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We study a two-level atom in a double-well potential coupled to a continuum of electromagnetic modes
�black-body radiation in three dimensions at zero absolute temperature�. Internal and external degrees of
freedom of the atom couple due to recoil during emission of a photon. We provide a full analysis of the
problem in the long wavelengths limit up to the border of the Lamb-Dicke regime, including a study of the
internal dynamics of the atom �spontaneous emission�, the tunneling motion, and the electric field of the
emitted photon. The tunneling process itself may or may not decohere depending on the wavelength corre-
sponding to the internal transition compared to the distance between the two wells of the external potential, as
well as on the spontaneous emission rate compared to the tunneling frequency. Interference fringes appear in
the emitted light from a tunneling atom, or an atom in a stationary coherent superposition of its center-of-mass
motion, if the wavelength is comparable to the well separation, but only if the external state of the atom is post
selected.
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I. INTRODUCTION

Young’s double slit experiment, in which interference is
observed from light passing through two small slits or holes
in a plate placed at a distance comparable to the wavelength
of the light, constitutes one of the experiments at the base of
quantum mechanics. Theory and experiment have been re-
fined over the years to the point that the two holes have been
replaced by two trapped atoms or ions which scatter incom-
ing laser light �1–6�. With the advance of the coherent con-
trol of the external degrees of freedom of atoms �see, e.g.,
Refs. �7–10��, the realization of atom interferometers �11–13�
�see Ref. �14� for a recent review�, and in particular the re-
alization of macroscopic quantum superposition �so-called
“Schrödinger cat”� states of the center-of-mass coordinate of
a single atom or ion �15�, it is natural to ask if interference
could be observed in the light emitted from a single atom
superposed coherently in two different positions. A similar
question was answered to the negative in a paper by Cohen-
Tannoudji et al. �16� for the case of scattering of light from a
massive object brought into orthogonal position states. The
physical reason is clear: interference can only arise if the
probe particle can distinguish the two locations of the target.
But then the probe particle must get entangled with the tar-
get. If the target is massive its two orthogonal position states
remain unaltered during scattering and therefore lead to van-
ishing overlap of the scattered probe states after tracing out
the target. Later the scattering problem was reconsidered for
lighter targets, where it was shown that interference can
arise. In particular, Rohrlich et al. �17� analyzed the general
situation of the scattering of two free particles, a probe with
mass m and a target with mass M. Interference was predicted
for the case of m�M, and even perfect visibility of interfer-
ence fringes for m=M in one dimension.

Similarly, Schomerus and co-workers �18� analyzed the
scattering of particles from a “quantum obstacle,” an ob-
stacle brought into a coherent superposition of positions. An
important difference from Ref. �17� lies in the fact that the
target was supposed to be bound in a double-well potential

and to tunnel coherently between the two wells with tunnel-
ing frequency �. For the case of one-dimensional scattering,
they showed that the quantum obstacle leads to almost the
same transmission resonances as two fixed obstacles, if the
kinetic energy � of the incident particle satisfies ���. In the
opposite limit, interference can still be recovered by post-
selecting the elastic scattering channel.

Spontaneous emission is not the same as scattering, and it
is a priori unclear if these results apply to spontaneous emis-
sion alone as well. Furthermore, the properties of the emitted
light are only a small part of the interesting physics that can
arise, if internal and external degrees of the tunneling atom
are coupled. Indeed, one might ask, if spontaneous emission
itself �e.g., the decay rates of the excited level� changes, if
the atom is brought into a coherent superposition of different
external states. Also, what happens with the tunneling mo-
tion? To what extent does the emitted photon cause decoher-
ence of the external degree of freedom? Spontaneous emis-
sion from a tunneling two-level atom was considered in Ref.
�19� for the case of the transmission of an atom through a
rectangular energy barrier in one dimension with the atom
coupled to a one-dimensional mode continuum. It was shown
that the recoil from photon emission can lift the atom over
the tunnel barrier and thus increase significantly the trans-
mission.

In the present paper we examine spontaneous emission of
a two-level atom trapped in a double-well potential, where
the atom interacts with the full three-dimensional continuum
of electromagnetic modes �the interaction with a single cav-
ity mode was treated in Ref. �20��. We carefully investigate
the effective dynamics of all three subsystems involved: the
internal degree of freedom of the atom, the tunneling motion,
and the electric field created by the emitted photon in a re-
gime where the photon wavelength is at most comparable to
the well separation. The tunneling motion may suffer deco-
herence from the emission of a photon from the atom, but
this depends, among other things, on the timing of the emis-
sion of the photon. Interference in the light emitted from the
atom is very weak, but interference with perfect visibility of
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the fringes arises if the external state of the atom is post-
selected in the energy basis.

II. MODEL

A. Derivation of the Hamiltonian

We consider a trapped two-level atom �with levels �g�, �e�
of energy ���0 /2, respectively� interacting with traveling
modes of the electromagnetic field as illustrated in Fig. 1.
The atom is assumed to be tightly bound in the x-y plane at
the equilibrium position x=y=0 and to experience a sym-
metric double-well potential V�z� along the z direction.

The Hamiltonian of this system is given by

H = HA + HF + HAF, �1�

where HA=HA
ex+HA

in denotes the Hamiltonian of the trapped
atom, HF is the Hamiltonian of the free field, and HAF is the
interaction Hamiltonian describing the atom-field interaction.
Explicitly,

