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Spin-current driven Dzyaloshinskii-Moriya interaction in multiferroic BiFeO3 from first principles
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The electrical control of magnons opens up new ways to transport and process information for logic devices.
In magnetoelectrical multiferroics, the Dzyaloshinskii-Moriya (DM) interaction directly allows for such control
and hence is of major importance. We determine the origin and the strength of the (converse) spin-current
DM interaction in the R3c bulk phase of multiferroic BiFeO3 based on density functional theory. Our data
support only the existence of one DM interaction contribution originating from the spin-current model. By
exploring the magnon dispersion in the full Brillouin zone, we show that the exchange is isotropic, but the
DM interaction and anisotropy prefer any propagation and any magnetization direction within the full (111)
plane. Our work emphasizes the significance of the asymmetric potential induced by the spin current over the
structural asymmetry induced by the anionic octahedron in multiferroics such as BiFeO3.
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I. INTRODUCTION

BiFeO3 (BFO) is one of the few single-phase multifer-
roics which exhibit a large spontaneous polarization and a
long-range magnetic order at room temperature. BFO has an
antiferromagnetic (AFM) texture that can be approximated
locally by a G-type order in its R3c ground state with a
Néel temperature of 643 K [1]. R3c BFO exhibits a po-
larization of about 90 µC/cm2 along the pseudocubic 〈111〉
symmetry equivalent directions with a Curie temperature of
1123 K [2–5]. In bulk, the AFM order is modified by the
Dzyaloshinskii-Moriya (DM) interaction [6,7] creating a spin
spiral that propagates along the [11̄0] direction (known as
the type-I cycloid), with magnetic moments lying in the
plane formed by the polarization and the propagation di-
rection. The periodicity of this spin spiral is 62 nm [8,9].
Additionally, another propagation direction along [112̄] has
been reported in BFO, and is referred to as the type-II
cycloid [10–14].

The AFM spin spiral couples to the polarization via the
magnetoelectric (ME) effect. The ME effect can have multiple
origins [15]. Some are indirect, such as magnetostriction [16]
or spin-dependent screening [17], while others, such as the
DM interaction, directly couple the atomic displacements to
the AFM spin spiral, opening up the possibility of the elec-
trical control of magnons [18]. This effect is at the center
of a new logic device which is intended to electrically con-
trol out-of-equilibrium spin spirals—also called magnons—in
BFO to transport and process information [19,20]. Therefore
exploration of the stability mechanisms of different types of
spin spirals is of paramount importance and has been the
subject of a lot of research.

A phenomenological model based on Lifshitz invariants
established that the DM interaction stabilizing the spin spiral
had the form α(P) · Li × L j , where P is the polarization and

L is the AFM vector [21]. This phenomenological model was
completed by a microscopic model based on the tight-binding
approximation which attributed the presence of a nonzero
polarization to the presence of a spin spiral. In this model,
the hybridization between the d orbitals of the metal ions
and the p orbitals of the oxygen results in the polarization
P ∝ ei j × (Si × S j ), where Si and S j are spins on sites i and
j, respectively, and ei j is the unit vector between sites i and
j [22].

The link between this polarization and the presence of the
DM interaction was explicitly written by Rahmedov et al. in
Ref. [23], where the spin spiral in BFO was explained based
on the presence of two chiral interactions of different symme-
tries. The first term, DwFM ∝ (ωi − ω j ) · (Si × S j ), couples
the oxygen octahedra tilts ω to the magnetic texture and stabi-
lizes the magnetic moment in the (111) plane perpendicular
to the tilts’ rotation vectors. This DM contribution induces
the weak ferromagnetic moment in BFO [24]. The second
term has the form DSC ∝ (ui × ei j ) · (Si × S j ), couples the
polarization direction ui to the magnetic moments, and favors
the stabilization of the magnetic moments perpendicular to the
(111) plane. By varying these energy terms, several types of
spin cycloids have been predicted in BFO [25].

