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ABSTRACT

The increasing generation of anthropogenic waste highlights the need to integrate
a sustainable dynamic management that evolves with time according to the site con-
text and needs. This management can range from the development of an interim use
of a landfill surface to ultimately support remediation strategies that aim for the pre-
vention (or reduction) of pollutants into the environment and the reduction of waste
volumes. Simultaneously, the need of critical raw materials, metals and minerals
enhance the need to find alternative sources of materials. Therefore, remediation
strategies that aim to mitigate environmental risks and reduce the amount of waste,
can also be tailored to enhance secondary resource recovery. To this aim, it is cru-
cial to have in-depth knowledge of these residues such as the composition, physical
properties and quantities.

Geophysical methods have proved useful to characterize landfills and waste de-
posits in terms of geometry delineation, zonation and volume estimation, to infer the
waste composition and for monitoring. However, the heterogeneity that can be found
in the waste materials and the dynamic processes that may occur within them can
lead to complex data acquisition and processing as well as complex bulk geophysical
signatures that can be challenging to interpret.

This contribution aims first, to present a state of the art on the applicability and
limitations that several surface geophysical methods have, for the investigation of
different types of landfills and in particular metallurgical residues. We discuss its
applicability focusing on investigations that aim to provide decision support tools in
the dynamic management of these sites. Based on these studies, we observed the
need of: 1) more quantitative interpretation methodologies that integrated associated
uncertainties were needed for more reliable characterization of landfills and deposits,
and 2) integrated methodologies for a more comprehensive characterization of met-
allurgical residues in terms of metallic concentrations or mineral variations, linking
laboratory and field measurements. This contribution then aims to address these is-
sues.

First, we present a probabilistic approach to classify different types of materials or
“categories” observed in borehole logs using several data sources: inverted resistivity
and chargeability values, and the position of the boreholes. Using Bayes’ rule and
permanence of ratios, we computed joint conditional probabilities of each category
in the whole domain of the inverted models. The probabilities are then compared to
derive a classification model that integrates the associated uncertainty. Additionally,
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we assess the classification performance of the probabilistic approach and compare
it with the machine learning algorithm of multilayer perceptron (MLP). We tested
both approaches using different data sources and changing the number of boreholes
and its distribution in a synthetic case study based on a complex anthropogenic-
geologic scenario. Lastly, we compare both approaches using real data from an old
heterogeneous landfill.

Then, we present a methodology that integrates geochemical and geophysical lab-
oratory measurements to interpret geophysical field data in terms of the geochemical
composition. The final aim is to estimate volume(s) of different types of materi-
als for potential resource recovery. This methodology is illustrated in a slag heap
composed of byproducts from former iron and steel production where we carried
out a 3D acquisition using electrical resistivity tomography and induced polariza-
tion. In the lab, the same methods were applied on samples collected across the site
(geophysical-based sampling), along with additional spectral induced polarization
and X-ray fluorescence analysis. Based on the lab measurements, groups of differ-
ent chemical composition were identified. We then used the inverted resistivity and
chargeability collocated with the samples to fit 2D kernel density estimation func-
tions for each group, and derived the corresponding joint conditional probabilities in
the whole field domain. Then a 3D classification model was derived by comparing
the joint conditional probabilities estimated for each group. Associated uncertainties
are then integrated in the classification and in the estimation of volumes.

Both the probabilistic approach applied in a heterogeneous landfill and the in-
tegrated methodology illustrated in a slag heap represent alternatives for a more
quantitative geophysical (post-inversion) interpretation that integrate associated un-
certainties. These methodologies can be extended to integrate geophysical data from
multiple methods or/and three dimensions, as well as different types of geochemical
laboratory measurements, based on which the interpretation can be developed.
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RÉSUMÉ

La production progressive de déchets anthropiques met en évidence la néces-
sité d’intégrer une gestion dynamique durable qui évolue dans le temps en fonc-
tion du contexte et des besoins du site. Cette gestion peut couvrir le développe-
ment d’une activité provisoire de la surface d’une décharge et, en dernier ressort,
soutenir des stratégies d’assainissement visant à prévenir (ou à réduire) les polluants
dans l’environnement et à réduire les volumes de déchets. Simultanément, la de-
mande de matières premières critiques, de métaux et de minéraux renforce la néces-
sité de trouver des sources alternatives de matériaux. Par conséquent, les stratégies
d’assainissement qui visent à mitiger les risques environnementaux et à réduire la
quantité de déchets peuvent également être adaptées pour promouvoir la récupération
des ressources secondaires. À cette fin, il est essentiel d’avoir une compréhension dé-
taillée de ces résidus, notamment de leur composition, de leurs propriétés physiques
et de leurs quantités.

Les méthodes géophysiques se sont avérées utiles pour caractériser les décharges
et les dépôts de déchets en termes de délimitation de la géométrie, de zonage et
d’estimation du volume, pour déduire la composition des déchets et pour la surveil-
lance. Cependant, l’hétérogénéité que l’on peut trouver dans les déchets et les pro-
cessus dynamiques qui peuvent s’y produire peuvent générer une acquisition et un
traitement complexes des données ainsi que des signatures géophysiques complexes
en volume dont l’interprétation peut poser des problémes.

Cette contribution vise tout d’abord à présenter un état de l’art sur l’applicabilité
et les limitations de plusieurs méthodes géophysiques de surface pour l’étude de
différents types de décharges et en particulier des résidus métallurgiques. Nous dis-
cutons de l’applicabilité de ces méthodes dans le cadre d’études visant à fournir des
outils d’aide aux décisions pour la gestion dynamique de ces sites. Sur la base de ces
études, nous avons observé le nécessité de: 1) des méthodologies d’interprétation
plus quantitatives qui intègrent les incertitudes associées sont nécessaires pour une
caractérisation plus fiable des décharges et des dépôts, et 2) des méthodologies inté-
grées pour une caractérisation plus complète des résidus métallurgiques en termes de
concentrations métalliques ou de variations minérales, reliant les mesures en labora-
toire et sur le terrain. Cette contribution vise à répondre à ces questions.

En premier lieu, nous présentons une approche probabiliste pour classifier les
différents types de matériaux ou "catégories" observés dans les logs de forage en
utilisant plusieurs sources de données : les valeurs inversées de résistivité et de
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chargeabilité, et la position des forages. En utilisant le théorème de Bayes et la per-
manence des ratios, nous avons calculé les probabilités conditionnelles conjointes
de chaque catégorie dans l’ensemble du domaine des modèles inversés. Les prob-
abilités sont ensuite comparées pour obtenir un modèle de classification qui intg̀re
l’incertitude associée. Nous validons cette approche en utilisant des données synthé-
tiques dans un scénario anthropique-géologique complexe et en utilisant des données
réelles provenant d’une ancienne décharge hétérogǹe.

Ensuite, nous présentons une méthodologie qui intègre des mesures géochim-
iques et géophysiques en laboratoire afin d’interpréter les données géophysiques de
terrain en termes de composition géochimique. L’objectif final est d’estimer le(s)
volume(s) de différents types de matériaux pour une évaluation de la récupération
potentielle des ressources. Cette méthodologie est illustrée dans un terril composé
de sous-produits de l’ancienne production de fer et d’acier où nous avons effectué une
acquisition 3D en utilisant la tomographie de résistivité électrique et la polarisation
induite. En laboratoire, les mêmes méthodes ont été appliquées à des échantillons
prélevés sur le site (échantillonnage basé sur la géophysique), en plus de la polari-
sation induite spectrale et de l’analyse par spectrométrie de fluorescence des rayons
X. Sur la base des mesures effectuées en laboratoire, des groupes de composition
chimique différente ont été identifiés. Nous avons ensuite utilisé la résistivité et la
chargeabilité inversées colocalisées avec les échantillons pour ajuster des fonctions
de l’estimation par noyau (KDE en anglais) en 2D pour chaque groupe, et nous avons
dérivé les probabilités conditionnelles conjointes correspondantes dans l’ensemble
du domaine du terrain. Un modèle de classification 3D a ensuite été dérivé en com-
parant les probabilités conditionnelles conjointes estimées pour chaque groupe. Les
incertitudes associées sont ensuite intégrées dans la classification et dans l’estimation
des volumes.

L’approche probabiliste appliquée à une décharge hétérogène et la méthodologie
intégrée illustrée dans un crassier représentent des alternatives pour une interpréta-
tion géophysique (post-inversion) plus quantitative qui intègre les incertitudes as-
sociées. Ces méthodologies peuvent être étendues pour intégrer des données géo-
physiques provenant de méthodes multiples et/ou en trois dimensions, ainsi que
différents types de mesures géochimiques en laboratoire, sur la base de laquelle,
l’interprétation peut être développée.
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Chapter 1

Introduction

In Europe there are between 150,000 and 500,000 landfills from which, approxi-
mately 90 % predate the EU Landfill Directive of 1999, i.e., they are non-sanitary
landfills. As most of these sites lack the environmental protection infrastructure, in
a “doing nothing” scenario, they will eventually need a costly aftercare or a costly
remediation depending on the regulations of each country. Furthermore, around 80
% of these landfills contain municipal solid waste while the rest is mostly composed
of specific industrial residues (Hernández Parrodi et al., 2019b). With this motiva-
tion the concepts of landfill mining, enhanced landfill mining and dynamic landfill
management emerged as an alternative to develop a vast number of activities mostly
focusing on interim use, and ultimately resource recovery (materials and energy) and
land restoration combined with a sustainable remediation.

More recently, the increasing need to find critical raw materials drives to also
revisit the residues generated by the primary mining and metal processing industry,
i.e., extractive waste (Machiels et al., 2022). First, the mining sites predating the
EU Extractive Waste Directive in general lack environmental protection engineering
and therefore may pose environmental/human health risks. Secondly, the need of raw
materials and minerals emphasize the recent challenges faced by the mining industry,
e.g., inaccessibility of deposits (Žibret et al., 2020). Consequently, the exploration
of past mining and metallurgical sites offers an opportunity to mitigate the situation,
integrating resource-recovery with sustainable remediation strategies in line with a
circular economy.

The development of the above-mentioned strategies requires a reliable charac-
terization and monitoring of landfills and deposits that allows the assessment of re-
source recovery potential. Conventional characterization techniques are based on
excavations of boreholes, trenches or pits that first, may not capture the heterogene-
ity of a landfill and secondly, may pose additional environmental or human health
risks. In this context, advances in non-invasive geophysical methods for exploration
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have proved useful to identify anthropogenic wastes and associated contamination,
delineate their vertical and lateral extension, image zonations within the residues,
and infer in its composition. However, the strong varying physical properties that
anthropogenic residues can present, together with the dynamic processes that can
be developed within them, may further add ambiguity to the geophysical data in-
terpretation (Van De Vijver et al., 2020, 2021). Therefore, more quantitative and/or
high-resolution final results can be challenging even in presence of ground truth data.

The objective of this thesis is to contribute to the characterization of solid waste
landfills and deposits using surface geophysical methods. In particular a quantitative
characterization that can complement decision support tools to improve the manage-
ment of these landfills, e.g., volume quantification. First we carried out a literature
review of the geophysical methods and methodologies used in the characterization
of different types of residues, targeting a broad range of applications. Based on this,
we identified the need for more quantitative approaches for the interpretation of the
data that take into account the associated uncertainties. Therefore, we introduce two
approaches based on probability theory, that aim to interpret geophysical data quan-
titatively at field scale. In general, the interpretations are based on 1) a calibration
between the geophysical field data and either observations or laboratory measure-
ments from an optimized sampling and 2) a probabilistic classification in the whole
domain of the geophysical coverage.

This work has been conducted within the framework of two multidisciplinary
projects founded by Interreg North-West Europe and the Walloon Region, which
were focused on different types of solid waste. The project RAWFILL (supporting
a new circular economy for RAW materials recovered from landFILLs) was mostly
focused on municipal solid waste landfills. The objective of RAWFILL was to cre-
ate tools such as an enhanced inventory and decisions/prioritization tools to allow
the owners of the landfills make economically informed decisions while launching
a landfill mining project 1. The project NWE-REGENERATIS (REGENERATion
of past metallurgical Sites and deposits through innovative circularity for raw ma-
terials) is focused on former metallurgical sites and residues of the associated pro-
duction. The objective of NWE-REGENERATIS is to valorize and potentially re-
cover valuable materials while regenerating former metallurgical sites and deposits.
It combines geophysical imaging with efficient material recovery processes and tools
such as an harmonized inventory structure and an algorithm of artificial intelligence

1Project partners of RAWFILL were: Public Waste Agency of Flanders (OVAM), Bergischer Ab-
fallwirtschaftsverband (BAV), SAS LES CHAMPS JOUAULT, Université de Liège, Natural Environ-
ment Research Council (NERC) – British Geological survey (BGS), Cleantech Flanders/VITO and
ATRASOL
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to assess the potential resource recovery 2. Both projects largely promote the use
of geophysical methods as alternative and sustainable characterization methods as
compared to only intrusive conventional methods, i.e., excavations. This thesis is
focused overall on the solid waste sector, which has been an evolving concept and
includes types of residues such as household-derived, construction and demolition
waste (CDW) and residues generated by the industry (Memon, 2010).

During the development of RAWFILL several types of sites were investigated:
dumps, semi-engineered and engineered landfills composed of (or a combination
of) municipal solid waste (MSW), industrial waste and ashes from MSW incinera-
tion. On the other hand, NWE-REGENERATIS is focused on metallurgical residues,
where more than 6 sites have been investigated. The sites comprise deposits of slags
(iron/steel production), residues from zinc production, slags from antimony and lead
production, etc. During these investigations we observed that the use of surface
geophysical methods for the characterization of landfills and waste deposits can be
challenging at different stages of the investigation: data acquisition, data processing
and data interpretation. Data acquisition of one or more methods can be limited by
the topography, vegetation and infrastructure of the landfill, e.g., presence of plastic
geomembrane. Data processing and interpretation can be challenging in these en-
vironments, as anthropogenic residues can have widely varying physical properties
which can be very different from the properties of geological environments. In addi-
tion, most of the landfills are not composed of exclusively one type of material, but
heterogeneous mixtures of waste deposited at different periods of time. This leads
to a highly complex matrix of materials where variable and dynamic processes may
take place (Van De Vijver et al., 2020, 2021). As a result, it is crucial to calibrate the
geophysical data with ground truth data to mitigate the ambiguities and to conduct
more accurate interpretations that integrate associated uncertainties.

To mitigate the above-mentioned challenges, we followed the general workflow
shown in Figure 1.1, which ranges from the geophysical survey design to the final
interpretation. The first step is to design an optimized geophysical survey according
to the objective of the investigation (Isunza Manrique et al., 2019b). The geophysical
survey is design on the basis of 1) the historical reports and all available information,
2) site visits to assess the state of the vegetation, materials on surface such as CDW,
roughness of the surface, topography, etc., and 3) the objective of the investigation.
While the final aim of the geophysical characterization of NWE-REGENERATIS

2Project partners of NWE-REGENERATIS were: SPAQuE, Public Zaste Agency of Flanders
(OVAM), Bergischer Abfallwirtschaftsverband (BAV), University of Liege, French Geological Sur-
vey (BRGM), Materials Processing Institute (MPI), Centre Technologique International de la Terre et
de la Pierre (CTP), IXSANE, TEAM2, Technische Hochschule Köln, Materials Processing Institute
(MPI) and Cranfield University
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project is the estimation of volume(s) this was not always the case in RAWFILL
project. The second step is to carry out the field survey using the previously selected
methods.

The third step is the targeted sampling or the sampling survey based on the results
of the geophysical data. After the sampling, it can be determined if the materials
of interest were found and if they represent a quantity large enough. During NWE-
REGENERATIS the materials of interest were metallurgical residues. For RAWFILL
project this was not a mandatory question since laboratory measurements were not
carried out. When the answer to the former question is positive, then samples are
collected for geophysical and geochemical measurements in the laboratory.

In the next step we carry out a calibration of the geophysical field data with the
information from the sampling (ground truth data). When laboratory measurements
were not conducted, the calibration was based on the lithologic or rather anthro-
pogenic facies description of the borehole/pits. If laboratory measurements are avail-
able, we can study the correlations between the geophysical and geochemical mea-
surements in the lab. Overall, the aim of this step is to identify groups or classes
of different materials or different chemical compositions. The final interpretation
leads to a resource distribution model composed of the previously identified classes,
i.e., classification in the whole field data domain. In this contribution we applied a
machine learning algorithm and a probabilistic approach for the classification. But
unsupervised learning approaches could also be used, e.g., Whiteley et al. (2021).
The case studies presented in this thesis have been investigated using this workflow.

This thesis is organized as follows. Chapter 2 presents the basic theory of the elec-
trical resistivity and induced polarization methods as well as the inversion framework
reported here for the data processing, i.e., RES2DINV (Loke, 2004) and pyGIMLi
(Rücker et al., 2017). We focused on these geoelectrical methods since they were
widely used during this work and proved useful to derive resource distribution mod-
els for several sites in terms of anthropogenic materials, organic content and metal-
lurgical residues with different composition. We tested different methods but these
have been the most robust in the context of most of the sites.

Seismic, magnetic and electromagnetic methods were also used during RAWFILL
and NWE-REGENERATIS project. Seismic methods were useful in both MSW
landfills and metallurgical residues to roughly delineate the thickness of the deposits,
nonetheless, if buried refractors are present, data acquisition, processing and inter-
pretation becomes challenging. Magnetic and electromagnetic methods were largely
used to map structures or zones laterally within the deposits, nonetheless quanti-
tative interpretation is also challenging in these environments. With this regards,
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FIGURE 1.1: General workflow for the geophysical characterization
of landfills and metallurgical residues. In this contribution we focused
on steps 4 and 5 (marked in the red square): to calibrate geophysical

data based on which a quantitative interpretation is derived.

Chapter 3 presents a critical review on the use of geophysical methods for the char-
acterization of solid waste, in particular targeting the objectives of dynamic landfill
management (DLM). It discusses case studies in several types of landfills and de-
posits, e.g., dumps with ashes and slags from former industrial activities/mining, en-
gineered landfills and unauthorized fills. Even though multiple surface geophysical
methods have proven useful to investigate the geometry, zonation and volume(s) of
landfills and deposits, there is still a need to consider the uncertainty of the different
investigation stages. In particular in investigations tailored to deploy a quantitative
characterization of waste volumes.

With the above-mentioned motivation, Chapter 4, introduces a probabilistic ap-
proach for a quantitative interpretation of geoelectric data in a non-engineered land-
fill, composed of inert, household, and industrial waste. The probabilistic approach
classifies different types of materials observed in borehole logs using inverted 2D
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electrical resistivity tomography, induced polarization and the position of the bore-
holes. We assessed its performance for classification and compared it with an algo-
rithm of machine learning (multi-layer perceptron).

Chapter 5 presents the geophysical investigation of a slag heap composed of sec-
ondary products from iron and steel making processes. It describes an integrated
methodology to link geophysical and geochemical measurements in the laboratory
and to interpret 3D geophysical field data using a probabilistic classification. The
final objective is to identify different types of slags and estimate their corresponding
volumes. The probabilistic classification allows to extend associated uncertainties
to the derived resource distribution model and the estimation of volumes, which is
useful information in the management of these sites.

Lastly, Chapter 6 presents the general conclusions of the thesis including perspec-
tives that could be implemented in the characterization of landfills and anthropogenic
deposits of different type.
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Chapter 2

Employed geoelectric methods: basic
principles and inversion

2.1 Electrical resistivity method

This method has been widely used in the characterization of several types of land-
fills and anthropogenic deposits, both for static investigations, e.g., vertical waste
delineation (Dumont et al., 2017) and to monitor dynamic processes, e.g., leachate
evolution (Audebert et al., 2014). Its aim is to obtain the resistivity distribution of
the subsurface by injecting an electrical current into the soil with a pair of electrodes,
and measuring the difference of potential with another pair of electrodes.

2.1.1 Basic principles

Consider an electrical current flowing in an homogeneous isotropic medium due to
an electric field E in units of [V/m]. As the material is passive then the current
density J in [A/m2] is controlled by the conducting properties of the medium or its
conductivity σ[S/m] (inverse of the electrical resistivity ρ[Ωm]). Ohm’s law relates
the current density and the electric field as (Telford et al., 1990):

J = σE (2.1)

The flow of a current in a medium is based on the principle of conservation of
charge, which can be derived by taking the divergence of the second Maxwell equa-
tion or Ampere’s law, and it can be expressed as ∇ · J = 0 for stationary currents
(Bhattacharya, 2012). This equation can be rewritten, considering that the elec-
tric field is the gradient of a scalar potential (E = −∇V ) and using Eq. 2.1, as
∇σ · ∇V + σ∇2V = 0. Furthermore, if the medium is homogeneous and σ is
constant, the former expression simplifies into Laplace’s equation for the potential:
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∇2V = 0 (2.2)

This means that the electric potential distribution of a DC electric current flowing
into an homogenous isotropic medium satisfies Laplace’s equation.

In a homogeneous isotropic half-space where a point electrode is delivering an
electrical current I[A] at the surface, Laplace’s equation can be used in spherical
coordinates due to symmetry, i.e., the potential will be a function of the (radial)
distance r from the electrode. The current flows through a hemispherical surface and
therefore, the current density J can be computed for all radial directions as J = I

2πr2
.

The solution of Equation 2.2 is given by

V =
Iρ

2πr
or ρ =

2πrV

I
(2.3)

which indicates that the equipotentials are hemispherical surfaces below the ground
(Telford et al., 1990). Note that in this case, only one electrode was considered for the
current injection and the return current electrode was assumed to be located far away.
However, the measurements of electrical resistivity usually require four electrodes at
surface: two for the current injection (A and B) and two electrodes to measure a
difference of potential (M and N). For the later generalized form of electrode con-
figuration, the potential difference between electrodes M and N can be expressed
as

∆V = VM − VN =
Iρ

2π

{[
1

rAM

− 1

rMB

]
−
[

1

rAN

− 1

rNB

]}
(2.4)

where rAM , rMB, rAN and rNB, represent the geometrical distances between elec-
trodes A and M, M and B, A and N, and N-B respectively. Or in terms of the electrical
resistivity:

ρ =

[
2π

(1/rAM)− (1/rMB)− (1/rAN) + (1/rNB)

]
∆V

I
= K

∆V

I
(2.5)

where K is the geometrical coefficient that depends on the configuration of the
four electrodes A, B, M and N. In an homogeneous isotropic media, the resistivity
will be constant for any current and electrode configuration. However, in reality
the ground is non-homogeneous and when the position of the electrodes is changed,
both the ratio ∆V/I or the resistance R and the values of ρ will be different for
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each measurement. This magnitude, which is not the "true" resistivity, is known
as apparent resistivity (ρa) and it is strongly related to the electrodes’ configuration
(Reynolds, 2011). Then, Eq. 2.5 can be rewritten in terms of ρa as

ρa = K
∆V

I
= KR (2.6)

2.1.2 Conduction processes

The main processes of charges transport in the near surface are primarily due to the
movement of ions and the electron conducting minerals. The conduction of ionic
transport of charge can be via the ions dissolved within the pore fluids and via the
ions in the electrical double layer (EDL) at the mineral-fluid interface, also known as
surface conduction. The ionic conduction in the pore fluid is driven by the salinity
or ionic concentration in the fluid while the ionic conduction in the EDL is mostly
determined by the amount of mineral-fluid surface area.

The conductivity of any material is proportional to the number of charges and the
mobility of charge carriers. Unless indicated in the text, this subsection is overall
based on Binley and Slater (2020).

Ionic conduction in a fluid

The spaces between the pores in natural rocks are relatively filled with water, which
contains different ions of dissolved salts. Ionic or electrolytic conduction involves
the transport of ions through the aqueous solution in connected pore spaces, when an
electric field is present (Kemna, 2000). In the presence of water, ionic conduction is
the most important charge transport determining the conductivity.

In general, the conductivity increases with the ion concentration in the pore solu-
tion due to the growing number of potential charge carriers. Furthermore, the con-
ductivity of a fluid is dependent on the mobility of ionic charges, the viscosity and
the temperature of the fluid (Kemna, 2000). The mobility of a single ion is propor-
tional to the valence of the ion and the diffusion coefficient of the charged species in
the fluid, and inversely proportional to the temperature. Additionally, the mobility of
ionic charges can be related (inversely proportional) to the viscosity of the fluid and
the radius of the hydrated ion. This means that anions are less mobile than smaller
cations.

The electrical conductivity of an ionic solution can be described by relationships
that highlight how the conductivity is proportional to the charge concentration and
the mobility of the charge carrier among other contributions from individual ionic
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constituents. However, extrapolating this, to determine the total conductivity of nat-
ural groundwater is not straightforward as groundwater typically has a complex ionic
composition. Consequently, empirical formulas are used to explain how the con-
ductivity of a solution varies with easily measurable properties such as salinity and
temperature.

In some anthropogenic environments, for example in sulfide mineral deposits,
oxidation processes can generate acid drainage when these materials are in contact
with water (due to groundwater rise or increase of precipitation) and atmospheric
oxygen (Keller, 1988; Placencia-Gómez et al., 2015). The analysis of geoelectrical
measurements reliably identifies highly conductive zones due to the high salinity of
the pore water (Epov et al., 2017). Similarly in the case of a municipal solid waste
when leachate is present. In general, the leachate conductivity increases with the
dissolution of salts due to dissolving waste materials (Dumont et al., 2016).

The electric double layer (EDL)

The EDL is formed when the charged mineral surface of the interconnected pore
space attracts (and absorbs) charged ions from the pore fluid. First, all the minerals
that are in contact with water develop a net surface charge due to the chemical re-
activity. These reactions can result in positively or negatively charged zones at the
surface depending on the pH of the fluid. Nonetheless, this charge is counterbalanced
by charges that are relatively weekly adsorbed on the mineral surface on a monolayer
called the Stern layer, and this in turn will result in the formation of a diffuse part of
the double layer that will be depleted in anions or cations (Revil and Florsch, 2010).
The Stern layer is located between the o-plane which corresponds to the true min-
eral surface and the d-plane which corresponds to the inner surface of the electrical
diffuse layer (Figure 2.1).

The total surface site density represents then, the sum of the surface site densities.
For a common value of groundwater pH, the mineral surface has a net negative charge
that attracts cations from the bulk electrolyte and will result in a diffuse part of the
double layer depleted in anions. This depletion is greater closer to the Stern layer and
it decays exponentially with the distance from this plane towards the bulk electrolyte.
In addition, the cations in the diffuse layer are loosely held to the surface and they
can be easily exchanged for other cations, implicitly adding to the ion concentration
within the electrolyte.
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FIGURE 2.1: Sketch of the EDL and surface conduction in the pore
space of a charged medium at equilibrium. Image from Revil and

Florsch (2010).