HA
ex =

pz
2

2M
+ V�z� , �2�

HA
in =

��0

2
�z

in, �3�

HF = ��
k

�kak
†ak, �4�

and, in the dipole approximation

HAF = − �
k

d · Ek, �5�

where d is the atomic dipole operator and

Ek = Ek�k�ake
ik·R + ak

†e−ik·R� �6�

is the electric field operator, Ek=	 ��k

2�0V , �0 is the permittivity
of free space, V the electromagnetic mode quantization vol-
ume, �k the electric field polarization vector �normalized to
length one�, k stands for wave number k= �kx ,ky ,kz�, and
polarization �=1,2 of the electromagnetic modes with fre-

quency �k=c�k� �where c is the speed of light in vacuum�
and R= �x ,y ,z� for the center-of-mass position of the atom.
Note that in Eqs. �2�–�6�, z is still an operator, with pz
its conjugate momentum for the atomic center-of-mass
motion along the z axis; M denotes the atomic mass
�z

in= �e�
e�− �g�
g� and ak �ak
†� the annihilation �creation� op-

erator of mode k of the radiation field.
In the following we will resort to the two-level approxi-

mation of the motion in the external potential which amounts
to taking into account only the two lowest energy levels of
the Hamiltonian HA

ex. We denote by � the tunnel splitting,
i.e., the energy spacing between the two lowest energy states
�the symmetric �−� and antisymmetric �+ � states� of the
double-well potential. Within this approximation, Hamil-
tonian �2� becomes

HA
ex =

��

2
�z

ex �7�

with �z
ex= �+ �
+�− �−�
−�. We can form states that are mainly

concentrated in the left and right wells by superposing the
symmetric �−� and antisymmetric �+ � states

�L� =
� + � − �− �

	2
, �R� =

� + � + �− �
	2

. �8�

The position operator z reads z=b�x
ex /2 in the two-level ap-

proximation, where �x
ex= �−�
+�+ �+ �
−�= �R�
R�− �L�
L� and

b /2= 
+�z�−�= 
R�z�R� is the average z position of the atom
localized in the right well �see Fig. 1�.

The two-level approximation is justified if the higher vi-
brational energy levels are not populated during the sponta-
neous emission process. This is well satisfied, if the recoil
energy ���0 /c�2 /2M is much smaller than the difference in
energy to the next highest vibrational level ��23 �see Fig. 1�
in the external potential �Lamb-Dicke regime with respect to
vibrational excitations�. This implies that the wavelength �
of the emitted photon is much larger than the extension of
the ground state wave function. However, the level splitting
�� between the two lowest states in the double-well poten-
tial retained in the two-level approximation is typically much
smaller than the energy difference ��23 to the next highest
vibrational level, and hence one should distinguish two dif-
ferent Lamb-Dicke regimes: one with respect to vibrational
excitations and the other with respect to tunneling. While
remaining in �and up to the border of� the Lamb-Dicke re-
gime with respect to vibrational excitations, our analysis is
not restricted to the Lamb-Dicke regime with respect to the
ground-state doublet. As we want to reach the regime where
��b in order to observe interference in the emitted light, we
have to go up to the border of the Lamb-Dicke regime with
respect to vibrational excitations. The localization of the
states �R� and �L� compared to � is measured by the param-
eter 	=�0b /c=2
b /�. Numerical simulations show that for
	�3 �i.e., ��2b�, the restriction of the dynamics to the two
lowest states is still a reasonable approximation �see Sec.
II E for further details�.

− b
2

b
2
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∆

ω23

ω0
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FIG. 1. Two-level atom in a double-well potential interacting
with a continuum of electromagnetic waves. Right panel: coordi-
nate system used, with the atom tunneling in the z direction, and the
atomic dipole in the x-z plane.
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By expressing the dipole operator as d= 
e�d�g��x
in

���d�x
in, the interaction Hamiltonian �5� can be cast in the

form

HAF = ��
k

gk�x
in�ake

ik·R + ak
†e−ik·R� �9�

with atom-field coupling strength gk=−��d ·�kEk /�, dipole
matrix element �, and the unit vector �d in the direction of
the vector of dipole matrix elements, which we take without
restriction of generality in the x-z plane with components
�d= �sin � ,0 ,cos �� �see Fig. 1�. Furthermore, �x

in=�+
in+�−

in,
�−

in= �g�
e�, �+
in= �e�
g�, and exp�ik ·R�=cos �+ i sin � �x

ex

with �=kzb /2. We will consider in the following the situa-
tion where �0�, and introduce the small parameter �
�� /�0�1. Experimentally, this is the most accessible situ-
ation �see Sec. II E�. A rotating wave approximation is then
in order, which leads to the interaction Hamiltonian

HAF = ��
k

gk�cos � �ak�+
in + ak

†�−
in�

+ i sin � �x
ex�ak�+

in − ak
†�−

in�� . �10�

Note that in the case of ���0 two additional terms would
have to be kept, i sin � �ak�+

ex�−
in−ak

†�−
ex�+

in�. Equation �10�
makes clear that different electromagnetic waves will act in
quite different ways: waves with sin �=0 will only interact
with the internal degree of freedom, but leave the atom po-
sition untouched. Indeed, these waves do not distinguish be-
tween the left and the right well. In particular, in the long
wavelength limit �b ���1� the atom stays in its initial
motional state. Waves with sin ��0, however, will couple to
both internal and external degrees of freedom at the same
time and can thus modify the tunneling behavior of the atom.

It is evident from Eq. �10� that the tunneling motion can
in principle reduce spontaneous emission: The coupling con-
stant of the second term in Eq. �10� changes its sign with the
position of the atom in the double-well �“+” in the right �z
�0� well, “−” in the left well�, as �R� and �L� are eigenstates
of �x

ex with �1 as eigenvalues. In the case of rapid tunneling
motion, the sign of that part of the Hamiltonian is therefore
reverted, so is the corresponding time evolution, and sponta-
neous emission is thus reduced. However, reverting the time
evolution has to happen on the time scale of the dominating
bath modes �i.e., 1 /�0� in order to give a significant effect.
Based on Eq. �10�, one may expect at most a reduction by a
factor 2 in the rate of spontaneous emission for ���0 as the
first term in Eq. �10� is independent of the external degree of
freedom of the atom. In the limit ��1 which we consider in
this paper, the change of � will turn out to be very small.