To compare the energies of these different spin spirals, both
DM contributions must be computed from density functional
theory (DFT). DwFM was predicted to create the weak mag-
netic moment in BFO, and therefore it should lie along the
[111] direction [24]. This DM contribution was obtained from
DFT calculations (from 146 µeV [26] up to 304 µeV [27])
in relatively good agreement with the experimental value
(163 µeV [28]). Note that a full parametrization of BFO in the
R3c phase obtained from experimental measurements is given
in Refs. [29–31]. They found DSC = 110 µeV and DwFM =
50 µeV, which values are significantly lower than previous
measurements and calculations. However, to our surprise and
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to the best of our knowledge, DSC has not been obtained from
DFT calculations, which does not allow us to discuss the
stability of the different spin spirals.

Here, we determine the origin and the strength of the spin-
current DM interaction in BiFeO3 from DFT and show that in
this type of multiferroic, the DM interaction originates from
the asymmetric potential within the Fe cations rather than
the structural distortions induced by the O anionic octahedra.
We calculate the energies of spin spirals E (q) for different
propagation directions q in the full pseudocubic Brillouin
zone (BZ), which shows an isotropic exchange interaction.
The spin-orbit coupling (SOC) contribution is fully quenched
for spin spirals propagating along the polarization direction,
which only agrees with the spin-current model [22,23] and
excludes the model of Fert and Levy [32] (referred to herein as
the Levy-Fert model (LF model)]. Finally, all magnetic inter-
actions, e.g., the magnetic exchange, the spin-current model,
and the anisotropy, lead to a degeneracy of spin cycloids
within the (111) plane which suggests that both type-I and
type-II cycloids could coexist in bulk R3c BFO.

II. METHODS

We have used the relaxed structure of bulk BiFeO3 and
calculated the energy dispersions E (q) of flat spin spiral
states without and with spin-orbit coupling to determine the
magnetic exchange interaction and Dzyaloshinskii-Moriya in-
teraction. The details are as follows.

A. Structure of BiFeO3

We used the R3c structure of BiFeO3 from Ref. [33], where
the unit cell of BFO contains ten atoms and has been relaxed
with DFT using the ABINIT package [34–36] and the projec-
tor augmented wave (PAW) method [37]. The exchange and
correlation functional is treated with the local spin density
approximation + U (LSDA+U ), with a Hubbard U parameter
of 4.0 eV and J of 0.4 eV on the Fe atoms. The wave functions
have been expanded using plane-wave basis sets with a kinetic
energy cutoff of 30 hartrees. The self-consistent calculations
have been performed with an unshifted 24 × 24 × 24 k-point
grid. For the structural relaxation, the collinear G-type AFM
configuration has been adopted. The R3c structure was opti-
mized until the force on each atom was smaller than 1 × 10−5

hartrees/bohr. The relaxed rhombohedral lattice constant of
BFO is 5.538 Å, and the rhombohedral angle is 59.71◦.

B. Energy dispersion of spin spirals

We use the abovementioned structure and calculate the
energy dispersion E (q) of flat homogeneous spin spirals ap-
plying the full-potential linearized augmented plane wave
(FLAPW) approach [38–40], as implemented in the FLEUR

code [41]. For all these calculations, we have used the
LSDA+U [42], muffin-tin radii of 2.80, 2.29, and 1.29 bohrs
for Bi, Fe, and O atoms, respectively and a large plane-wave
cutoff kmax of 4.6 bohr−1. These parameters result in a mag-
netic moment of m = 4 µB in agreement with experiments [9].
Spin spirals are the general solution of the Heisenberg model
on a periodic lattice and can be characterized by the spin spiral
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FIG. 1. (a) Pseudocubic Brillouin zone (BZ) with high-
symmetry points (red points and letters). Shown are the calculated
propagation directions (colored lines) of spin spirals. Note that all
calculations start from the same R point. (b) Collinear magnetic
states (FM, ferromagnetic; AFM, antiferromagnetic) connected to
each high-symmetry point of the BZ.

