment and their StarMeter rank to explore if these latter predict recognition 

performance and are thus a valid proxy of probable exposure for participants in 

uncontrolled learning conditions. The correlations ranged from -.604 to -.788 and were all 

significant, see Table 2. 

These results thus validate our use of StarMeter ranks as a proxy measure of exposure 

since smaller StarMeter ranks, which indicate a higher media visibility, are associated with 
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higher recognition rates4. Results of the same correlations calculated between mean hit 

rates on 90 actors and their StarMeter ranks from Devue et al. (2019)’s data were 

comparable, r = -0.628, p < 0.001, 95% C.I. = -0.739 – -0.484 with typical images (N = 16), 

and r = -0.448, p < 0.001, 95% C.I. = -0.600 – -0.266 with atypical images (N=16). We note 

that associations between mean hit rates and StarMeter ranks are numerically larger in the 

current series of experiments than in our previous work, but this is likely due to the larger 

samples we used to compensate for the aforementioned lack of control on individual 

exposure and on individual face recognition abilities. 

Table 2. Associations between StarMeter ranks and mean hit rates per actor in 
different image condition and experiments. 

Test image 
 

Experiment 
 

Sample 
origin 

N Number 
of actors 

Pearson's 
r 

p 
 

Lower 
95% CI 

Upper 
95% CI 

Headshot 2 NZ 60 96 -0.773 < .001 -0.843 -0.678 

 3a NZ 62 96 -0.788 < .001 -0.853 -0.697 

 3b US 81† 96 -0.725 < .001 -0.808 -0.614 

Inner features 1 NZ 96 96 -0.634 < .001 -0.740 -0.496 

 2 NZ 60 96 -0.666 < .001 -0.764 -0.537 

Atypical 3a NZ 61 96 -0.680 < .001 -0.775 -0.556 

 3b US 81† 96 -0.627 < .001 -0.735 -0.488 

Note. Sample origin and N refers to participants tested in our recognition tests. 
Number of actors refers to the number of individual actors used in a given test. † indicates 
participants in a given condition of an experiment with a within-subject design. 

 

Finally, to check the validity of StarMeter ranks in different English speaking 

geographical areas, we calculated Pearson’s correlations between hit rates per individual 

actor headshots in a sample from the US and in the different NZ samples used in different 

                                                           
4 Note that as part of another study, we collected familiarity ratings (1 = “not familiar” to 7 = “very familiar”) 
from 35 independent judges on the same set of 96 actors’ headshots. These mean ratings were also 
significantly correlated with StarMeter ranks, r = -0.422, p < 0.001, 95% C.I. = -0.591 – -0.265. This smaller 
correlation is likely due to Likert scales allowing for more variable ranges of responses than the “yes/no” 
responses compiled to yield hit rates in our recognition tasks and to the smaller sample used to collect those 
familiarity ratings. 
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experiments. Results indicate large positive associations between hit rates in the two 

populations, with correlation coefficients ranging from 0.83 to .874, see Table 3. This 

confirms that actors we selected based on the US-based IMDb website have comparable 

visibility in both populations. 

Table 3. Associations between hit rates for individual actor headshots in one US 
sample and in two NZ samples used in different experiments. 

Experiment 
(US sample) 

Experiment 
(NZ samples) 

Number 
of actors 

Pearson's 
r 

p 
 

Lower 
95% CI 

Upper 
95% CI 

3b 2 96 0.830 < .001 0.756 0.884 

 3a 96 0.874 < .001 0.817 0.915 

 

General discussion 

We conducted three famous face recognition experiments on a total of 420 

participants to provide preliminary evidence for the two main assumptions of a cost-

efficient mechanism of face learning, namely that the quality of facial representations 

specifically depends on the relative stability in appearance of individual faces, and that 

representations evolve following a dynamic coarse-to-fine encoding over the course of 

familiarisation. 