We will describe all dynamics in the interaction picture
with the free Hamiltonian H0=HA

in+HA
ex+HF. The corre-

sponding time dependent field and atomic operators read
ak�t�=exp�iH0t /��ak exp�−iH0t /��=ak exp�−i�kt�, �+

ex�t�
=�+

ex exp�i�t�, and �+
in�t�=�+

in exp�i�0t�. We thus arrive at
the final form of the Hamiltonian

HAF�t� = ��
k

gk�cos � �ei��0−�k�tak�+
in + e−i��0−�k�tak

†�−
in�

+ i sin � �ei��0+�−�k�tak�+
ex�+

in + ei��0−�−�k�tak�−
ex�+

in

− e−i��0+�−�k�tak
†�−

ex�−
in − e−i��0−�−�k�tak

†�+
ex�−

in�� .

�11�

B. Internal dynamics—spontaneous emission

Let us first examine the process of spontaneous emission
for the tunneling atom. We write a general pure state of the
entire system �atom+field� as

���t�� = �
n,�=�,�=g,e

cn���n��� , �12�

where �n�����n����ex���in, �n�=k�nk� is a product state of
all the field modes, nk=0,1 ,2 , . . ., denotes the occupation
number of mode k, and the sum over n is over all sets
�n0 ,n1 , . . .�, ���ex denotes the atomic external state, and ���in

the atomic internal state. We start with a general initial state
without any photon, but with the atom excited internally, and
externally in an arbitrary pure state

���0�� = c0+e�0��0 + e� + c0−e�0��0 − e� . �13�

Normalization imposes �c0+e�t��2+ �c0−e�t��2=1. From the
Schrödinger equation in the interaction picture i� d

dt ���t��
=HAF�t����t�� we obtain the equations of motion for the rel-
evant coefficients,

iċ0−e = �
k

gke
i��0−�k�t�cos � c1k−g + i sin � e−i�tc1k+g� ,

�14�

iċ0+e = �
k

gke
i��0−�k�t�cos � c1k+g + i sin � ei�tc1k−g� ,

�15�

iċ1k−g = �
k

gke
−i��0−�k�t�cos � c0−e − i sin � e−i�tc0+e� ,

�16�

iċ1k+g = �
k

gke
−i��0−�k�t�cos � c0+e − i sin � ei�tc0−e� ,

�17�

where the overdot means derivative with respect to the time
t. We can formally integrate Eqs. �16� and �17� and insert
them into Eqs. �14� and �15�. This leads to a closed system of
equations for the coefficients c0�e. In order to avoid unnec-
essarily heavy notations, we focus momentarily on the equa-
tion for c0−e, which can be compactly summarized as

ċ0−e = G��0,c0−e� + G��0 − �,c0−e�

+ Gc��0,c0−e� − Gc��0 − �,c0−e� , �18�

G��0,c0−e� � −
1

2�
k

gk
2�

0

t

dt� ei��0−�k��t−t��c0−e�t�� , �19�
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Gc��0,c0−e� � −
1

2�
k

gk
2cos 2��

0

t

dt� ei��0−�k��t−t��c0−e�t�� .

�20�

The equation for c0+e can be found by substituting �→−�,
and c0−e→c0+e in Eq. �18�. In principle, Eq. �18� contains
two more terms, one given by

i

2�
k

gk
2 sin 2��

0

t

dt� ei��0−�k��t−t��e−i�t�c0+e�t�� �21�

and the other by an almost identical term with opposite sign
and the phase factor e−i�t� replaced by e−i�t. However, we
will find that the overwhelming part of the time integrals
comes from t�� t�b /c, such that the two phases differ only
by �b /c. This quantity represents a tunneling speed com-
pared to the speed of light, and has to be necessarily much
smaller than one, as otherwise the tunneling would have to
be described in relativistic terms. Indeed, even for very large
tunneling splittings ��MHz� and well separation ���m,
say�, this ratio is of order 10−8 and thus entirely negligible.
Therefore, the two additional terms cancel to very good ap-
proximation.

We replace the sum over k by an integration in the limit of
infinite quantization volume V, use polar coordinates for k,
and find

Gc��0,c0−e� = Gc
�+���0,c0−e� + Gc

�−���0,c0−e� , �22�

Gc
�����0,c0−e� = −

�2

64
2�0�c3�
−1

1

d� h��,�� �23�

��
0

t

dt��
0

�

d� �3ei���b/c−�t−t����ei�0�t−t��c0−e�t�� , �24�

h��,�� = �sin2 � + 2 cos2 � + �2�sin2 � − 2 cos2 ��� ,

�25�

which is still exact, but makes Eq. �18� a complicated diff-
erointegral equation. In order to proceed, we resort to the
Wigner-Weisskopf approximation �21,22�. This amounts to
realizing that the main contribution to the integral over �
will arise from a narrow interval around �=�0, with a width
of the order of the rate of spontaneous emission �. The stan-
dard Wigner-Weisskopf vacuum spontaneous emission rate
reads

���0� =
�0

3�2

3
�0�c3 , �26�

which means that ���0� /�0= �4 /3����0d /c�2�1, where �
�1 /137 is the fine-structure constant and d=� /e0 is the di-
pole length �dipole matrix element divided by electron
charge�. The ratio �0d /c must be much smaller than one for
the dipole approximation to hold. In our problem, the rate of
spontaneous emission will be hardly modified. Thus, for all
values of �0, there is indeed a sharp peak of width �� in the
integrand of the integral over � �if one was to perform the

integration over t� first�. The factor �3 varies only slowly on
that scale, and can therefore be pulled out of the integral.
Moreover, the lower bound of the � integral can be extended
to −�, such that the � integral leads to a Dirac-delta function
2
�(��b /c− �t− t��). The slight retardation b /c correspond-
ing to the time of travel of a light signal between the two
wells is important here as it determines the �-interval that
contributes, but can be neglected in c0−e after performing
the integration over t�, as c0−e will evolve on a time scale
1 /�b /c. We thus arrive at

Gc��0,c0−e� = − d��,	�
���0�

4
c0−e�t� ,

d��,	� =
3

4
��sin2 � + 2 cos2 ��

i

	
�1 − ei	�

+ �sin2 � − 2 cos2 ��
− 2i + ei	�2i + 2	 − i	2�

	3 � ,

�27�

with 	=�0b /c. The functional G��0 ,c0−e� is obtained from
Eq. �27� by taking the limit 	→0 and thus gives

G��0,c0−e� = −
���0�

4
c0−e�t� , �28�

as lim	→0 d�� ,	�=1. Note that the dependence on �0 is both
in ���0� and in 	. Altogether we have

ċ0�e = −
��

2
c0�e, �29�

�� =
1

2
����0� + ���0��� + ���0�d��,

�0b

c
�

− ���0���d��,
��0���b

c
�� , �30�

with the obvious solution

c0�e�t� = c0�e�0�e−��t/2. �31�

It is convenient to express �� in terms of the standard
Wigner-Weisskopf rate ���0� for a localized atom, and use
the dimensionless parameter �=� /�0�1 introduced previ-
ously. We then have

��

���0�
=

1

2
�1 + d��,	� + �1� ��3�1 − d„�,	�1� ��…�� .