vector q. This vector determines the propagation direction
of the spin spiral as well as the canting angle between two
neighboring spins. A magnetic moment Si at an atom position
ri is given by

Si = S(cos(q · ri ), sin(q · ri ), 0), (1)

where S is the magnitude of the magnetic moment. The vec-
tor q is a vector in reciprocal space, and we apply it along
several high-symmetry directions of the rhombohedral BZ.
For simplification, we present all data within the pseudocubic
Brillouin zone, shown in Fig. 1(a). The different directions are
drawn as colored lines, starting from the R point. Every high-
symmetry point in the BZ is connected to a certain collinear
state, sketched in Fig. 1(b). The starting point of every direc-
tion is the R point with the coordinates q = (1/2, 1/2, 1/2) 2π

a
of the pseudocubic BZ. For convenient illustration in our data,
all paths are connected with their common high-symmetry
points. The calculations along the full paths without SOC
have been performed self-consistently using the generalized
Bloch theorem [43] and a k-point mesh of 10 × 10 × 10.
To accurately determine the energies around the magnetic
ground state (R points) at |q| → R, the magnetic force theo-
rem [44,45] has been applied using a dense k-point set of 8000
k points (i.e., 20 × 20 × 20). The energy dispersion without
SOC is interpreted using the Heisenberg exchange interac-
tion (see paragraph on exchange interaction in Sec. II C). For
the energy contribution due to SOC (�ESOC) in spin spirals,
we add SOC in first-order perturbation theory [46] for ev-
ery previously calculated point. The resulting curve has been
interpreted with the Dzyaloshinskii-Moriya interaction. Note
that we applied SOC perpendicular to q in several directions:
Shown is the maximum contribution of each direction.

C. Magnetic interactions

We interpret our DFT calculations using a magnetic Hamil-
tonian containing the symmetric exchange interaction, the
antisymmetric Dzyaloshinskii-Moriya interaction, and the
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(a) (b) SC modelLF model

FIG. 2. Sketches of the two models for the Dzyaloshinskii-
Moriya (DM) interaction used in this paper. (a) Levy-Fert model
(LF model) [32,49]: Two magnetic atoms Si, S j are interacting via
a heavy metal atom hosting large spin-orbit coupling (SOC). The
triangle formed by the three atoms defines the DM vector Di j .
(b) Converse spin-current (SC) model [22,23]: In systems with a
polarization P, the spin-current vector u × ei, j is perpendicular to
the direction of polarization.

uniaxial or single-ion anisotropy energy. Due to our method,
we are able to separately determine the different magnetic
interactions.

Exchange interaction. The Heisenberg exchange interac-
tion constants Ji j beyond nearest neighbors are determined by
mapping the Heisenberg Hamiltonian

Hex = −
∑

i j

Ji j (Si · S j ) (2)

onto the resulting energy dispersion E (q) without SOC.
For the fitting procedure, we have included seven neighbors
(J1, . . . , J7).

Dzyaloshinskii-Moriya interaction. To determine the
Dzyaloshinskii-Moriya (DM) interaction, we analyze the en-
ergy contribution due to SOC (�ESOC) of the spin spiral
states which have been calculated in the previous step without
SOC. In the past when the DM interaction in BFO has been
evaluated using first principles, the DM vector Di j between
two magnetic atoms at positions i, j has been computed by
considering the different Fe-O-Fe bonds [26,47], hence the
Levy-Fert model (LF model) [32]. The LF model is typically
explained as a superexchange mechanism between two mag-
netic atoms Si, S j via a third nonmagnetic atom that holds a
large spin-orbit coupling [see Fig. 2(a)]. Due to the direction-
dependent scattering of the electrons, noncollinear magnetic
structures with a specific sense of rotation (clockwise or coun-
terclockwise) are preferred. The symmetry of the DM vector
is Di j ∝ Ri×R j

|Ri×R j | , where Ri, j are the position vectors of mag-
netic moments Si, j with respect to the atom of large SOC. In
BFO, the atom of large SOC is replaced by the oxygen to form
the same triangle. As in previous studies [33,47], we evaluate
the strength of the DM interaction using the LF model

HLF
DMI = −

∑

i j

Di j (Si × S j ). (3)

Depending on the propagation direction of the spin spiral, the
Levy-Fert model gives reliable results; however, as shown in
this paper, it cannot capture all effects.