Electron conduction

This mechanism is relevant in the presence of high concentrations of ore minerals
and can occur in conductors as metals and also in semiconductors. The electron
conductivity depends on the distance between energy gaps and temperature, as both
control the electrons that are mobile (Binley and Slater, 2020). This mechanism will
be further discussed in the induced polarization method.

2.1.3 Acquisition

Electrical resistivity methods can have different types of deployments such as ver-
tical electrical sounding (at a single location in space), horizontal profiling to map
lateral variations of resistivity (using a fixed electrode separation) and different bore-
hole arrays involving receiver electrodes and/or transmitter electrodes placed either
in the drillhole or on surface Butler, 2005. In this thesis, we focus on the configu-
ration of ground based imaging or electrical resistivity tomography (ERT), which is
widely used in the context of landfill investigations (Caterina et al., 2019; Dumont
et al., 2017; Konstantaki et al., 2015). ERT allows to map both lateral and vertical
variations of the resistivity along one or more profiles for 2D and 3D acquisitions.
By changing the number of electrodes and the distances between them, as well as
the configuration of the injection and potential electrodes multiple times, ERT can
perform high resolution mapping of the resistivity in the near-surface at various in-
vestigation depths (Reynolds, 2011).
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Multiple measurements of ERT will be collected by varying the positions of the
current and potential electrodes using different geometries, i.e., electrode array, lead-
ing to the vertical and horizontal distribution of the apparent resistivity in the subsur-
face (Equation 2.6) or pseudosection. To avoid the polarization at the electrodes, the
waveform of the injected current is usually a square wave alternating between pos-
itive and negative pulses (Figure 2.2) and generally applied at frequencies of about
0.5- 2 Hz (Binley and Kemna, 2005). Furthermore, the measurement cycle can be
repeated or stacked to estimate a repetition error.

FIGURE 2.2: Square wave of the injected electrical current, using two
stacks or repetitions. During the ON time of the electrical current, the

resistivity data are measured. Image from TerrameterLS2 (2016).

Electrode array geometries

There are several types of electrode arrays configurations that can be used for a 2D
or 3D ERT acquisition. Its selection depends on the expected geology, the objective
of the survey, type of deployment and even the flexibility of the device (Binley and
Slater, 2020; Dahlin and Zhou, 2004). The most common arrays are shown in Figure
2.3, where A and B refer to the current electrodes and M and N are the potential
electrodes.

In general, the main features of these arrays are (Binley and Slater, 2020):

• In the Wenner array configuration, the electrodes are equally spaced a distance
a and the current electrodes are outside the potential dipole, ensuring good
measurement signal strength.
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FIGURE 2.3: Most common electrode arrays for ERT acquisition. Im-
age from Binley and Slater (2020).

• In the Schlumberger array, the distance between the current electrodes is
much larger than the potential dipole spacing, i.e., n > 2, and it is relatively
not sensitive to lateral variations of resistivity.

• In the dipole-dipole array, the current and potential electrodes are separated.
This turns into a weaker signal strength (compared to Wenner and Schlum-
berger arrays).

• For both pole-dipole and pole-pole arrays, one or two electrodes are employed
remotely, allowing a faster manual displacement of the mobile electrodes.

• The gradient array is carried out by using current electrodes separated a dis-
tance b = (s + 2)a and measuring the potential differences with the potential
electrodes with spacing a. The factor s is the maximum number of potential
readings for a current injection (Dahlin and Zhou, 2006). This array takes
advantage of the multi-electrode (multi-channels) measurements of devices.

The imaging resolution of the dipole-dipole array is greater than other arrays,
specially for the location of vertical and dipping structures, yet the depth resolution
is not the best. The gradient array is ideal for multichannel recording configurations,
offering well resolved resistivity images (Dahlin and Zhou, 2004).

Noise level assessment

The data collected for ERT can be seen as data contaminated by some uncertain
noise that cannot be modeled because it may arise from fluctuations in the contact
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resistance, malfunction of the measuring device, misplaced electrodes, deterioration
of contacts on electrode-cable connectors, intrinsic voltages within the ground an
other sources of systematic and random errors (Binley and Slater, 2020).

To quantify this uncertainty and the overall noise level, first, a repetition or stack
of the measured cycle (Fig. 2.2) can be recorded. During the acquisition it allows
to define an error limit, based on the standard deviation of the stacks divided by the
mean value of a data point. The number of stacks depends on the site conditions,
electrode spread size and type of electrode array (TerrameterLS2, 2016).

Estimations of the noise level in the data are important as the inversion is a pro-
cess that depends on these error parameters. An overestimation of the noise level
can lead to an over-smoothed resistivity image, while an underestimation of noise
level in the data can generate resistivity images with rough and irregular structures
(Hermans et al., 2012). Furthermore, the noise estimates from repetition can greatly
underestimate the true noise levels (LaBrecque et al., 1996) and better estimations
come from comparing reciprocal measurements, which are collected by changing
the current and potential electrodes from normal measurements. An example of the
error that can be detected through reciprocal measurement is the case of a bad contact
at a potential electrode; the difference of potential on the instrument may be recorded
while changing the potential by the current electrodes would identify this problem
(Slater et al., 2000).

Slater et al. (2000) proposed an alternative to assess the noise level using both the
normal resistance measurement Rn and the reciprocal resistance measurement Rr,
defined as:

e = Rn −Rr (2.7)

which assumes that no current sources can be found in the subsurface.

As the exchange between the current and potential electrodes should not affect
the measured resistivity (principle of reciprocity), then e is a measure of data noise.
Slater et al. (2000) propose a Gaussian error model in which the magnitude of the
reciprocal error |e| increases with the magnitude of the measured resistance |R| as:

|e| = a+ b|R| (2.8)
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where a defines the minimum error and b defines the relative error increase with
the resistance magnitude (see Figure 2.4). After the removal of outliers, the error
parameters are defined by an envelope that contains the remaining points.

FIGURE 2.4: Outliers and error model in plots of the reciprocal error
magnitude vs the resistance. Image from Slater et al. (2000).

2.2 Induced polarization method

The induced polarization (IP) method is an extension of the resistivity method and
it is fundamentally, the manifestation of the frequency-dependence of resistivity re-
flected as a delay in the receiver response with respect to the transmitter, due to the
charge storage of the medium. Then, in addition to the ability of a volume of material
has to conduct electrons, IP provides information on the chargeability or the energy
storage capacity of the subsurface (Butler, 2005).

IP measurements can be carried out in time-domain or frequency domain, where
the method is know as complex conductivity (or resistivity) or spectral induced polar-
ization (SIP). We illustrate the basic principles of the method in frequency domain to
provide a more complete framework with further discussions on polarization mecha-
nisms in addition to the already presented conduction processes and to illustrate how
the IP method is an extension of the resistivity method. Note that in theory, time
domain and frequency domain are equivalent but in practice, the limited frequency
band of time domain IP restricts the range of frequency available in time-domain IP
measurements, as opposed to frequency data.
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2.2.1 Basic principles

The complex resistivity or SIP provides the most complete set of resistivity and IP
data. SIP is a frequency-domain method that measures the amplitude and phase
relationship between the injected current and the difference of potential at several
frequencies. This allows the generation of a database of materials that may have
characteristic amplitude and phase-shift behavior over a broad range of frequencies
(Butler, 2005).

In addition to Ohm’s Law (2.1), it is also possible to describe the macroscopic
behavior of matter upon an electrical field through the constitutive equation

D = ϵE = ϵrϵ0E (2.9)

where ϵ refers to the dielectric permittivity of the material and D to the displace-
ment field. Equation 2.9 assumes that the polarization response of the material is
purely dielectric and it is usually expressed in terms of the vacuum permittivity
ϵ0 = 8.854 × 10−12F/m and the relative dielectric permittivity ϵr, which accounts
for the microscopic displacement of bound charges.

Substituting both Ohm’s Law and equation 2.9 on the right hand of Ampere’s
Law, we can express the total current density as

J = σE + ϵrϵ0
∂E
∂t

(2.10)

In this method an alternating current is applied into the ground and this is gener-
ated by a (complex) electric field with an amplitude and a phase or E = E0e

iwt. Due
to the derivative properties of the exponential function, using the complex electric
field in Eq. 2.10 leads to

J = σ∗(w)E (2.11)

where σ∗(w) = σ+ iwϵrϵ0 is the effective complex conductivity, which describes
the contributions of the conduction and displacement current. σ∗(w) is frequency de-
pendent due to the displacement current contribution describing the dispersive nature
of the dielectric polarization (Bücker, 2019).

To better understand the macroscopic effect that the microscopic charge storage
in polarizable materials have on the current density or measured current (see Figure



2.2. Induced polarization method 17

2.5), we substitute the complex electrical field E(t) = E0e
iwt and complex conduc-

tivity σ∗ = |σ|eiφ in Eq. 2.11 (Bücker, 2019),

J(t) = σ∗(w)E(t) = E0|σ|ei(wt+φ) = J0[cos(wt+ φ) + isin(wt+ φ)] (2.12)

FIGURE 2.5: Harmonic variation of the real parts of the electric field
E and the current density J . Image from Bücker (2019).

Note that we used a complex conductivity which can also be explained with a real
(σ′) and imaginary (σ′′) components as

σ∗ = |σ|eiφ = σ′ + iσ′′ (2.13)

where |σ| is the conductivity magnitude and φ is the phase (which is positive when
we work in the conductivity space). The phase represents the lag that the induced al-
ternating current have after the injected current. σ′ is associated with the conduction
strength and σ′′ is associated with any charge storage mechanism or polarization ef-
fect (Binley and Slater, 2020). Additionally, at low frequencies, the charge storage is
small relative to conduction mechanisms (|σ| ≈ σ′) and then

φ = tan−1σ
′′

σ′ ≈
σ′′

σ′ (2.14)

This approximation is valid for most applications where phase shifts are suffi-
ciently small, i.e., φ < 0.1 radians (Flores-Orozco et al., 2020).

Finally, note that former equations can also be represented in terms of the gener-
alized complex dielectric permittivity or the equivalent effective complex resistivity
ρ∗ = 1/σ∗.
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2.2.2 Polarization mechanisms

There are distinct polarization mechanisms that are needed to explain the complex
effective properties measured over a broad range of frequency, e.g., 10−3 to 1011

Hz (Binley and Slater, 2020). First, we describe the polarization mechanisms that
can result from the ionic transport of charge: the first one is controlled by the pore
volume properties (corresponding to the ionic conduction in a fluid, section 2.1.2)
and the second one is controlled by the pore surface properties (corresponding to
ions in the EDL at the mineral-fluid interface, section 2.1.2).

Due to the strong polarization response of metallic minerals, the IP method has
been widely used in the exploration of mineral deposits and metallic ores (Revil et
al., 2022) and in remediation strategies based on biostimulation (Slater et al., 2007)
among other applications. Therefore, we also discuss about the polarization arising
around metallic particles (electronic conduction, section 2.1.2). Lastly we briefly
describe the so-called Maxwell-Wagner polarization.

Ionic transport polarization

Although this polarization may only occur at high frequencies, it is worth mentioning
to understand the behavior of σ′ with frequency, when measuring SIP or complex
conductivity. In the electrolyte, each ion is surrounded by a charged ionic cloud of
opposite charge. When the electrical field is applied, the ion’s cloud can suffer a
lag from the central ion when the latter moves as response to the field. This leads
to a braking Coulomb force due to an asymmetric charge distribution. Then, the
electrolytic conductivity increases with the frequency of the applied field, as the ionic
cloud lacks more time to build up the braking charge distribution and overall, the
mobility of ions increases. In turn, this leads to an ionic polarization that makes the
conductivity of the pore solution to be complex. Nonetheless, for the lower frequency
range (f < 10 kHz) the associated phase shift is virtually zero and the conductivity
of the fluid can be considered as a real-valued quantity (Kemna, 2000).

EDL polarization

The two main polarization mechanisms discussed in this section are associated with
the EDL and have been used to explain frequency-independent and frequency-dependent
measurements. These mechanisms are associated with diffusion-driven decays of
ionic concentration gradients caused by an applied electric field and measured at low
frequencies. The diffusive decays results from the redistribution of ions from the ex-
cited state back to the equilibrium position (Binley and Slater, 2020). In this sense,
these are diffusion-dominated and reversible EDL polarization mechanisms.
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To recap, the EDL is formed at the interface between the charged grain surfaces
and the electrolyte (Fig. 2.1). It is formed in electrokinetic equilibrium of diffusion
and Coulombic interaction when the negative (or positive) surface charges of a par-
ticle attract cations (or anions) from the pore solution. The EDL is composed of the
charged particle surface, an adjacent fixed layer of adsorbed charges known as Stern
layer and a diffuse layer of mobile ions (Kemna, 2000).

The first polarization mechanism is known as Stern layer polarization. It orig-
inates from the tangential displacement of counterions in the Stern layer forming
at mineral surfaces and it is controlled by the grain size distribution. The second
mechanisms, known as membrane polarization, is based on the different mobility
that ions present within the pore solution in the vicinity of the EDL. It is caused by
the blockage of ions in the diffuse layer at the interconnected pore space where there
are zones of charge excesses and deficiencies (Binley and Slater, 2020). Therefore,
this polarization depends on the pore channel geometry (Kemna, 2000).

It has been suggested that the Stern layer polarization dominates the IP measure-
ments, except at high salinities where the membrane polarization may be stronger
(Binley and Slater, 2020).

Figure 2.6 presents the diagrams of both polarization mechanisms: the membrane
polarization (a), where the polarizable elements block pore throats and the Stern
layer polarization (b) where the polarizable elements are in parallel with the pore
throats. In the membrane polarization, a clay particle is used to illustrate a blockage
of anions. In general, clay minerals play an important role regarding surface complex
conductivity phenomena.

FIGURE 2.6: Diagram of (a) membrane polarization and (b) Stern
layer polarization. Image modified from Kemna (2000) and Binley

and Slater (2020).



20 Chapter 2. Employed geoelectric methods: basic principles and inversion

Polarization around metallic particles

This subsection is focused on the role of the electron conducting particles in the IP
effect. The mechanism is known as electrode polarization as the electron conducting
grains have been assumed to act as electrodes throughout a rock (Binley and Slater,
2020). Furthermore, variations in the electrical properties measured (in particular
with SIP), can be observed not only from the intrinsic polarization and capacitance
of metallic particles but also from surface reactions such as oxidation-reduction and
precipitation-adsorption of secondary minerals, which modify the surface texture of
metallic particles (Placencia-Gómez et al., 2015).

Although classical models cannot fully explain the broad variety of IP signatures,
first, the frequency dispersion observed in the conductivities was attributed to the po-
larization at the solid-liquid interface between highly conductive mineral grains and
the surrounding electrolyte, i.e., electrode polarization. Then, the models from Wong
(1979) and Wong and Strangway (1981), directly related the IP response to the geo-
metrical and electrochemical properties of the highly conductive particles embeded
in the electrolyte (Bücker, 2019).

The fact that several ore minerals are semiconductors was taken into account by
Revil et al. (2015) and Misra et al. (2016), who noted that assuming perfectly con-
ducting particles was not suitable. They proposed models for semiconducting parti-
cles, including additionally the contribution of non-metallic background material to
the polarization response (Bücker, 2019).

Maxwell-Wagner polarization

Although the IP response of a porous medium is overall attributed to the diffusion-
limited EDL polarization at the mineral-fluid interface, the Maxwell-Wagner polar-
ization mechanism aims to (partially) explain the dispersion curves observed at high
frequencies (> 100 Hz).

It has been proposed that this polarization exists due to the bulk electrical proper-
ties of soil and rock components, and it originates from the discontinuity in conduc-
tivity at interfaces between the different phases of the porous medium (solid, liquid,
gas). Therefore, this mechanisms is associated with the geometric arrangement of
the phases. Nonetheless, it is hard to determine if the Maxwell-Wagner polariza-
tion is truly observed, since the dispersion observed at higher frequencies in many
SIP spectra can be due to electrodes and instrumentation errors (Binley and Slater,
2020). Yet, advances in the development of modern impedance tomography systems
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have been made to mitigate these errors, e.g., shielded cables to avoid crosstalk be-
tween channels and integrated switches for reciprocal measurements (Zimmermann
et al., 2010).

2.2.3 Acquisition

Both time-domain and frequency-domain IP have been used in environmental ap-
plications to characterize municipal solid waste landfills, mapping contamination
plumes, and in remediation strategies of aquifers (Flores-Orozco et al., 2020; Kessouri
et al., 2022). The method has been also applied to the mining industry, for the inves-
tigation of disseminated sulfide and nonsulfide sources and anthropogenic materials
(Butler, 2005). In this section we mostly focus on time-domain measurements equal
to all the field surveys that were conducted during this thesis. As DC ERT and IP
are applied together, the configuration or geometry arrays of the electrodes for IP
acquisition can be found in subsection 2.1.3.

Time-domain measurements

Time-domain IP method was patented by Conrad Schlumberger in 1912 and in prac-
tice, it can be surveyed together with the resistivity in DC, by measuring the voltage
decay with time after the current is switched off.

Seigel (1959) introduced a model for the polarization effect, defining the apparent
chargeability ma as

ma =
Vs

Vp

(2.15)

where Vs is the secondary voltage or the voltage immediately after the current
is stopped and Vp is the primary voltage recorded during the transmitter on time,
see Figure 2.7a (Binley and Kemna, 2005). More recently, it has been reported that
Conrad (1939) first proposed to quantify the strength of the polarization from the
ratio of the secondary to the primary voltage (Binley and Slater, 2020).

It is common to report ma with the units of mV/V as Vs is typically 2-3 orders
of magnitude smaller than Vp, except in the case of metals. Yet, in practice it is not
easy to measure Vs and commonly the IP effect is quantified through the integral of
the decay curve broken into time windows, see Figure 2.7b (Binley and Slater, 2020).
For a single time window, defined between times t1 and t2 after shut-off, the apparent
chargeability can be expressed as
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ma =
1

t2 − t1

∫ t2
t1

Vsdt

Vp

(2.16)

In some cases the apparent chargeability can also be expressed as ma =
∫ t2
t1

Vsdt

Vp
,

which has units of time.

FIGURE 2.7: Time-domain IP acquisition with a conventional 50%
duty cycle mode, i.e., measurement periods are divided into two equal
parts, where the (secondary) voltage decay is measured during the
OFF part. td is the delay time to start recording after the current is off.

Image from Binley and Slater (2020).

Note that the value of ma depends on the integration times t1 and t2 of the de-
caying curve. For a fixed t1, shorter decaying periods of time will lead to smaller
apparent chargeabilities. In addition, the effect of inductive coupling between the
cables into the ground may be predominant at shorter times and decay relatively
fast (Dahlin et al., 2002). Therefore, it is important to select a delay time td before
recording the IP signal (∼ 80- 240 ms). Mao et al. (2016) studied a porous media
with metallic particles at lab scale and observed that the electromagnetic coupling
affected the IP response considering a delay time up to 20 ms, yet larger time delays
were expected for the field (with values of td up to 400 ms).
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Noise level assessment

In analogy with Eq. 2.7, the error based on the apparent chargeability can also be
estimated. This error as a function of the resistance will show a non-linear behavior,
with higher errors occurring both for low apparent chargeability values (due to the
resolution of Vs) and for large resistances, see Figure 2.8a. If the chargeability error
is represented as a function of the apparent chargeability, then a similar tendency is
observed with larger chargeability errors for small and large values of chargeability,
see Fig. 2.8b (Binley and Slater, 2020). Nonetheless, in time-domain surveys is
essential to check before the quality of the decay curves measured and filter out the
ones which are not consistent, e.g., by fitting an exponential decay curve.

In terms of frequency-domain measurements, Orozco et al. (2012) proposed an
inverse power-law model to quantify the phase error as a function of the resistance.
Overall, the authors observed that the phase error decreases with the resistance or
impedance values values, e.g., Figure 2.8c.

FIGURE 2.8: Reciprocal errors in terms of different measurements.
a) Chargeability error as function of the resistance and b) chargeabil-
ity error as function of the chargeability (time-domain), and c) phase
angle error as function of the resistance or impedance (frequency-

domain measurements). Image from Binley and Slater (2020).
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Frequency domain measurements - lab scale

During this thesis SIP was only applied at lab scale, where the frequency dependent
phase spectrum is measured over a broad range of frequencies. In general, an har-
monic sinusoidal function is used to measure the complex impedance as a function
of frequency, usually reported as a the magnitude |Z| and the phase angle φ. This
phase angle is a negative quantity for a polarizable medium, which is consistent with
the impedance of a capacitor in an electric circuit. Then the measured |Z| and φ

are combined with the geometric factor to derive the complex resistivity or complex
conductivity (Binley and Slater, 2020).

As will be explained in Chapter 4, in this thesis we used the impedance analyzer
ZEL-2-SIP04-V05. This systems uses the four-point measurement mode to deter-
mine the impedance across a sample which is assumed to be homogeneous. It is
composed of a function generator, an amplifier unit, an analog-to-digital converter
card, a PC and a sample holder with a pair of electrodes for current injection and
a pair of electrodes for voltage measurement. The function generator creates a si-
nusoidal excitation voltage within a range between 1 mHz to 45 kHz (Zimmermann
et al., 2008).

2.3 The inverse problem

Inverse theory, oppositely to the forward theory which predicts data or the results
of measurements from some general principle or model, addresses the reverse prob-
lem: starting with the data and a quantitative model, it estimates model parameters
(Menke, 2018). If the data d and model parameters m are related in general by
implicit equations f as f(d,m) = 0 and the data can be separated from the model
parameters, the explicit linear form of the inverse problem can be expressed as

f(d,m) = 0 = d − Gm (2.17)

where the matrix G is the data kernel. The explicit linear equation Gm = d
explains the simplest inverse problems (e.g., straight line fitting), and can also be
written in the explicit form as G(m) = d. Note that this equation is linear in the data
but it can be nonlinear in the model parameters through G (Menke, 2018).

In this section we first show the least squares solution for the linear inverse prob-
lem, where we discuss the regularization for ill-conditioned problems and the weighted
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measures of the length solution and data errors as a priori information. Then we dis-
cuss the Gauss-Newton method used to solve the nonlinear inverse problem, using
weighted least squares and weighted damped least squares. The resulting latter equa-
tions are the inversion algorithm used for the software RES2DINV (Loke, 2004) and
pyGIMLi (Rücker et al., 2017), both used in this thesis for the inversion of geoelec-
tric data.

2.3.1 Least squares for the linear Gaussian inverse problem

The simplest solution to the linear inverse problem is based on a measure of the
length of the estimated model parameters and a measure of the predicted data, i.e.,
least squares method. In this method the model parameters are selected in such a way
that the predicted data dpre are as close as possible to the observed data dobs. In this
sense the prediction error or misfit is defined as ei = dobsi − dprei and the best model
is obtained when the model parameters lead to the smallest overall error

E =
N∑
i=1

e2i = eT e = (d − Gm)T (d − Gm) (2.18)

which is the square of the norm L2 or Euclidean length (and implied that the data
obey Gaussian statistics). Although the method of least squares uses norm L2, if data
are very accurate a higher norm may be used and oppositely if the data are widely
scattered, a lower order norm may be more suitable.

The least square solution to the linear inverse problem then looks to minimize
the total error E. This can be done through the derivative of E with respect to the
model parameters and setting the result to zero, which yields to GTGm − GTd = 0.
Assuming that [GTG]−1 exist, then the estimates for the model parameters can be
defined as

mest = [GTG]−1GTd (2.19)

Although least squares fails for problems with nonunique solutions, there are al-
ternatives proposed for underdetermined (more unknowns than data) problems and
overdetermined problems (more data than unknowns) that are based on the predic-
tion error E and the measure of the length of the solution L = mTm - for norm L2

(Menke, 2018).
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Regularization for ill-conditioned problems

In practice most of the inverse problems are not fully overdetermined nor completely
underdetermined. One solution is to conduct a partitioning process of the unknown
model parameters based on singular value decomposition of the data kernel. Yet
there is another alternative that can be applied on relative underdetermined inversion
problems. The idea is to find a solution of estimated parameters that minimizes a
combination function Φ of the prediction error E and the solution length L as

Φ(m) = E + λL = eT e + λmTm (2.20)

where λ defines the importance given to the parameter estimation solution with
respect to the prediction error. This is also known as damped least squares problem.
If λ is large enough, the minimization of Φ will not minimize the prediction error E
and the resulting solution may not be an accurate estimation of the true model. If λ
is zero, no a priori information can be provided to solve the underdetermined model
parameters (Menke, 2018).

Weighted measures of length

The measure of the solution simplicity can be generalized by using a weighted mea-
sure of the solution length including a priori values of the model parameters m0 as

L = [m − m0]
TWm[m − m0] (2.21)

where Wm is the weighting matrix that quantifies several measures of model’s
simplicity. Furthermore, the prediction error can also be expressed as a weighted
measure, thus accounting for the fact that some observed data are noisier than others.
The generalized prediction error can be expressed as: E = eTWee, where the matrix
We defines the relative contributions of the individual errors to the total prediction
error (Menke, 2018). We is a diagonal matrix whose elements contain the inverse of
the standard deviation We = diag(1/σ2

1, ..., 1/σ
2
N). Then the weighted least squares

problem consists in minimizing the generalized total error or:

E = eTWee =
N∑
i=1

(
di − (Gm)i

σi

)2

(2.22)
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2.3.2 Gauss-Newton for nonlinear least squares problem

Gauss-Newton is an specialized version of the Newton method and both were devel-
oped to solve the nonlinear inverse problem. The Newton method uses the form of
the total prediction error E(m) in the vicinity of a solution m(p), to look for a bet-
ter solution m(p+1) (Menke, 2018). However, the method may not present an exact
solution in problems with a different number of data and model parameters. This
subsection is mostly based on Aster et al. (2018).

The Gauss-Newton method aims to solve a nonlinear least square problem, by
finding the model parameters m constrained by a data vector d with associated stan-
dard deviations.