�32�

For �=0 and 	�3 �i.e., for finite b a double-well potential
with infinite barrier�, we are immediately led back to the
standard Wigner-Weisskopf rate for both initial states �0�e�,
��=���0�. Thus, as long as there is no tunneling, an arbi-
trary coherent superposition of the atom in the right and in
the left well does not change the spontaneous emission at all.
Similarly we get back ��=���0� for 	=0. For 	�1,
d�� ,	� vanishes as 1 /	, and we have approximately
�� /���0�= 1

2 �1+ �1���3�. This rate has the simple interpre-
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tation of arising from two independent decay channels, from
��e� to ��g� or ��g�. Transitions which do not change the
external state see the same level spacing �0 as an atom with-
out tunneling degree of freedom, whereas a flip of the exter-
nal state changes the level spacing by ��. Both transitions
come with the corresponding Wigner-Weisskopf rate, ad-
justed for the correct overall level spacing, and the total rate
is the average rate from the two decay channels.

Contrary to the Wigner-Weisskopf case, the rates �� are
in general complex. For the decay of the probabilities �c0�e�2,
only the real part of d�� ,	�,

Re d��,	� =
3

2
��sin2 � + 2 cos2 ��

sin 	

	

+ �sin2 � − 2 cos2 ��
2	 cos 	 + �	2 − 2�sin 	

	3 �
�33�

is relevant. This function equals one for 	=0, depends only
slightly on �, and decays with some slight oscillations as a
function of 	. However, for 	�1, ��1 �exponentially small
overlap of wave functions�, and for ��1, 	�1 �small �0�,
i.e., in the regime attainable within the two-level approxima-
tion made in this paper, we have that �� deviates from ���0�
only very slightly and we will set ��=���0��� in the rest
of the paper.

C. External dynamics—decoherence of the atomic tunneling

The quantum mechanical expectation value for the aver-
age position 
z�t�� and thus the dynamics of the external
degree of freedom follow from


z�t�� =
b

2
��+−

ex �t�e−i�t + c.c.� , �34�

where the matrix element �+−
ex �t� in the interaction picture is

obtained from tracing out the internal and field degrees of
freedom,

�+−
ex �t� = c0+e�t�c0−e

� �t� + K�t� , �35�

K�t� � �
k

c1k−g
� �t�c1k+g�t� . �36�

The first term in Eq. �35� can be obtained immediately from
Eq. �31�. In order to get K�t�, we insert the solutions �31� for
c0�e�t� into Eqs. �16� and �17�. Direct integration of the latter
equations gives

c1k�g�t� = gk�c0�e�0�cos �
1 − e�−i��0−�k�−�/2�t

��k − �0� + i�/2

− ic0�e�0�sin �
1 − e�−i��0��−�k�−�/2�t

��k − �0��� + i�/2� , �37�

where we have set ��=� in accordance with the previous
section. It is possible to calculate the tunneling motion in-
cluding terms of order �, but the calculations are tedious and
the additional information gained compared to order zero in
� not illuminating. We therefore present here a simplified
calculation which leads to a result valid up to corrections
O���. The shifts �� in the denominator and exponent in Eq.
�37� have to be kept. Without the �� in the exponent, there
will be obviously no tunneling at all. Formally, the need to
keep � in the denominator and exponent of Eq. �37� arises
from the fact that there � has to be compared not to �0 but to
�0−�k, which can vanish, as �k varies from 0 to �.

We restrict ourselves to real initial amplitudes c0�e�0� and
proceed in a similar fashion as for the spontaneous emission
to evaluate the sum over all modes k in Eq. �35�, after insert-
ing Eq. �37�. This leads to

K�t� =
�2c0−e�0�c0+e�0�

16
2c3�0�
�

0

�

d� �3�
−1

1

d� h��,��

��cos2��	̃
2
� e−�t − 2 cos��� − �0�t�e−�t/2 + 1

�� − �0�2 + �2/4
+ sin2��	̃

2
� e2i�te−�t − 2ei�tcos��� − �0�t�e−�t/2 + 1

�� − �0 + � + i�2 ��� − �0 − � − i�2 � �
�

�2�0
3c0−e�0�c0+e�0�
16
2c3�0�

�
−�

�

d��a��,	̃�
e−�t − 2 cos��� − �0�t�e−�t/2 + 1

�� − �0�2 + �2/4

+ �8

3
− a��,	̃�� e2i�te−�t − 2ei�tcos��� − �0�t�e−�t/2 + 1

�� − �0 + � + i�2 ��� − �0 − � − i�2 � � , �38�

with 	̃=�b /c and

a��,	� = �sin2 � + 2 cos2 ���1 +
sin 	

	
� + �sin2 � − 2 cos2 ���1

3
+

2	 cos 	 + �	2 − 2�sin 	

	3 � . �39�

We have made the same approximations as for the calculation of the rates of spontaneous emission, i.e., pulled out a factor �0
3

from the integral over �, and extended the lower bound of the integral to −�. In principle the � integral is uv divergent and
would need a cutoff �see Ref. �23� for a discussion of experimentally relevant cutoffs�. However, in order to conserve
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probability, the same approximations as for the rates of spontaneous emission need to be made here. Also, while there are two
resonances now �0��, they differ only at order �, so that at lowest order in � it is indeed enough to pull out �0

3 from the
integral. The remaining � integral is performed by contour integration, and we find the final result


z�t�� = bc0−e�0�c0+e�0�

��e−�t cos��t� +
3

8
�a��,	��1 − e−�t�cos��t� + �8

3
− a��,	�� �/2

1 + �2/4��1 + e−�t�sin��t� +
�

2
�1 − e−�t�cos��t����

� �1 + O���� , �40�

where we have introduced ��� /�.
Let us consider a few special cases of this general result.

First of all, Eq. �40� shows that for c0−e�0�=0 or c0+e�0�=0,

z�t��=0 for all t. This corresponds to putting the atom ex-
ternally into one of the two energy eigenstates �� � of the
uncoupled system, which are symmetric with respect to z
=0. The two decay channels do not introduce a position bias
either, and therefore the atom stays on average always at z
=0. Tunneling with full amplitude needs an initial prepara-
tion in the right or left well, i.e., c0−e�0�c0+e�0�=�1 /2, and
we will therefore assume from now on c0−e�0�c0+e�0�=1 /2.

The limit 	→0 leads with lim	→0 a�� ,	�=8 /3 immedi-
ately to 
z�t��= b

2cos��t�, i.e., undisturbed tunneling motion,
as if the atom had no internal structure at all. The physical
reason for this is of course that the emitted photon has in this
case a wavelength much larger than the distance between the
two wells such that it does not carry any information about
the position of the atom, and therefore no decoherence of the
tunneling motion arises.

The case of 	�1 is more subtle. At 	�3 we have
a�� ,	��4 /3 and hence


z�t�� �
b

2
��1

2
�1 + e−�t� +

�2/8�1 − e−�t�
1 + �2/4 �cos��t�

+
�/4

1 + �2/4
�1 + e−�t�sin��t�� , �41�

which for t�−1, i.e., when a photon has certainly been
emitted, settles down to


z�t�� �
b

2
��1

2
+

�2/8
1 + �2/4�cos��t� +

�/4
1 + �2/4

sin��t�� ,

�42�

�
b

2
A cos��t + �� , �43�

with

A =	�2 + 1

�2 + 4
. �44�

As a consequence, after a period of initial damping, tunnel-
ing with a finite amplitude Ab /2, which is in general reduced
compared to the full possible value b /2, and phase shift �
persists.

This is very much in contrast to standard decoherence
scenarios of a particle tunneling through a potential barrier
�24�, where the continued coupling to a heat bath normally
destroys all coherence �even though exceptions are possible
in other contexts, in particular for heat baths with small cut-
off frequency, which can lead to incomplete decoherence as
well �25��. Here, the decoherence is switched off once the
photon is emitted, as the center-of-mass coordinate of the
atom does not couple directly to the electromagnetic modes.
Furthermore, the time at which the photon is emitted, plays a
crucial role. If we take �=� /�→� in Eq. �44�, we find A
=1, i.e., in spite of strong dissipation and short wavelength
of the photon, there is no decoherence of the tunneling mo-
tion at all. The reason lies in the fact that the photon is
emitted immediately after preparation of the atom in the right
well, i.e., at a time, when it is not in a coherent superposition
of eigenstates of its center-of-mass position. Thus, no coher-
ence can get destroyed, and since after the emission of the
photon decoherence is switched off, tunneling proceeds in
the ground state with full amplitude. One may also see the
emission of the photon as a measurement process which
should, for ��b, project the atom either into the right or left
well. However, since the atom was prepared in the right well
just before, one projects the state back into the right well,
therefore keeping the coherence of the initial external state.

On the other hand, if we take �→0 in Eq. �44�, we find
that the amplitude of the tunneling motion in the long time
limit reduces to A=1 /2. In the many runs of the experiment
necessary to verify Eq. �40�, the time when the photon is
emitted is averaged over many tunneling periods, such that
roughly speaking in half the runs the atom is in a coherent
superposition of eigenstates of its center-of-mass position z,
half of the time it is in an eigenstate of z. Therefore, it is
natural that on the average tunneling with half the full am-
plitude persists for t�−1.

This physical picture is confirmed by the result for the
tunneling amplitude for the case of an initial state ��+ �
+ i�−�� /	2, which is neither an eigenstate of position nor of
energy. Without dissipation ��→0� this state would be
reached from the initial state after a quarter period of the
tunneling motion. For t�−1 and 	�3, the formula corre-
sponding to Eq. �44� reads

A =
1

	�2 + 4
. �45�

Thus, indeed for �→0, one obtains, as in the case of the
initially localized external state, a reduction of the tunneling
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amplitude by a factor 2. For very large �, on the other hand,
the coherence of the superposition is destroyed immediately,
and the resulting unbiased mixture of the states �R� and �L�
leads to vanishing tunneling amplitude.

An alternative interpretation can be found by considering
the frequencies of the emitted photon. If the atom is initially
in a position eigenstate, photons with frequencies �0, �0
+�, and �0−�, can be emitted corresponding to the transi-
tions �� �→ �� �, �+ �→ �−�, and �−�→ �+ �, respectively.
These frequencies are smeared out over a width � /2. For
��, the four transitions cannot be distinguished and the
coherence between the states �� � remains intact, leading to
A=1. On the other hand, for ���, the observation of the
emitted photon reveals the path how the atom arrived in a
given external state �+ � or �−� in half of the cases ��
=�0��� and therefore destroys half of the coherence be-
tween �+ � and �−�, giving A=1 /2.

The limits �→0 and t→� do not commute, which is a
consequence of the factors exp�−�t� in 
z�t��. If we take the
limit �→0 already in Eq. �40�, i.e., without considering t
→� first, we get 
z�t��= b

2cos��t�. The atom tunnels with full
amplitude, i.e., A=1, and shows no decoherence, as it should
be, of course. Therefore, in a finite time interval starting with
the preparation of the initial state, decoherence is most effec-
tive in an intermediate regime ��2�, when a photon is
likely to be emitted at the time when tunneling has estab-
lished a coherent superposition of �R� and �L�. For general
� ,� and large times, t�−1, i.e., after the damping has
settled down, 
z�t�� / �b /2� oscillates with an amplitude

A =
1

4
	9a��,	�2 + 16�2

4 + �2 , �46�

a function which we show in Fig. 2. This makes clear that
also at very small but finite �, A reduces to 1/2 for suffi-
ciently large 	 �A=1 /2 is reached asymptotically for 	→�,
which is, however, beyond the validity of the theory�. When
plotting 
z�t�� in a fixed time interval as in Fig. 3, the reduc-
tion of A is not visible yet at small values of �.

D. The electromagnetic field

We now calculate the electromagnetic field in the limit of
large times t��

−1, such that the atom has emitted a photon
with certainty. We will approximate again �+��−����0�

�� �we are restricted to the regime �0� ,��. The wave
function of the entire system has then the form

������ = �
k

�c1k−g����1k − g� + c1k+g����1k + g�� �47�

with

c1k�g��� = gk� c0�e�0�cos �

�k − �0 + i�/2
− i

c0�e�0�sin �

�k − �0�� + i�/2�
�48�

�see Eq. �37��. Equations �47� and �48� show that after the
emission the system is in a superposition of infinitely many
states of two different categories: One with the atom staying
in the same external state with an emitted photon in a fre-
quency band centered at �0, and the other with the external
state of the atom flipped and an emitted photon in a fre-
quency band centered at �0��. The width of the frequency
bands is � /2 in both cases. For sin �=0, there is no contri-
bution from states of the second category. This is approxi-
mately the case in the regime of long wavelengths ���1�
where the atom remains in the same motional state. The first
order correlation function of the electric field G�1��r ,r ; t , t�
�22� is given for large times by

G�1��r,r;t,t� = 
�����E�−��r,t� · E�+��r,t������� = �I+�2 + �I−�2,

�49�

I� = �
k

c1k�g
0�E�+��r,t��1k� , �50�

with the positive frequency electric field operator E�+��r , t�
=�kEk�kake

i�k·r−�kt�. The difference between I+ and I− rests
upon c1k�g. We focus for the moment on I+. The correspond-
ing results for I− are obtained in a completely analogous
fashion. In fact, according to Eqs. �48� and �50� one only
needs to exchange c0+e↔c0−e and replace � by −� in the
final result to obtain I− from I+. We choose the vector r to lie
in the x-z plane, convert the sum over k into an integral as
before, and are thus led to
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FIG. 2. �Color online� Amplitude of the tunneling motion for
t�−1 for �=
 /2 as a function of 	 and ln �.

�

�
�

�

�z(t)�

ττ

ln γln γ

0.5

0.5

0

0

0

0

0

1010

2020
1515

5

5

5

5

5

5

1

1

FIG. 3. �Color online� Tunneling motion 
z�t�� in units of b /2 as
a function of ���t and ln � for 	=3, �=0 with the initial value

z�0��=b /2.
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I+ = −
1

16
3�0c3�
0




sin �d��
0

2


d�

��
0

+�

d��3�� − k
k · �

k2 �ei�k·r−�t�

�� c0+e�0�cos �

� − �0 + i�/2
− i

c0−e�0�sin �

� − �0 + � + i�/2� , �51�

=Ic
+ + Is

+, �52�

where k ·r= �� /c��z cos �+x sin � cos ��. The integral splits
into two parts Ic

+, Is
+ with denominators �−�0+ i� /2 and �

−�0+�+ i� /2. As in the Wigner-Weisskopf theory of spon-
taneous emission, we assume that �3 varies little around �
=�0 �respectively, �=�0−�� so that we can replace �3 by
�0

3 �respectively, ��0−��3� and extend the lower limit of
integration to −�. Only the x and z components of Ic

+ and Is
+,

denoted as Ic,�
+ , Is,�

+ , �� �x ,z�, give a contribution �the y com-
ponent is identically zero�

Ic,�
+ = −

�0
3�c0+e�0�

16
3c3�0
�

0




sin �d��
0

2


d� f���,�,��

� �
−�

+�

d�
ei��z/c cos �+x/c sin � cos �−t� cos��b

2c cos ��
� − �0 + i�/2

,

�53�

fx��,�,�� = �sin � − sin � cos � �sin � cos � sin �

+ cos � cos ��� , �54�

fz��,�,�� = �cos � − cos � �sin � cos � sin �

+ cos � cos ��� . �55�

Writing cos��b
2c cos �� as a sum of exponentials, the � integral

can be easily evaluated using the contour method and
leads to a Heaviside  function  (t− ��z�b /2�cos �
+x sin � cos �� /c) for the positive �negative� frequency part
of the cos��b

2c cos �� function, which illustrates the fact that
the electric field cannot spread faster than the speed of light.
In order to avoid the complications which arise from the
angle dependence of the  function, we will restrict our-
selves to times t� 1

c �r+b /2� with r=	x2+z2. We find

Ic,�
+ = i

�0
3�c0+e�0�
8
2c3�0

�
0




sin �d��
0

2


d� f���,�,��

�ei��0−i�/2��z/c cos �+x/c sin � cos �−t�

�cos� b

2c
��0 − i�/2�cos �� . �56�

Integration over the angle � yields for the x component

Ic,x
+ = i

�0
3�c0+e�0�
4
c3�0

�
0




sin �d� ei��0−i�/2��z/c cos �−t� cos� b

2c
��0 − i�/2�cos ��

��sin � J0� x

c
��0 − i�/2�sin �� − i sin � cos � cos � J1� x

c
��0 − i�/2�sin ��

− sin2 � sin � � J1„
x
c ��0 − i�/2�sin �…

x
c ��0 − i�/2�sin �

− J2� x

c
��0 − i�/2�sin ���� , �57�

where J0, J1, and J2 are Bessel functions. A closed form of the type of the remaining � integral has been found very recently
by Neves et al. �26�. Using their formula, we can evaluate the � integration analytically and find in the far-field region

Ic,x
+ = i

�0
3�c0+e�0�
4
c3�0

e−i��0−i�/2�t

��sin � � sin R+

R+
+

sin R−

R−
� − sin � � sin2 �+sin R+

R+
+

sin2 �−sin R−

R−
� −

1

2
cos � � sin�2�+�sin R+

R+
+

sin�2�−�sin R−

R−
��

+ O�1/R�
2 � , �58�

with

R� =
��0 − i�/2�

c
r�, r� = 	x2 + �z� b/2�2, tan �� =

x

z� b/2
. �59�

The expression for Ic,z
+ is obtained from Ic,x

+ by a rotation of the coordinate system ��→�+
 /2, ��→��+
 /2�, which
amounts in Eq. �58� to exchanging sin �↔cos � and replacing sin2 ��→cos ��

2 . In the far field, sin R��eiR� /2i, and the
expressions can be further simplified,
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Ic,x
+ =

�0
3�c0+e�0�
8
c3�0

e−i��0−i�/2�t� eiR+

R+
sin�� − �+�cos �+ +

eiR−

R−
sin�� − �−�cos �−� + O�1/R�

2 � . �60�

Similarly, we get for the second part Is
+ of the integral

Is,x
+ = −

��0 − ��3�c0−e�0�
8
c3�0

e−i��0−�−i�/2�t� eiR̃+

R̃+

sin�� − �+�cos �+ −
eiR̃−

R̃−

sin�� − �−�cos �−� + O�1/R̃�
2 � �61�

with

R̃� =
��0 − � − i�/2�

c
r�. �62�

The formulas for Ic,z
+ and Is,z

+ are obtained by changing the global sign and replacing cos ��→sin �� where it appears
explicitly in Eqs. �60� and �61�, respectively. We have

Ic,x
+ + Is,x

+ �
�0

2�

8
c2�0

e−�/2�t−r/c�

r
e−i�0t

��c0+e�0��ei�0r+/c sin�� − �+�cos �+ + ei�0r−/c sin�� − �−�cos �−�

− c0−e�0�ei�t�ei��0−��r+/c sin�� − �+�cos �+ − ei��0−��r−/c sin�� − �−�cos �−�� + O��/�0,�/�0,1/r2� �63�

and again the corresponding expression for Ic,z
+ + Is,z

+ can be found from Eq. �63� by just changing the global sign and the
explicitly printed factors cos �� into sin ��. We can summarize the results for both I+ and I− as

�I��2 = �Ic,x
� + Is,x

� �2 + �Ic,z
� + Is,z

� �2

�
�0

4�2

64
2c4�0
2

e−��t−r/c�

r2 ��c0�e�0��ei�0�r/c sin�� − �+�cos �+ + sin�� − �−�cos �−�

− c0�e�0�e�i��t−r−/c��ei��0����r/c sin�� − �+�cos �+ − sin�� − �−�cos �−��2

+ �c0�e�0��ei�0�r/c sin�� − �+�sin �+ + sin�� − �−�sin �−�

− c0�e�0�e�i��t−r−/c��ei��0����r/c sin�� − �+�sin �+ − sin�� − �−�sin �−��2 + O��/�0,�/�0,1/r2�� �64�

with �r=r+−r−. In the limit b→0, we have �r=0, ��=� with tan �=x /z, and we recover the well-known result �27� �valid
for t�r /c�

G�1��r,r;t,t� =
�0

4�2

16
2c4�0
2

e−��t−r/c�

r2 sin2�� − ���1 + O��/�0,�/�0,1/r2�� , �65�

where �−� is the angle between the dipole moment and the observer.
Using �r�b cos �, cos ���cos �−���sin �, and sin ���sin �+���cos � with ���=��−��� b

2rsin � in the far
field, we get for an initial delocalized state, c0�e�0�=1 and c0�e�0�=0,

G�1��r,r;t,t� �
�0

4�2

16
2c4�0
2

e−��t−r/c�

r2 sin2�� − ���1� sin��b

2c
cos ��sin��	 � �b

2c
�cos ����1 + O��/�0,�/�0,1/r2�� , �66�

where the upper and lower sign now refer to the initial condition. If the atom is initially located in the right well, c0+e�0�
=c0−e�0�=1 /	2 and we find

G�1��r,r;t,t� �
�0

4�2

16
2c4�0
2

e−��t−r/c�

r2 sin2�� − ��

��1 + sin��b

2c
cos ���cos�	 cos ��sin��b

2c
cos ��� − sin���t −

r

c
���1 + cos�	 cos ����

��1 + O��/�0,�/�0,1/r2�� . �67�

In both cases the interference term is proportional to sin��b
2c cos �� which scales in the nonrelativistic limit as �b /c and is thus

extremely small.
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The radiation from a classical oscillating dipole was ex-
amined recently by Bolotovskii and Serov �28�. They predict
interference effects in the regime where 	�1, but do not
provide any analytical results for the visibility of the inter-
ference fringes. It appears, however, that a classically mov-
ing dipole has to move a distance comparable to the wave-
length during the time 1 /�0 if waves from different origins
are to combine in a remote location—otherwise the radiation
pattern only follows its source adiabatically. Indeed, it is
easy to show that at order zero in �b /c a classical oscillating
dipole does not lead to interference �where � means now the
classical oscillation frequency of the center-of-mass motion
of the dipole�. Therefore, the absence of interference in Eq.
�67� at lowest order in �b /c agrees with the classical result.
The initially delocalized states �� � do not have a classical
analog.

However, it turns out that in the quantum case interfer-
ence with perfect visibility arises if the external state of the
atom is post-selected in the energy basis. For example, if
only runs of the experiments are taken into account where
the atom is measured in external state �+ � before the photon
is recorded, only �I+�2 �but not �I−�2� contributes to
G�1��r ,r ; t , t�. We find in this case G+

�1��r ,r ; t , t�
!cos2�	

2 cos ��sin2��−�� �subscript + for post-selection in
�+ ��. The interference fringes for post-selection in �−� are
phase shifted, i.e., G−

�1��r ,r ; t , t�!sin2�	
2 cos ��sin2��−��,

such that in the sum G�1��r ,r ; t , t�=G+
�1��r ,r ; t , t�

+G−
�1��r ,r ; t , t� the interference terms compensate and only

the dipole characteristics G�1��r ,r ; t , t�!sin2��−�� is left
�see Fig. 4 for �=0�. Note that for post-selection the inter-
ference pattern becomes independent of � and should there-
fore be observable even for small �, as long as the two states
can be reliably distinguished. Spectral filtering of the photon
with a resolution better than � has the same effect as mea-
suring the external energy of the atom. For c0�e�0�=1, mea-
suring a photon of frequency �=�0 projects on �� �,
whereas the observation of a photon of frequency �
=�0�� projects on �� �.

E. Experimental perspectives

Several requirements have to be met to observe the effects
predicted in this paper. First of all, one needs a double-well
potential with tunable well-to-well separation and barrier
height in order to vary b and �. This has been demonstrated
with optical dipole traps, e.g., in Refs. �7,8�, and on atom
chips, e.g., in Refs. �9,29�. Second, we considered in our
model the same external potential for both internal states �g�
and �e�, and these states should be coupled by a dipole tran-
sition. It is by now well known that this requirement can be
met for Cs, Yb, Sr, and possibly Mg and Ca atoms at certain
“magic wavelengths” in optical traps �30–33�. Third, we
made the two-level approximation for the external degree of
freedom. It turns out that in a typical double-well potential at
the limit of the Lamb-Dicke regime with respect to vibra-
tional excitations 	�3 �i.e., ��2b� still leads to a reason-
able restriction of the dynamics to the two lowest states. To
show this, let us consider the usual quartic double-well po-
tential V�z�=V0�z2−a2�2 /a4, where 2a is the well-to-well
separation. Similar results are obtained for other shapes of
the double-well potential. The transition probability during
emission of a photon between energy eigenstates �n� and �m�
of this potential is given by �
n�eikz�m��2 �34�. For Cs atoms
and for the parameters V0 /�=0.23 MHz and a=� /4, where
�=852.4 nm is the 6S1/2→ 6S3/2 transition wavelength, this
gives less than 10% transition probability out of the ground
state doublet with a tunneling splitting ��150 Hz and 	
�2.93. For lighter atoms, such as Mg, tunnel splittings of
the order of kHz can be easily achieved for the same 	. The
theory thus works well for 	�3 but not anymore for larger
values. Equation �26� implies that for a � in the kHz range,
��� for a transition in the near-infrared ��0�1013 Hz�,
where a well-to-well separation of ��m leads to 	�3,
which still keeps transition probabilities to higher vibrational
states at less than about 10%.

In any case, for optical traps the trap frequency and thus
the tunnel splitting are determined by the laser power and the
focusing �or the wavelength for optical lattices�, and can
therefore be controlled independently of � such that both
regimes �� and ��� should be achievable. The sponta-
neous emission rate � can be varied over a large interval by
using a small static magnetic field to enable electrical dipole
transitions between hyperfine levels that would otherwise be
forbidden, due to admixture of small amplitudes of other
hyperfine levels with weakly allowed dipole transition �35�.
In �33�, ��20 Hz �including additional external broadening
mechanisms� was demonstrated for a clock transition at
578.42 nm in Yb trapped with light at the magic wavelength
�=759.35 nm with this technique. Even smaller values of �
should be achievable according to theoretical predictions
�36�.

Cooling close to the ground state in a single well trap has
been demonstrated and should work down to temperatures
kBT"�� if � is comparable to the single well vibrational
frequency �30�. Finally, one needs to detect the tunneling
motion. That should be possible by optical imaging, i.e., dif-
fusion of laser light from another transition in the optical
regime with smaller wavelength than the well separation.
Another possibility might be using the atomic spin as a po-
sition meter �37�.
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FIG. 4. �Color online� Polar plot of the angular dependence
of G�

�1��r ,r ; t , t� �red dashed and blue dotted curves� and
G�1��r ,r ; t , t�=G+

�1��r ,r ; t , t�+G−
�1��r ,r ; t , t� �green solid curve� for

	=3, �=0, and an initially delocalized state c0+e�0�=1.
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III. CONCLUSIONS

A two-level atom which can tunnel between the two wells
of a double-well potential allows for a host of interesting
phenomena, which we have studied systematically in this
paper in the regime �=� /�0�1 �tunnel frequency much
smaller than the atomic transition frequency� and 	=�0b /c
�3. Whereas the spontaneous emission rate � of the atom is
only slightly modified by putting the atom into a coherent
symmetric superposition �ground state of the external
double-well potential� of the two states in the right and left
well, the tunneling of the atom and the properties of the
emitted light are altered more profoundly. The emission of a
single photon can cause decoherence of the tunneling mo-
tion, but only if �1� the photon wavelength is not much larger
than the distance between the two potential wells and �2�
spontaneous emission is not too fast, i.e., ���. For ��,
the photon is emitted even before the atom starts its tunnel-
ing motion, i.e., before a coherent superposition of eigen-
states of the center-of-mass coordinate of the atom is estab-
lished. Hence, despite strong coupling to the environment,
the tunneling motion does not suffer from decoherence at all
in this regime. After the emission of the photon no more
decoherence takes place, and tunneling will then continue
with constant amplitude. For very slow spontaneous emis-

sion, ���, the average amplitude of the tunneling motion
reduces by a factor 2. The electric field of the emitted photon
shows interference fringes, but their amplitude is very small
unless the external state of the atom is post-selected in the
energy basis or, alternatively, the photons are spectrally fil-
tered with a resolution better than �, in which case interfer-
ence fringes with perfect visibility arise. The absence of in-
terference without post-selection �or spectral filtering� is in
agreement with the results by Rohrlich et al. in the case of
scattering �17�, whereas the appearance of interference after
post-selection or spectral filtering of the photon agrees with
the results in Ref. �18�, where it was predicted that interfer-
ence fringes from the scattering of a particle by a quantum
scatterer disappear in the limit where the kinetic energy
���, but can be recovered by post-selecting the elastic
scattering channel. The effects predicted here should in prin-
ciple be observable with modern cold-atom technology.
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