Impact of stability and exposure on facial representations. We have considered the 

impact of intrinsic characteristics of famous faces on recognition performance and we show 

for the first time to our knowledge that the relative stability in appearance of individual 

faces specifically affects recognition performance. Unexpectedly and in apparent contrast to 

previous research on lab-based face learning (e.g. Baker et al., 2017; Kramer, Young, et al., 

2018; Ritchie & Burton, 2017), in all experiments using intact headshots, we found that 

overall, famous faces with a stable appearance were better discriminated from strangers 

than faces that display looks that are more variable. In line with computer simulations 



32 
 

(Burton et al., 2016) and recent studies on humans (Devue et al., 2019), we also found that 

recognition performance improves with increased media exposure, confirming that facial 

representations evolve to become more reliable. 

Our manipulation of popularity levels by means of an objective index of media 

visibility/exposure (i.e. the StarMeter ranks on IMDb) allows nuancing these results. We 

show that, all else being equal, stability in appearance affects recognition performance in 

different ways along the course of familiarisation with faces. Specifically, in earlier stages of 

learning, stability in appearance supports recognition compared to variability, suggesting 

that stable faces benefit from representations that are more reliable at first. Over time, a 

shift in performance occurs and variable faces are more likely to be recognised than stable 

faces, consistent with the idea that variations in appearance yield more reliable 

representations by encouraging more refinement5. Further, while sensitivity to both 

variable and stable faces increases with media exposure, the improvement is significantly 

larger with variable faces than with stable faces, suggesting that once a representation of a 

stable face is formed, it does not refine as much as representations of variable faces. The 

relative benefits of stability compared to variability in earlier stages of familiarisation are 

also larger than the benefits of variability compared to stability in later stages of 

familiarisation, a pattern that replicated across all experiments using intact images and that 

explains the overall advantage of stable faces over variable faces. In sum, our results 

consistently suggest that the quality of facial representations is the product of a given face’s 

                                                           
5 Note that during the original selection of actors, we purposefully left a gap in StarMeter ranks between 
popular and less popular ones. We can thus assume that recognition rates of variable and stable actors would 
be equivalent at some intermediate levels of popularity/exposure. 
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stability in appearance and its interplay with exposure, in line with hypotheses drawn from a 

cost-efficient mechanism of face learning. 

Unlike what we found here, recent lab-based face learning studies have shown that 

exposure to high degrees of natural variations in images of faces—both in viewing 

conditions and in appearance—improves recognition of newly learned faces relative to 

stable viewing conditions, even after a single brief learning session ( Burton et al., 2016; 

Kramer, Manesi, et al., 2018, Robins et al., 2019). This seems inconsistent with the 

advantage for stable faces compared to variable faces we found in less popular actors and 

with the overall benefit of stability we observe. This apparent discrepancy is likely due to 

differences in learning supervision when learning new faces in the lab and when learning 

faces in the real world. In the lab, faces are typically learned under supervised conditions, 

and so observers can take advantage of natural variations in images to refine their 

representations with the explicit knowledge that a set of images shows the same person. In 

contrast, when we encounter emerging actors in the real world, we often learn their faces 

incidentally and with low levels of supervision—for example, those can be in the form of 

credits or comments from peers. If we are correct in assuming that face encoding operates 

parsimoniously, then a default assumption an observer makes must be that the appearance 

of a newly encountered face is stable and will not change in the future, leading to the 

creation of a coarse representation. One can only revisit this assumption with repeated 

exposure to a person and the realisation that their appearance varies, which typically occurs 

readily in lab-based face learning studies. This revision is most likely more challenging when 

an observer is not aware that they are viewing a person they have seen before than when 

they are explicitly told so. Therefore, if an emerging actor acts in several movies with the 

same appearance, we have the opportunity to recognise them based on the same coarse 
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representation from one movie to another. By contrast, if an emerging actor sports a 

different appearance in different movies, we may fail to recognise them as the same person 

across encounters. The benefit of associating various depictions of a face with a single 

identity was demonstrated in the lab. When viewing a mix of different images of multiple 

people, participants are better at sorting images per identity when told how many different 

identities there are than when they are not informed or misinformed about it, in which case 

they tend to interpret singles identities as multiple identities (Andrews et al., 2015; Menon 

et al., 2018). Consistently, our data suggest that with low levels of learning supervision, 

variability in appearance has a negative impact on learning compared to stability, probably 

because differences in appearance are interpreted as differences in identity. 

More generally, the reasoning derived from our framework also explains the poor 

performance classically observed with new faces learned in non-ecological laboratory 

conditions (see e.g. Hancock et al., 2000). When an observer is learning a limited set of faces 

from single pictures, a cost-efficient encoding mechanism would lead to assume that the 

stimulus is stable, will not change in the future, and so to favour coarse elements of the 

person’s appearance (e.g. the shape of the hairline in the given view, hair colour) or even 

diagnostic pictorial elements (e.g. a difference in background colour or a photographic 

artefact). This process would yield low cost representations with low generalisability and 

lead to poor performance in a subsequent memory test that uses images where the 

appearance, viewpoint, accessories or pictorial artefacts have changed and/or where 

distractors display gross resemblances with learned faces (see Flack et al., 2019a for a 

recent example with viewpoint; see Hsiao et al., 2022; Noyes et al., 2021 for recent 

examples with face masks). The same reasoning can also help explain poor performance 

with new faces briefly encountered in the real world, for example, when one is witnessing a 
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crime. On the flip side, stimuli in face learning or face perception studies in which external 

features are removed may force a finer processing of facial features than what would occur 

naturally since there are no coarse peripheral features to rely on. Such conditions may 

inflate the difficulties of participants that are over reliant on external features as in acquired 

or developmental prosopagnosia (see e.g., Jansari et al., 2015; Towler et al., 2018). 

Content of facial representations. The comparison of recognition performance with 

typical headshots of actors and with images containing partial or atypical information gives 

us some clues on the content of facial representations and on the contribution of different 

types of information.  

Peripheral and inner features. In initial stages of familiarisation, recognition of both 

stable and variable faces is greatly improved by the presence of peripheral information 

compared to internal features alone (Experiment 2). Contrary to the view drawn from PCA 

models that recognition of familiar faces relies on an average representation of inner 

features, the presence of peripheral features also improved recognition of more familiar 

faces. This suggests that all faces in our set were encoded holistically, in line with studies 

showing that the holistic processing of unfamiliar faces is disrupted by the removal of 

external features (García-Zurdo et al., 2018; Toseeb et al., 2012) or that recognition of 

familiar faces is impaired when extra-facial features are altered (Carbon, 2008; Devue et al., 

2019; Sinha & Poggio, 1996). Consistent with seminal studies showing a stronger reliance on 

peripheral features for less familiar faces than for more familiar ones (R. Campbell et al., 

1995; Ellis et al., 1979), we observe that peripheral features facilitate the correct 

discrimination of familiar faces from strangers proportionally more for less popular faces 

than for more popular ones (see Figure 5A). The cost-efficient theory we have proposed 
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provides a plausible encoding mechanism for present and past data: representational 

weights are broadly distributed over large-scale information at first, forming low-cost coarse 

representations, to converge towards internal information over time, giving more costly but 

more reliable refined representations. 

Typical information. We show that headshots with the most typical individual 

appearance were better recognised than headshots deviating from that appearance, 

regardless of their popularity or relative stability (Experiment 3). This suggests that 

representations give more weight to facial information encountered more frequently (e.g. 

most frequent hairstyle), even for variable aspects when someone changes their 

appearance from one encounter to another. We can speculate that at the neural level, 

activations associated with changeable aspects are more likely to consolidate for those 

patterns of activations that reoccur and overlap more over time (Sekeres et al., 2018). 

Integration of current findings. Altogether, our series of experiments suggest that 

faces are represented via holistic representations, and that these representations refine 

over time to become more reliable depending on levels of variations in appearance they 

display. Our data seem consistent with the suggestion that when changeable features 

remain stable over time, representational weights remain broadly distributed over large-

scale extra-facial information and internal features are encoded at lower resolution. In other 

words, compared to variable faces, stable faces may ultimately lack one crucial type of 

variation, i.e. variations in appearance, amongst the set of variations that have been shown 

to improve face learning (e.g., Andrews et al., 2015; Burton et al., 2016; Ritchie & Burton, 

2017).  
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In practice, this is not necessarily a problem as long as the target person does not 

change appearance, and coarse representations have the benefit of being cheap in terms of 

memory resources. However, coarse representations also carry the risk of poor 

discriminability between similar individuals. For efficiency purposes, they are thus 

presumably favoured when we encounter new people and have no reason to assume that 

they will change or that we will see them again in the future. They could also be favoured 

when episodic encounters with an individual are consistently linked to a specific context and 

that gross information is discriminative enough in that context, perhaps contributing to 

well-known recognition difficulties when a person appears in a different context (Mandler, 

1980). The more we experience variations in a person’s appearance over encounters, the 

highest the resolution of invariant information needs to be to guarantee recognition. Finer 

representations are more costly but more discriminative, and the face recognition system 

must turn to them as we get to know people and demands for recognition out of context 

increase. 

Implications and future directions. Our series of experiments confirm that the large 

amount of data on celebrities available on the internet can be exploited to advance 

psychology research. The StarMeter ranks we have used to create sets of images of famous 

faces that have comparable levels of media exposure have generated highly replicable 

results despite differences in populations used, variations in experimental paradigms, and 

varying levels of performance in different image conditions (i.e. lower with just inner 

features or with atypical images than with typical headshots). 

One may actually be surprised or concerned by the consistency of the pattern of 

findings across experiments (i.e. interaction between Popularity and Stability) and we were 
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initially as well. We believe it is useful to keep in mind that one should not expect such 

consistency to apply at the individual (participant or even actor) level, as individual 

participants will undoubtedly vary in their recognition skills and in the amount and nature of 

exposure they would have had to each actor. Even when exposure is controlled, individual 

performance with individual faces is not predictable. In a research using participants who 

had watched all the episodes of a specific TV show (Devue et al., 2019), participants 

recognised overlapping but different sets of individual actors despite having all been 

exposed to the same faces. This is why we believe it is crucial to use StarMeter ranks in 

combination with large samples of participants and high numbers of actors per category as 

we have done here. This approach allows for average performance in each actor category to 

average out uncontrolled individual variations6. 

In further support of this approach relying on StarMeter ranks combined with large 

samples, actor-level analyses have shown that mean hit rates from English-speakers’ 

samples on different continents were very strongly correlated (r ranging from .83 to .873). 

More importantly, StarMeter ranks were strongly correlated with hit rates (i.e. ranging from 

r = .627 with atypical headshots to r = .788 with typical headshots). A study by Ritchie and 

colleagues (2018) provides a relevant point of comparison. They examined individual 

correlations between the reported level of familiarity with five actors and the reported 

                                                           
6 Experiment 3b in which typical and atypical images of each actor were presented to the same participants 
provides an opportunity to check the consistency of responses of individual participants to individual pictures 
of actors. We examined the responses of each participant (N = 81) to images of each actor (N = 96), giving a 
total of 81 x 96 = 7,776 cases. There were 1,833 instances where the two images of a given actor did not 
receive the same response by a given participant (i.e. recognition of only one of the two images), that is 23.6 % 
of inconsistent responses. Responses were thus consistent 76.4% of the time despite the fact that both typical 
and atypical appearances were presented. Importantly, rates of inconsistent responses were similar for stable 
and variable actors (i.e., 23.48 % and 23.66 %, respectively) and so that would not have skewed the results. 
Despite what could be seen as an imperfect consistency at the individual participant/actor level (i.e. 
inconsistent responses in close to one out of four instances), group-level patterns of performance in the two 
image conditions were remarkably consistent. This speaks to the relevance of our approach examining average 
performance on large samples in order to average out uncontrolled observer-related variations. 
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number of movies seen with the same five actors. The mean correlation they found, 

expressed in Z-scores, was of 0.288. In Z-scores, the abovementioned correlations ranged 

from 0.736 to 1.066, which is quite remarkable given that they are between the pooled 

performance of participants (with all the observer-related variations involved) and an 

independent but objective measure of media exposure, instead of between two subjective 

ratings provided by the same individuals. In other words, providing that large enough 

samples are used to account for individual preferences and skills of observers, StarMeter 

ranks may even prove more reliable and predictive of recognition performance than more 

typical checks of pre-experimental exposition that rely on various aspects of observers’ 

memory. 

While recent research has emphasised the use of uncontrolled natural stimuli to study 

face recognition in a more ecological manner, we show that an approach maximising 

internal and external validities may be even more productive. Importantly, our data show 

that studying face recognition based on averaged performance on indiscriminate 

heterogeneous sets of face images may muddy waters. This is striking through the 

interaction we consistently found between popularity and stability in appearance.  

The current series of experiments is not without its own shortcomings in that regard. 

For example, we referred to and studied the role of inner features as a group, although we 

explicitly assumed that single or multiple features within that group could carry more or less 

representational weight. For example, past behavioural and ERP research showed that the 

eyes are strong identity cues, more reliable than other features like the mouth (Hsiao et al., 

2022; Mohr et al., 2018; Nemrodov et al., 2014). Therefore, the eyes may carry more 

representational weight than other inner features, which could result from their central 
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position in the head, allowing to take in surrounding coarse information. However, regular 

changes (e.g. make-up and/or swapping between glasses and contacts) or occlusions (e.g. 

with hair of sunglasses) of the eyes area in a given individual face could lead to refine 

representations of other aspects less affected by changes and occlusions (e.g. the nose). The 

role of individual facial features as a function of their intrinsic characteristics in terms of 

stability or of other aspects like their distinctiveness will thus be the object of future 

research.  

Moreover, exploratory analyses including the sex of the actors have suggested 

differences in discrimination patterns of popular male and female actors, whereby 

discrimination sensitivity to stable women increased with media exposure more than 

discrimination sensitivity to stable men. In other words, women faces may have been 

driving the small improvement seen over time for stable faces. This might be due to stable 

women displaying more variations than stable men (e.g. larger differences in hair styling 

despite consistent length and colour in women than in men) and will warrant further 

investigations too. 

The series of experiments presented here only offer indirect support for our new 

theoretical framework. Future research should endeavour to more directly assess the 

contribution of coarse and fine-grained information to facial representations, for example 

via systematic manipulations of spatial frequencies in test images of celebrities with various 

levels of relative stability in appearance. 

Finally, at the neural level, recent research has shown that refinement of 

representations with increased familiarity is indexed by the N250 component, and in similar 

ways for famous and personally familiar faces (Wiese et al., 2021). Future developments of 
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that research could manipulate stability in appearance to examine how it modulates ERP 

responses. 

Conclusions 

We proposed a new account of face learning and familiarisation that takes stability in 

appearance into account and a series of three experiments as a proof of concept. We posit 

that representations are cost-efficient and laid out differently depending on intrinsic 

characteristics of individual faces. We show that despite comparable levels of popularity of 

actors like Brad Pitt and Tom Cruise, the representation of people like the former, who have 

a variable look, are more refined than that of people like the latter, who have a more 

consistent appearance. Although it leads to less reliable representations, stability facilitates 

recognition in earlier stages of familiarisation. Tom Cruise’s signature look helped us 

remember him from encounter to encounter, and his face must have become familiar faster 

than the face of Brad Pitt. This account is integrative in nature and resolves conflicting 

theoretical conceptions as to what type of facial information is encoded and whether 

qualitatively different processes are used for unfamiliar and familiar faces. Indeed, 

seemingly conflicting empirical data in past research may be the result of the same cost-

efficient face learning mechanism and its interplay with exposure. This account also 

generates numerous hypotheses for future research, which will hopefully further our 

understanding of how most of us are able to recognise large amounts of faces despite large 

memory constraints. 
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Supplementary materials 

Sampling rationale 

Experiment 1. In face learning paradigms, variability yields strong effects on recognition. 

Power calculations from effect sizes in a study comparing high and low variability learning 

conditions (d = 1.336 in Experiment 1, d =1.427 in Experiment 2; Robins et al., 2018) yields a 

sample size of 10 and 9 to replicate the effect with .95 power. This effect might be reduced 

for faces that became familiar over longer periods and when only appearance varies. 

Further, since exposure of individual participants to each actor cannot be measured or 

guaranteed, data should be noisier than in face learning paradigms. Finally, the strength of 

an interaction between appearance and popularity was not possible to anticipate at the 

start. In Experiment 1, we thus decided to use a large sample size of 100 participants. In all 

experiments, participants received information about the study and provided consent 

before taking part. 

Experiment 2. Power calculation based on Experiment 1 yielded 8 participants to replicate 

the interaction between popularity and appearance with .95 power. For cost-efficiency 

purposes and because the effect size of image condition was unknown, we used sequential 

analyses where data can be analysed at pre-defined incremental sample sizes, but with 

stricter significance thresholds (Lakens, 2014). We set to examine data in four increments—

after 20, 40, 60 or 80 participants in each image condition. We used the Pocock boundary to 

establish the critical p value of .0182 for the three-way interaction of interest (image 

condition x popularity x appearance). Although the three-way interaction was already 

significant with 20 and 40 participants per group, we decided to collect data from 60 

participants per group to rule out potential differences in face recognition skills or in 
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exposure to actors between participants in the two groups. Note that increasing the sample 

size while an effect of interest is already significant can never inflate Type 1 error since the 

only possibility is that the effect becomes non-significant (Lakens, 2018, personal 

communication). 

Additional analyses 

Experiment 2. 

Sequential analysis – Step 1. We conducted a three-way mixed effect ANOVA with 

appearance (variable, stable) and popularity (popular, less popular) as within-subject 

factors, and image condition (inner features, headshot) as between-subject factor on d’ 

obtained from the first 40 participants (20 per group). We found the expected main effect of 

image condition, F(1,38) = 19.59, p < .001, ηp
2 = .340, and of popularity, F(1,38) = 189.206, p 

< .001, ηp
2 = .833, as well as a significant main effect of appearance, F(1,38) = 7.708, p = 

.008, ηp
2 = .169. The three-way interaction between appearance, popularity, and image 

condition was significant, F(1,38) = 9.246, p = .004, ηp
2 = .196. The pattern of results was 

similar to that obtained at Step 3. 

Sequential analysis – Step 2. We conducted the same ANOVA after collecting data from 80 

participants (40 per group). We found the expected main effect of image condition, F(1,78) 

= 42.81, p < .001, ηp
2 = .354, and of popularity, F(1,78) = 384.029, p < .001, ηp

2 = .831, as well 

as a significant main effect of appearance, F(1,78) = 11.964, p < .001, ηp
2 = .133. The three-

way interaction between appearance, popularity, and image condition was significant, 

F(1,78) = 6.998, p = .010, ηp
2 = .082. Again, the pattern of results was similar to the one 

obtained at Step 3. 
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Reaction times (final Step 3). We conducted a three-way mixed effect ANOVA with 

appearance (variable, stable) and popularity (popular, less popular) as within-subject 

factors, and image condition (inner features, headshot) as between-subject factor on mean 

correct reaction time. There was a main effect of popularity, F(1,118) = 29.314, p < .001, ηp
2 

= .199, and a main effect of image condition, F(1,118) = 14.63, p < .001, ηp
2 = .110, but no 

significant effect of appearance, F(1,118) = 0.148, p = .701, ηp
2 = .001. The three-way 

interaction of interest was not significant, F(1,118) < 1. There was also no interaction 

between image condition and appearance, F(1,118) < 1, between popularity and image 

condition, F(1,118) = 1.337, p = .25, ηp
2 = .011, nor between popularity and appearance, 

F(1,118) = 1.435, p = .233, ηp
2 = .012. 

 

Experiment 3 

Reaction times - Experiment 3a. We conducted a three-way mixed effect ANOVA with 

appearance (variable, stable) and popularity (popular, less popular) as within-subject 

factors, and image condition (typical, atypical headshot) as between-subject factor on mean 

correct reaction time. There was a main effect of popularity, F(1,121) = 55.373, p < .001, ηp
2 

= .314, and a main effect of image condition, F(1,121) = 6.242, p = .014, ηp
2 = .049, but no 

significant effect of appearance, F(1,121) < 1. The three-way interaction of interest was not 

significant, F(1,121) < 1. There was no interaction between image condition and 

appearance, F(1,121) < 1, or between popularity and image condition, F(1,121) < 1, but 

there was a significant interaction between popularity and appearance, F(1,121) = 16.515, p 

< .001, ηp
2 = .12. Mirroring the pattern found on sensitivity, in popular actors, responses to 

variable actors were faster (Mean = 968 ms, SD = 221) than to stable actors (Mean = 1026 
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ms, SD = 242), t(122) = -4.01, p < .001, d = -0.361. In less popular actors, responses to stable 

actors (Mean = 1075 ms, SD = 291) were faster than to variable actors (Mean = 1114 ms, SD 

= 332), t(122) = 2.627, p = .010, d = 0.237. 

Reaction times - Experiment 3b. We conducted a three-way repeated measure ANOVA with 

appearance (variable, stable), popularity (popular, less popular), and image condition 

(typical, atypical headshot) as within-subject factors on mean correct reaction time. There 

was a main effect of popularity, F(1,80 ) = 4.376, p = .040, ηp
2 = .052, and a main effect of 

image condition, F(1,80 ) = 7.421, p = .008, ηp
2 = .085, but no significant effect of 

appearance, F(1,80 ) < 1. Here, there was a significant three-way interaction, F(1,80 ) = 

5.161, p = .026, ηp
2 = .061. This was driven by slower responses to variable faces (Mean = 

1133 ms, SD = 344) than to stable faces (Mean = 1030 ms, SD = 260) with typical images of 

less popular actors, t(80) = -3.692, p < .001, d = -0.410. There was also an interaction 

between image condition and appearance, F(1,80 ) = 6.246, p = .014, ηp
2 = .072. Finally, 

there was no significant interaction between popularity and image condition, F(1,80 ) < 1, 

nor between popularity and appearance, F(1,80 ) < 1. 

Exploration of the impact of sex 

The figures (S1 to S11) bellow illustrate discrimination performance as a function of 

popularity, appearance and sex and for which associated statistics are presented in Table 1 

of the main text. The figures display performance with intact images first, and then with 

other image conditions. All error bars represent 95% confidence intervals. 

Figure S1. Experiment2 - Intact images 
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Figure S2. Experiment 3a - Intact images 

  

 

Figure S3. Experiment 3b - Intact images 
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Figure S4. Experiment 1 - Cropped inner features 

  

 

Figure S5. Experiment2 - Cropped inner features 

  

 

Figure S6. Experiment 3a - Atypical images 
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Figure S7. Experiment 3b - Atypical images 
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Table S1. List of actors used in the three experiments. Ages and StarMeter ranks were collected in 
August 2018. 

 Sex Age StarMeter  Sex Age StarMeter 

Popular – Variable 
 
Elisabeth Moss F 35 32 

Popular – Stable 
 
Amanda Seyfried  F 32 21 

Emilia Clarke F 31 69 Amy Adams F 43 29 

Emily Blunt F 35 83 Blake Lively F 30 112 

Emma Roberts F 27 307 Cate Blanchett F 49 154 

Jennifer Lawrence F 27 115 Christina Hendricks F 43 67 

Julia Roberts F 50 347 Hailee Steinfield F 21 185 

Keira Knightley F 33 217 Kristen Bell F 37 204 

Kristen Stewart F 28 194 Margot Robbie F 28 39 

Lily James F 29 1 Megan Fox F 32 282 

Meryl Streep F 69 89 Natalie Portman  F 37 140 

Scarlett Johansson F 33 124 Rachel Weisz F 48 391 

Zoey Deutch F 23 91 Sandra Bullock F 53 87 

Brad Pitt M 54 93 Adam Sandler M 51 174 

Bradley Cooper M 43 385 Chris Pratt M 39 108 

Chris Pine M 37 215 Harrison Ford M 76 364 

Christian Bale M 44 222 Joseph Gordon-Levitt M 37 407 

Jake Gyllenhaal M 37 201 Matt Damon M 47 241 

Jared Leto M 46 336 Max Minghella M 32 179 

Joaquin Phoenix M 43 123 Taron Egerton M 28 99 

Johnny Depp M 55 78 Timothée Chalamet M 22 141 

Matthew McConaughey M 48 269 Tom Cruise M 56 5 

Ryan Reynolds M 41 90 Tom Hanks M 62 117 

Steve Carell M 55 190 Tye Sheridan M 21 157 

Zac Efron M 30 220 Vin Diesel M 50 340 

Mean  39.7 170.5   40.6 168.5 

SD  11.3 104.5   13.6 116.4 

Less popular – Variable 
 
Alison Sudol F 33 1108 

Less popular – Stable 
 
Andie MacDowell F 60 1384 

Alyssa Milano F 45 1006 Ashley Benson F 28 1078 

Brittany Snow F 32 1255 Crystal Reed F 33 1099 

Clemence Poesy F 35 1085 Danielle Campbell F 23 1115 

Embeth Davidtz F 52 1227 Drea de Matteo F 46 1231 

Jena Malone F 33 1009 Gwyneth Paltrow F 45 1097 

Kate Walsh F 50 1300 Hilary Swank F 44 1275 

Natalia Tena  F 33 1452 Katherine McNamara F 22 1015 

Scout Taylor-Compton F 29 1086 Lisa Kudrow F 54 1264 

Sigourney Weaver F 68 1082 Maggie Gyllenhaal F 40 1267 

Valorie Curry F 32 1090 Melissa Rauch F 38 1178 

Zoe McLellan F 43 1468 Tilda Swinton F 57 1068 
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Anson Mount M 45 1055 Billy Magnussen M 33 1175 

Ben Barnes M 36 1060 Clive Owen M 53 1205 

Boyd Holbrook M 36 1100 David Schwimmer  M 51 1310 

David Thewlis M 55 1224 Jamie Bell M 32 1207 

Dermot Mulroney M 54 1480 Jared Padalecki M 35 1236 

Elijah Wood M 37 1289 Liam Hemsworth M 28 1470 

Eric Bana M 49 1463 Owen Wilson M 49 1146 

Garrett Hedlund M 33 1405 Patrick Dempsey M 52 1242 

Jerry O'Connell M 44 1045 Richard Gere M 68 1025 

Jesse Eisenberg M 34 1385 Rupert Grint M 29 1361 

Matthew Lillard M 48 1076 Stanley Tucci M 57 1230 

Matthew Perry M 48 1246 Vince Vaughn  M 48 1112 

Mean  41.8 1208.2   42.7 1199.6 

SD  9.8 162.4   12.6 114.4 
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Table S2. Results of Experiment 1. Mean proportion of “familiar” responses—hits 
for the four types of actors and false alarms for unfamiliar faces—and 
corresponding reaction times (RT) in milliseconds. Standard deviation are in 
italics. 

Popularity Popular  Less popular  Unfamiliar 

Appearance Variable Stable Variable Stable  

‘Familiar’ responses .676 .579 .355 .476 .199 

 .199 .203 .161 .169 .145 

Reaction times 1108 1172 1291 1201 1152 

 263 303 312 310 306 
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Table S3. Results of Experiment 2. Mean proportion of “familiar” responses—hits 
for the four types of actors and false alarms for unfamiliar faces—and 
corresponding reaction times (RT). Standard deviation are in italics. 

 Popularity Popular  Less popular Unfamiliar 

 Appearance Variable Stable Variable Stable  

 Image condition      

‘Familiar’  Inner features .691 .610 .361 .483 .189 

responses  .215 .210 .194 .192 .140 

 Headshot .816 .724 .397 .617 .071 

  .113 .131 .149 .142 .070 

RTs (ms) Inner features 1121 1173 1312 1305 1119 

  486 323 468 586 347 

 Headshot 957 978.5 1087 1059 986 

  221 204 237.5 266 188 
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Table S4. Results of Experiment 3. Mean proportion of “familiar” responses—hits 
for the four types of actors and false alarms for unfamiliar faces—and 
corresponding reaction times (RT). Standard deviation are in italics. 

 Popularity Popular  Less popular Unfamiliar 

 Appearance Variable Stable Variable Stable  

Experiment 3a 

 Image condition (between-subject) 

‘Familiar’  Atypical .752 .678 .398 .55 .104 

responses  .177 .179 .175 .189 .105 

 Typical .786 .702 .419 .6 .089 

  .138 .145 .172 .175 .092 

RTs (ms) Atypical 1030 1073 1196 1123 1085 

  262 256 405 311 257 

 Typical 907 980 1093 1028 1022 

  150 219 231 263 256 

Experiment 3b 

 Image condition (within-subject) 

‘Familiar’  Atypical .597 .523 .378 .491  

.138 

.162 

responses  .212 .18 .166 .21 

 Typical .695 .607 .434 .577 

  .214 .188 .184 .185 

RTs (ms) Atypical 1099 1084 1092 1173  

1007 

263 

 

  295 241 249 644 

 Typical 1036 1008 1133 1030 

  290 238 344 260 

 

 

 