Hence we apply a different model to explain the energy
contribution due to SOC, the so-called (converse) spin-current

model [23,48]. This model is also known as the Katsura-
Nagaoka-Balatsky (KNB) model [22] and shows that a spin
current js ∝ Si × S j in a noncollinear magnet creates an elec-
tric polarization P ∝ ei j × js. We follow the convention of
Ref. [23], where the Hamiltonian is written as

HSC
DMI = −

∑

i j

Ci j (u × ei j ) · (Si × S j ), (4)

where u is the unit vector in the direction of polarization and
ei j is the unit vector connecting magnetic moments Si, j at
sites i, j. The parameter Ci j describes the strength of the DM
interaction. The difference between the DM vector Di j and the
SC vector Ci j (u × ei j ) lies within the symmetry. Depending
on the symmetry of the system, however, both vectors can
coincide, e.g., in two-dimensional interfaces.

Magnetocrystalline anisotropy. We have calculated the uni-
axial magnetic anisotropy in BiFeO3 within the (111) plane.
For that, we have assumed the collinear G-type AFM state
where we have applied SOC in the presented directions of
the lattice. We applied two k-point sets (10 × 10 × 10 and
20 × 20 × 20) in the whole Brillouin zone and compared self-
consistent calculations (SC-DFT) with calculations applying
second quantization and the force theorem (FT-DFT) [44].
The other calculational parameters are consistent with the
methods above. The Hamiltonian of the magnetocrystalline
anisotropy is

HMAE = −
∑

i

K
(
S[111]

i

)2
(5)

with K being the energy of the uniaxial anisotropy with re-
spect to the hard [111] axis.

III. RESULTS

A. Exchange interaction

The calculated energy dispersion (shown as points) ob-
tained without SOC is presented in Fig. 3(a), where the paths
are R → X → R → M → R → � → R (cf. lower x axis). On
the upper x axis, the respective directions according to Fig. 1
can be seen. Without SOC, the dispersion shows an energy
minimum at the R point (G-type AFM state) [50] and the
highest energy at the � point (the FM state). The energy
dispersion is mapped onto an extended Heisenberg model,
Eq. (2), to determine the strength of the Heisenberg exchange
interaction parameters Ji j [curves in Figs. 3(a) and 3(b)]
beyond nearest neighbors (see Sec. II for more informa-
tion). The exchange between nearest neighbors is dominant,
J1 ∼ −27 meV/Fe atom, capturing the large energy differ-
ences between the high-symmetry points, but seven neighbors
are necessary to describe the curvature around the R points
(values can be found in Table I). A close-up around every R
point is shown in Fig. 3(b). The fit to the exchange interaction
results in a good description of the DFT calculations. Note
that the energy differences are very small, and a numerical
error on this energy scale is expected. Nevertheless, all the
energies (data and fit) around the collinear state at the R points
have the same curvature, e.g., the same effective exchange
interaction [51]. Hence the exchange in BFO is fully isotropic
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FIG. 3. Energy dispersion E (q) without SOC of flat spin spirals
along different directions within the pseudocubic Brillouin zone.
Points show calculated energies from DFT, and curves represent a fit
to the Heisenberg exchange interaction including seven neighbors.
(a) Full energy dispersion. (b) Zoom around the ground state at
q → R.

within the pseudocubic Brillouin zone, and every direction of
spin spiral is equivalent.