Weighted least squares

Assuming that the observed errors are normally distributed, then the sum of the
squared errors normalized by their standard deviations σi is minimized (maximum
likelihood principle). Furthermore, if the misfits or residuals ei are represented as
scalar-valued functions fi(m) = G(m)i−di

σi
for i = 1, ..., N and defining the vector-

valued function F(m) = [f1(m), ..., fN(m)]T , the objective is to minimize the weighted
residual (squared) norm L2 as

χ2(m) =
N∑
i=1

fi(m)2 =∥ F(m) ∥22 (2.23)

which is the weighted least squares problem (Eq. 2.22). Then, the gradient of
χ2(m) can be computed as the sum of the individual gradients of each fi, which can
be expressed as

∇χ2(m) = 2J(m)TF(m) (2.24)

where the Jacobian J(m) is represented as a matrix whose elements are the partial
derivatives of the functions fi with respect to the parameters mi.

In a similar way, the Hessian of χ2(m) can also be expressed as H(χ2(m)) =∑N
i=1 H(fi(m)2). Furthermore, in the Gaussian-Newton method the Hessian is ap-

proximated as

H(χ2(m)) ≈ 2J(m)TJ(m) (2.25)
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In the Newton method, the minimization of χ2(m) is done by solving the linear
system of equations H(χ2(m(0)))∆m = −∇χ2(m(0)), given the initial solution m(0).
The implementation of Gauss-Newton introduces Eqs. 2.24 and 2.25 in the former
system of equations, obtaining

J(m(k))TJ(m(k))∆m(k) = −J(m(k))TF(m(k)) (2.26)

This system of equations is then solved for the successive updates ∆m. After
computing this parameter change vector, a new model is obtained by m(k+1) = m(k)+

∆m(k). Note however that for both Newton and Gauss-Newton methods, the solution
may converge to a local minimum instead of the global minimum (Menke, 2018).

Furthermore, Eq. 2.26 is in practice rarely used in the geophysical inversion as the
product JTJ might be singular or nearly singular. This problem was mitigated by the
Marquardt-Levenberg modification, which integrates a damping factor λ to ensure
convergence and as a constrain to the range of values that ∆m can take. However, it
has only been successfully used for a small number of model parameters in resistivity
inversions, e.g., sounding data. To further solve this problem, the Gauss-Newton
least-squares equation is again modified to minimize the spatial variations in the
model parameters, i.e., a smoothness-constrained, and it can be expressed as

[J(m(k))TJ(m(k)) + λD]∆m(k) = J(m(k))TF(m(k))− λDm(k) (2.27)

where D = αxCT
x Cx +αyCT

y Cy +αzCT
z Cz and Cx, Cy and Cz are the smoothing

matrices in the three directions (x, y, z). αx, αy and αz are the relative weights giving
to the smoothing matrices. Note that the operator D is the weighting matrix Wm in
the measure of the solution simplicity or the parameter objective function (Eq. 2.21),
that in general integrates a prior information and/or smooths the model to be able to
fit the data. Additionally, note that Eq. 2.27 minimizes the square of the constrained
values of ∆m and the spatial changes or roughness of the model parameters. It is a
L2 norm smoothness-constrained optimization method that tends to produce smooth
inverted models (Loke, 2004).

When the geology is composed of sharp boundaries between the regions, it may be
more suited to adapt the method using the norm L1. This is the L1 norm smoothness-
constrain optimization method also known as blocky inversion (Loke, 2004) and it
can be defined as
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[J(m(k))TJ(m(k)) + λDR]∆m(k) = J(m(k))TRdF(m(k))− λDRm(k) (2.28)

where DR = αxCT
x RmCx+αyCT

y RmCy +αzCT
z RmCz. The matrices Rd and Rm

represent the introduced weighting of the data misfit and model roughness.

Weighted damped least squares

The Gauss-Newton method can also be used directly to minimize an objective func-
tion that accounts for the weighted measures of both the solution length 2.3.1 and
the generalized prediction error (or data misfit, 2.3.1). This objective function can be
expressed as:

Φ = ∥We(G(m)− d)∥22 + λ∥Wm(m − m0)∥22 (2.29)

where again We is the data weighting matrix containing the inverse of the standard
deviations, Wm is the model constrain matrix, m0 is the reference model and λ is the
regularization parameter, which can be kept at a constant value, or be optimized
at each iteration to locally minimize the data misfit. Re-applying Gauss-Newton
method in the minimization of the former objective function (Eq. 2.29) leads to

[J(m(k))TWT
e WeJ(m(k)) + λWT

mWm]∆m(k)

= J(m(k))TWT
e We(d − G(mk))− λWT

mWm(m(k) − m(0)) (2.30)

Where m(k+1) = m(k) +∆m(k) (Rücker et al., 2017).

2.3.3 Stopping criteria

In the software that we used in this contribution a similar criterion is used to stop
the inversion process. In RES2DINV the root mean square (rms) misfit is used as
convergence limit and it is defined by the user. The inversion may stop when the
rms error is usually between 2- 5 % or when the relative change in the rms error
between two iterations is smaller than 5 % (Loke, 2003). In pyGIMLi the iterations
are stopped when the mean of the squared error-weighted data misfit χ2 (see Eq.
2.23) is below the noise level, i.e., χ2 ≤ 1 or when the maximal iteration number is
reached, i.e., 20 (Rücker et al., 2017). Other criteria may include a relative change
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in the whole objective function below 1 % (Fiandaca et al., 2012) or when the rms
of the error weighted data misfit reaches the value of one for a maximum value of λ
(Kemna, 2000; Nguyen et al., 2016).
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Chapter 3

Quantifying solid waste deposits and
mapping associtated dynamic
processes using non-invasive
geophysical methods: a critical review

Non-invasive geophysical methods have demonstrated their usefulness for landfill
characterization and monitoring. They provide complementary information on the
waste extension and give indirect indications of waste composition and conditions re-
lated to leachate content and gas. However, most of the reported studies are focused
on environmental risk assessment, and rarely on the potential for landfill mining
nor on the optimization of short-term use of landfill spaces in line with the circular
economy. For these broader objectives, captured in the concept of Dynamic Land-
fill Management (DLM), geophysical studies require to be adjusted to more specific
quantitative targets and to be more comprehensive in terms of the spatial and tem-
poral resolution required. Furthermore, heterogeneous waste materials and dynamic
processes developed within them contribute to complex bulk geophysical responses,
which can lead to ambiguities in the interpretations. It is, therefore, highly impor-
tant to calibrate and interpret geophysical results using ground truth data to develop
robust decision support tools to evaluate different management scenarios. In this
contribution, we identify and review recent and reference works that address three
relevant geophysical targets not only for a sustainable landfill management but for
the selection of feasible economic, effective and sustainable scenarios for landfill
remediation/redevelopment and potential resource recovery. First, we focus on the
quantification of the landfill boundaries and landfilled waste materials (zonation),
giving specific attention to the assessment of uncertainties related to geophysical
data acquisition and processing. Then, we focus on the geophysical investigations
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on the static characterization and monitoring of leachate mainly in municipal solid
waste and on the identification-delineation of landfill gas accumulation zones and
other processes related to biodegradation. In addition, we present an overview of the
geophysical methods used in the specific investigation of metallurgical residues and
deposits, both at lab and field scale. Finally, we discuss the main associated chal-
lenges and novel methodologies that could potentially improve the insights derived
from geophysics.

FIGURE 3.1: Graphical abstract.

3.1 Introduction

The existing historic landfills and the continuously increasing waste generation have
highlighted the need to develop a sustainable vision on waste management involv-
ing the temporary and (supposedly) permanent storage of waste in landfills. In this
perspective, strategies have been developed that aim to support the transition to a
low-carbon, resource-efficient, circular economy such as Enhanced Landfill Mining
(ELFM) (Jones et al., 2013). Furthermore, research is being conducted to explore the
feasibility of resource recovery from landfills and to improve the processing and val-
orization of excavated waste fractions (Neculau et al., 2019; Vollprecht et al., 2021).
Nevertheless, the current uncertainty on the long-term liabilities established by the
EU Landfill Directive together with variable local policies and the non-dynamic envi-
ronmental risk-based view on landfills, downgrade the opportunities associated with
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landfill mining thereby making them less attractive (Jones et al., 2018). Alternatively,
there is a vast number of more short-term sustainable activities that can be developed
on landfill sites, for instance, focusing on optimized interim use, e.g., development
of solar parks, production of green energy, or use as green space. These activities
could be part of a more comprehensive, gradually implemented and adapting landfill
management that could generate intermediate revenues and other benefits, as well
as mitigate environmental risks for remediation and aftercare, and potential actual
landfill mining on the longer term. In this view, the concept of Dynamic Landfill
Management (DLM) emerged, capturing a broader range of objectives ranging from
pollution prevention and remediation, land restoration, creation of new landfill void
space, interim use of landfill surface and recovery of resources (Jones et al., 2018).
Thus, DLM requires a reliable characterization and monitoring of landfills in order to
allow an informed and sustainable management. In these applications, misjudgment
on the current state of a landfill, on specific material characterization (Hernández Par-
rodi et al., 2019a), and its expected future evolution can have serious -economic and
environmental- consequences when implementing suboptimal scenarios, e.g. green-
house gas emissions in MSW landfills (Sauve and Van Acker, 2020). Conventional
approaches to the characterization and monitoring of landfills rely on drillings or trial
pits excavations, and subsequent sampling and analysis of the deposited waste. Yet,
such methodology is generally expensive and invasive, requiring proper safety mea-
sures to limit risks for the environment (e.g., creating new contamination pathways)
and for human health (e.g., exposure to dangerous materials). Furthermore, it may
deliver results that are non-representative of the entire landfill as, due to the typically
high heterogeneity of the waste depositions, the outcome may be strongly variable
depending on the number, volume and spatial distribution of the samples (Dumont
et al., 2017).

In this context, advances in non-invasive geophysical science and technologies
for exploration have demonstrated their usefulness and remaining potential for fur-
ther development and implementation in the future. To the best of our knowledge,
the earliest geophysical survey conducted on a landfill dealt with contaminant detec-
tion (Cartwright and McComas, 1968). Since then, the investigations reported in the
literature have significantly increased (Nguyen et al., 2018), although these mainly
have been focusing on environmental risk assessment, and rarely on the potential
opportunity of landfill mining, e.g., Vollprecht et al. (2019), nor on the optimization
of short-term use of landfill sites, both of which would integrate them into the cir-
cular economy. The integrated use of multiple geophysical methods allows filling
information gaps in the landfill characterization remaining after the analysis of his-
torical archives and conventional investigation. They mostly provide complementary
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information on the lateral and vertical extensions, and (indirect) indications of waste
composition and conditions related to water or leachate content in MSW landfills,
e.g., Clement et al. (2018), Moreira et al. (2018), Yannah et al. (2017). Yet, most of
the existing geophysical investigations present a rather general and qualitative inter-
pretation, although, there also have been efforts to quantify the landfill structure and
dynamic landfill processes for further modelling (Dumont et al., 2016; Martin et al.,
2020).

Waste materials of anthropogenic origin have widely varying physical properties,
which may be very different from those of natural geological deposits. Furthermore,
heterogeneous mixtures of waste materials present an extremely complex matrix in
which highly variable and dynamic processes take place. In their turn, the latter also
produce variations in physical conditions (e.g., water saturation and temperature)
that contribute to the geophysical response of the whole. This may further add to
the ambiguity of the interpretations of geophysical data and makes it more challeng-
ing to obtain high-resolution geophysical results. Therefore, it is important to also
assess the uncertainty associated with geophysical results, which does not only orig-
inate from data processing. It can also be related to survey design, data acquisition
(technical applicability of the methods), and interpretation of the data (e.g., derived
final models can be influenced by subjective decisions). Examples of relevant issues
that contribute to the uncertainty present and propagating through the entire data
acquisition-processing-analysis-interpretation flow are given in Figure 3.2 (Van De
Vijver et al., 2020).

FIGURE 3.2: Examples on relevant uncertainties arising at different
steps of a geophysical investigation.

The broader objectives of applied geophysics in the context of DLM requires the
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methods, first, to be adjusted to the more specific quantitative targets and, secondly,
to be more comprehensive in terms the spatial and temporal resolution required to use
the derived data as decision support tools. We identified and reviewed three relevant
targets for the selection of feasible (economic, effective and sustainable) scenarios for
remediation/redevelopment and potential material/energy recovery. We focus on the
quantification of 1) the landfill’s geometry and waste materials, and the mapping of
2) leachate and 3) biogas distribution, the last two being the result of biodegradation
processes in municipal solid waste (MSW) landfills.

The three specific targets which are relevant to DLM will be addressed in separate
sections. In the first section, we show examples of how several geophysical methods
are used for the quantification of landfill geometry and internal structure (zonation).
We show the intrinsic limitations of the used methods in the particular environments
of landfill sites and highlight the importance of considering the uncertainty in the
geophysical results (see diagram in Fig. 3.2) and the corresponding computation of
waste volumes, representing crucial information in view of material recovery and site
redevelopment.

Secondly, we present geophysical investigations applied in leaching studies which
particularly aim to quantify the water/leachate distribution by means of static char-
acterization and/or monitoring. The third section is dedicated to the identification
and delineation of gas accumulation in landfills and biogeochemically active areas.
The multiple parameters that affect leachate generation and biodegradation in gen-
eral, as well as the large heterogeneity in landfills, lead to preferential flow paths
for leachate and landfill gas migration. This fact does not only make calibration and
validation more challenging but also the uncertainty assessment in both data pro-
cessing and interpretation of these complex processes. The fourth section shows an
overview of the geophysical investigations carried out in metallurgical residues in
specific, and describes how the integrated methodologies are adapted according to
the characterization’s objectives, e.g., mineralogical, chemical composition, etc. Fi-
nally, we describe the applicability of machine learning in the data processing and
interpretation to target relevant objectives of DLM.

Note that the first section covers different types of landfills while the lasts are
focused on MSW landfills. For a review of the basic principles of the different geo-
physical methods presented here, as well as an overview of their application to land-
fill investigations we refer to Soupios and Ntarlagiannis (2017). The novelty of this
review is to address geophysical studies focused on filling quantitative information
gaps in the three specific targets described above, which are particularly relevant in
view of DLM.
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3.2 Quantifying landfill’s geometry

3.2.1 Estimation of boundaries and zonation

The quantification of a landfill’s geometry includes the estimation of the boundaries
of its outer extent as well as any internal zonation present. Several examples in
the literature demonstrate the effectiveness of the use of multiple geophysical meth-
ods to perform this task. For example, Magiera et al. (2019) carried out a multi-
methodological geophysical survey to delineate the horizontal and vertical distribu-
tion of waste from an ancient glass factory (composed of historical slags and ashes)
mixed with modern bottom ashes and inert waste. First, magnetic susceptibility mea-
surements on surface and on near surface samples collected in the dump and its sur-
rounding environment (covering 7.2-ha) were used to discriminate the anthropogenic
deposits from the natural soil. Subsequently, they combined magnetic gradiometry
with electrical resistivity tomography (ERT), time-domain induced polarization (IP),
electromagnetic induction (EMI) and laboratory analysis in material sampled from
boreholes (up to 1.5 m deep).

In general, the horizontal distribution of wastes close to the surface has a rather
straightforward interpretation, while the vertical extent of wastes often is a more
challenging target, correspondingly associated with larger uncertainties. This was il-
lustrated by Dumont et al. (2017) for a 26-ha engineered landfill with known bound-
aries, including the depth of the landfill bottom. The authors used the passive-source
seismic method of horizontal to vertical noise spectral ratio (H/V) jointly with the
active-source seismic method of multiple analysis of surface waves (MASW) and
gravimetry to estimate the thickness of the waste deposit along a transect (see Fig.
3.3). This enabled to estimate the boundaries with a deviation of 5 m to 15 m from
the known depth of maximum 60 m.

The computation of volumes based on those boundaries are therefore also strongly
affected by the associated uncertainties and important to quantify for landfill mining
initiatives. For example, Martínez-Segura et al. (2020) combined ERT with high-
resolution topographic measurements to estimate the volume of waste deposits gen-
erated from a phosphoric rock derived fertilizer production unit. The volume was
computed based on the comparison of the landfill top layer as represented in LiDAR
measurements and the bottom layer of the waste deposits as derived from inverted
ERT profiles. First, there is inherent uncertainty involved in the ERT inversion pro-
cess, where the distribution of electrical resistivity is produced from the ERT mea-
surements. It typically requires a prior geometric constraint (e.g., smoothness of the
model, see section 2.3.2) on the resistivity model that may strongly impact the final
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FIGURE 3.3: Estimated thickness along a transversal profile using the
method of H/V (red and blue lines, considering one and two resonance
peaks respectively). The topography is indicated with the green line
and the real bottom limit of the waste is shown in yellow. Image from

Dumont et al. (2017).

results (Caterina et al., 2013). Secondly, there is uncertainty in the interpretation of
the inverted ERT profiles for the landfill boundaries using boreholes for validation.
Although boreholes provide hard data with little uncertainty in the bottom layer at
specific point locations along the ERT profiles, considerable uncertainties remained
in between boreholes where ERT did not show a clear contrast between the waste
and the host material.

Another example is given by Martin et al. (2020), who estimated the volume of
ore processing residues in a mine waste dump by integrating ERT, ground penetrat-
ing radar (GPR) and spectral induced polarization (SIP) methods. The results were
validated via drillings, mineralogical studies and laboratory SIP measurements on
collected cores. GPR measurements allowed to distinguish between layers within
the first upper meters of the fill while ERT mapped the (vertical and lateral) bound-
ary with the host rock. To estimate the volume of the residues body, the authors relied
on interpolated inverted 2D models and a threshold resistivity value derived from lab
measurements. The uncertainties that the authors considered for the volume esti-
mation were related to inaccessible survey areas, inversion coverage and small-scale
anomalies of high resistivity (i.e. areas of low/no data coverage and anomalies were
not considered in the volume computation). Based on this, a correction was applied
resulting in the final volume estimation to be increased with 5%, obtaining a final
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result of 81,900 m3. Following the same procedure, two volumes were calculated
using a lower and upper threshold limits of resistivity, obtaining a volume range of
63,000-108,000 m3.

Cavalcante Fraga et al. (2019) used ERT and EMI to delineate laterally and verti-
cally an unauthorized urban fill of 5-ha, composed of anthropogenic brown-to-green
silt soils containing construction debris. The dump site is located in a suburban
region, which is intended to host a commercial complex, hence the importance of
an accurate geometrical characterization. To determine the depth of the interface
between the urban fill and the geological substratum, 40 trenches were excavated
placed in a non-aligned sampling grid of 33 m by 33 m. Here, the authors used
the ERT inverted model as a reference to calibrate EMI data, helping to counter the
poor sensitivity of EMI to resistive grounds and eliminating inverted deterministic
1D models with unrealistic parameters according to the site context. The EMI 1D
inversion after calibration, indicated that the predicted urban fill thicknesses were
consistent with 70 % of the ground truth values.

Besides, mapping the lower limit of a landfill might not always be physically
possible. Apart from the uncertainty related to data processing from each geophys-
ical method, the contrast between any physical property of the host material and
the waste deposits must be large enough. Dumont et al. (2016) give an example
of a study where the lower limit of the waste could not be resolved using electric
and electromagnetic methods: first, because the ERT profile extension was limited
by a road surrounding the landfill and the lateral walls of a bottom high density
polyethylene (HDPE) geomembrane, and, second, because the high conductivity of
the leachate concentrated most of the current density, causing the model sensitivity
to rapidly reduce with depth. The use of mechanical seismic waves might fill in this
information gap. However, low velocity contrast between the material of the landfill
and the underlying media, may again significantly hamper the ability to delineate
the bottom of the landfill using either active- and passive-source seismic methods. In
general, MSW landfills present very low seismic velocities with S-wave velocities up
to around 300 m/s and P-wave velocities up to approximately 500 m/s, e.g., Abreu
et al. (2016), Balia et al. (2018), Yin et al. (2017).Thus, the thickness estimation of
MSW deposits might be challenging in landfills located in “soft” soils such as sand,
muds and alluvial deposits, e.g., Isunza Manrique et al. (2019b), but always possible
on hard rock.

There have been fewer investigations aiming at identifying and estimating the
volumes of different waste types (e.g., MSW, industrial waste), let alone different
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individual waste materials proportion (e.g., plastics, metals and glass in MSW) de-
posited in the same dump. This represents an additional challenging task compared
to estimating a single waste volume due to the high heterogeneity of landfills, the
widely varying and unusual physical contrasts that might exist within waste mate-
rials and the effect that physical conditions (e.g., water saturation, temperature and
compaction) have on the geophysical response.

Caterina et al. (2019) managed to estimate the respective volumes of three types
of industrial waste, namely 1) industrial scrap and construction and demolition waste
(CDW), 2) slacked lime, and 3) fly ash, using EMI, gradient and total field mag-
netometry, 3D ERT-IP and H/V (see Fig. 3.4). The high electrical conductivity of
slacked lime and fly ash made it possible to determine the lateral (with EMI and
magnetometry) and vertical extent (with 3D ERT/IP) of both materials overall. The
H/V method was used to differentiate vertically between slacked lime and fly ash
deposits. Two resonance frequency peaks were observed in several H/V locations at
the top of these deposits and the peaks could be associated to the ash and slacked
lime, respectively. This in turn allowed to estimate the bulk S-wave velocities of
each material at the locations of two boreholes, enabling the use of a general formula
(parametric analysis) to estimate the thicknesses of the deposits at locations where
only H/V data were available. Thus, the volumes of the three waste deposits were
estimated using EMI and magnetometry for the lateral distribution, together with a
combination of the ERT inverted model (with a resistivity threshold <25 Ωm) and
the thicknesses estimated via H/V for the vertical distribution of the slacked lime
and ash. The results were validated via trial pits and laboratory analysis of collected
samples.

In the view of ELFM, Vollprecht et al. (2019) associated magnetic properties of
MSW to its iron content by conducting field and laboratory studies. The authors de-
ployed a magnetometry survey and estimated the bulk magnetic susceptibility of the
subsurface by modelling the total field response. For validation, drill core samples
were sorted into different waste fractions (e.g., ferrous and non-ferrous metals, plas-
tics, paper, inert, glass, wood, textiles) and its bulk magnetic susceptibility was mea-
sured in laboratory, using additionally reference samples of known composition from
a different site. Whereas it was possible to distinguish the zonation of magnetic and
non-magnetic materials, similar to the observations made by Yannah et al. (2017),
the authors pointed out two outcomes underlining why quantifying the iron content
based on magnetic measurements remains difficult: 1) even for wastes derived from
known materials, landfilled materials show a highly variable bulk magnetic suscep-
tibility, which can be likely be (partly) explained by degradation processes, and 2)
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FIGURE 3.4: Estimated volumes of three industrial types of waste
using multiple-geophysical methods, trial pits and lab measurements.

Methodology described in Caterina et al. (2019).

the difference between the modeled data and experimental data (in this case derived
from waste samples and reference samples), can be partially explained by scaling
effects.

Mutafela et al. (2020) demonstrated that one single method, ERT in this case,
may be able to distinguish a zonation within the landfill if the electrical contrast is
unique within the waste body. The authors investigated a glass waste dump that
covers approximately 38,500 m2, and which contains MSW, crushed glass and some
demolition waste from the glass factory. They identified buried glass hotspots in the
dump as regions of high resistivity (>8000 Ωm), which afterwards were corroborated
(via test pits excavations and laboratory analysis) to correspond with a composition
with a mean glass fraction of 87.2%. Given that glass hotspots deposits were often
located close to the surface, the ERT resolution remained sufficiently high.

3.2.2 Challenges and future directions

The above mentioned landfill geometry and zonation studies show that successful
characterization is achieved when a target waste zone has a unique signature with
respect to both the rest of the waste and/or the surrounding host material. These con-
ditions allow to derive the required information by applying a relative simply proce-
dure: defining a threshold value for (inverted) geophysical data that corresponds to
the boundary of the zone of interest. In more complex cases, a solution can often
only be achieved when multiple geophysical methods and/or modelling approaches
are integrated. Inspiration may be found in methodologies used in natural geological
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environments, for example, by applying a petrophysical joint inversion integrating
electrical and seismic data in order to quantify the volumetric water, air, ice and rock
contents in permafrost systems (Mollaret et al., 2020).

Additionally, the presented works illustrate the need to quantify the uncertainty
of landfill boundaries and corresponding derived waste volumes. Whereas in general
fairly accurate results can be achieved for rather shallow landfills (a few meters be-
low the surface), the uncertainty of boundary estimates significantly increases when
larger depths are targeted. While error propagation can relatively easily be incor-
porated into the data analysis, such as the impact of the threshold set on a volume
estimation, e.g., Martínez-Segura et al. (2020), the conceptual choices that are un-
derlying the error/uncertainty quantification, e.g., Dumont et al. (2017), should also
be accounted for.

In this context, there is a need to provide a robust and commonly accepted method-
ology to provide “standards” for how uncertainties are to be quantified, accounting
for the most important factors described in Figure 3.2. There are methodologies
available, applied in natural geological environments, that include the quantification
of uncertainty using probabilistic formulations to solve the geophysical inverse prob-
lem, for example, to “better” resolve the geometry of different subsurface units (De
Pasquale et al., 2019). In hydrogeology and hydrogeophysics, Linde et al. (2017)
reviewed the uncertainty quantification in both the forward problem and the solu-
tion of the Bayesian inverse problem and discuss, for instance, the use of proxy-
modeling strategies and multi-resolution (multi-level Monte Carlo) methods to mit-
igate computational costs of forward uncertainty quantification. The integration of
such approaches would lead to an improved interpretation of geophysical data, using
a decision analysis based on probability theory, that in turn would improve decision
making in DLM.

3.3 Mapping dynamic processes: leachate and landfill
gas in MSW

3.3.1 Leachate

The disposal of waste in landfills leads to the generation of leachate, which is a pol-
luting effluent with a high concentration of organic material composed of humic and
nitrogenous compounds, heavy metals and inorganic salts (Costa et al., 2019). In
a landfill bioreactor and/or engineered landfills, however, waste stabilization can be
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enhanced and accelerated, primarily, through leachate recirculation systems. Charac-
terization of landfill leachate is complex due to the presence of multiple contaminants
and because leachate is also affected by the landfill age and its interactions with the
surroundings, i.e., rainfall, surface runoff, climate and groundwater infiltration (Miao
et al., 2019).

The presence of leachates generally leads to lower electrical resistivity values due
to their elevated concentrations of total dissolved solids (Mirecki and Parks, 1994).
This permits the use of static and time-lapse ERT to characterize the leachate distri-
bution and migration patterns in the waste deposits (Chambers et al., 2006; Maurya
et al., 2017), and potential pollutant leakages in the vicinity of a landfill (Moreira
et al., 2018). Nevertheless, the heterogeneity of landfills can cause significant extra
complexity, for instance, due to the creation of preferential flow paths for leachate
transport which in their turn might form subsurface canals and perched water bodies
in the wetland system (Wijesekara et al., 2014).

For problems involving optimization of a landfill infrastructure (i.e., design of
control and collection systems of leachate and gas emissions), it is important to have
a better understanding of unsaturated flow theory to improve the study of the migra-
tion of leachate and landfill gas (Feng et al., 2017c). Thus, it is critical to understand
the unsaturated properties of MSW landfills such as volumetric and gravimetric wa-
ter/leachate content, intrinsic/relative permeability, water retention capacity, as well
as the spatio-temporal variation in these properties. In addition, there are multi-
ple interacting parameters that strongly affect the leachate generation and, hence,
should be considered in the modeling of this process (e.g., infiltration of rainwater
and seasonal variations, temperature, moisture content, geographical features like to-
pography). Here, we review the recent literature available on the quantification of
water/leachate content in both static characterization and monitoring studies.

Static characterization

Dumont et al. (2016) estimated the gravimetric water distribution in a MSW landfill
along an ERT profile, intersecting a 32-m deep borehole in which complementary
EMI tests were performed. From the same borehole, waste samples of a few dm3

were collected every 2 m and analyzed for gravimetric water content, temperature
and volumetric water content, as well as the electrical resistivity. Using the Archie’s
and Campbell’s petrophysical laws (Archie, 1942; Campbell et al., 1949), the en-
tire profile of electrical resistivity values was translated into a profile for gravimetric
water content. Additionally, the authors provided a hypothesis on the vertical evolu-
tion of salinity with depth in the unsaturated zone. They concluded that established
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petrophysical laws can be accurately used in MSW landfills, provided that the tem-
perature, compaction and salinity evolution with depth can be assumed stationary
and sufficiently accurately approximated by in situ measurements, in this case made
in one borehole. Neyamadpour (2019) extended this approach to a 3D ERT set-up
combined with sample analysis from several boreholes and reported a good fit of
Archie’s law at the different boreholes (R2 = 0.79). This indicates that the vertical
evolution of the influencing factors of the temperature, compaction, and salinity is a
major factor in explaining the leachate distribution in landfills.

Ignoring these specific conditions may lead to important uncertainties. For ex-
ample, Feng et al. (2017a) used an empirical Archie law in a similar approach as
Dumont et al. (2016), but without including a temperature correction, nor accounting
for any other influencing parameter. The underlying assumption was that the effects
of these parameters on the electrical resistivity are negligible, mainly because the
studied waste areas were either in a stage of anaerobic biodegradation or already sta-
bilized. A temperature gradient was observed, from an ambient temperature of 25°C
to a temperature of 35°C at the bottom of the waste, but was considered to be small.
However, this already produces a 20% error in the estimation of the bulk electrical
conductivity used to estimate the water content. In general, the electrical resistivity
tomography is a method that has been used as an indicator of temperature variations,
for example, in shallow geothermal systems (Hermans et al., 2014). Considering that
the correction factor for compaction is five times as high as the temperature one (Du-
mont et al., 2016), ignoring compaction is likely to lead to an even greater additional
error in terms of water content estimation.

The hydraulic conductivity is a determining factor in water and leachate migra-
tion, which can even occur outside of the landfill, and has been estimated using geo-
physical methods. For example, Fiandaca et al. (2018) predicted the permeability at
field scale in heterogeneous lithologies and water chemistry. The data were collected
in an aquifer contaminated by a leachate plume from a landfill nearby. They used
spectral induced polarization (SIP) data measured in 3 boreholes in an undisturbed
formation, using the logging-while-drilling technique with a 0.2 m vertical resolu-
tion and extending the measured data to time domain SIP (Gazoty et al., 2012). A
very good correlation was found between time domain SIP-derived permeability es-
timates and those derived in an experimental approach based on sample grain size
analysis and slug tests. The total uncertainty on the SIP-derived permeability esti-
mation depended on the uncertainties of the petrophysical relations and the inversion
parameters.

Already for decades, IP investigations have been applied to target leachate plumes
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in landfills, often jointly interpreted with ERT, e.g., Abdulrahman et al. (2016). Bal-
barini et al. (2018) propose a geophysics-based interpolation method to estimate a
contaminant mass discharge from a landfill to complement the results from a con-
ventional investigation campaign with a low spatial sampling density. The method
is based on finding a conceptual link between the bulk conductivity from inverted
geophysical models and the concentration of contaminants. To this aim, ERT and
time-domain IP were applied to a wide leachate plume (with high concentration of
inorganic and pharmaceutical compounds) downgradient from the landfill. The lim-
ited number of spatially discrete contaminant concentrations data were interpolated
through regression kriging, using the geophysical models as dependent variable. The
use of the bulk conductivity from geophysics to describe the distribution of the con-
taminant concentration was assessed at co-located observations, were the relative
contaminant mass discharge estimation error and relative uncertainty were also com-
puted. Here, it was possible to estimate the contaminant mass discharge of chloride
and pharmaceutical compounds in the landfill.

A methodology for leachate detection in a MSW landfill based on statistical anal-
ysis of ERT and IP data were presented by Frid et al. (2017). To mitigate the vari-
ations in the different inverted models, the authors computed the statistical distri-
butions of 1) the inverted electrical resistivity, 2) the chargeability, and 3) the ratio
of chargeability to electrical resistivity models. Then, the three models were stan-
dardized to have a mean of zero and a standard deviation of 1. These values were
used to define the likelihood of an anomaly through the computation of probabili-
ties (for each model) which were jointly interpreted for the distribution of leachate
in the landfill. The study was combined with synthetic modeling and analysis of
the relationship between bulk and fluid electrical resistivity, which was validated by
test borehole drillings. Leachate detection could be successfully performed using
the chargeability-to-resistivity ratio with the anomaly’s likelihood being higher than
90%.

Baawain et al. (2018) provide an example where greater investigation depths (75
m) are reached in an unregulated landfill by using TDEM to identify leachate con-
tamination and image the plume migration by investigating preferential flow paths.
Here, the installation of monitoring wells and piezometers, combined with sampling
for chemical analysis, was used to verify the geophysical results. This approach con-
firmed the migration of contaminant plumes derived from previous domestic waste
disposal and possibly waste oil from auto-garages. Anomalies encountered below 80
mbgl (meters below ground level) were related with the groundwater table.

Similarly, Høyer et al. (2019) built a 3D geological model for the surroundings of
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a former landfill, to assess the risks for landfill leachate migration. TDEM and FDEM
measurements were combined with geoelectrical profiling, analysis of the geomor-
phology, and spear-auger mapping. The immediate risk for leachate migration was
found downgradient through a lacustrine sandy aquifer and wetlands. Finally, also
using TDEM, Feng et al. (2020) assessed the leachate leakage of a MSW landfill to
evaluate the safety of the construction and operation of a tunnel underneath the land-
fill. The investigation included an ERT and TDEM data acquisition together with
drilling and water sample analysis from boreholes.

Seismic methods are scarcely used to characterize parameters and processes re-
lated to leachate plumes. Nevertheless, Konstantaki et al. (2015) performed active-
source seismic reflection and ERT surveys to understand the flow inside a landfill
(household, CDW) in order to optimize processes such as irrigation and leachate re-
circulation. They calculated the density distribution in the landfill using an empirical
relationship between S-wave velocity and unit weight (proportional to bulk density),
concluding that high-resolution seismic reflection methods seem to be more reliable
for imaging and monitoring a heterogeneous landfill, as compared to multiple analy-
sis of surface waves (MASW). The empirical relationship they used was derived by
Choudhury and Savoikar (2009) from a database of laboratory and field tests, includ-
ing data on different physical properties (e.g., unit weight, S-wave velocity, strain
dependent material damping ratio, consolidation modulus), collected from more than
30 landfill surveys.

Monitoring

Rather than mapping the water content at a particular time, it is often of interest to
monitor its evolution over a certain time period. This can be done without quantifying
the water content variations as intermediate step, such as in Dumont et al. (2018)
where the authors’ aim was to assess the efficiency of horizontal drains in a landfill
bioreactor by using 2D time-lapse ERT, 3D ERT, and distributed temperature sensing
(DTS) vertically in a borehole and along the horizontal drain, in order to determine an
optimized water injection protocol. They highlighted that the horizontal anisotropy
in the water flow is due to the compaction of the waste layers.

In general, customized data acquisition and processing schemes have been devel-
oped to accurately map the spatial distribution of leachate and better understand its
hydrodynamic behavior. Audebert et al. (2014) noted that the inversion of time-lapse
ERT data could be problematic for an accurate delimitation of the infiltration area due
to the ambiguity in the parameters set and smoothness of the inversion. To improve
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the ERT imaging during a leachate recirculation experiment on a landfill bioreac-
tor, the authors proposed a methodology based on multiple inversions and clustering.
First, they performed several inversions by varying inversion parameters, then clus-
tering on each resistivity model (considering two groups: leachate infiltration area
and surrounding waste medium) and finally a grouping approach for the integration
of all clustering results into one final cross section.

Seismic methods have been scarcely applied in leachate monitoring. For example,
Carpenter et al. (2013) explored the use of seismic surveys to characterize changes in
the dynamic properties (e.g., shear wave velocity, Poisson’s ratio) of a MSW landfill
to infer the spatial extent of degradation. The authors collected data in a bioreac-
tor cell by using fan shot direct P- and S-wave surveys, together with repeated EMI
measurements. Although the study provided useful information on the effects of
leachate recirculation on shear modulus and Poisson’s ratio of MSW landfills, addi-
tional information such as the independent direct measurements of material density
and velocity are needed for calibration, as well as a characterization of the MSW of
different ages.

Despite the general small depth of investigation of GPR in conductive media, Car-
penter and Reddy (2016) applied this method to investigate a leachate recirculation
system in a MSW cell, reaching a depth of around 8 m (with an antenna with a center
frequency of 50 MHz). The radargrams imaged reflections that could relate to inter-
mediate cover layers, layers of different types of waste, leachate recirculation lines
or leachate accumulation. In addition, geophysical well logging with natural gamma
and electromagnetic conductivity probes was conducted to characterize waste in-situ
and identify leachate accumulations.

The integration of multi-geophysical investigations mitigates the ambiguities and
shortcomings inherent to each method. For example, integrating geochemical and
geophysical ERT, spontaneous potential and FDEM results, Alam et al. (2018) lo-
cated a highly conductive zone caused by the accumulation of contaminants from a
leachate plume, which was validated by chloride concentrations from total dissolved
salts (TDS). Also, Giang et al. (2018) used ERT, self-potential and VLF methods in
combination with hydrochemical analysis to assess the impact of a landfill in the sub-
surface geologic formations and the hydrogeological environment. They could detect
a low resistivity area associated with a fully leachate-saturated zone in the landfill.

Challenges and future directions

From the above mentioned contributions, it can be concluded that resolving the spa-
tial distribution of water/leachate content and its evolution in time (e.g., related to



3.3. Mapping dynamic processes: leachate and landfill gas in MSW 47

leachate injection or dewatering) can be considered as the state-of-the-art solution
in monitoring landfills. Nevertheless, the quantification of underlying parameters
(e.g., hydraulic conductivity) in highly heterogeneous environments and subsequent
modeling (e.g., flow and transport) using hydrogeophysical approaches still faces
unaddressed challenges. A first difficulty is linked with the non-stationarity of petro-
physical relationships, particularly in multiphase systems with highly variable tem-
perature (bioreactor). A second difficulty is the typically large anisotropy due to
different waste compaction levels which can lead to preferential flow paths.

In their review, Slater and Binley (2021) promote the use of hydrogeological ob-
servatories to provide insight into hydrogeological processes through long-term ERT
monitoring. The authors also emphasize the importance of taking into account the ad-
ditional uncertainty that time-lapse inversion and interpretation problems pose (e.g.,
petrophysical model uncertainty and lab-to-field calibration uncertainty). If we trans-
late this to the study of leachate dynamics in a MSW, the potential integration of a
permanent ERT system within an engineered landfill cell or a bioreactor together with
the use of other sensors could help developing more representative leachate-waste in-
teraction models from geophysics. Furthermore, efforts are being made to consider
more realistic three-dimensional modelling of coupled leachate and gas flow in land-
fill bioreactors (Feng et al., 2017b). In addition, combining ERT monitoring with
other methods such as IP and self-potential data could better resolve the leachate
spatial distribution and its evolution over time (Flores-Orozco et al., 2020; Helene
and Moreira, 2021).

3.3.2 Landfill gas

MSW landfills are by nature reactors in which degradation of organic materials in
anaerobic conditions lead to the production of landfill gas, mainly composed of the
greenhouse gases methane and carbon dioxide (Shen et al., 2018; Williams, 2005).
The accumulation of gas might pose a risk of explosions, fires–both at the surface
and underground (due to anthropogenic activities at deposits with flammable waste),
or spontaneous combustion of the waste. Additionally, there is an environmental risk
of pollutants and greenhouse gas emissions migrating into the air, water or geological
host (Frid et al., 2010). In this context, landfill bioreactors are a sustainable option
wit a landfill gas energy recovery, designed to achieve a stabilization of the waste
within 30- 50 year time span (Williams, 2005).

In general, the rate of gas production in a landfill is a function of waste com-
position (organic content), age or time since deposition, climate variables, moisture
content, particle size and compaction (Georgaki et al., 2008). Despite the frequent
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monitoring of gas emissions and site investigations that might be possible in a land-
fill, waste heterogeneities can create lateral migration paths for the gas, and, there-
fore, gas emission measurements can often only be considered rough estimations.

In the last decades, geophysical methods – in particular ERT and IP – have been
used to investigate the gas distribution in landfills and the related processes of degra-
dation and contaminant transport. In this section, we present geophysical investiga-
tions that aim, first, to detect and image gas accumulations within the landfill body
and, second, to investigate variations in biogeochemical parameters that are related
to biodegradation.

Gas accumulation

The detection of subsurface gases is inherently difficult in geophysics as their dif-
fusive nature makes them less likely to produce detectable contrasts in geophysical
measurements. Gas accumulations, trapped because of the presence of less perme-
able layers, however can show a relatively large contrast in many physical param-
eters, including mechanical, electrical, e.g., Frid et al. (2010), and electromagnetic
ones. Yet, in both scenarios the validation of the geophysical interpretation using
ground truth data is particularly challenging. The literature provides studies per-
formed in the laboratory and in situ. In the former, the limited volume allows for the
gas to be detected by geophysics, e.g., Zhan et al. (2019), but the latter yield more
uncertain outcomes as will be shown in the discussion of the studies of Jacome et al.
(2021) and Konstantaki et al. (2016) below.

In his work, Jouen (2018) presents an overview of how biodegradation processes
can influence multiple geophysical methods both at laboratory and field scale. Over-
all, the ERT monitoring studies performed over several months (or years) indicate
that the resistivity decreases with time, which is often attributed to an increasing wa-
ter content. Additionally, the response of IP in time- (chargeability) and frequency-
domain (phase shift) increases at laboratory scale with decreasing density, and, at
field scale, the response decreases during biodegradation and a density increment.
Moreau et al. (2012) also studied the impact of waste biodegradation on resistiv-
ity at laboratory scale. Here, the authors pointed out that biodegradation of organic
fractions could induce modifications of mechanical and chemical characteristics of
porous media and leachate composition.

Zhan et al. (2019) carried out several ERT tests in a large-scale (5 × 4 × 7.5 m)
landfill bioreactor to investigate the possibility of detecting liquid and gas accumu-
lation zones in wet MSW landfills (under presence of leachate). This large-scale
experiment was instrumented to monitor temperature, earth pressure (vertical and
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horizontal stress), settlement, moisture content and leachate level with simultaneous
time-lapse ERT measurements, the authors identified irregular spatial variations of
high-resistivity zones observed below the leachate level, which were associated with
the accumulation and dissipation of gas pressure. Monitoring and quantifying these
parameters allowed to better understand the gas accumulation and migration dynam-
ics, which is essential for safety assessment and management of a wet MSW landfill.
In an in-situ study, Júnior et al. (2016) detected small continuous voids and large
voids within the waste mass using GPR (with maximum penetration depth around 5
m). The small voids were considered to be possible indicators of slip surfaces, due
to the clear dielectric contrast between the air and the MSW, and the larger voids
possible indicators of greenhouse gases pools.

More recently, Jacome et al. (2021) developed an approach to predict methane
generation rates in a non-engineered closed landfill. The algorithm, based on ERT,
IP and point-source methane concentration measurements, incorporated fuzzy logic
to neural networks for causal variable forecasting of surface methane concentrations,
using geoelectrical proxies of leachate accumulation (taken from the ERT and IP
inverted models). This hybrid algorithm provided a statistically significance infer-
ence of the effects of the processes linked to methane production on which little
(experimental) control is possible (i.e. biological mechanisms affecting organic mat-
ter degradation, moisture content, temperature and pressure of the system, anaerobic
decomposition rate in leachate, and flow rate of water in the waste, among others).
Some uncertainties that might hamper achieving a better inference are moisture, tem-
perature and features such as discontinuities, fissures and cracks in the cover soils,
which could qualitatively explain the distortions in the relationship between methane
emissions and geoelectric parameters.

Active source seismic methods have also been used to investigate landfill gas.
Konstantaki et al. (2016) analyzed shallow S and P reflection data and surface-wave
data acquired at a landfill where biogas was extracted. Jointly interpreting the P- and
S-wave velocity fields, together with the location of distinct scatterers, the authors
interpreted wet and gassy (dry) zones in the landfill (Fig. 3.5). Gassy or air-filled
pockets were interpreted considering abnormally low P-wave velocities estimated
from body and surface wave seismic data. A validation was done by performing
independent field measurements of biogas flow and mechanical tip resistance on the
waste in shallow wells, which were in agreement with the spatial delineation of stiff
and soft zones and wet and gassy areas interpreted based on seismic data.

Finally, the use of passive source seismic methods can potentially provide useful
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FIGURE 3.5: a) The VP/VS field and b) density field. White and black
ellipses indicate the interpreted water-bearing and gas/air-bearing
zones respectively (interpreted from S and P-wave reflection data).
Black circles mark locations where velocity estimates are relatively

uncertain. Image from Konstantaki et al. (2016).

information for monitoring landfills. For example, the evolution of the seismic ve-
locities and induced pressure variations have been studied in a natural gas field, using
passive seismic ambient noise during the gas production (Brenguier et al., 2019).

Biogeochemically active areas

Flores-Orozco et al. (2020) applied frequency-domain IP, together with excavations
at several locations, waste samples collection and chemical analysis, to discriminate
between biogeochemically active and inactive zones – in terms of production of CO2
– in a MSW landfill. The total organic carbon (TOC) content in the leachate of solid
waste samples was used as a proxy for microbial activity. A positive correlation
between the leachable TOC concentration and the polarization effect was observed,
both for the imaginary component (r=0.9) and the phase of the complex conductivity
(r= 0.79). Correspondingly, low polarization values were observed in microbiolog-
ically inactive areas while the highest values were observed in microbiological hot
spots associated with high leachate and landfill gas production (see Fig. 3.6).

To improve the estimation of surface gas emissions from a landfill, Georgaki et
al. (2008) acquired several 2D ERT profiles together with boreholes and CH4 and
CO2 emission measurements using the static chamber technique (SCT) (Czepiel et
al., 1996; Hellmann et al., 1997). Then, a classification of the landfill content was
done based on the ERT results, data on the properties of the waste/bedrock obtained
from the boreholes and chemical analysis: organic waste, organic waste saturated in
leachates, low organic and non-organic waste. The classification was done measuring
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FIGURE 3.6: SIP results for the real and imaginary component of the
complex conductivity (first and second row) as well as their ratio ex-
pressed in terms of the phase of complex conductivity. Solid black
lines indicate the bottom of the landfill observed in excavations. Im-

age from Flores-Orozco et al. (2020).

the electrical conductivity in liquid samples and applying explicit limits of resistiv-
ity ranges. In general, areas of high gas emission rates were strongly affected by
the thickness of organic waste and organic waste saturated in leachates underneath.
The combined use of ERT and SCT represents a cost-effective, reliable, and easily
conducted approach to estimate the gas emission rate in a landfill, that allows to re-
duce the number of gas sampling points. However, SCT cannot estimate emissions
in places where surface leachate or precipitation might block the emission of gases.

Naudet et al. (2003) applied the self-potential (SP) method to investigate a con-
taminated groundwater plume originated from a MSW landfill. The measurements
were performed downstream of the landfill and complemented with sampling from
piezometers and wells for geochemical measurements to delineate redox fronts in the
contaminant plume. The results showed a large negative SP anomaly (≈ -400 mV)
with respect to a reference SP station positioned outside the plume. The origin of SP
has two main components: the electrokinetic contribution associated with groundwa-
ter flow in permeable soil and redox phenomena. In this work, the first component
was removed, and the residual SP signals were linearly related (R2 = 0.85) with in-
situ measurements of redox potential. Then, a quantitative relationship between SP
and redox potential was proposed, in order to invert SP measurements in terms of in
situ redox potential values in contaminant plumes. Afterwards, this method was also
applied on a MSW landfill composed of 15 m thick cells, filled with half MSW and
half of industrial waste. The SP signal was mainly influenced by the biodegradation
of the waste with negative values being observed on the more mature cells (Naudet
et al., 2012).



52 Chapter 3. Quantifying solid waste deposits & dynamic processes

More recently, Moreau et al. (2019) monitored the biodegradation phases of non-
hazardous waste mass, by studying the spatial distribution and temporal evolution
of the temperature in a MSW cell. To this aim, they used distributed temperature
sensing (DTS) with optical fibers installed in the bottom part of the waste mass for
a monitoring period of six years. After landfilling, the temperature of the waste in-
creased (up to 65 ◦C) due to the exothermic reactions in the aerobic biodegradation
phase (< 1 year), followed by a more gradual decrease in temperature during the
anaerobic biodegradation phase, which was spanned over a period of 6 years. The
rate of temperature decrease during this period of time, is strongly affected by exter-
nal conditions on the points closest to the edges of the cell, while the center of the
waste mass remains warmer. Nevertheless, the heterogeneity of the waste mass was
not identified in the temperature variations and the waste is considered as one bulk
unit. In addition, a numerical simulation was performed to reproduce the temper-
ature evolution and spatial distribution, enabling to predict if the waste reached the
temperature conditions to promote methanogenesis biodegradation. Over the simula-
tion period, the differences between the measured and simulated temperature values
decreased in time.

Challenges and future directions

Gas accumulation and biodegradation zones may be detected using geophysical meth-
ods provided that their volume is sufficient to be spatially resolved by the method and
the associated contrast in the investigated physical property is sufficiently large, i.e.
dominant over the variations of other influencing properties. Whereas this is almost
always the case for laboratory studies where the volume is controlled, it is more
challenging in field applications.

The quantification of landfill gas concentrations in a landfill remains difficult as
several parameters must be monitored simultaneously to enable inferring reliable
conclusions. Yet, in more general applications, ERT has been largely used to monitor
gas dynamics in the subsurface (Slater and Binley, 2021). As resistivity increases
when gasses replace water in the pore space, then greater electric contrast will be
observed if gas pockets are present.

To improve the monitoring, there is a need to improve the temporal and spatial
resolution of geophysical imaging, and to advance our understanding of processes re-
lated to biodegradation coupled with non-invasive geophysical monitoring, e.g., cou-
pling of IP with direct biogeochemical measurements and mechanisms models, see
Kessouri et al. (2019). Similar to the directions mentioned for the study of leachate,
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the integration of permanently installed geophysical sensors in boreholes could im-
prove the understanding of the production and transport of biogas and other reactions
in engineered landfills. Downhole geophysical tools in boreholes have proven effi-
cient in offering high temporal and spatial resolution measurements together with
monitoring and pumping wells, see Tal et al. (2019), who monitored seawater intru-
sion through electrical resistivity measurements.

3.4 Quantitative studies in metallurgical residues

Geophysical methods have proven useful to characterize specifically metallurgical
wastes and associated contamination. To this aim, magnetic and electromagnetic
methods have been successfully used, often qualitatively, to identify these deposits
(Ivančan and Karavidović, 2021; Mendecki et al., 2020) and in most cases, geoelec-
tric methods (Florsch et al., 2012, 2011). However, as indicated in Placencia-Gómez
et al. (2015), using DC-resistivity or electromagnetic methods alone, may be chal-
lenging to identify critical zones of oxidative-weathering of metal sulphides present
in tailings or the zones associated with the precipitation-adsorption of secondary min-
erals. Nonetheless, time-domain IP and SIP, represent a promising method that has
been applied both in the laboratory and in the field to investigate the chemical form
and physical properties of these residues, as well as dynamic processes within them
(Revil et al., 2022).

3.4.1 Metallurgical zonation

Beyond the use of geophysical methods for the estimation of volumes in metallur-
gical wastes (dusts, slags, tailing waste, etc.), comprehensive characterizations such
as mineral or metallurgical zonation, may require integrated approaches to link geo-
physical measurements in the field and/or in the laboratory with optimized field sam-
pling and metallurgical or geochemical analysis. For example, Martin et al. (2021)
studied slags derived from historical processing of metal ores using SIP in the lab-
oratory and in the field. Samples were collected at maximum depths of 0.5 m in
which SIP measurements and geochemical-mineralogical analyses were carried out.
Then, two 2D SIP profiles were measured in the field and interpreted through a clas-
sification in terms of different types of slags grades, based on the varying spectral
polarization behavior identified in the laboratory (and based on the fact that few SIP
data has been collected on the last three decades, leading to limited spectra types).
Qi et al. (2018) measured SIP in the laboratory and stablished a relationship be-
tween the chargeability and the volumetric metal content at lab scale. This relation



54 Chapter 3. Quantifying solid waste deposits & dynamic processes

was translated to a 3D time-domain IP acquisition to quantify the metallic volume
of a slag heap imaging the metallic volume fraction zonation. Other integrated ap-
proaches may include several methods as in Pierwoła et al. (2020), where they used
ERT, time-domain IP, electromagnetic mapping and magnetometry combined with
geochemical analyses, to identify the spread of pollution zones around a tailing pile.

More recently, Lévy et al. (2019) have linked field and laboratory measurements
by qualitatively comparing inverted spectral parameters from time domain 2D IP-
ERT field data with in situ borehole measurements, SIP laboratory measurements and
mineral distribution analysis. The methodology allowed discriminate between zones
rich in pyrite from those zones with iron oxides (magnetite-rich) in a geothermal area.
Similarly, Bortnikova et al. (2017) used field and laboratory measurements mainly to
study the trace element transfer from waste heaps of metallurgical slags. The mea-
surements included, among others, thermometric mapping and chemical analysis,
that allowed to qualitatively interpret the ERT data in terms of zones of frozen and
wet slags, slags saturated with highly mineralized solutions, and a zone potentially
associated with a combustion center.

3.4.2 Mapping dynamic processes

The complex dynamic behavior of metallurgical residues and associated contami-
nation has also been investigated using mostly SIP at laboratory scale. For exam-
ple, Placencia-Gómez et al. (2015) conducted SIP laboratory measurements together
with mineralogical and geochemical analysis to study tailings from an Au-Cu mine,
showing the ability of the method to resolve oxidation-based textural features of the
tailings (e.g., acid mine drainage discharges). Similarly, Fernandez et al. (2019)
investigated SIP as indicator the development of reducing conditions during degra-
dation of organic contaminants at the water table interface, proposing that the method
is sensitive to the anaerobic dissolution of iron and manganese oxides. Furthermore,
there have been investigations that aim to develop potential applications tailored to
remediation of mine wastes. For example, Slater et al. (2007) studied the SIP sig-
natures of iron sulfide biomineralization induced by sulfate reducing bacteria in the
laboratory, for potential contaminants degradation using wetlands and biostimulation
strategies.

For methodologies applied in the field, we can refer to Kessouri et al. (2022)
who conducted a post-remediation assessment in a chlorinated-contaminated aquifer
several years after amendment delivery, using surface resistivity imaging, and cross-
borehole resistivity and time-domain IP. Aqueous chemistry analysis, natural gamma
and magnetic susceptibility logs supported the interpretation of geophysical data,
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which indicated that the formation of (polarizable) iron sulfide minerals are associ-
ated with the long-term impact of the aquifer’s remediation.

IP method has also proven useful for monitoring as shown in Saneiyan et al.
(2019), who used IP to delineate spatially and temporally the propagation of mi-
crobial induced carbonate precipitation in a vanadium-uranium processing facility
field during 15 days. It has been suggested that IP is a promising method for the
long-term monitoring of soil stabilization.

Geoelectric methods have been ultimately used as complement in secondary re-
covery applications. For instance, Rucker et al. (2009) used ERT to monitor a sec-
ondary recovery process involving high-pressure injections of leachate into an engi-
neered (leach) heap of a mine with sediment-hosted gold. The leachate injections
were monitored trough two injection wells and surface ERT for seven days. During
this period ERT was able to identify the leachate distribution and zones of low perme-
ability as well as to infer in the moisture content variations in time. As a subsequent
work, Rucker et al. (2014) proposed to rather monitor the raw current output and
voltage on a network of borehole electrodes installed around the injection well. In
this way, the authors suggested to use the method as a real-time tracking of leachate
distribution in the subsurface.

3.5 Applications of machine learning

Recently, there is an increasing use of machine learning in geosciences using both
supervised and unsupervised learning algorithms for a broad range of applications
(Yu and Ma, 2021) including few investigations on deposits of different types of
residues.

In terms of environmental risk assessment, Sun et al. (2023) designed a deep net-
work for multi-view fusion to invert the resistivity distribution and infer the leachate
distribution in a hazardous waste landfill. The model was developed and validated
using inverted ERT data from synthetic models and a salt tracer experiment using
different electrode arrays. Jacome et al. (2021) investigated a non-engineered closed
landfill combining ERT and time domain IP with measurements of methane con-
centrations collected over the landfill. The authors applied a hybrid algorithm that
combines fuzzy logic to neural networks to predict surface methane concentrations
using the ERT/IP data as proxy indicator of leachate accumulation. Unsupervised
learning has also been applied to improve the geophysical imaging of leachate dis-
tributions. For example, Piegari et al. (2023) used k-means cluster analysis on ERT
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and IP inverted data to better interpret leachate accumulation zones in urban landfills
(one MSW and an unknown type of landfill).

Regarding the investigations on metallurgical residues, Zhang et al. (2023) studied
a mine tailing pond using an unmanned aerial vehicle with an hyperspectral sensor
and collected 74 soil samples in which available copper content and soil organic mat-
ter were measured. Then, the hyperspectral data were processed, and the simulated
annealing deep neural network was used to predict the available copper and organic
matter.

Machine learning algorithms are useful in the investigation of anthropogenic residues
provided that there are enough data for training (supervised learning). Appropriate
training in machine learning can lead to results that outperform standard (less in-
formed) inversions (Moghadas and Badorreck, 2019; Sun et al., 2023). However,
this may not always be the case in these environments where often ground truth data
is limited. A common practice is to create synthetic data to complement the training
data available (Yu and Ma, 2021). Nonetheless, synthetic models may not accurately
represent highly heterogeneous landfills, integrating varying parameters such as tem-
perature and salinity, and processes developing within the waste. Hence the need for
more robust methods that allow a quantitative interpretations of geophysical data
presenting results that can be used as decision support tools in a sustainable landfill
management.

3.6 Discussion and general conclusions

Multiple surface geophysical methods have proven useful to investigate the geome-
try and the zonation of a landfill – depending on the contrast of physical properties
within the waste and between the waste and the host geology. Yet, there is a need to
take into account the uncertainty at the different steps of a geophysical investigation,
when targeting the quantitative characterization of waste volumes, and temporal and
spatial variations of waste processes. Table 5.1 presents an overview of some works
that show the applicability of different surface geophysical methods for several ob-
jectives as well as the type of interpretation developed. The aim of this table is to
illustrate whether the interpretation offers quantitative information in different types
of landfills or deposits.

Regarding the uncertainty quantification, Bayesian frameworks are an option to
explicitly express the uncertainty on inversion results, e.g., Bobe et al. (2020), on the
data interpretation in combination with sampling data (Hermans and Irving, 2017;
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Isunza Manrique et al., 2019a), and to quantify the uncertainty in a statistical inter-
pretation of inverted models, see Scheidt et al. (2018).

In general, the most used geophysical method for monitoring in MSW is time-
lapse ERT. Yet, also useful information can be derived from noise-based passive
seismic methods, which can be deployed relatively easily on a variety of landfill types
and infrastructures. It is also possible to use a GPS network to assess the deformation
rates in the surface, which in turn could be correlated with biodegradation processes,
e.g., Jiang et al. (2020), applied to the study of an underground gas storage facility).
In this view, there is potential on the combined use of geochemical/geotechnical
and geophysical techniques for mapping and monitoring fluids migration processes
(Sciarra et al., 2021; Wagner and Wiese, 2018).

In summary, we reviewed how geophysical methods can be used to deliver in-
sights about the state of a landfill or metallurgical residues, despite the complex bulk
geophysical response originated by anthropogenic materials and variations in physi-
cal conditions within them. We also illustrated how mainly geoelectrical methods are
being used to image in static and dynamic ways the processes related to biodegrada-
tion in MSW landfills, for instance, mapping (and monitoring) the accumulation of
gas and biogeochemically active zones. Regarding the investigations carried out in
metallurgical wastes, geoelectrical methods have also been largely used at field scale.
IP in particular has proven suitable to investigate slags while ERT may not always
image these deposits. This fact is due to the linear relation that has been observed
between the chargeability and the slag (metallic) concentration. The study of the dy-
namic behavior of these residues, e.g., oxidation-reduction reactions, is complex and
has mostly been applied at lab scale where SIP represents a promising method.

In this regard, there is a need to improve both the spatial and temporal resolution
of geophysical imaging specially to improve monitoring, which could be achieved
through the use of new sensors, combining multiple geophysical methods, deployed
from the surface and in boreholes, and when possible, through the (permanent) instal-
lation of sensors as part of an engineered landfill infrastructure for long-term mon-
itoring. These advances in technologies and methods can potentially lead to more
accurate static and dynamic characterization of landfills, which in turn can improve
decision support to evaluate material recovery and other DLM site redevelopment
projects.
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From the literature presented above, we can conclude that there is a need to de-
velop more quantitative interpretation methodologies that take into account the asso-
ciated uncertainty for more reliable characterizations of landfills and deposits in par-
ticular in the case of volume estimations. Furthermore, more comprehensive charac-
terization of metallurgical residues, in terms of metallic content or mineral variations
require integrated methodologies that integrate first, geophysical and geochemical
lab measurements and additionally link this lab-calibration with geophysical data at
field scale. These were the drivers of the methodologies presented in Chapters 4 and
5.
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Chapter 4

Quantitative interpretation of
geoelectric inverted data with a
robust probabilistic approach

The non-uniqueness of the solution of the geophysical inverse problem can lead
to misinterpretation while characterizing the subsurface. To tackle this situation,
ground-truth information from excavations and wells can be used to improve, cali-
brate and to interpret inverted models. We refer to quantitative interpretation as the
decision analysis based on probability theory, which is focused on solving a classifi-
cation problem. First, we present a probabilistic approach to classify different types
of materials or categories observed in borehole logs using multiple data sources: in-
verted 2D electrical resistivity tomography (ERT) and induced polarization (IP) data,
and the positions (x, z) of these boreholes. Then, using Bayes’ rule and permanence
of ratios, we compute joint conditional probabilities of each category, given all data
sources in the whole inverted model domain. We validate this approach with syn-
thetic data modeled for a complex anthropogenic-geologic scenario and using real
data from an old landfill. Afterwards, we assess the performance of the probabilis-
tic approach for classification and compare it with the machine learning algorithm
of multi-layer perceptron (MLP). Additionally, we analyze the effect that the dif-
ferent data sources and the number of boreholes (and its distribution) have on both
approaches with the synthetic case. Our results show that the MLP performance is
better for delineating the different categories where the lateral contrasts in the syn-
thetic resistivity model are small. Nevertheless, the classification obtained with the
probabilistic approach using the real data seems to provide a more geologically real-
istic distribution. We conclude that the probabilistic approach is robust for classifying
categories when high spatial heterogeneity is expected and when ground-truth data
is limited or not sparsely distributed. Finally, this approach can be easily extended
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to integrate multiple geophysical methods and does not require the optimization of
hyperparameters as for MLP1.

4.1 Introduction

Geophysical imaging has been widely used to derive insights on the subsurface
structures and processes by mapping physical parameters through non-invasive tech-
niques. After processing and interpretation of geophysical measurements this infor-
mation can be translated into geologic structures, quantification of volumes and ge-
ometries, or can be used to provide insight of groundwater processes (Romero-Ruiz
et al., 2018; Slater and Binley, 2021; Whiteley et al., 2019). To obtain these im-
ages or physical models an inverse problem, which is usually ill-posed and presents
a non-unique solution, is solved (Aster et al., 2018). Inverse problems may be solved
using prior information in the form of structural or geostatistical constraints in the
higher dimensional space of the model parameters (Caterina et al., 2014; Chasse-
riau and Chouteau, 2003; Kaipio et al., 1999) and more recently in lower dimen-
sional spaces using machine learning methods provided that generative models may
be trained to enforce consistent spatial patterns (Lopez-Alvis et al., 2021, 2022). In-
terpretation of geophysical images can be achieved with several approaches ranging
from a qualitative analysis that might be validated by correlation with ground truth
data (Magiera et al., 2019; Yannah et al., 2017) to automated quantitative processes
to directly assist interpretation when a large amount of data is available, for example
using deep learning approaches (Wang et al., 2018) or when the translation from bulk
geophysical properties to properties of interest is sufficiently linear, e.g., Hermans et
al. (2012). In the following, we focus on the quantitative approaches to improve data
interpretation.

In geosciences, there is a recent increase in the use of machine learning, deeply
rooted in applied statistics, where computational models are built using inference and
pattern recognition (Dramsch, 2020). In this context, supervised and unsupervised
learning algorithms of linear and nonlinear methods have also been developed and
adapted (Scheidt et al., 2018).

For example, Moghadas and Badorreck (2019) used neural networks to success-
fully link time-lapse ERT data to soil moisture, collecting reference data via an ex-
cavated pit and using the reference electrical conductivity and temperature values as

1This chapter is based on: Isunza Manrique, I., Caterina, D., Nguyen, F., and Hermans, T., 2023,
Quantitative interpretation of geoelectric inverted data with a robust probabilistic approach: Geo-
physics, 88, no. 3, KS73-KS88.
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data sources or inputs to train the supervised learning algorithm. To solve a clas-
sification problem also using supervised learning, Lysdahl et al. (2022) applied the
algorithm of multi-layer perceptron (MLP) to extract the depth to bedrock from air-
borne electromagnetics and sparse drillings. Training data were pairs of known depth
points and resistivity data. The former approach was used in a field case with a post-
glacial geomorphology, yet the authors concluded that the geological complexity was
the main limitation on the MLP performance.

Combining two or more geophysical methods based on different physical prop-
erties can greatly reduce the ambiguities inherent to each method (Hellman et al.,
2017), improving the interpretation and geophysics-based characterization. Paasche
et al. (2006) adopted a statistical approach to integrate the physical models from in-
dividually inverted georadar and seismic data into one multiparameter model, and to
estimate the spatial distribution of petrophysical parameters (from limited geophys-
ical and petrophysical databases) using fuzzy c-means clustering. Another example
of unsupervised learning to solve a classification problem is given by Whiteley et
al. (2021), who used a Gaussian Mixture Model algorithm to classify geophysical
data into cluster groups to build a ground model and characterize landslide materials.
These authors used three geophysical variables as data sources: resistivity, P-wave
and S-wave velocities, and a spatial variable: depth from the ground surface. In the
context of landfill investigations, Inauen et al. (2020) applied several algorithms of
supervised learning to classify geoelectric and seismic data according to the materials
observed in several trial pits and boreholes. The main goal was to derive a model of a
solid waste landfill, for which the algorithm of MLP presented a good classification
performance.

In the literature, we find fewer applications for the interpretation of geophysical
data based on statistics or probability theory exclusively. For example, Dewar and
Knight (2020) developed a methodology for estimating the top of the saturation zone
from airborne electromagnetic data (1D resistivity models) and measurements from
nearby wells. The methodology included the optimization of two parameters: 1) a
search radius, to integrate resistivity data within this area, and 2) statistical properties
of the resistivity distribution that best captures the transition from unsaturated to sat-
urated zone, i.e., minimum, maximum, difference between minimum and maximum,
mean, difference between the 75th and the 25th percentiles and standard deviation.

In most of the cases discussed above, the interpretation of geophysical data pro-
vides a single model representing the physical reality in which the uncertainty is
often not considered. In this regard, the Bayesian framework has become one of the
leading paradigms to quantify uncertainty in geophysical modelling, inversion and
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data interpretation, which can be translated into more rigorous decision making in
subsurface systems, especially under noisy data (Bobe et al., 2020; Parsekian et al.,
2021; Ray et al., 2018; Scheidt et al., 2018). Bayesian analysis or inference refers to
all procedures that use Bayes’ theorem, where a quantitative relation is introduced to
link pre-defined knowledge to new observations, thus comprising the computation of
posterior distributions of a set of priors given a likelihood function (Piana Agostinetti
and Bodin, 2018). For instance, Wellmann et al. (2018) combined the pre-existing
geological modelling with additional geological considerations and gravity data sim-
ulations, applying Markov chain Monte-Carlo (McMC) to evaluate and sample from
the posterior distributions to obtain suitable geophysical models. This approach suc-
cessfully addressed uncertainty and optimized the geological model of a sandstone
greenstone belt. More recently, Fossum et al. (2022) used Ensemble Randomized
Maximum Likelihood (EnRML) to update the subsurface uncertainty in earth models
and simulated electromagnetic logs generated with Generative Adversarial Networks
(GANs) and a forward deep neural network respectively.

In line with the Bayesian framework, another approach for the interpretation of
already inverted geophysical data was used by Hermans and Irving (2017), where
the inverted parameters were expressed in terms of categories defined by probability
distributions of hydrofacies. The authors assessed the use of ERT to identify and
classify hydrofacies in alluvial aquifers, using co-located inverted data and boreholes
records, integrating the effect of the sensitivity spatial variation.

In this contribution we use a probabilistic approach as an alternative to perform a
rapid quantitative interpretation by classifying geophysical data according to the ma-
terials observed in a limited number of co-located borehole logs (hereafter referred
as categories or classes). The method is based on the above-mentioned approach
used by Hermans and Irving (2017). We extend it to account for more than one
geophysical model (i.e., ERT and time-domain IP), and to include spatial trends in
the co-located data. For comparison, we also apply the supervised machine learn-
ing algorithm of multi-layer perceptron (MLP) and include the same data sources
or input for training. We apply both approaches in a synthetic case of study and
analyze the effect that the data sources and the number of boreholes (and its distribu-
tion) have on the probabilistic approach and MLP. Finally, we compare and validate
the approaches using the geophysical data acquired in an old landfill with available
co-located trial pits. Such systems are notably difficult to characterize both with geo-
physics due to the strong heterogeneity and physical contrasts encountered, and with
boreholes due to the increased contamination risks. We observed that the probabilis-
tic approach is suitable to classify inverted models that are highly variable along the
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whole domain, with predictions consistent with the prior sampling information and
the integration of the prediction uncertainty. Note that a robust characterization is
crucial in decision-making for a sustainable management, e.g., estimate the internal
structure of a landfill to assess potential for resource recovery, to prevent or evaluate
associated environmental pollution and prioritize (re)development scenarios (Jones
et al., 2018; Van De Vijver et al., 2020, 2021). Below, we first present the meth-
ods used for the classification after inversion, the results are then presented for the
synthetic case and the field data, followed by discussions and conclusions.

4.2 Methods of classification: probabilistic approach
and MLP

4.2.1 Input data

To compare the probabilistic approach and MLP we used the same input or training
data. These are the co-located inverted resistivity ρ, chargeability C, the position
(x, z) of the boreholes and target categories. In these data a relative cumulative
sensitivity threshold is used to keep only parts of the tomograms (ρ and C) that
are sufficiently well covered, e.g, Beaujean et al. (2014). Consequently, this also
contributes keeping reliable training data and reduce misclassification in the final
model (Hermans and Irving, 2017).

4.2.2 Probabilistic approach

In the classification of the probabilistic approach, we first use the training data to
define individual probability distributions and then we compute the joint conditional
probabilities of each category, given ρ, C, x and z in the whole domain of the inverted
models. The results are given in terms of probability maps to belong to each pre-
defined category which can be translated into classes. In the following sections we
first introduce the permanence of ratios, which is an alternative to compute joint
conditional probabilities of different sources in presence of data interdependence
(Journel, 2002). Then, we describe the procedure of the probabilistic approach where
the permanence of ratios is used.

Principle of permanence of ratios

Let A be an unknown event that can be assessed with two data events from different
sources, B and D, through its conditional probability P (A|B,D). For instance, A
may represent a category, such as inert waste, and the events B and D, the resistivity
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and chargeability. The easiest way to recombine these probabilities is to assume
independence of the data events in which case the joint probability is the product
of the marginal probabilities. However, this is a strong hypothesis as B and D are
related to the common event A. To take this into account, Journel (2002) proposes
an alternative to combine probabilities of different sources based on the permanence
of updating ratios while guaranteeing all limit conditions (e.g., P (A|B,D) ∈ [0, 1])
even in presence of complex data interdependence. The principle of permanence of
ratios indicates that the rates or ratios of increments are typically more stable than
increment themselves. For simplicity, let us consider only two data events from
different sources B and D, then the logistic-type ratio of marginal probability of the
unknown event A is:

a =
1− P (A)

P (A)
=

P (Ã)

P (A)
∈ [0,∞] (4.1)

where Ã is the complement of A. And similarly,

b =
1− P (A|B)

P (A|B)
=

P (Ã|B)

P (A|B)
d =

1− P (A|D)

P (A|D)

X =
1− P (A|B,D)

P (A|B,D)
=

P (Ã|B,D)

P (A|B,D)
≥ 0 (4.2)

Then the ratio a can be seen as a measure of prior uncertainty about A, a = 0

if A is certain to occur and a = ∞ if A is an impossible event. Similarly, d can be
seen as the distance to A occurring after observing the data event D. The ratio d/a is
then the contribution of D to that distance starting from the prior distance a. Finally,
X would be the distance to A occurring after observing both events B and D, and
the ratio X/b is the incremental contribution of D starting from the distance b. The
permanence of ratio assumes

X

b
≃ d

a
(4.3)

which means that the incremental contribution of data event D to knowledge of A
is the same after or before knowing B. Then, the joint conditional probability of the
two events B and D can be expressed as P (A|B,D) = 1

1+X
= a

a+bd
.

We can generalize the previous expression to n data events Gi, i = 1, ..., n. De-
noting by |Gi, i = 1, ..., n the joint conditioning to all n data events, the conditional
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probability provided by a succession of (n− 1) permanence of ratios is:

P (A|Gi, i = 1, ..., n) =
1

1 +X
∈ [0, 1] (4.4)

with

X =

∏n
i=1 gi
an−1

≥ 0 ⇐⇒ Ln(X)− Ln(a) =
n∑

i=1

[Ln(gi)− Ln(a)]

a =
1− P (A)

P (A)
, gi =

1− P (A|Gi)

P (A|Gi)
, i = 1, ...n

Which is an expression that verifies all limit properties, and it only requires the
knowledge of the prior probability P (A) and the n elementary single data event-
conditioned probabilities, P (A|Gi) which can be evaluated independently one from
another using co-located data.

Procedure of the probabilistic approach

Let Ai be the different categories (materials) found in the boreholes along the inverted
sections. First, we estimate a prior probability or material proportion P (Ai) based on
the area they occupy in the boreholes co-located in the 2D inverted sections. Then,
we determine unimodal distributions of the training data given each category Ai,
i.e., f(ρ|Ai), f(C|Ai), f(x|Ai), f(z|Ai). These distributions define parameters, i.e.,
shape, locations and scales, which we use afterwards to estimate the distributions in
an extended dataset: ρ, C, x and z in the whole inverted model domain. In the next
step, we compute the conditional probability of each material using Bayes’ rule. For
instance, to compute the conditional probability of a category Ai, given the resistivity,
we use:

P (Ai|ρ) =
f(ρ|Ai)P (Ai)∑
f(ρ|Ai)P (Ai)

(4.5)

and similarly, for the conditional probability of Ai given C, x or z.

At this stage we need to combine the prior probabilities P (Ai) with the condi-
tional probabilities of Ai given the datasets, into the joint conditional probabilities
P (Ai|ρ, C, x, z). To this aim we use Equation 4.4 where the event A becomes the
categories Ai, n = 4 and the data events Gi are ρ, C, x and z. Therefore the ra-
tios gi = 1−P (A|Gi)

P (A|Gi)
will be given in terms of the marginal probabilities P (Ai|ρ),
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P (Ai|C), P (Ai|x), P (Ai|z) for each category. The joint conditional probabilities
are then normalized (divided by

∑
i P (Ai|ρ, C, x, z)) to ensure the closure condi-

tion, i.e., P (A|(·))+P (Ã|(·)) = 1. Then, the results are given in terms of probability
maps for each category in the whole inverted model domain, and therefore may be
used to assess the interpretation uncertainty. Finally, we may also derive a map in
terms of the categories by comparing the normalized joint conditional probabilities
of Ai and selecting the category corresponding to the largest probability value, i.e.,
classification model.

4.2.3 Supervised machine learning: MLP

Classification and regression methods are part of statistical learning and machine
learning for which numerous methods have been developed, from simple linear re-
gression to nonlinear methods such as neural network or deep learning (Scheidt et
al., 2018). Here, we focus on the multi-class classification problem, where we want
to predict discrete class labels or categories for unlabeled patterns based on observa-
tions. We used the algorithm of multi-layer perceptron (MLP) or feedforward neural
network, which proved to have a good performance for classification in the context
of landfill investigations (Inauen et al., 2020).

Description of MLP

As explained by Goodfellow et al. (2016), the goal of MLP is to approximate some
function f ∗. For a classifier, the function Ai = f ∗({·}) maps an input data {·} to a
category Ai. This algorithm defines a mapping Ai = f({·}, θ) and learns the value
of the parameters θ (weight and bias coefficients of the transformation function), that
result in the best approximation. MLP or feedforward neural networks are models
where the information flows through the function from the input data, through the in-
termediate computations (linear and non-linear data transformations followed by an
activation function) used to define f and finally to the output Ai. They are networks
because they can be composed of many different functions connected in a chain, i.e.,
f({·}) = f (3)(f (2)(f (1)({·}))), where the superscript 1 refers to the first layer of the
network, 2 for the second layer and the final layer is called the output layer. The
overall length of the chain gives the depth of the model, the more layers the ‘deeper’
the model. In this contribution we are dealing with a small amount of geophysical
data, thus as shown in the next sections, a simple neural network (few layers in the
chain) proves to be enough.

The neural network makes use of training data to drive f({·}) to match f ∗. These
data provide approximations of f ∗ evaluated at different training points, which are



4.2. Methods of classification: probabilistic approach and MLP 69

accompanied by a category (Ai). Then the learning algorithm decides how to use
the other layers to produce the desired output, and as we cannot see the intermediate
output of each of these layers, they are referred as hidden layers. Finally, each hidden
layer of the network is composed of several units or neurons that can act in parallel,
representing a vector-to-scalar function.

In the multi-class classification, the output layer receives the values from the last
hidden layer and transform them into the different classes, commonly with the Soft-
max function. This activation function of the last layer normalizes the data and trans-
form them into an output probability vector, based on which the output classes are
selected, e.g., Williams and Barber (1998). Therefore, the output is quite similar to
the probabilistic approach.

MLP architecture

To design and optimize the architecture of MLP in terms of the hyperparameters
(such as number of hidden layers, neurons, or regularization), the total training data
are divided in a validation dataset (10-20 %) and a remaining training dataset (70-
80 %). The partition is done randomly but preserving the relative frequency of the
categories.

To tune the hyperparameters we trained the MLP algorithm using combinations of
different numbers of hidden layers (from 1 to 10), number of neurons (1-100), solver
for weight optimization and activation function for the hidden layers, computing the
accuracy score or the fraction of correct predictions in the validation dataset. Then
we select three MLP architectures from which the highest scores were obtained, and
compare them with the accuracy scores of the prediction in the training dataset for
several regularization values. We select the regularization parameter where the gap
between the accuracies (from validation and training) is reduced while still preserv-
ing a relatively large accuracy score, i.e., generalization. In addition, as we have a
multiple-classes problem, we first applied one-hot encoding to define each class (Fu
et al., 2019; Liu et al., 2021; Potdar et al., 2017). This simply means we encoded
the categories as a binary (one-hot) numeric array. Once the hyperparameters are
selected and the architecture of the algorithm is defined, the training data set is the
same as the one used for the probabilistic approach (or validation plus training data
as indicated here).
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4.2.4 Classification performance assessment

For both methods, we evaluate the performance of the classification or prediction of
classes using a test dataset. In the synthetic case, these are the categories known at
the whole model space (excluding the data at the boreholes) and in the field case, a
percentage of the training data where the categories are known. Then, we compute
two classification scores to compare the results of this classification or “prediction”
with the original categories of the test dataset. First we use the accuracy score, which
computes the fraction of correct predictions. Given a predicted class Âi for a sample
i, the accuracy score can be expressed as

accuracy(A, Â) =
1

n

n−1∑
i=0

1(Âi = Ai) (4.6)

where Ai is the true category, n is the number of samples and 1(x) is the indicator
function, which maps the elements of a subset to one and the rest of elements to zero
(Pedregosa et al., 2011). We selected this accuracy score as we want to assess the
classification performance of both methods when considering a model with a pre-
dominant material or class. Additionally, we used the confusion matrix to assess the
performance of the classification. In this matrix, the elements on the diagonal are the
percentage of categories that are correctly predicted, and the off-diagonal elements
are the misclassified percentage. In the synthetic and field case examples, the cate-
gories for the classification are: non-organic waste deposits, soil, lime, backfill and
limestone bedrock.

4.3 Results

4.3.1 Synthetic case study

Model generation and inversion

The synthetic model is inspired by a real near-surface scenario composed of anthro-
pogenic materials deposited on a limestone quarry. The data were simulated for a
resistivity and chargeability distributions composed of five regions derived from non-
organic waste deposits, soil, lime and backfill on a limestone quarry (Figure 4.1). In
this geometry we defined a surficial and continuous layer of waste, as this material
was observed in the ground surface in the real landfill. We included two types of
backfills: neutral soil and crushed limestone (here referred as backfill) to investigate
if these materials were discriminated using ERT and IP data. Then we defined two
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bodies of lime at different positions (x, z) and with different thicknesses, to test the
effect that including spatial trends has on the classification approaches. Lastly, the
upper limit of the bedrock has a step-like shape, which might be close to a limestone
quarry structure. The resistivity and chargeability values we used for the different
regions are shown in Table 4.1. Then, similar to the field measurements, we created
a dipole-dipole acquisition scheme with 64 electrodes spaced 1.5 m. For the numer-
ical modelling of ERT and time-domain IP datasets we used the open-source library
pyBERT, which is based on the framework of pyGIMLI (Rücker et al., 2017).

FIGURE 4.1: Geometry for the ERT and time-domain IP modeling.

TABLE 4.1: Resistivity and chargeability values for the different re-
gions used for modeling.

Region Material ρ (Ω m) C (mV/V)
marker
1 Soil 300 (Wang et al., 2017) 15 (Kiberu, 2002)
2 Limestone 9000 (Sun et al., 2017) 10 (Johansson et al., 2017)
3 Backfill 800 (crushed limestone 15 (RAWFILL, 2020)

backfill, e.g.,
Qiao et al. (2019))

4 Heterogeneous 500 (Dumont et al., 2017) 100 (Elis et al., 2016)
waste
(nonorganic)

5 Lime 3 (sample measured 1.3 (see Moreira et al. (2019)
in the lab, this study) for chargeability values in

dolomitic deposits, as raw
material for lime production)

The ERT data were modeled adding a 3% voltage dependent noise plus 1µV ab-
solute error, e.g., Costall et al. (2020). Then, the apparent chargeability was modeled
following Seigel’s formulation, carrying out two DC resistivity forward models: the
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inverted resistivity of the medium and a decreased resistivity modified by the intrin-
sic chargeability (chargeability model, Table 4.1) (Oldenburg and Li, 1994; Seigel,
1959).

Finally, the synthetic data were inverted using the commercial software RES2DINV
(Loke, 1997, 2004) to avoid the pitfall of using the same forward solver in the recon-
struction algorithm (Lionheart, 2004). Here, we incorporated the data noise estimate
for the apparent resistivity by subtracting the synthetic data modelled with and with-
out added noise. We used a robust least-square inversion with the Gauss-Newton
method and an initial damping factor of 0.25. The inverted ERT and TDIP models
are displayed in Figure 4.2 together with the normalized sensitivity represented in
logarithmic scale and the real interfaces from Figure 4.1.

FIGURE 4.2: (a) Inverted resistivity and (b) chargeability models with
the (c) associated normalized sensitivity. The rms errors of the inver-
sion were 4.57% and 6.72%, respectively. Red boundaries represent

the real model from Figure 4.1.

In the resistivity model, low values delineate the shallower lime deposit, but the
deeper lime cannot be imaged. There is no clear contrast of resistivity between the
heterogeneous waste and the soil and backfill underneath. The upper limit of the
bedrock is better imaged from x ≈ 20 m to the end of the profile. Nevertheless, the
resistivity values of the bedrock have a strong lateral variation as an effect of the
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regularization (there was a tradeoff between the damping factor and the rms error)
and low sensitivity.

In the chargeability model, the surficial layer of waste is well delineated with large
values. Nevertheless, the horizontal interface of the backfill/soil and the lime cannot
be clearly distinguished. Artifacts of large chargeability are present at the locations
of the lime and larger artifacts in the bedrock area centered at x ≈ 10 and 30 m.

For the assessment of the inverted models’ reliability, we used the normalized
sensitivity in logarithmic scale (hereafter referred as sensitivity), which shows how
the data are influenced by the respective resistivity of the model cells. In Figure
4.2 we can observe a general sensitivity decrease with depth, particularly below the
shallowest lime deposit.

In addition, we also present the cross-plots of the inverted resistivity (ρ) and
chargeability (C) values (Figure 4.3). For comparison we also plot the mean of
the inverted data µi = (ρµ, Cµ) together with the initial values for modelling (Table
4.1) for each category. First, we can notice that the mean of the inverted data for the
bedrock, presents a largely underestimated value of resistivity compared to the initial
value. The second category where we can see a large variation is the lime, where
the mean of the inverted resistivity was larger than the initial modeling values. Addi-
tionally, notice that all the clusters’ categories are largely overlapping, especially the
bedrock and lime, whose ρ and C values are widely distributed. This gives an insight
on the ability of ERT and IP for resolving the features of this complex anthropogenic
scenario and on the uncertainty associated within the inversion process.

Synthetic borehole sampling

In this synthetic case we assume a sampling scenario composed of several equidis-
tant boreholes along the inverted 2D section. Notice that in real study cases, we
want to reduce the number of excavations to mitigate costs, and environmental and
health risks. Then to select and justify an optimum number of boreholes we follow a
statistic analysis. We used the mean of the inverted data for each class i, (see Figure
4.3, represented with triangles), and computed the mean of the inverted data within
a variable number of boreholes b. For each class i, this was represented as µi(b).
Then, we compute a summation of the difference between µi and µi(b) over all the
classes i, i.e.,

∑
i(µi − µi(b)). Figure 4.4 shows the plot of the summation vs the

number of boreholes b. As b increases (and tends to cover the entire domain) the
summation is closer to 0 as µi(b) → µi. The first points of this plot vary depend-
ing on the location of the selected boreholes and for b < 6, the summation’s rate
decreases more significantly. Therefore, in the following sections we start by using
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FIGURE 4.3: Crossplot of the inverted chargeability versus the in-
verted resistivity in logarithmic scale. The stars represent the original
values for modeling, and the triangles represent the mean of the in-
verted data for each category, i.e., µi = (ρµ, Cµ). The inverted data
corresponding to the different categories are represented with differ-

ent colors.

5 boreholes equidistantly distributed (Figure 4.5) and test the effect of changing b in
the probabilistic approach and the MLP model.

Interpretation – Classes prediction using probabilistic approach

The training data were composed of {ρ, C, x, z} at the borehole locations, which re-
sulted in a matrix of 158×4, and their respective known categories (vector of 158×1).
In this case we used a sensitivity threshold of 10−1.7 to keep only parts of the tomo-
grams that are sufficiently reliable. The threshold was chosen based on the maxima
of the sensitivity gradient, taking the average sensitivity values located beneath the
area of the shallowest local maxima (below the conductive zone corresponding to the
lime deposit). This threshold leads to use 38 % of the grid cells, which supports the
assumption of testing this approach on heterogeneous models (few reliable data).

For each category observed in the boreholes logs, Ai =soil, waste, backfill, lime
and bedrock, we estimate a prior probability P (Ai) based on the area that they occupy
on the boreholes (see Figure 4.5). The proportions are respectively 9.57%, 5.5%,
2.5%, 7.3% and 74.9 %. Note that if the boreholes are limited in depth, one would
naturally assume the vertical continuity of the bedrock once encountered. Then, we
computed unimodal Gaussian distributions of the training data given each category
Ai, and computed the corresponding conditional probabilities according to Equation
??. We selected this type of distribution as they can integrate the overall uncertainty
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FIGURE 4.4: Summation of the difference between µi and µi(b) over
all the classes versus the number of boreholes. Notice that initially

b = 2 as we need to have all the category types.

from data noise, inversion artifacts and scarcity of the co-located data. If a lot of co-
located data are available, empirical distribution can be built without requiring any
assumption about their shape. Figure 4.6 shows the conditional probabilities with
and without considering the sensitivity threshold.

The distributions of Figure 4.6 show the impact of the large prior probability
considered for the bedrock. This category presents the largest probability values for
log10ρ > 0.5, for log10C > 0, at the largest depths z < −6 and nearly along the
whole model domain in x. Yet, it can be observed that the resistivity model was able
to discriminate between the bedrock and the lime. With the chargeability model, we
can only discriminate the soil from the bedrock, due to the heterogeneities of large
values distributed in the bedrock. This is the reason why it was not possible to clearly
distinguish the waste (material with the largest chargeability modelling values) from
the other categories.

The conditional probabilities given the spatial coordinates show a trend on the
vertical (z) and lateral (x) distribution of the materials according to the location of the
boreholes, i.e., the probabilities are impacted by the spatial distribution and number
of boreholes. Given the depths, several categories are clearly resolved: bedrock at the
largest depths, soil at intermediate depths and waste at the shallowest zone. However,
these distributions cannot discriminate between different categories at similar depths.
In the distributions given the distance x, we can roughly differentiate between the soil
(maximum probability at shorter x) and the backfill with larger probabilities at the
end of the profile. Note the impact that the small sampled region of backfill has on
its conditional probability (large probabilities in a in a reduced range of x).
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FIGURE 4.5: Resistivity and chargeability inverted models plotted
with the boreholes. Where bedrock is present, we assume it reached

the bottom of the models.

Afterwards, we computed the joint conditional probabilities for each category
P (Ai|ρ, C, x, z) using Eq. 4.4 and normalized them so that they sum to one. Here-
after we refer to the normalized joint conditional probability simply as joint proba-
bility. We work with the ratios of each data event, gi =

1−P (A|Gi)
P (A|Gi)

whose correspond-
ing conditional probability can be independently estimated, i.e., P (Ai|ρ), P (Ai|C),
P (Ai|x) and P (Ai|z). The results are presented as probability maps, see for instance
Figure 4.7, where the joint probabilities of the waste and the bedrock are represented
in the whole model domain. The surficial layer of waste was accurately delineated
whereas the upper limit of the bedrock was overestimated in the beginning of the
profile x < 20 m.

We derived a map in terms of the categories by comparing the joint probabilities
of the materials and selecting the category corresponding to the largest probability
value (Fig. 4.8). In this map we added transparency which indicates the decrease
of probability values: total opacity represents a probability of 1 and the strongest
transparency represents a minimum probability of 0.25 for four categories. Finally,
we computed the classification scores comparing the results with the test data, i.e.,
categories of the synthetic model (excluding the data at the boreholes). We obtained
an accuracy score of 0.87 and the confusion matrix is shown in Fig. 4.8.

First, we can notice that the bedrock could be predicted along the entire model and
especially in the deeper areas, although its occurrence was slightly overestimated.
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FIGURE 4.6: The conditional probability of Ai given (a and b) ρ and
C, respectively, and (c and d) z and x from the boreholes. The solid
lines represent the probabilities derived using the whole data within
the boreholes and the dashed lines represent the distributions using a

sensitivity threshold.

The waste deposit could be accurately delineated, whereas the soil and the lime de-
posit in the central part of the profile were roughly delimitated laterally and vertically.
This is represented in the confusion matrix, as we found that the bedrock obtained
the largest number of correct predictions followed by the categories of waste, soil and
lime. The backfill could only be predicted in the area immediately around the bore-
hole. This is mostly an effect of integrating the horizontal tendency x of the boreholes
in the joint probabilities and this is the reason why in the confusion matrix, the lowest
percentage of correct classifications correspond to backfill. The largest percentage of
incorrect predicted categories corresponded to the backfill which were misclassified
as bedrock.

The second lime body, close to the origin of the profile could not be detected, first
because the inverted geophysical models could not resolve this feature and secondly,
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FIGURE 4.7: Joint probabilities of (a) the waste P (Awaste|ρ, C, x, z)
and (b) the bedrock, using a sensitivity threshold of -1.7.

because this category has considerably lower prior probability values compared to
the bedrock. This is the reason why this zone was predicted as bedrock.

The transparency added in Figure 4.8 allows to identify the zones where there is
a larger uncertainty in defining the categories, e.g., the lateral interface between the
soil and the lime.

Interpretation – Classes prediction using MLP

We apply the MLP algorithm using the python library of scikit-learn (Pedregosa et
al., 2011). The training data were composed of {ρ, C, x, z} at the borehole loca-
tions, resulting in a matrix of 158×4, and their respective known categories (vector
of 158×1). Similar to the probabilistic approach, we consider a sensitivity threshold
of 10-1.7 on the selected training data. To optimize the architecture of MLP we use
a validation dataset which is composed of 15 % of the total training data and the
remaining 85 % of data are used to train the algorithm. Several combinations of hy-
perparameters showed equally large accuracy scores. From the hyperparameters that
showed the highest scores, we selected the simplest, two hidden layers of 100 neu-
rons each, a regularization parameter of 0.15, a stochastic gradient-based optimizer
and the rectified linear unit as activation function of the hidden layers.

At this step, we used the training data and the validation data to train the algo-
rithm, i.e., the same input data as for the probabilistic approach. The category pre-
dictions in the whole model domain are shown in Figure 4.8, where we also added
transparency which represents the probability values from the activation function of
the output layer (Softmax). Total opacity represents a probability of 1 while total
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transparency represents a probability of 0. In Figure 4.8 we can see that the waste,
the soil, one lime deposit and the backfill were well delineated. The lime body lo-
cated at the origin of the profile was partially imaged. To assess the performance
of this algorithm, we also used the real model defined in Fig. 4.1 as the test dataset
(excluding the data on the boreholes) and obtained an accuracy score of 0.95. Figure
4.8 shows the confusion matrix, where the largest number of correct predictions are
the ones from the waste, bedrock and soil. The category that was incorrectly clas-
sified the most, was the lime (predicted as bedrock). Yet, we can observe that the
classification of the lime and backfill improved using MLP.

FIGURE 4.8: Category predictions from the (a) probabilistic approach
and (b) MLP with borehole locations and corresponding confusion
matrices. Minimum probability values (higher transparencies) are
38% for the probabilistic approach and 43% for MLP. In the con-
fusion matrices, “w” refers to waste, “bedr” refers to bedrock, and

“back” refers to backfill.

Effect of data sources as input

In this section we show the effect the data sources or elements of the training data
have on the probabilistic approach and MLP. Figures 4.9 to 4.11 show the category
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predictions of both methods and the respective confusion matrix when we use only
the resistivity inverted data, ρ co-located with the boreholes, the resistivity together
with the chargeability inverted data, ρ and C, and these two inverted datasets together
with the depth z.

First, we can notice that when we only use ρ or ρ and C (with a sensitivity thresh-
old of 10−1.7) as training data in MLP, the predictions are strongly influenced by the
artefacts from the model inversion leading to several misclassified zones (see Figs.
4.9 and 4.10). Some categories remain correctly identified such as the waste deposit
and part of the soil. On the other hand, the probabilistic approach overestimates the
distribution of the bedrock (largest prior probability). It partially distinguishes one
lime deposit when using only ρ, and delineates most of the waste layer and partially
the soil when using ρ and C (Figs. 4.9 and 4.10). Although the probabilistic approach
is not able to predict all the categories in the whole domain, the results are still in
line with the material proportions estimated from sampling and thus more realistic.
This is not the case for MLP, where the waste, soil, backfill and lime are predicted at
larger depths.

When we use additionally the depth from the co-located boreholes (i.e., ρ, C, z)
the results of both methods largely improve (see Fig. 4.11), and the categories are
well delineated overall. Yet, the probabilistic approach indicates a larger uncertainty
(more transparency) in the deposits of backfill and partially the soil. In addition, the
classifications of both methods present few locations where the soil and backfill are
misclassified. This is the improvement that we can observe when we use all the data
sets: ρ, C, z and x, especially for MLP where the soil is only predicted at x < 50 m
and the backfill only for x > 75 m (see Fig. 4.8).

The probabilistic approach presents some changes when using {ρ, C, z} and {ρ,
C, z, x}. The method proves better to classify the backfill deposit when using only
{ρ, C, z} (accuracy score of 0.89). However, when x is included, the probabilistic
approach is strongly impacted and even though it reduces misclassification between
soil and backfill at few locations, the backfill is only resolved roughly in the area of
a borehole and the accuracy score is reduced to 0.87.

In general, including spatial information on the training data should be done care-
fully. In the probabilistic approach, the conditional probabilities are clearly impacted
by the spatial distribution of the boreholes. Therefore, highly localized sampling of
certain materials may lead to small classification zones in the immediate vicinity of
a borehole. Although MLP presents large accuracy scores using the spatial training
data, which indicates that the distribution of the boreholes reflected the real material
distribution of the synthetic case, this is rarely the case in the field (Baasch et al.,
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FIGURE 4.9: Category predictions of (a) probabilistic approach and
(b) MLP algorithm using only ρ. The minimum probability values are
50% for the probabilistic approach and 40% for MLP, and the accu-
racy scores were 0.53 and 0.68, respectively. The confusion matrices
also are displayed next to each model. The MLP model was built using
two hidden layers with 100 neurons each, a regularization parameter
of one, the rectified linear unit as an activation function of the hidden
layers, and an optimizer based on the quasi-Newton method. In the
confusion matrices, “w” refers to waste, “bedr” refers to bedrock, and

back refers to backfill.

2018; Cracknell and Reading, 2014; Gahegan, 2000). In particular, in heterogeneous
landfills where abrupt vertical and lateral variations of materials may be present.

Effect of borehole sampling

In this section we assess the effect that the number of available boreholes and their
distribution have on both methods. We use the training dataset {ρ, C, z}, which led
to a larger accuracy score in the probabilistic approach as compared to {ρ, C, z,x}.
First, we assume a sampling survey with boreholes uniformly distributed along the
whole domain (e.g., Fig. 4.5). Secondly, we assume a survey composed of boreholes
whose distribution does not map all the model domain, both in x and z directions,
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i.e., boreholes might be concentrated in an area of the model and/or boreholes might
not go deep enough to map the bedrock upper interface (see Fig. 4.12).

Figure 4.13 shows the plot of the accuracy score against the number of boreholes
for both sampling scenarios. Despite that the minimum number of boreholes to cap-
ture all categories is 2, this number leads to a highly variable accuracy depending
on the distribution of the boreholes. Yet, this variability is largely reduced when
b > 3. In Figure 4.13 we can note that the accuracy scores of the probabilistic ap-
proach using the uniform or non-uniform sampling scenarios are very similar. On the
other hand, MLP predicts correctly the classes at most locations of the model under
the uniform borehole distribution. Nevertheless, if the boreholes do not cover the
whole domain in x and z and therefore, the training samples do not reflect the real
distribution of the materials (preferential sampling), the classification performance
decreases. In addition, we observed that MLP can lead to unrealistic classifications
that underestimate the bedrock distribution even if the accuracy scores are similar
to the ones of the probabilistic approach. See for example Figure 4.14, where we
show the comparison between both approaches using 3 boreholes of a non-uniform
sampling scenario (shown in Fig. 4.12). Note that the lime deposit was predicted at
the deepest regions of the model.

4.3.2 Field case study: Onoz landfill

Site description

The study site is in a former limestone quarry in Onoz (Walloon Region, Belgium)
that produced lime until 1967. At the end of the quarry activities, the eastern part
of the site was filled with slaked lime and fly ash. The area of interest here is the
central part of the site, which was used as a landfill where different types of waste
were deposited: inert waste, household, industrial waste, backfill, etc. (see Figure
4.15).

Since the landfill closure, several sampling surveys mostly composed of trial pits
and different geophysical measurements have been carried out. Here, we focus on
one high-resolution 2D profile which has both ERT and IP data (profile P2) and
presents the largest number of co-located excavations where bedrock was reported.
Profile P3 has only ERT data and both profiles P1 and P3 present a very similar
distribution of resistivity and chargeability (Caterina et al., 2019).
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Data acquisition and inversion

ERT and IP measurements were collected with an ABEM Terrameter LS. The profile
presented here, was acquired using 64 electrodes at 1.5 m electrode spacing. We used
a dipole-dipole array configuration and a stack of n = 2 and a protocol sorted to limit
electrode polarization. For the IP measurements, the electrical current was injected
for 2 s, using an integration window of 1.7 s for the electrical resistance measure-
ments, and the decay of electrical potential after current shut off was measured for 3
s.

Data were first filtered by removing the resistance measurements that presented
variations larger than 5 % from the measurements repeated two times. This is com-
monly referred as repetition error, e.g., Robert et al. (2011). On the IP data, the curves
of inconsistent decay were also removed, they represented 18 % of the original dat-
apoints. Inversion of data was performed with RES2DINV (Loke, 1997, 2004). We
also used a robust least-square inversion with the Gauss-Newton method and an ini-
tial damping factor of 0.25. The inverted ERT and IP models are displayed in Figure
16 together with the normalized relative sensitivity. We obtained a RMS of 4.74 %
and 3.36 % for the resistivity and chargeability models respectively after 7 iterations.

The inverted resistivity section shows a conductive body on the top of a resistive
horizon and a strong lateral contrast at around x = 30 m (Fig. 4.16). The IP model
presents scattered bodies of large chargeability in the surface and a smoother lateral
contrast beneath. Similar to the synthetic model, the sensitivity of these inverted data
presents a vertical decrease in the central part, below the conductive body.

Sampling

Several trial pits have been excavated in the landfill’s area (Figure 4.15). To test both
the probabilistic approach and the MLP algorithm, we consider the 6 trial pits that are
co-located with the ERT/IP profile, and which do not cover the entire model domain.
Only two shallow pits, not reaching the bedrock, are in the first half of the profile.
We assume that once the bedrock is reached, it extends further at depth (in z), see
Figure 4.17.

Interpretation – Classes prediction using probabilistic approach

As observed in the synthetic case, the training dataset {ρ, C, z} led to a larger accu-
racy score in the probabilistic approach and MLP. Therefore, here we interpreted the
inverted models using as input data the values of {ρ, C, z} co-located with the bore-
holes and ignore the variable x. This defines to a matrix of 149×3 and corresponding
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vector of categories of 149×1. We divided the input data in a training dataset (87 %)
and a test dataset (13 %) to assess the classification performance. First, we define
material proportions based on the area of the trial pits. These were 11.33 %, 1.78%,
4.67% and 82.20% for the waste, soil, lime and bedrock respectively. Then we com-
puted the joint probabilities P (Ai|ρ, C, z), and derived the classification maps. Note
that the MLP algorithm intrinsically uses the prior distribution in its training step (if
one class has a higher probability, the algorithm will more often classify an unknown
point in that category).

Interpretation – Classes prediction using MLP

Similar to the probabilistic approach, the training data were the values of {ρ, C, z}
co-located with the boreholes, which defined a matrix of 149×3 and corresponding
vector of categories of 149×1. The training dataset was then divided to be 72 % of
the total data, the validation dataset to optimize the hyperparameters 15 % and the
test data set was the remaining 13 %. From the three MLP architectures that showed
the largest classification performance, we selected the simplest one. It was composed
of one hidden layer with 50 neurons, regularization value of 0.01, the rectified linear
unit as activation function of the hidden layers and a quasi-Newton based optimizer
as solver.

Comparison between the probabilistic approach and MLP

We use the same training data for both the probabilistic approach and MLP (training
and validation after tuning hyperparameters) and we use the same test dataset to as-
sess their performance. Figure 4.18 shows the category predictions for the probabilis-
tic approach and MLP, the accuracy scores (which were 0.63 and 0.68 respectively)
and the confusion matrices. In both approaches, the confusion matrix indicates that
only the categories of waste and bedrock could be partially predicted.

First, we can observe that the MLP predicted model is strongly influenced by the
inversion. The bedrock is predicted in the largest resistivity values and the lime is
roughly predicted in the area of very low resistivities. The soil is predicted at some
small areas of high chargeability (which might be artifacts in the inverted model),
and as it was the class found at the largest depth of a pit at x ≈ 0 m, then the soil
was predicted in the area nearby at larger depths. This is a consequence of including
spatial training data that is not distributed over the entire survey area (Baasch et al.,
2018) and which may not reflect the real distribution of the materials deposited in
the landfill. The waste is also predicted at larger depths in the model and might
be influenced by the intermediate resistivity values. In addition, this model present
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large areas of transparency representing probability values of around 30 %. This
means that there are large uncertainties in the prediction of classes in nearly the
whole model except in the area of the predicted bedrock.

The classification derived from the probabilistic approach is composed of a much
simpler model. It mainly presents three nearly continuous deposits: a surficial layer
of waste (with interspersed soil), an underlying layer of lime and the bedrock at the
bottom, which is continuous along the whole model. Here, the zones of transparency
are distributed in the shallowest layers along the profile, at a depth corresponding
to the intersection between the lime and the waste. Nevertheless, this classification
might present a more realistic geology, with continuous bedrock and a nearly contin-
uous surficial layer of heterogeneous waste on the top of a lime deposit. In general,
the anthropogenic-geologic scenario from the probabilistic approach might be more
realistic as it agrees with the additional trial pit logs excavated near the profile’s ori-
gin, where bedrock was found at similar depths than the ones presented here.

4.4 Discussion

We analyzed the performance of both approaches using a realistic synthetic bench-
mark and a field case where only few ground truth data are available. First, the MLP
algorithm requires a previous optimization of the hyperparameters using a valida-
tion dataset (typically around 15 % of the available data set). Thus, when few data
are available, optimizing the hyperparameters with a validation set can be difficult
and yield highly variable results. For instance, several MLP architectures for the
synthetic case led to large accuracy scores using the validation set (which may be a
consequence of having few data). Nonetheless, the use of the algorithm on new data
requires again an optimization of hyperparameters using a validation dataset, e.g.,
Aszemi and Dominic (2019) and Yu et al. (2020). Oppositely, in the field case, the
accuracy scores were in general smaller during the optimization of hyperparameters
and only few architectures presented scores over 0.7. In both cases, we selected rel-
atively simple neural networks with a small number of hidden layers and neurons to
remain in agreement with a small number of training data and to be comparable with
the probabilistic approach where no data transformations are performed. In addition,
during the optimization of hyperparameters we also observed larger accuracy scores
in neural networks with smaller hidden layers and neurons.

Secondly, in the synthetic case the entire model domain was available to assess
the performance of the algorithm. This was not the case for the field site, where the
test data were only the 13 % of the ground truth data. For the latter, the classification
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predictions were compared with the observation from excavations nearby. Finally,
the transparency applied in this classification is derived from the probabilities of the
output layer, derived from the Softmax function. Note however, that this function
transforms the data into a probability vector with values between 0 and 1 and whose
elements add up to 1. As it is a normalized exponential function, then the largest
values are transformed into values close to 1 while the smallest into values close to
0. Therefore, the results may not represent exact probabilities as derived from the
probabilistic approach, e.g., Gal and Ghahramani (2016).

The probabilistic approach does not require an initial tuning of parameters. The
prior probability of the different categories or the categories proportion can be de-
fined from the volumes obtained in the excavations. This information is essential to
ensure that the conditional probabilities of each category are in line with the ground-
truth data. If one category dominates the prior probability while the geophysical data
are poorly informative, this can lead to a final classification favoring the most prob-
able facies. This is the reason why in the field case, the bedrock lies across most of
the model domain (especially in comparison with MLP classification). Finally, the
transparency applied in this classification shows joint probabilities of the selected
category, indicating specific zones of larger classification uncertainty. The proba-
bilistic approach is also less dependent on the location and number of the co-located
data.

The integration of more (inverted) data that increases the training dataset is likely
to improve the performance of MLP while not necessarily the performance of the
probabilistic approach. When the physical properties of the categories in the inverted
model(s) are highly variable along the whole domain mapped, the classification un-
certainty is likely to increase. Nevertheless, the predictions would still be in line with
the material proportions or prior information from sampling. Note that the better the
materials are resolved in the conditional probabilities given the geophysical or spa-
tial variables, the better the performance of the probabilistic approach. Consequently,
in highly heterogenous environments the probabilistic approach is likely to improve
when it is applied locally, i.e., per profile if multiple profiles are available or in areas
of a 3D model, depending on the heterogeneity observed in the conditional probabil-
ities. Regardless, a representative sampling based on geophysical data, e.g., Van De
Vijver et al. (2019), could improve data interpretation and therefore the classification
performance of both methods.

Another option to increase the training data of the field case may be to use the data
of the synthetic case. It is a common practice to create synthetic data to train artificial
neural networks (Yu and Ma, 2021). Nevertheless, this contribution aims to present a
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probabilistic approach as an alternative to perform a rapid quantitative interpretation
of site-specific anthropogenic environments incorporating ground truth data.

We also studied the effect that the use of different data sources as training has on
the probabilistic approach and MLP. Here we can notice that the category predictions
derived from MLP are highly influenced by the spatial heterogeneity of the inverted
models when we only use the geophysical data as input. This leads to several mis-
classification zones, the majority of which are nonrealistic. On the other hand, since
the probabilistic approach relies on a Bayesian framework, it integrates the uncer-
tainty related to data noise and inversion artifacts overall into the results. Therefore,
the probabilistic approach is less sensitive to the heterogeneities of the inverted mod-
els when using only ρ and C, although it overestimates the distribution of the bedrock
due to the large prior probability of this category. When we also include spatial train-
ing data (x, z), both approaches largely improve the classification, in particular MLP.
However, including the position x in the probabilistic approach leads to a high degree
of influence of the sampled location(s).

Additionally, we analyzed the effect that the number of boreholes and its distri-
bution have on both approaches using the synthetic case. The distribution of a low
number of boreholes can lead to variable accuracy scores (in particular for MLP).
The accuracy scores of the probabilistic approach are very similar under the uniform
and non-uniform sampling scenario.

Here we only compared the probabilistic approach with one algorithm of super-
vised learning, both of which presented classification models (overall) similar. Un-
supervised learning has also been used for data interpretation in cases with minimal
prior knowledge or where few ground truth data are available (Delforge et al., 2021;
Sabor et al., 2021; Whiteley et al., 2021). These approaches have proven useful for
the interpretation of geophysical data often in geological environments composed of
layered models or when the geophysical method(s) resolve zones or structures, most
of which, can be evidenced in intrusive data. The motivation of this probabilistic
approach is to quantitatively interpret geophysical data in complex anthropogenic
environments with extreme heterogeneity not only in terms of the spatial distribu-
tion of deposited wastes but also in terms of the high contrasts in physical properties
that may lead to noisy data and artifacts in the inverted models. Since it provides
probability values, its integration within other model types or in decision making is
relatively straightforward, e.g., Hermans et al. (2015).

Both the probabilistic approach and MLP classify zones with large uncertainty. If
the classification improves when adding the x and z information, this can also lead
to local improvement while degrading the overall accuracy score. Another option is
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then to improve the inverted model by adding the prior information from boreholes in
the inversion process (Linde et al., 2015; Ronczka et al., 2015). For example, adding
the depth of the bedrock, located in a low sensitivity zone, can improve the interfaces
in the other part of the model (Caterina et al., 2014; Thibaut et al., 2021). However,
adding such information bears the same limitation as it is highly dependent on the
available boreholes and can lead to erroneous inverted models (Caterina et al., 2014).
Nevertheless, using more advanced inversion methods does not prevent the use of
the probabilistic approach nor the MLP algorithm for post-inversion classification.
Hermans and Irving (2017) have shown that an appropriate regularization could lead
to an increase in the confidence of the classification (higher probabilities).

4.5 Conclusion

In this study we presented a probabilistic approach that can be used in the classifica-
tion problem including uncertainty estimation from site-specific multiple geophys-
ical datasets and when only few ground truth data are available. The classification
is based on two geophysical models (ERT and IP) and spatial data co-located with
boreholes or trial pits. We compare this approach with a machine learning approach,
the MLP, in both a synthetic model and in a real field case. In addition, we tested the
effects that the types of (training) data sources and the borehole sampling have on
both approaches.

The probabilistic approach has proven to provide robust results regarding the po-
sition and number of ground truth data and the presence of artefacts of inversion,
in contrast to the MLP algorithm whose performance is largely related to the num-
ber of training data. Therefore, we recommend the use of the probabilistic approach
in complex anthropogenic-geological scenarios or other site-specific environments
where: 1) geophysical inverted models present spatial heterogeneities (laterally and
vertically) or artifacts, 2) only few ground truth data are available, and 3) ground
truth data might be sparsely distributed or not covering most of the area of study.
The approach can be easily extended to integrate geophysical data from multiple
methods or in three dimensions. It represents a suitable alternative to perform a rapid
quantitative interpretation of geophysical data by using a probabilistic classification.
Finally, as it integrates uncertainties in the prediction results, these can be used to
complement decision support tools in a sustainable landfill management. In contrast,
when a large number of training data are available, the MLP algorithm is expected to
outperform the probabilistic approach.
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4.6 Data and materials availability

Codes necessary to reproduce the classification using the probabilistic approach in
the synthetic case and in the field case study are available at: https://doi.org/
10.5281/zenodo.7121021.

https://doi.org/10.5281/zenodo.7121021
https://doi.org/10.5281/zenodo.7121021
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FIGURE 4.10: Category predictions of (a) probabilistic approach and
(b) MLP algorithm using resistivity and chargeability data. For the
former approach, minimum and maximum probability values are 44%
and 100%, respectively, and 30% and 100% for MLP. The accuracy
score for the probabilistic approach was 0.68 and 0.57 for MLP. The
confusion matrices are displayed next to each model. The MLP model
was built using three hidden layers with 50 neurons each, a regular-
ization parameter of one, the rectified linear unit as an activation func-
tion of the hidden layers, and an optimizer based on the quasi-Newton
method. In the confusion matrices, “w” refers to waste, “bedr” refers

to bedrock, and back refers to backfill.
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FIGURE 4.11: Category predictions of (a) probabilistic approach and
(b) MLP algorithm using ρ, C and z. For the former, minimum and
maximum probability values are 30% and 100%, respectively, and
41% and 100% for MLP. The accuracy score for the probabilistic ap-
proach was 0.89 and 0.93 for MLP. The confusion matrices are dis-
played next to each model. The MLP model was built using three
hidden layers with 100 neurons each, a regularization parameter of
one, the rectified linear unit as an activation function of the hidden
layers, and an optimizer based on the quasi-Newton method. In the
confusion matrices, “w” refers to waste, “bedr” refers to bedrock, and

back refers to backfill.
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FIGURE 4.12: Nonuniform sampling scenario composed of three
boreholes plotted with the inverted models.

FIGURE 4.13: Plots of the accuracy score against the number of bore-
holes for the probabilistic approach (in black) and MLP (in red). The
solid lines represent the sampling scenario of a uniform distribution
of boreholes and the dashed lines represent the scenario of sparsely

distributed boreholes.
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FIGURE 4.14: Category predictions of (a) probabilistic approach and
(b) MLP algorithm using ρ, C, and z. The minimum probability val-
ues (higher transparencies) are 30% for the probabilistic approach,
45% for MLP, and 100% for the maximum probability values in both.
The accuracy score for the probabilistic approach was 0.79 and 0.67
for MLP. The confusion matrices also are displayed next to each
model. The MLP model was built using four hidden layers with 20
neurons, a regularization parameter of 0.1, the rectified linear unit as
an activation function of the hidden layers, and a stochastic gradient-
based optimizer. The distribution of nonuniform borehole sampling is
shown in Figure 4.12.In the confusion matrices, “w” refers to waste,

“bedr” refers to bedrock, and back refers to backfill.
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FIGURE 4.15: Map of the Onoz landfill, whose extension is indicated
with the solid red line. The zone in orange is the lower part of the
quarry, where heterogeneous waste was deposited, and the zone in
yellow corresponds to the upper level of the quarry mainly composed
of slacked lime and ash. P1, P2, and P3 show the locations of the
ERT/IP profiles acquired in the lower part of the quarry. The square
green symbols represent the position of trial pits colocated with a pro-
file and used here, and the white circles are the trial pits excavated
in the zone of the geophysical acquisition. The methodology that we
present here was applied to profile P2 (in green) which is colocated

with six trial pits.
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FIGURE 4.16: (a) Inverted resistivity model, (b) chargeability, and (c)
associated sensitivity. The rms is 4.74 % and 3.36 % for the resistivity

and chargeability models, respectively.

FIGURE 4.17: Colocated trial pits in the ERT and IP inverted sections.
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FIGURE 4.18: Category predictions derived for the (a) probabilistic
approach and (b) MLP algorithm using ρ, C, and z. The minimum
probability values (higher transparencies) are 35 % for the probabilis-
tic approach and 33 % for MLP. The maximum probability value in
both methods is 100 %. Corresponding confusion matrices are shown

next to category predictions.
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Chapter 5

Integrated methodology to link
geochemical and geophysical-lab data
in a geophysical investigation of a slag
heap for resource quantification

The increasing need to find alternative stocks of critical raw materials drives to re-
visit the residues generated during the former production of mineral and metallic
raw materials. Geophysical methods contribute to the sustainable characterization of
metallurgical residues inferring on their composition, zonation and volume(s) estima-
tion. Nevertheless, more quantitative approaches are needed to link geochemical or
mineralogical analyses with the geophysical data. In this contribution, we describe a
methodology that integrates geochemical and geophysical laboratory measurements
to interpret geophysical field data in terms of the geochemical composition. The
final aim is to estimate volume(s) of different types of materials to assess the poten-
tial resource recovery. We illustrate this methodology with a slag heap composed of
residues from a former iron and steel factory. First, we carried out a 3D field acqui-
sition using electrical resistivity tomography (ERT) and induced polarization (IP),
based on which, a targeted sampling was designed. We conducted laboratory mea-
surements of ERT, IP, spectral induced polarization (SIP), and X-ray fluorescence
analysis. Afterwards, we identified groups of different chemical composition based
on the geophysical and geochemical laboratory measurements. Its definition was
supported through hierarchical clustering and principal component analysis. Then,
we used the resistivity and chargeability inverted data collocated with the samples
to fit 2D kernel density estimation functions for each group. Using Bayes’ rule, we
computed joint conditional probabilities in the whole domain of the inverted mod-
els and performed a classification. We found that a representative sampling and the
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definition of the KDE bandwidths are defining elements in the computation of joint
conditional probabilities and ultimately, in the classification. This methodology rep-
resents a suitable alternative to quantitatively interpret geophysical data in terms of
the geochemical composition of the materials, integrating uncertainties both in the
classification and the estimation of volumes1.

5.1 Introduction

Former mining and metallurgical activities are often associated with the long-term
contamination in soils, lakes, and estuarine sediments among others, which may be
detectable even centuries after the end of activities on site (Asare and Afriyie, 2021;
Cortizas et al., 2016). Simultaneously, the need of raw materials, metals and miner-
als, for the industry and the transition towards sustainable development for example
in terms of energy, emphasize recent challenges faced by the mining industry, e.g.,
inaccessibility of deposits, decreasing grade of mined ores and land pressure (Žibret
et al., 2020). Therefore, the increasing number of materials which are economically
important and pose supply risks (Grohol and Veeh, 2023), highlight the need to ex-
plore alternative material sources.

Past mining and metallurgical sites offer an opportunity to mitigate this situation
if we are able to assess the potential recovery of buried mine or metallurgical ma-
terials treated as waste, since mineral processing and metallurgical treatments were
not as efficient as they are nowadays. What was considered as metalliferous wastes
(dusts, slags, tailings, etc.) can therefore still contain valuable materials. Primarily,
these residues may still contain valuable ferrous and non-ferrous metals, rare earth
elements and other critical raw materials (Sethurajan et al., 2018) and ultimately,
they could be reprocessed and used in the construction industry (Machiels et al.,
2022) as aggregates or for cement. In this context, remediation strategies that aim
to prevent or reduce the release of pollutants into the environment and reduce waste
volumes can also be targeted to enhance secondary resource recovery (Izydorczyk
et al., 2021; Vareda et al., 2019). To exploit such resources efficiently, it is crucial
to have in-depth knowledge on the available quantities, composition, heterogeneity,
and physical and chemical properties (Asare and Afriyie, 2021; Dino et al., 2021;
Žibret et al., 2020).

1This chapter is based on: Isunza Manrique, I., Hermans, T., Caterina, D., Jougnot, D., Mignon, B.,
Masse, A., Nguyen, F., 2023, Integrated methodology to link geochemical and geophysical-lab data
in a geophysical investigation of a slag heap for resource quantification. Accepted pending reision,
Journal of Environmental Management
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Geophysical methods have proven useful to characterize metallurgical wastes and
associated contamination. To this aim, magnetic and electromagnetic methods have
been used (often qualitatively) to identify these deposits, although geoelectric meth-
ods have been applied to a greater extent. For example, Mendecki et al. (2020)
used electromagnetic induction (EMI) and electrical resistivity tomography (ERT)
to delineate a slag waste dump from lead production. Additionally, samples were
collected on the surface at six locations and analysis of X-ray diffraction (XRD),
electron probe micro-analyzer (EPMA) and scanning electron microscope (SEM)
were carried out to better interpret (qualitatively) the geophysical results. Martin et
al. (2020) used ERT and ground penetrating radar (GPR), and spectral induced polar-
ization (SIP) in the lab and in the field, to image the structure of a mine waste dump
derived from silver and lead production. The geophysical results were calibrated
using mineralogical analysis from multiple boreholes and a volume of potentially
valuable residues was estimated interpolating several 2D ERT inverted profiles and
using a resistivity threshold defined from the SIP lab results.

Other types of slags may not be easily detected using only ERT as indicated in
Florsch et al. (2012, 2011), who used additionally magnetometry and induced po-
larization (IP) to estimate the volume of a slag heap from iron and steel produc-
tion. The magnetic results supported the location of the ERT- IP acquisition profiles
and the volume was estimated using a laboratory-derived linear relationship between
the chargeability and the slag concentration. A review on this petrophysical model
that accounts for the presence of disseminated metallic particles in a porous polar-
izable material can be found in Revil et al. (2022), showing that the chargeability
of the material is linearly dependent on the volume fraction of the metallic ore and
the chargeability of the background. The review also shows applications of the IP
method and demonstrates its usefulness in the study of mineral and metallurgical de-
posits. In addition, SIP represents a promising method to investigate the evolution
of complex mechanisms within metallurgical residues, such as oxidative-weathering
mechanisms and oxidation-reduction processes (Placencia-Gómez et al., 2015; Slater
et al., 2007).

Note that comprehensive characterizations such as mineral or metallurgical zona-
tion, may require integrated approaches to link geophysical measurements in the field
and/or in the laboratory with optimized sampling and metallurgical or geochemical
analysis (Van De Vijver et al., 2021). For example, Lévy et al. (2019) qualitatively
compare inverted spectral parameters from time domain 2D IP-ERT field data with in
situ borehole measurements and SIP laboratory measurements to study the lithology
and mineral composition of a geothermal area. In the lab, the mineral distribution
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analysis and SIP measurements were carried out on 38 core samples from two bore-
holes located in the field acquisition domain and samples from two other boreholes
westward from the study area. The methodology allowed to discriminate between
zones rich in pyrite from those zones with iron oxides (magnetite-rich). Johansson
et al. (2020) compared inverted SIP parameters from time-domain IP field data with
SIP from laboratory measurements from a 50 m long rock core drilled along one field
profile. The study was carried out on a limestone succession and the solid parts of the
core were used for the analysis of physicochemical characteristics of the rocks in the
laboratory. The results showed that the inverted parameters of the field data (closer
to the borehole) were comparable to the SIP lab measurements despite the differ-
ences in measurements techniques and scale. In addition to the laboratory derived
petrophysical models to infer on the structural or chemical characteristics of materi-
als using geophysics, statistical analyses may be used. Inzoli et al. (2016) conducted
SIP lab measurements to infer the litho-textural properties of alluvial sediments. The
authors carried out a cluster analysis and a principal component analysis (PCA) using
the parameters of a Debye decomposition on the SIP data measured in 55 samples
with varying saturation (from originally 19 samples collected at 3 sites).

Techniques to ultimately interpret field data, considering the link between labora-
tory and field measurements, have been developed through classification. For exam-
ple, Vásconez-Maza et al. (2019) predicted the distribution of chromium in an aban-
doned phosphogypsum pond through a classification of ERT field data. The authors
used a non-linear relationship between the concentration of chromium measured in
the lab and the inverted field resistivity collocated with the samples’ positions. More
recently, Martin et al. (2021) investigated slags from different historical dumps de-
rived from processing of metal ores to extract copper, lead, silver and zinc among
others. The authors measured SIP in the laboratory and carried out geochemical
and mineralogical analyses in some samples collected at the surface or at maximum
depths of 0.5 m. In the field, they collected two 2D SIP profiles with a limited band-
width. Three slags grades could be identified in the laboratory and in the field based
on the polarization magnitude. Additionally, the slags could be classified in five cat-
egories according to the shape of their spectra which could reflect the diversity of
environmental parameters such as saturation or fluid conductivity.

In this contribution, we propose a quantitative approach to integrate laboratory
and field measurements to perform a 3D classification within a slag heap in a proba-
bilistic manner. The main objective is to define a zonation based on chemical com-
position and to estimate the volumes of different materials within the slag heap for
potential resource recovery. To this aim, we followed a quantitative approach that
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integrates: 1) 3D ERT and IP measurements in the field, 2) a targeted sampling with
samples’ collection at 22 different positions in the heap, 3) laboratory measurements
of ERT, IP and SIP and 4) a chemical characterization of samples through X-ray flu-
orescence (XRF) analysis. We used laboratory measurements and chemical analysis
to identify groups of samples of different composition and properties. The identi-
fication of these clusters was supported by studying the relationships between the
chemical and geophysical variables, an unsupervised clustering algorithm (hierar-
chical clustering), and a PCA analysis. Then, we linked the laboratory with the field
measurements by fitting the resistivity and chargeability field data collocated with
the sampling using 2D kernel density estimation (KDE) functions for each previ-
ously defined group. Afterwards we computed the joint conditional probabilities in
the whole field domain. Lastly, we classify the 3D inverted models in terms of the
groups and compute the corresponding volumes.

5.2 Site description

The site of Duferco – La Louvière, located in the Province of Hainaut (Belgium), is
an idled factory of iron and steel production that started its activities around 1850
and officially stopped in 2013. The site evolved and reached its final infrastructure in
1981, integrating elements such as a coking plant, blast furnaces and agglomerations
of by-products and raw materials in the northeast zone (see Figure 5.1a). In this
contribution, we study the storage of slags located in the northern zone of the site
where the backfilling started around 1930’s and comes from steel works and blast
furnaces. In the last decades of activity, the materials of the slag heap were mostly
produced from electric arc furnaces and in particular from the ladle refining furnaces.
These materials are typically rich in lime and alumina. It is likely that the most recent
layers in the western area of the heap contain a mixture of residues (e.g., scrap metal,
wood and refractories).

5.3 Methodology

Figure 5.2 shows the workflow of the quantitative approach which integrates field and
laboratory measurements through a targeted or geophysics-based sampling. Then,
all the data is studied through a statistical analysis where different groups or clusters
representing distinct types of materials are identified. Finally, a probabilistic classi-
fication is conducted in the whole field data domain and the volumes of each group
are estimated.
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FIGURE 5.1: a) Map of Duferco -La Louvière with the different pro-
duction and agglomeration zones, b) Location of the ERT-IP acquisi-

tion profiles (blue) and sampling plan (pink) in the slag heap.

5.3.1 Field measurements and targeted sampling

First, we measured ERT and time-domain IP along four profiles deployed across the
entire slag heap and each profile was composed of 64 stainless electrodes spaced
by 2 m (see Figure 1b, blue dots). Data acquisition was carried out simultaneously
on combinations of two profiles, with inline and crossline measurements, to obtain
truly 3D information for the inversion (Van Hoorde et al., 2017). A gradient array
with a “s” factor equals to 7 was used (Dahlin and Zhou, 2006) and it was comple-
mented with a bipole-bipole acquisition. This 3D acquisition was a tradeoff between
the maximization of the heap’s coverage and the spatial resolution. Electrical cur-
rent was injected for 2 s and the voltage decay was measured for 1.86 s after the
current was switched off. Two stacks (repetition error) and a sample of reciprocal
measurements were collected to assess data quality. Then, data were filtered remov-
ing measurements with a repetition error greater than 5 % in resistance. The error
model from reciprocal measurements was to 0.029 Ω and 2.27 % for the absolute
and relative errors (Slater et al., 2000). The data were inverted with BERT (Günther
et al., 2006) using a robust constraint on the data and blocky constraint on the model
to derive 3D models of electrical resistivity and chargeability while respecting the
noise level (χ2 = 1).

Secondly, we designed a targeted sampling based on the contrasts observed in
the ERT and IP models, i.e., targeting zones of low, intermediate and high resistiv-
ity/chargeability values and covering most of the (shallow) observed contrasts in the
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FIGURE 5.2: Workflow of the integrated approach. 1) Field mea-
surements are carried out, then 2) the sampling survey is designed
and samples are collected. 3) Geophysical and geochemical mea-
surements are conducted in the laboratory. 4) These results are then
studied through multi-variate statistics and several groups of different
geochemical/geophysical composition are identified. 5) Based on 2D
KDE distributions using the field data collocated with the samples po-
sitions and the computation of joint conditional probabilities for each
group, the field data are classified. 6) Volumes of each group are com-
puted considering the sensitivity of the inverted models and the joint

conditional probabilities.

inverted models. Samples were collected at 8 locations on the heap at depths of 1,
3 and 5 m (see locations in Figure 5.1b, pink dots). During the sampling we took
approximately 10 – 15 kg of material in buckets that were sealed and stored in a cold
environment. The maximum depth of excavation was limited by the terrain stability,
the hardness of the soil and the machine used. Additionally, heterogeneous waste at
one location impeded the collection of material at two depths, therefore in this study
we use 22 samples in total. As will be explained in the results, based on the inverted
models, we assume that the 22 samples taken at different positions (x, y, z) captures
the variations of physical and chemical properties in the slag heap.

The identifiers we use to refer to the samples indicate its location followed by
an underscore and the depth of collection, i.e., S01_3 is the sample located at S01
collected at 3 m.
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5.3.2 Laboratory measurements

Geophysical data

The laboratory measurements were carried out using the samples as they were col-
lected in the field, i.e., no re-saturation, as the aim was to measure their properties
in the same conditions as in the field. Geophysical measurements of resistivity (ρlab)
and chargeability (mlab) were carried out using columns of 1.5 dm3 (0.08 m diame-
ter × 0.3 m length, see Fig.5.3). The potential electrodes are made of brass and the
current transmission porous plates, which are in the bases of the cylinder, are made
of bronze.

FIGURE 5.3: Column used for geophysical laboratory measurements
of ERT, IP and SIP.

First, the geometric factor KG was estimated based on the resistance measured
when the column was filled with water at a known conductivity (KG = 0.045 m−1).
We then filled the columns with 1 to 1.5 kg of the material of each sample. First, we
measured the electrical resistance and the time-domain chargeability using 4 elec-
trodes with a Wenner array. Electrical current was injected for 2 s and voltage decay
was measured for 1.86 s after switching the current off, as for the field data. Two
stacks were collected to have a repetition error which was < 1 % in resistance for
all the samples. Then we measured SIP in the same columns using the impedance
analyzer ZEL-2-SIP04-V05 (Zimmermann et al., 2008). The impedance and phase
shift were measured in the range of 10 mHz to 45 kHz for the reciprocal and normal
setup, leading to a high phase accuracy of 0.1 mrad (below 1kHz).

Granulometry and geochemical data

Geochemical analyses were conducted in the same volumes of samples as those used
for the geophysical laboratory measurements. First, each sample was sieved to de-
termine the particle size distribution. Then, the subsamples at the different particle
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sizes were analyzed using X-ray fluorescence (XRF) for major elements (e.g., Fe,
Si, Mn, Ca). Finally, the average content over all particle sizes was computed per
element for each of the 22 samples. The average content of only six elements was
larger than 1 wt. % for all samples: Si, Ca, Fe, Mg, Al and Mn. The elements with
the largest concentrations were Si, Ca and Fe with average contents up to around 30
wt. %.

5.3.3 Multivariate statistics

The objective of this step is to identify groups of samples with different chemical
composition and simultaneously, to identify the geophysical parameters that can dis-
tinguish these groups.

First, we studied the linear correlations between pairs of the chemical elements
constituting all the samples (average content). We applied a standardization of the
data by removing the mean and scaling to unit variance, and then we computed the
Pearson’ correlation coefficients. The standardization of the data allows to compare
the variations of the different variables using the same scale. At this step we consider
strong positive and negative correlations of elements as a first indicator of different
types of slags.

Afterwards, we computed the pairwise Pearson’ correlation coefficients between
the geochemical variables and the geophysical variables measured both in the lab-
oratory and in the field. The field measurements were obtained from the inverted
resistivity and chargeability models, computing an average of the cells within a vol-
ume of dimensions 3 m × 3 m × 1.6 m centered at the positions where the samples
were collected, i.e., ρ and m. The correlations were also computed using previously
standardized data.

Furthermore, we studied the relation between the resistivity and the chargeability
measured in the laboratory, together with the concentration of some chemical ele-
ments with which the largest correlations were observed, to identify groups or clus-
ters of different composition. Similarly, we analyzed the scatterplots of the imaginary
and real components of the conductivity measured in SIP.

We carried out an unsupervised learning approach (hierarchical clustering) to
group the samples from the lab data and compare it with the groups previously
identified. Lastly, we applied PCA to support the geophysical-geochemical-based
definition of groups in the principal component space, using the standardized geo-
chemical and geophysical data. This technique was executed using the python library
of scikit-learn (Pedregosa et al., 2011).
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5.3.4 Classification of the field data

In the literature, we can find quantitative interpretations of inverted geophysical data
integrating ground truth data and which are based on machine learning (Lysdahl et
al., 2022; Moghadas and Badorreck, 2019; Whiteley et al., 2021) and exclusively on
statistics or probability theory (Dewar and Knight, 2020; Hermans and Irving, 2017;
Isunza Manrique et al., 2023).

Here, we used a probabilistic approach to interpret the field data in terms of the
classes or groups previously identified using laboratory measurements. Similar to
Isunza Manrique et al. (2023), we derive joint conditional probabilities of each iden-
tified group in the whole field range, using the volume-averaged field data ρ and m

collocated with the sampling, but here, we use a different probability density function
in 2D. Note that variations of resistivity are not expected to be indicators of differ-
ent types of slags (Florsch et al., 2011) but potential indicators of different types of
materials within the heap, while a linear relationship has been observed between the
chargeability and slag concentration (Florsch et al., 2011; Qi et al., 2018). The kernel
density estimator fKDE(y) at a point y based on a dataset of points xj for j = 1. . .N

is defined as

fKDE(y) =
N∑
j=1

K(y − xj;h)

where K is the kernel and h is the bandwidth.

First, we used 2D KDE’s to model the distributions of the volume-averaged field
data xj = (ρ,m)j for each group Ai (i = 1. . . 4), using a Gaussian kernel expressed
as K ∝ exp(−x2/2h2). The bandwidth was estimated using the data-based Scott’s
Rule which considers the number of data and dimension, and an estimate of the stan-
dard deviation of the bivariate data distribution (Scott, 2015; Virtanen et al., 2020).
Then, we estimated the KDE’s functions at all the inverted resistivity values (P) and
chargeability values (M), i.e., whole field data domain y = (P,M), as

fKDE(y|Ai) =
N∑
j=1

K(y − xj;h) (5.1)

Afterwards we used Bayes’ rule and computed the joint conditional probabilities
P (Ai|y) of each group. The prior probability values P (Ai) were estimated from the
number of lab samples belonging to each group.
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Each grid cell of the inversion is then classified in the group having the largest
joint conditional probability, while the probability itself gives an idea of the uncer-
tainty of the classification.

5.3.5 Estimation of volumes

Once the inverted model is interpreted in terms of groups or classes, we estimate
the volumes of each group according to the corresponding cells’ mesh. As each cell
has been classified on the basis of a joint conditional probability, groups selected
as the most likely class that have low probability values can be overestimated while
groups with smaller probabilities can be underestimated. To integrate this classifica-
tion uncertainty into account, we estimate the volume of each group Vi by adding the
volume of the corresponding cell v, weighted with the corresponding value of joint
conditional probability P (Ai|y), see Canters (1997), as

Vi =
N∑
j=1

P (Ai|y)v (5.2)

5.4 Results

5.4.1 Inverted ERT and IP models and sampling

The inverted models are displayed in Figure 5.4 for several cross-sections along the
x and y axis. These include a (normalized) cumulative sensitivity threshold (>10−5.5)
to keep only parts of models that are sufficiently well covered (Caterina et al., 2013).
The sensitivity model is shown in Figure 5.5. We selected this threshold to ensure that
the areas in the vicinity of the electrodes were considered (laterally) and additionally,
it led to include bottom elevations that have been reported as the original topography
before the activities in the factory (approximately 110 – 115m). In Figure 5.4a we
can note, overall, zones of larger resistivities towards the east and west end of the
heap. Smaller resistivity values can be observed downhill of the heap (towards the
west) at larger depths. In the chargeability model (Fig. 5.4b) we can observe shallow
layers of large chargeability values and in particular a large zone which is distributed
southeast- northwest with values up to 250 mV/V.

Based on the inverted models, the targeted sampling was composed of 22 samples
collected at 8 different locations of the heap and at different depths of 1, 3 and 5 m
(Figs. 5.1b and 5.4). Most of the samples were slags of similar color and structure
except samples S04_5 and S05_3 which were mostly crushed bricks (see Figure 5.6).
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FIGURE 5.4: 3D inverted models of a) resistivity and b) chargeabil-
ity. Electrodes used in the acquisitions are shown in the heap ground
surface as small salmon dots. Sampling location is indicated with the

pink spheres.

The sampling survey targeted different zones of the inverted models, e.g., high and
low values of resistivity and chargeability, combinations of large/low chargeability
values and large/low resistivity values. Therefore, we assume that the collection of 22
samples taken at different positions (x, y, z) captures the variations of physical and
chemical properties in the slag heap. In particular, note that the sharpest contrasts in
the inverted models of resistivity and chargeability are in the shallowest zones. Then,
we assume that the calibration of geophysical data with ground truth data observed at
the first 5 meters of the heap, can be extrapolated at larger depths, although the sen-
sitivity and discriminating ability of ERT/IP decreases (Hermans and Irving, 2017;
Isunza Manrique et al., 2023).

5.4.2 Laboratory measurements

ERT, IP and SIP data

Figure 5.7a and 5.7b show the laboratory measurements of resistivity and charge-
ability respectively. Most of the samples present similar ranges of resistivity (ρlab)
with slight variations with depth, except for samples S04 and S08, which present
an increase and strong decrease of ρ with depth respectively. In terms of charge-
ability (mlab), samples S06 and S02 present the largest values while sample S05 has
mlab < 10 mV/V. Overall no tendency is observed for the variations of chargeability
with depth.
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FIGURE 5.5: 3D sensitivity model associated with the inverted mod-
els of Figure 5.4. Electrodes used in the acquisitions are shown in the
heap ground surface as small pink dots. Sampling location is indi-

cated with the magenta spheres.

FIGURE 5.6: Sampling across the slag heap and collection of S03_5,
S04_5 and S08_3 (see location in Figure 3, pink dots).

Figure 5.7 also shows an overview of the SIP measurements through the mag-
nitude of the resistivity |ρ| (Fig. 5.7c), the real and imaginary components of the
conductivity, σ′ and σ′′ (Figs. 5.7e and 5.7f), and the phase ϕ (Fig. 5.7d). We also
included the SIP spectra of a water bearing column. Note that σ′ increases with the
frequency and σ′′ displays a peak for most of the samples. In terms of the phase, we
found that most of the samples are characterized by a peak of varying magnitudes,
centered at around 1 Hz. This behavior has been reported before in iron slags, e.g.,
Florsch et al. (2011). S06 and S02 present the largest polarization magnitude through
σ′′ similar to the displayed largest chargeability.
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Granulometry and XRF analysis

We compared the mass distribution of the samples at several size particles, from 65
µm to 40 mm, with the concentration of different elements (Fig. 5.8). On average,
we observed that the mass of all samples was slightly higher in the particle sizes of 65
µm and from 10-40 mm. In terms of elements distribution, we noted that the calcium
was distributed homogeneously in all the particle sizes for most of the subsamples
although on average, the largest Ca concentration is observed in the particles of 10
mm. Secondly, the largest Fe concentrations could be observed at the particle sizes
> 1 mm and the same pattern was observed for Mn. Lastly, only three samples
presented larger concentrations of Si, which was homogeneously distributed over all
particle sizes.

5.4.3 Multivariate statistical analysis

Geochemical variables

Focusing on the elements with the largest weight concentrations (Si, Ca and Fe), we
observed that Fe is largely correlated with Cr, V and Mn and negatively correlated
with Al. Ca presents strong positive correlations with Sr and Mn, and negative corre-
lations with Si, Ti and K. Si on the other hand, is largely correlated with Ti, K and Al
and negatively correlated with Ca and Mn. This may indicate that the Fe group has
a low concentration of Al and the Si group may have a low Ca content. Finally, note
that some elements do not have pairwise strong correlations nor correlations with the
elements above mentioned, these are Ni, Cu, S and Zn. The Pearson’s correlation
matrix between pairs of chemical elements concentrations is presented in Figure 5.9.

Geochemical, lab-based and field-based geophysical variables

Figure 5.10 includes correlations between 1) the chemical elements which are con-
sidered indicators of different types of slags (see section above), 2) resistivity and
chargeability laboratory measurements indicated as ρlab and mlab (see section 5.3.2),
3) the SIP measurements, specifically, the values of the real and imaginary compo-
nents of the conductivity and the maximum magnitude of the phase observed at the
polarization peak, as well as the frequency of the phase peak or critical frequency,
i.e., σ′

peak, σ′′
peak, |ϕpeak| and fpeak respectively, and 4) the values of resistivity ρ and

chargeability m of the 3D inverted models (volume-averaged values centered at the
sampling location). The yellow squares indicate the elements which are part of the
critical raw material list of EU for 2023 (Grohol and Veeh, 2023).
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First, we can note that the measurements of resistivity in the lab (ρlab) and in the
field (ρ) present strong correlations (>0.7) with the Si group previously identified.
Then, the values of mlab present large correlation with the Fe group with Fe (0.65),
Mn (0.84), V (0.93) and Cr (0.82), while the values of chargeability from the field
present a large correlation coefficient only with V. Regarding the SIP parameters,
we did not observe correlations between σ′

peak nor σ′′
peak and chemical elements, but

large coefficients were observed between |ϕpeak| and the Fe group: Fe (0.75), Mn
(0.83), V (0.93) and Cr (0.74). Lastly, there were no strong correlations between
the SIP parameters and the concentrations of chemical elements in addition to those
observed with mlab.

As noted before, the values of ρlab and ρ present a strong positive correlation
with the elements of the Si group (Si-Ti-K). Additionally, mlab and m presented
high correlations with the chemical elements of the group Fe, in particular mlab,
probably due to the sensed volume. The comparison between laboratory and field
measurements, shows strong positive correlations (0.72) between ρlab - ρ and mlab –
m, which integrates the different sampled volume and the field and lab conditions.
The discrepancy gives an idea of the scale and inversion effects on the validity of
laboratory-derived petrophysical relationships, e.g., Benoit et al. (2019). In terms of
the SIP parameters, note that there is a correlation of 0.82 between the imaginary
and real components of the conductivity, which is a behavior that has been observed
for several materials (Flores-Orozco et al., 2020). Although it is expected that the
frequency peak is correlated with the particle size, this was not observed (results not
presented here). Note that the samples do not have a predominant particle size (see
section 5.3.2) which may explains the broad peaks in the phase spectra. Here, we
included fpeak in the correlation matrix to study if variations in the composition of
the slags could be discriminated through peak shifts in the phase spectra. However,
no strong correlations were obtained with the geochemical variables.

There were two analyses that are not included in the correlation matrix of Figure
5.10. First, we studied the correlations between the positions at which the samples
were collected (x, y, z) and the geochemical and geophysical variables, however, no
relations were found. This means that there are no preferential zones of similar com-
position within the heap (laterally nor vertically at least at the sampling resolution
used here). Additionally, we fitted a double Cole-Cole model (Cole and Cole, 1941;
Pelton et al., 1978) to the SIP phase spectra and studied the correlations between the
spectral parameters (i.e., m, τ , ρ) and the geochemical variables to determine its abil-
ity to resolve composition variations. Nevertheless, no additional correlations were
found, in addition to the complex conductivity parameters presented here.
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In the following, we analyze the scatterplots of the ρlab - mlab together with the
concentration of some chemical elements with which the largest correlations were
observed (i.e., Fe, Si and Mn) to identify groups or clusters of different composition.
For comparison with the complex conductivities from SIP we will work with the con-
ductivities σlab (1/ρlab). These scatterplots are displayed in Fig. 5.11a-c, with color-
bars representing the average content of Mn, Fe and Si. We showed these elements
due to the large correlations observed with the geophysical properties in Fig. 5.10
and their average concentration > 1 wt. %. First, we can note that the samples S04_5
and S05_3 can be identified with small chargeability values and small conductivities
as well as large values of Si (likely to belong to the Si group mentioned in section
5.4.3). The remaining samples present intermediate to large concentrations of Fe
and Mn and a small content of Si. Within this group, three clusters are observed. A
cluster with the samples of largest chargeability and conductivity values (i.e., S02_3,
S02_5, S06_1, S06_3, S06_5); another cluster with values mlab < 70 mV/V and in-
termediate Fe-Mn content, i.e., S01_1, S01_3, S01_5, S03_1, S03_3, S03_5, S04_1,
S04_3, S07_1, S07_3, S07_5, S08_5; lastly, a small cluster with mlab > 70mV/V,
i.e., S02_1, S08_1, S08_3 (see Table 5.1). Nonetheless, the boundary of the last two
groups is not clear as large concentrations of Fe-Mn can be observed for broad ranges
of conductivities.

For comparison, we also analyzed the crossplots of σ′′
peak vs σ′

peak and the average
concentration of Mn and Fe (Figures 5.11d-e). Similar to the ERT/IP measurements
we can also observe that the samples attributed to Group 1 present the smallest val-
ues of σ′′

peak and have low concentrations of Mn and Fe. Then, we can observe that
the samples constituting groups 2, 3 and 4 are distributed along different linear rela-
tions σ′′

peak - σ′
peak as shown through the fittings of linear models displayed in Figures

5.11d-e. We computed the coefficient of determination of these regressions and ob-
tained R2 = 0.98, R2 = 0.93, and R2 = 0.85 for the linear fittings in Group 2, 3
and 4 respectively. This supports the definition of the four groups and the attributed
samples, as each of these linear models may represent different types of materials
(through different phases, ϕ ≈ σ′′

peak/σ
′
peak).

Afterwards, we carried out an unsupervised learning approach to group the sam-
ples from the time-domain lab measurements. Note that previous grouping was
done integrating geochemical data while this approach only used geophysical pa-
rameters and can be obtained without samples. We applied a hierarchical clustering
to previously standardized data, assuming four clusters and a single linkage as the
metric criteria, i.e., minimizes distance between the closest observations of clusters
pairs (Pedregosa et al., 2011). The results show that the clustering and the previous
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TABLE 5.1: Samples identified in each group from chemical analysis
and geophysical lab measurements.

Group Samples σlab (mS/m) mlab (mV/V) Dominant
identifier concentration
Group 1 S04_5, S05_3 < 20 < 20 Si
Group 2 S02_3, S02_5, S06_1, > 20 > 100 Fe-Mn

S06_3, S06_5
Group 3 S01_1, S01_3, S01_5, > 14 < 90 Intermediate

S03_1, S03_3, S03_5, > 20 Fe-Mn
S04_1, S04_3, S07_1,
S07_3, S07_5, S08_5

Group 4 S02_1, S08_1, S08_3 < 25 > 70 Intermediate
Fe-Mn

geophysical-geochemical grouping (Table 5.1) converge to similar group identifica-
tion, which validates the proposed grouping. However, as the clustering minimizes
the distance between the closest observations of pairs of groups, it can be sensitive
to the initial model or the initial number of clusters (see Figure 5.12).

Principal component analysis (PCA)

We applied PCA to the previously standardized geochemical and geophysical data
shown in the correlation matrix of Figure 5.10. The first three principal components
(PC’s) represent a variance of 55.35 %, 15 % and 10.22 % respectively, which add
up to around 80 % of the total data variance.

First, we investigated how the samples (and clusters previously observed) were
distributed in the PC’s space (Figure 5.13a-b). Focusing on the plot of PC2 vs PC1,
we can again identify samples S04_5 and S05_3 (Group 1) as outliers which largely
represent the data variance along PC1. Then, the samples with the largest values in
the PC2 axis agree with the samples of largest chargeability and conductivity mea-
surements (Group 2). In contrast, the samples with the smallest values in the PC2
axis constitute Group 3 and intermediate values in the PC2 axis correspond to Group
4. Overall, we can note that there are no overlaps of groups’ samples.

Additionally, we computed the linear correlations between the PC’s and the orig-
inal variables using the correlation circles (Figure 5.13c-e) for the first three PC’s.
Squared loadings are additionally presented in Figure 5.14. Note that PC1 presents
strong correlations with most of the variables, e.g., positive large correlation with
Si, Al, ρlab, ρ and negative correlations with Fe, Ca, Mn, mlab, |ϕpeak|. PC2 is pre-
dominantly related to the field resistivity and chargeability although the correlation
coefficients with all variables are overall low. Lastly, PC3 is mainly related to the
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laboratory measurements of complex conductivity (σ′′
peak, σ′

peak, fpeak) with which it
is strongly correlated.

5.4.4 KDE’s and probabilistic classification of field data

For visualization, we computed the 2D KDE’s at a regular grid in the range of the
inverted resistivity and chargeability models, based on the functions fitted with the
volume-averaged field data (see Figure 5.15a-d). The bandwidth of each group was
estimated using Scott’s rule. However, as the data distribution of Group 1 was over-
smoothed, we decreased h from 0.56 to 0.3. On the other hand, the distribution of
Group 3 was strongly influenced by the outliers, therefore, we slightly increased h

from 0.19 to 0.3. This allowed to smooth the estimates increasing the covariance of
the data distribution. In addition, these values of h led to classification results which
are overall in line with the proportion of the groups 1-3 (or prior probabilities).

Then, we computed the 2D KDE’s fKDE(y|Ai) (see Eq. 5.1) and the joint condi-
tional probabilities P (Ai|y) at the whole field data domain, for each group. The prior
probability values P (Ai) were estimated from the number of lab samples belonging
to each group, these are 9 %, 22 %, 54 % and 13 % for groups 1- 4 respectively.

Figure 5.15e-f also shows the classification of the field data, based on the largest
joint conditional probabilities, as well as the volume-averaged field data (ρ, m) from
which the 2D KDE’s were built. In Figure 5.15e the maximum transparencies repre-
sent the smallest probabilities of 33 % and in Figure 5.15f we plot only the data with
probability values larger than 50 %. Note that the smallest probabilities of classifica-
tion are distributed in the boundaries of the groups.

5.4.5 Estimation of volumes

Figure 5.16a-b shows the classification of the data along the same sections displayed
before for the inverted models and the corresponding joint conditional probabilities
with which each group or class was assigned. The maximum probability values are
1, 0.95, 1 and 0.85 for groups 1-4 while the minimum value with which the groups
were selected was around 0.3.

Figure 5.16c-f shows the volumes of each group. Considering the correspond-
ing cells volumes weighted with the corresponding probability value (see Eq. 5.2),
the estimated volumes of groups 1-4 are respectively: 3.66×103 m3, 1.81×104 m3,
1.653×105 m3 and 48×103 m3. Note that these volumes exclude the cells of the
inverted models where the sensitivity is less than 10- 5.5 and take into account the
probability values, resulting in a total heap’s volume of 235×103 m3.
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The volume of Group 1 represents the minority of the heap and it is mostly com-
posed of Si, Ti and K (largely construction and demolition residues). The material
of Group 2 is mostly concentrated on the east of the heap and scattered deposits dis-
tributed westwards. The material in this category presents the largest concentrations
of Mn, Fe, V and Cr and it represents the most interesting volume for potential recov-
ery. Then, the volume of Group 3 represents most of the slag heap material and it is
distributed along the whole heap. Lastly, the intermediate volume of Group 4 is con-
centrated in the east of the heap and has scattered deposits westwards of the heap. As
mentioned before, Groups 3 and 4 present very similar geophysical and geochemical
properties, yet the chargeability measured in samples of Group 4 are slightly larger
than the ones in Group 3. Furthermore, the elements of Group 4 present in general, a
larger concentration of Mn and possibly a larger concentration of quicklime (due to
the strong correlation Mn-Ca). Due to the relatively low iron concentration in groups
3 and 4, these volumes can be potentially reused for road construction.

5.5 Discussion

The integrated approach we followed seems suitable to quantitatively interpret geo-
physical field data using a probabilistic classification, according to a physics-based
clustering from lab data. In the following, we describe the findings and limitations
of the elements of this methodology.

First, geoelectric methods have proved useful to derive insights into the composi-
tion of metallurgical deposits, even in intermediate-to-low concentrations of metals.
As in practice field acquisitions are tailored to be cost and time-efficient, ERT and
time-domain IP represent suitable methods to be used in the field for a “rapid” inves-
tigation of metallurgical deposits (Martínez et al., 2019; Rey et al., 2020; Vásconez-
Maza et al., 2021), in comparison with SIP field measurements which are still chal-
lenging.

Second, the targeted sampling was designed to cover most of the lateral and verti-
cal (shallow) variations of the inverted models. Therefore, here we assume that the 22
samples collected at different positions (x, y, z) represent ground truth data enough
to capture the physical and chemical properties of the slag heap overall. Note that in
the literature we can find sampling to be challenging and often samples are collected
at surface, at several sites and/or at few locations (x, y) (Florsch et al., 2011; Inzoli
et al., 2016; Martin et al., 2021).

Both geophysical laboratory measurements and geochemical analysis could show
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a variation in the composition of slags in the samples. Overall, resistivity measure-
ments were useful to identify different types of materials (slags and crushed bricks)
and chargeability measurements could additionally resolve between different types
of slags. SIP measurements support these findings with a varying phase magnitude
as indicator of different types of slags, which is not observed in the residues with
crushed bricks.

Regarding the multivariate statistical analysis, first, we distinguished chemical el-
ements of interest and inferred the composition of different types of slags through
the correlation study of the elements’ concentrations. Then, in the correlation study
between geochemical and geophysical variables we identified the geophysical pa-
rameters that resolved variations of the chemical elements. We observed a linear
relation between mlab and the concentrations of Fe, Mn, V and Cr - similar as in
Florsch et al. (2011)- and also strong correlations between ρlab and Si, K and Ti.

In terms of SIP parameters, the amplitude of the phase at the frequency peak
|ϕpeak| also presented a strong correlation with the Fe, Mn, V and Cr content. In the
correlation matrix we also included the field measurements of resistivity and charge-
ability. While the resistivity values presented strong correlations with Si, Ca and Ti
(as observed for the laboratory measurements) the chargeability was corelated only
with vanadium. Furthermore, the correlations of ρlab - ρ and mlab – m showed the
scale difference derived from the comparison between “punctual” measurements di-
rectly from the samples and co-located volume-averaged data from inverted models.
Although the correlation coefficients are relatively large (≈0.7) and the field data
may capture the variations observed in the laboratory measurements, the regulariza-
tion effect of the inversion should still be considered. The aim of the methodology
at this step was to derive and support a physical-chemical-based clustering using the
laboratory measurements. The identification of 4 groups was mostly based on differ-
ent resistivity and chargeability ranges as well as the concentration of Fe, Mn and Si
(Figure 5.11a-c). A geophysics-based clustering leads to the same grouping as the
geochemical-based one. This was supported first, with the complex conductivity at
the relaxation frequency (i.e., different groups are associated with different phases,
see Figure 5.11d-e), a hierarchical clustering and PCA, where the groups are clearly
distinguished in the PC2-PC1 space.

Then, we modeled the 2D KDE’s using the volume-averaged field data collocated
with the sampling for each lab-based group previously identified. Afterwards we es-
timated the KDE’s at the whole domain of the inverted field data and computed joint
conditional probabilities. The classification of the field data is strongly influenced
by the selection of the bandwidth h in the definition of the KDE’s. Yet, we observed
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that the two-step estimation of h represents a suitable alternative in presence of few
data, i.e., the Scott’s rule performs an automatic bandwidth estimation which can be
tunned according to the level of noise we want to integrate in the model (which can
be based on prior information). Furthermore, this selection of bandwidth also en-
sures that the classification of the data keeps the proportion of the prior probabilities
established from the sampling. Lastly, the computation of joint conditional probabil-
ities allowed to derive the uncertainty of the classification, which is of interest as for
reserve classification.

Finally, the total volume estimated here is likely to represent a minimum threshold
value. First, because the inverted models do not show the boundary between the slags
and the host geology, whose natural level has been reported at around 115 m (but
which could be deeper if natural soil was removed before the deposition of the slags).
Secondly, we included only the areas of the inverted models with a sensitivity larger
than 10−5.5. Nonetheless, the calculated volumes integrate the uncertainty of the
classification, which can lead to more accurate quantifications to support remediation
strategies especially in terms of resource recovery.

5.6 Conclusion

In this contribution we present an integrated approach to quantitatively interpret geo-
physical field data in terms of chemical composition using a probabilistic classifica-
tion. It ultimately allows to estimate the volumes of each class considering only parts
of the inverted models that are sufficiently reliable (trough sensitivity) and integrating
the uncertainty of the classification. We illustrate this approach investigating a slag
heap with residues from steel works and blast furnaces. Based on the statistical anal-
ysis of the geochemical and geophysical lab data, we identified 4 classes or groups
from the 22 samples collected at different positions of the heap. Group 1 corresponds
to the inert waste with the largest concentration of Si, