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Estimating Knee Kinematics Using
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Abstract—Knee kinematics is a valuable measure of knee
joint function. However, collecting that data outside the clinic
is difficult, especially with a limited number of wearable
sensors and when you only use an ankle-mounted inertial
measurement unit (IMU) to estimate knee kinematics. Due to
the cyclic nature of gait, it is possible to use machine learning
to extract joint angles from only ankle-mounted sensors. This
study aimed to use time-series feature extraction and a ran-
dom forest regressor to generate a person-specific surrogate
model for estimating knee joint flexion angles from a single-
mounted IMU above the ankle. Optical motion capture (OMC)
and inertial data from ten healthy participants walking on a
treadmill were collected to create ten personalized surrogate models for estimating right knee flexion angles during gait.
An additional ten models were created for a leave-one-out analysis to test the generalisability of the models. Temporal
cross validation of the personalized models and a leave-one-out analysis was performed on the selected feature set.
The personalized models achieved an average root-mean-square error (RMSE) of 2.45◦ ± 0.65◦ (R2 of 0.98) compared
to a gold-standard OMC. The generalized models achieved an average RMSE of 6.77◦ ± 3.38◦ (R2 of 0.83) in the leave-
one-out analysis. Time-series feature-based personalized surrogate models could be used to accurately estimate knee
kinematics by using a single ankle-mounted sensor. However, more data are required to train a generalized model using
the presented method.

Index Terms— Health monitoring, inertial measurement unit (IMU), knee kinematics, machine learning, personalized
models wearable.

I. INTRODUCTION

WEARABLE sensors, such as inertial measurement units
(IMUs), are increasingly used to collect knee kine-

matics and improve traditional clinical assessments. However,
obtaining accurate knee kinematics from IMUs is challenging
and currently requires attaching IMUs on each side of the
knee and a complex kinematic model with known person-
specific parameters (e.g., IMU placements relative to the
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body) [1], [2], [3], [4], [5], [6]. Improper calibration or IMU
placement could lead to misalignment errors, typically called
“kinematic crosstalk” [7], [8]. This type of error leads to
an overestimation of joint angles. Furthermore, the resulting
knee flexion angles are also prone to errors such as numerical
drift. This arises from using numerical integration to calculate
orientation. Sensor fusion techniques, such as Madgwick et al.
[9] and Kalman filters [10], [11], [12], have been used to
solve this issue by fusing the gyroscope, accelerometer, and
magnetometer data for estimating a stable orientation (pitch,
roll, and yaw). However, these values are still sensitive to the
amount of linear acceleration and electromagnetic interference,
for instance, near or on a treadmill.

One property of gait we can exploit to solve this issue is
the cyclic nature of the motions. The repeating cycles can be
used with IMU data to train a machine learning model for
predicting knee flexion angles directly from raw IMU data
(acceleration and angular velocity). This reduces the number
needed and solves common IMU errors such as numerical
drift. Machine learning approaches have been used to predict
gait kinematics, biomechanics, and spatiotemporal parameters
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Fig. 1. Marker set (46 Markers) used for treadmill walking. IMU placement (RSIMU) is colored in orange [20].

to bone load [13], [14], [15], [16]. However, most of these
methods are based on neural networks requiring an extensive
dataset to train and are usually not optimized for time-series
datasets. Furthermore, most of these approaches treat the
feature extraction processes as a black box, making it difficult
to determine the source of error for the resulting model. With
the recent trend toward explainable artificial intelligence [7],
tools, such as Time-Series FeatuRe Extraction based on Scal-
able Hypothesis tests (tsFresh, version 0.14.1 [17]), have
been developed to aid in extracting features in a statistically
meaningful way [17].

In this study, we used an adaptation of the novel approach
mentioned above in explainable artificial intelligence to inves-
tigate whether a random forest surrogate model could: 1)
estimate knee angles with errors under the clinical threshold
of 5◦ [18] and 2) whether it is feasible to estimate knee angles
and with one a single IMU mounted on the shank.

II. MATERIALS AND METHODS

A. Data Collection
Healthy individuals aged between 18 and 40 years with no

history of knee injury were selected for the study to remove
the effect of joint health as a variable for evaluating the
performance of the models. Treadmill walking data from ten
healthy adult participants (four females, six males, 27.4 ±

4.7 years old, 1.75 ± 0.08 m, and 72.32 ± 10.33 kg; no history
of a knee injury) was collected at a gait laboratory (AUT
Millennium, Auckland, New Zealand). Optical motion capture
(OMC) was recorded using a VICON motion capture system
(8 MX T40-S cameras operating at 200 Hz), and synchronized
acceleration (±16 g) and angular velocity (±2000◦/s) data
were captured at 250 Hz using IMeasureU Blue Thunder
sensors [19] and VICON Nexus Software (Nexus 2.8).

TABLE I
SHANK-MOUNTED IMU DATA DEFINITIONS

We placed 46 retroreflective markers (see Fig. 1 [20]) on the
participants with locations set out by the University of Western
Australia marker set [21]. In addition, a shank-mounted IMU
on the right leg is 1 cm above the lateral malleolus (outside
ankle) (RSIMU shown in Fig. 1). A static pose was captured
before the participants were asked to complete 1 min of
treadmill walking at a self-selected speed. The labels assigned
to the IMU data are presented in Table I.

B. Data Processing
An OpenSim lower limb model (gait2392.osim [22]) was

customized and scaled to the participant using the MAP
client [23], [24]. Inverse kinematics (IKs) was performed
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Fig. 2. Windowing IMU data for feature extraction [23].

in OpenSim using this scaled model to track the marker
trajectories and calculate lower limb joint kinematics. The
resulting knee kinematics from IK were filtered using a third-
order Butterworth low-pass filter with a cutoff frequency
of 6 Hz [25]. The resulting knee kinematics data are separated
into the training and evaluation sets. The training set will
be used with the corresponding IMU data for generating
a surrogate model to estimate knee angles. The evaluation
set will be used to test the performance of the resulting
model. Raw IMU data were resampled using univariate spline
to 200 Hz to match the joint kinematic data. These blocks of
data were used for feature extraction [26], [27]. Zero offsets
in gyroscope data were removed by averaging the x , y, and
z components of angular velocity separately during the static
pose and removing it from the measured angular velocity data
giving six channels of time-series data (three for acceleration
and three for angular velocity).

C. Machining Learning Workflow and Algorithm
For the machine learning model, we chose the random forest

model instead of another deep learning model due to the small
sample size in the dataset. It was shown in a previous study
that for limited sample sizes, the random forest model had the
best chance of producing a usable model [27] and was less
likely to overfit [28]. To create a model for estimating knee
angles, each time series, xi , in the set of IMU time series
(T = {xi }

N
i=1 ) needs to map to the feature space. This is

accomplished by first windowing the data 0.5-s blocks (see
Fig. 2 [29]) with a step size of 0.005 s. Using the windowed
data, a feature vector can be created for each of the time series
x⃗i = ( f1(x1), f2(x2), . . . , fm(xi )) and then combined into an
input matrix F for random forest regression. Using an open-
source Python package (tsfresh), we calculated 794 features
per time series, which for this study equates to a feature set,
F , with 4764 features.

Two different methods of feature selection were tested (see
Fig. 3 [30]):

1) tsFresh feature selector and sorted by feature importance
with R2 filtering (Set A);

2) tsFresh feature selector and sorted by feature importance
(Set B).

The 4764 features were filtered through the tsFresh feature
selector, where they were tested for their statistical significance

Fig. 3. Features selection algorithm on instrumented single leg and
model training workflow: 1) orange circles are the initial feature extrac-
tion and selection; 2) green circles are the components of the pipeline
that use model-specific features selected by just feature importance to
train the final model; and 3) the blue circles are the components of the
pipeline that use model-specific features selected by its feature impor-
tance and correlation to the target value to train the final model [30].

in predicting the target knee angles. This is done by testing
the hypothesis: H0 = the feature is not relevant and cannot
be added and H1 = the feature is relevant and should be
kept. Any features that failed the significance testing were
removed from the set. This approach ensured that the features
set contained relevant features before being used as inputs for
the multivariate nonlinear regression [14], [17].

For the collected data, this step reduced the feature set
to an average of 2856 features. Then, a temporary model
was created by performing a multivariate nonlinear regression
using the Random Forest Regressor (from the Python package,
scikit-learn). The coefficient of determination and feature
importance determined how well each feature correlated with
the corresponding knee angles during gait. These features
were sorted based on their importance (computed with mean
impurity decrease, scikit-learn). Then, a subset of the 100 most
important features (Set B) was selected for training the final
model.

To further optimize the feature set, a second approach
(Set A) was also taken where, instead of using the top
100 features to train a final model, the top 200 features were
extracted from each channel of the IMU data. Then, a count
of appearance is made of each feature across the different
participants to determine its prevalence in their feature set.
Using this information, the feature lists from each channel
were combined and reordered based on their prevalence.
Finally, the combined feature set is filtered to remove features
that have R2 less than 0.9 before selecting the top 100 features
for training the final models. This approach aimed to reduce
the possibility that useful data would be removed in the final
model. The algorithm workflow is presented in Fig. 3. The top
ten features in the selected feature set are shown in Section III.

D. Model Evaluation
To evaluate the model estimations, the data were reorga-

nized into gait cycles. This is done by first performing a peak
analysis (scipy’s find peaks function) on the knee kinematics
time series to find the mid-swing, heel strike, and toe-off

Authorized licensed use limited to: University of Liege (ULg). Downloaded on July 19,2023 at 14:04:50 UTC from IEEE Xplore.  Restrictions apply. 



YEUNG et al.: PERSONALIZED MACHINE LEARNING APPROACH TO ESTIMATING KNEE KINEMATICS 12383

TABLE II
FEATURES DESCRIPTION FOR TABLE III

time points. Then, the data are windowed from heel strike
to heel strike. Next, temporal cross validation was performed
to evaluate the predictive performance of the models. The
models were trained on the first 70% of the data in this
approach and tested on the remaining 30%. This resulted in
∼50 s of training data and ∼20 s of testing data for each
individual. Next, we calculated the root-mean-square error
(RMSE) and coefficient of determination (R2) values between
the predicted knee kinematics from IMU data and the “gold-
standard” kinematics value obtained from the IK analysis
using OMC data. A leave-one-out analysis was also performed
to investigate the generalizability of the trained model with
the selected feature set. Finally, a stability analysis was also
performed by generating each model ten times to determine
variation in the model generated by the method. This variation
is reported as the coefficient of variation in the result section.

III. RESULTS

The final feature selection was based on the percentage
of participants that have a particular feature. A brief
description of the features can be found in Table II. After
feature selection, the top ten features shown in Table III
appeared in the top 100 of at least 40% of the participants
(see Fig. 4). The most common feature was the maximum
angular acceleration seen in the windowed data along the
z-axis corresponding to the feature Shank_imu_Oz__agg_
linear_trend__f_agg_“max”__chunk_len_5__attr_“slope” in
Table III.

In the model stability analyses (see Fig. 5), the results
showed (RMSE) a maximum value of 2.5 % variation from the
mean model, and when the clinical threshold was considered,
the models only varied by 1.2% from the mean model.

The person-specific models presented in Table IV showed
low RMSE (average error of 2.45◦) with an average correlation
coefficient of 0.98. The standard deviation of the RMSE was

Fig. 4. Top ten selected features based on feature set A and their
prevalence in different participant’s feature set.

TABLE III
TOP TEN FEATURES AND ITS MAXIMUM REPORTED IMPORTANCE

ACROSS TEN DIFFERENT PARTICIPANT-SPECIFIC MODELS

Fig. 5. Result of ten repeats of model generation per participant.

0.65◦. The maximum RMSE errors were 3.56◦ for participant
P07.

Due to the better performance of Set A, the features from
Set A were used to create the models used for the leave-one-
out analysis. In this analysis, seven out of ten models in the
study have R2 values above 0.87, and five models have average
RMSE values below 5◦. The best case was the model used to
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TABLE IV
COMPARISON BETWEEN GOLD-STANDARD KNEE KINEMATICS AND

IMU-DERIVED KNEE KINEMATICS USING THE PERSON-SPECIFIC

MODEL OF SELECTION SETS A AND B

TABLE V
LEAVE-ONE-OUT ANALYSIS OF SELECTED FEATURE SET A

predict P11’s gait, while the worst case was P07’s gait (see
Fig. 6 [31]), which showed a significant difference.

The highest error (Table V) in the generalized model occurs
during the stance phase with the predicted value above the 5◦

threshold (see Fig. 7 [32]). The lowest errors occur in the
middle of the swing phase of gait. For personalized models,
the errors are well below the 5◦ clinical error threshold.

IV. DISCUSSION

This study provides a method for estimating knee flexion
range of motion using only a shank-mounted IMU. Further-
more, it eliminates potential sources of error (i.e., numerical
drift and crosstalk) by directly relating the time-series features
extracted from the IMUs inputs to the desired knee angles.
We produced ten personalized surrogate models with good
predictive accuracy (average RMSE of 2.45◦) of knee flexion
angles. This is well below the 5◦ error threshold [18] and
indicates that the features used could be optimal for predicting
knee angles during treadmill walking. The pipeline was also
found to be able to generate a consistent model with variation
between generated models for the same participant to be 2.5%
from the mean model.

We believe that the predictive accuracy of this approach
can be attributed to relating the time-series features (extracted
and selected) from the IMU signals to the knee kinematics
without user intervention while still being able to control
how the features are sorted. This allows us to generate a
good predictive model with a small sample of data. Our
result is also comparable to the result presented in previ-
ous studies where Mundt et al. [33], Chen et al. [34], and
Tan et al. [35] used deep learning approaches where the errors
are on average 5◦–10◦ with a recent study reporting similar
errors of approximately 2◦–3◦ [36]. Although we did not
investigate other gait parameters such as stride time [37] in
this study, we believe that our approach could produce similar
results given the accuracy shown in our knee kinematics and
the reported results in the literature of a similar approach.
Our personalized model results generally showed lower errors
than those studies but our generalized models with similar
accuracy [38]. This indicates that the random forest model is
a good alternative method for generating models for estimating
knee angles. However, our approach has some limitations
evident by examining the results.

The quality of the data and the subsequent extracted features
are the limiting factors on how well the model can perform.
For instance, in this study, the same feature set was used
across all participants, and all participants had similar walking
speeds and duration on the treadmill. The variation of the
errors seen across different models (see Table IV) could have
occurred if the feature set did not fully explain the variation in
gait between individuals. This became more evident when the
generalizability of the surrogate models was examined using
the leave-one-out analysis (Table V). We found that three of
the ten participants had RMSE over 10◦ with an R2 value
below 0.9. This led to the observed errors in the worst case
shown in Fig. 6. Removing these outliers, the average rms
error dropped to 4.75◦

± 0.9◦. This result is comparable to a
similar study on overground walking [38], where they showed
an rms error of 5.0◦

±1.0◦ after removing outliers. Hence, this
further supports the notion that the feature set may not have
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Fig. 6. Leave-one-out results showing (a) worst case and (b) best case across the gait cycle (heel strike to heel strike). The yellow and blue bands
represent the standard deviation [27].

Fig. 7. Absolute difference between the OMC derived joint angles and the models predicted joint angles. (a) Generalized model. (b) Personalized
model. The orange line is the 5◦ threshold for clinical measurements [28].

the right features for the variation seen in the dataset or the
training dataset was not diverse enough to capture the variation
in gait between individuals, especially during the stance phase,
as shown in Fig. 7. This problem is similar to deep learning
methods such as artificial neural network (ANN) [33]. In these
cases, some authors will use stimulated data to increase the
sampled data and add more variability [33], and this might
also work for our presented approach. Another method we
could use to consider variability between individuals is to
create additional channels by combining existing data channels
to generate new features, i.e., similar to the way tools such
as TSFuse [39]. This was shown to aid in improving model
prediction for gait parameters [27], [40].

The computational resource required to extract features
is another limitation of this method. The presented method
requires a lot of computing resources (i.e., memory space,
at least 32 GB of RAM) to compute the features and
subsequently train a nonlinear regression model and it is not

always possible to have access to a high-powered computer.
However, the feature selection and model training steps are
only required to generate the model. Once the model was
generated, it was possible to run the model on a low-powered
computer using a small feature set, for example, Microsoft
surface pro tablet with an i5 and 8 Gb of RAM [14].

The number of features chosen could be a limitation as the
accuracy of the resulting model depends on the data used for
training and the features used in the model. For this study,
100 features were selected as they gave good accuracy for
the personalized models. The same feature set is then used
to train our generalized models. However, this could have led
to overfitting and the subsequent errors seen in some of our
generalized models. For future work, it is proposed that an
analysis will need to be performed on the features extracted
by tsFresh and determine how the importance of these features
changes with increasing variation in the data, i.e., walking
speed [40]. As another piece of future work, this method will
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be extended to estimating angles from different joints of the
lower limb and using other wearable sensing technologies such
as electromyography (EMG) to investigate muscle activity
while walking [27].

Although our method showed results were similar to pre-
vious IMU studies (see Argent et al. [16] study), our method
also does not require anthropometric variables when training
a machine learning model. In addition, we can use a single
IMU to estimate knee flexion, a technique that traditional IMU
methods (as described in studies [5] and [41]) would not be
able to perform while still achieving clinically accurate results
with root mean square errors of <5◦. This method is similar
to deep learning models.

We believe that the presented method also has several other
benefits when compared to the traditional method of obtaining
joint angles from IMUs. In conventional methods, the orien-
tation of the IMU and its relative orientation to the body must
be calculated. Since this is computed from angular velocity,
numerical errors, such as drift, will reduce the accuracy of the
estimated joint angles. Methods, such as the one described by
Nazarahari and Rouhani [4], could estimate a calibration trans-
formation from IMU-to-body anatomical coordinate system by
using the gravity vector, principal component analysis (PCA),
and straight-line walking. However, these methods require the
user to perform the calibration motion every time the IMU
is placed on the individual, as the quality of the resulting
estimation relies heavily on the quality of the calibration. This
is especially true for the method presented by Seel et al. [42]
and Muller et al. [43] where the user requires balance on
one leg and perform a series of dynamic motion. This could
be difficult to implement depending on the application, e.g.,
an elderly patient using the IMU as part of their rehabilitation-
monitoring regime. The presented method could also solve
this issue by personalizing and tuning the models at a clinical
visit, where “ground truth” kinematics can be determined using
either an OMC or a clinic-based IMU system. Then, the
subsequent generated models could then be used to analyze
gait in the real world as a remote monitoring system.

V. CONCLUSION

Accurate estimation of knee angles using only a shank-
mounted IMU is possible from a personalized surrogate model
trained using time-series features extracted by tsFresh. In addi-
tion, a generalized model was shown to be possible even
though the present errors are high. This is due to the study’s
limitations, such as sample size and lack of variation in gait on
the treadmill. Solving this will require more data with greater
gait variation to create a robust model for predicting knee
kinematics for individuals not represented in the training data.
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