B. Computing the Dzyaloshinskii-Moriya interaction

To determine the strength of the Dzyaloshinskii-Moriya
(DM) interaction, we apply spin-orbit coupling (SOC) in first-
order perturbation [46,52] to every calculated point of Fig. 3.
The resulting energy contribution due to SOC, �ESOC, is
illustrated in Fig. 4. While in some directions with higher
symmetry [Fig. 4(a)], such as [110], [100], and [111], the
DFT results (black points) show a simple sine behavior, other
directions ([112] and [210]) exhibit a more complex trend.
In the [111] direction (the direction of spontaneous polariza-
tion in BiFeO3), however, the energy of SOC is completely
quenched.

We quantify the strength of the DM interaction by applying
the Levy-Fert model [LF model, Eq. (3)] [32] [cf. Fig. 2(a)].
In previous investigations [26,33,47], the LF model was used
to describe the DM interaction in BFO, based on the DM
vector Di j for the Fe-O-Fe bonds. We apply the fit of the
LF model [red curve in Fig. 4(a)] to the DFT data. In the
directions of higher symmetry, it is possible to use this model;
the curve follows the correct trend of the data. However,
since our calculations include specifically the [111] direction,
a combined mapping of the DM vector to our data is not
reproducing the DFT calculations. Hence the Levy-Fert model
cannot be used to describe this kind of DM interaction in

TABLE I. Magnetic interactions in BiFeO3 mapping an atom-
istic spin model to the results of DFT calculations. All values of
the ith-neighbor exchange Ji, the Dzyaloshinskii-Moriya constant
of the spin-current model Ci j , and the uniaxial magnetocrystalline
anisotropy K are given in the conventions “per atom” and “per pair
per m2.” J > 0 (J < 0) represents FM (AFM) order; C > 0 (C <

0) represents counterclockwise (clockwise) rotation. The effective
nearest-neighbor DM term, Ceff, denotes a fit within the linear region
of �ESOC(q → R). K > 0 prefers an easy plane perpendicular to the
[111] direction.

Parameter Value (meV/Fe atom) Value (meV)

J1 −26.998 −3.375
J2 −2.005 −0.251
J3 −0.179 −0.0224
J4 +0.717 +0.0896
J5 −0.195 −0.0244
J6 +0.157 +0.0196
J7 −0.410 −0.0513
C1 +0.369 +0.0461
C2 −0.00360 −0.00045
C3 −0.0156 −0.00195
Ceff +0.301 +0.00377
K +0.054 +0.0068
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FIG. 4. Dzyaloshinskii-Moriya interaction (DM interaction) in
BiFeO3. (a) Energy contribution due to spin-orbit coupling (�ESOC)
to the energy dispersion of spin spirals along different directions
within the pseudocubic Brillouin zone [Fig. 1(a)]. Points show cal-
culated energies from density functional theory (DFT), the red curve
corresponds to the LF model, and the blue curve corresponds to the
SC model. Positive (negative) values prefer a clockwise (counter-
clockwise) sense of rotation of noncollinear states. (b) Zoom around
the ground state at q → R where only the DFT data and the SC model
are presented.
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BFO. It would give rise to an energy contribution of SOC in
the [111] direction. All our tests reveal completely vanishing
energies in the direction of polarization.

We consider the converse spin-current model to fit the DFT
data [13,22,23,25]. Mapping Eq. (4) to the energy contribution
�ESOC gives rise to the blue curves in Figs. 4(a) and 4(b). The
SC model describes the DFT results almost perfectly. Here,
the fit contains three neighbors, C1, C2, and C3, where the
contributions of the second and third neighbors are a minor
correction to the first neighbor (cf. Table I). Note that even
an effective nearest-neighbor approximation for Ci j (cf. Ceff),
a linear fit in the region of �ESOC(q → R), shows a quali-
tatively very good agreement with the DFT calculations (see
Appendix).

In Fig. 4(b), we see the energy differences between the
different pseudocubic propagation directions of spin spirals
around the ground state. Both the data and the SC model
exhibit the steepest slope in the [110] and [112] directions,
meaning that the DM interaction for these two directions is
the largest. Furthermore, for both directions, points and curves
show complete energy degeneracy. [110] and [112], referring
typically to the type-I and type-II cycloids, respectively, lie
within the (111) plane. Our tests reveal that any direction
within the (111) plane is equally preferred by the spin-current
DM interaction. This means that including exchange and spin-
current DM interaction restricts the possibility of spin cycloid
propagation directions in BiFeO3 bulk to any direction of
the two-dimensional (111) plane. This is in accordance with
Ref. [31], where it is also stated that q can point along any
direction in the hexagonal (111) plane considering the two
magnetic interactions.

For detailed insight into the origin of the DM interaction in
BFO, we calculated the element-resolved energy contribution
due to SOC (Fig. 5). Here, the gray points show the total
energy contribution from Fig. 4(a), and the colored points
represent the elements of BiFeO3 (curves serve as guides to
the eye). In Figs. 5(b), 5(c), and 5(d) the energy contributions
due to Bi, Fe, and O, respectively, are presented. Since, in
the rhombohedral unit cell, two Bi, two Fe, and six O atoms
are used, a sketch of BiFeO3 in cubic representation is shown
in Fig. 5(a) with the same color code for each element as in
the graphs. Even though Bi is the element of large SOC and
the O atoms break the inversion symmetry, their contribution
to the total DM interaction in BFO is negligible [Figs. 5(b)
and 5(d)]. This emphasizes that the Levy-Fert model relying
on a heavy metallic element with large SOC and structural
asymmetry does not provide a good description for BFO.
The total DM interaction—as a sum of all contributions—
is represented by the whole contribution of both Fe atoms.
This is similar to the Rashba DM interaction observed in 3d
unsupported monolayers (UMLs) under an external electric
field [53] and in graphene/Co(0001) due to the potential gra-
dient between graphene and Co [54]. It creates an internal
asymmetry of the potential leading to a nonvanishing DM
interaction even though the structure itself does not hold an
asymmetry. In BFO, the internal electric field creates the
same asymmetry within the potential of the Fe atoms, and
hence the DM interaction is driven by the spin current of the
noncollinear magnetic structure.
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FIG. 5. Element-resolved energy contribution due to SOC
(�ESOC) to the energy dispersion. (a) Sketch of the BiFeO3 structure
in the cubic approximation. (b), (c), and (d) �ESOC for two Bi, two
Fe, and six O atoms in the unit cell, respectively. The total energy
contribution is shown with gray points. Here, cw, clockwise; ccw,
counterclockwise.

C. Magnetocrystalline anisotropy

As mentioned above, the exchange is isotropic within
the full three-dimensional (3D) BZ, whereas the spin-current
driven DM interaction narrows the spin cycloid directions
down to the (111) plane. However, experiments on bulk R3c
BFO only observed type-I cycloids, propagating in [110] and
the two equivalent directions [101] and [011]. Therefore we
determine the uniaxial anisotropy energy to check whether
this interaction can pin the cycloid’s propagation down to
these three directions. In Ref. [33] it has been shown that the
small easy-plane (111) anisotropy in R3c BFO is a result of
both strong out-of-plane anisotropy (in the [111] direction)
driven by the Bi-Fe ferroelectric displacement in competi-
tion with a strong easy-plane anisotropy (perpendicular to the
[111] direction) stemming from the oxygen octahedra tilts.
Here, we calculate the anisotropy energy using a 360◦ rota-
tion within the (111) plane [cf. arrows in the (111) plane of
Fig. 6(a)]. The magnetocrystalline anisotropy energy (MAE)
is not changing for any direction in this plane, which is shown
in Fig. 6(b). In bulk BFO, the MAE does not prefer a certain
magnetization direction within the (111) plane. Note that this
is in accordance with Ref. [31], where the degeneracy between
type-I and type-II spin cycloids is lifted by introducing an

024403-5



SEBASTIAN MEYER et al. PHYSICAL REVIEW B 108, 024403 (2023)

0

-0.02

-0.04

-0.06

-0.08

E
║

−
E

[1
11

]
(m

eV
/F

e
at

om
)

direction within the (111) plane

(a)

(b)

[314] [413] [211] [431] [341][112]

[213] [101] [312] [321] [110] [231]

[143][121]

[132]

SC-DFT20x20x20

FT-DFT20x20x20

SC-DFT10x10x10

FT-DFT10x10x10

[112]

[110]

[111]

[100]

[010]

[001]

[110]

100]

[010]

001]

FIG. 6. Calculated uniaxial anisotropy energy within the (111)
plane of BiFeO3. (a) Sketch of the pseudocubic Brillouin zone (BZ)
with different lattice directions. The shaded area shows the (111)
plane, whereas the anisotropy calculations have been performed con-
sidering the G-type antiferromagnet with the application of spin-orbit
coupling in all directions represented by the arrows. The colored
arrows in the (111) plane represent [110] and [112] and their equiv-
alent directions. (b) Results of the calculations for part of the data.
The results do not change for the complete rotation within the (111)
plane. “SC-DFT” corresponds to self-consistent density functional
theory calculations, and “FT-DFT” denotes calculations using the
force theorem [44]. For each type of calculations, we considered
different k-point sets, i.e., 20 × 20 × 20 and 10 × 10 × 10, in the
whole BZ.

anisotropy of order 6 and of amplitude 1.46 µeV. Such an
energy is not resolvable in the energy range of Fig. 6.

IV. DISCUSSION

Noncollinear magnetic ground states are typically created
by the interplay between the DM interaction, the exchange
interaction, and the anisotropy. It has been shown [55–57] that
a critical DM interaction DC ∝ √

JK needs to be overcome to
induce a noncollinear ground state such as a spin spiral. Our
calculations show that the spin-current DM interaction is right
at this threshold. Taking the above-determined interactions
into account, the magnetic ground state is a collinear G-type
AFM. Both the type-I and type-II spin cycloids propagating
in the [110] and [112] directions, respectively, are degenerate
in energy at +0.02 meV/Fe atom higher in energy, which

explains why so many different spin spirals were observed in
BFO [8,9,11,21,58].

Even if our calculated DFT energies have typically a
precision of the order of around 10 µeV, small deviations
originating from structural relaxations, kinetic energies, and
potential energies of spin spirals and from pseudocubic ap-
proximations would not affect the general conclusion.

Finally, our main results are compared with previous work.
Three methods were used to determine the DM interaction in
BFO.

Firstly, the magnetic interactions can be obtained from
fitting experimental results from spectroscopy data, as, e.g.,
in Refs. [28,30,59]: In those papers, the spin-current driven
DM interaction ranges from 0.1 to 0.17 meV, which is a factor
of 2–3 larger than our calculated value (cf. Table I). In that
case, the exchange interaction and anisotropy obtained from
experiment or theory lead to a spin spiral ground state.

Secondly, the magnetic interactions can be obtained by
using effective Hamiltonians and Monte Carlo simulations
as in Refs. [23,25,48]: Depending on the exchange and the
anisotropy energies, the parameter Ci j is varied to favor ei-
ther the G-type AFM collinear state or the different types
(type I or type II) of cycloidal directions. Our value of
C1 ≈ 13.1 × 10−6 hartrees μ−2

B bohr−1 is in the same energy
range as these previous investigations. While, in Ref. [23],
the cycloid is stable for C in between 3 × 10−6 and 5 ×
10−6 hartrees μ−2

B bohr−1, in Ref. [48] the type-I cycloid
occurs for 12 × 10−6 < C < 42 × 10−6 hartrees μ−2

B bohr−1,
and the type-II cycloid occurs for larger values. Recently, all
possible cycloids have been explored by varying the ratio
C1 : C2 [25]. This work shows that both type-I and type-II
cycloids can be obtained for dominant spin-current DM or
Levy-Fert DM interactions. Our value lies at the boundary
between the [110], [112], and [111] cycloid stability regions
in accordance with the slope of the DM interaction in the
directions of Fig. 4(b).

Thirdly, using the four-state method, the magnetic interac-
tions can be obtained from DFT calculations as in Ref. [47]:
In this method, the generalized exchange tensor is obtained,
and the symmetry of the DM interaction is ignored. The
magnetic Hamiltonian allows for a direct comparison, even
though the DM interaction is determined from the LF model
being D1 ≈ 0.126 meV, about a factor of 2 larger than our
value presented here.

At last, note that the same method as in this paper has
been applied to study the influence of the structural distortions
on the magnetic ground state in BFO [33]. In this paper, the
DM interaction is determined using the LF model because
only certain propagation directions of spin spirals have been
calculated where the LF model coincides with the SC model.
Therefore the values are close, D = 0.342 meV/Fe atom
compared with Ceff = 0.301 meV/Fe atom of Table I.

Despite the differences in all the methods and their po-
tential weaknesses in accuracy, the same order of magnitude
is found for all of the presented values. Hence the overall
agreement is very reasonable.

V. CONCLUSION

Our work demonstrates based on density functional the-
ory that the Dzyaloshinskii-Moriya interaction in R3c bulk
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FIG. 7. Energy contribution due to spin-orbit coupling (�ESOC)
to the energy dispersion of spin spirals along different directions
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text]. Points show calculated energies from density functional theory
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in the effective nearest-neighbor approximation. Positive (negative)
values prefer a clockwise (counterclockwise) sense of rotation of
noncollinear states. (a) Whole calculated paths. (b) Zoom around the
ground state at q → R.

BiFeO3 is governed by the spin-current model stemming from
the noncollinear antiferromagnetic structure. The off-centered
displacement of Fe and Bi induces an asymmetric shape of
the internal potential in the Fe atoms, and consequently, the
Fe atoms carry almost the whole contribution to the DM
interaction. This effect might not be restricted to BFO in
particular and should occur in other multiferroic materials.

In the case of BFO, by including exchange interaction, DM
interaction, and anisotropy, we show that any spin cycloid
propagation direction in the (111) plane is energetically de-
generate. This could explain an effect of continuously rotating
cycloids in BFO that has recently been observed [58] and
explained as a surface effect. Based on our results, this effect
should also be measurable in the bulk.

ACKNOWLEDGMENTS

S.M. and B.D. thank Dr. Manuel Bibes and Dr. Eric
Bousquet for fruitful discussions and careful reading of the
manuscript. This work is supported by the National Natural
Science Foundation of China under Grant No. 12074277,
the startup fund from Soochow University, and Priority Aca-
demic Program Development (PAPD) of Jiangsu Higher
Education Institutions. S.M., M.J.V., B.D., and L.B. ac-
knowledge DARPA Grant No. HR0011727183-D18AP00010
(TEE Program) and the European Union’s Horizon 2020
research and innovation program under Grant Agreement
No. 964931 (TSAR). L.B. also thanks the ARO for Grant
No. W911NF-21-1-0113 and the Vannevar Bush Faculty
Fellowship (VBFF) Grant No. N00014-20-1-2834 from the
Department of Defense. Computing time was provided by
ARCHER and ARCHER2 based in the United Kingdom at the
National Supercomputing Service with support from PRACE
aisbl and from the Consortium d’Equipements de Calcul In-
tensif (FRS-FNRS Belgium GA 2.5020.11).

APPENDIX: EFFECTIVE DM INTERACTION
FROM SPIN-CURRENT MODEL

As stated in the main text, using an effective
nearest-neighbor approximation for the spin-current driven
Dzyaloshinskii-Moriya interaction leads to a very good
description of the calculated data. In Fig. 7 the green curve
shows the result with an effective spin-current DM interaction,
Ceff ≈ Ci j (q → R) of +0.301 meV/Fe atom, also presented
in Table I.
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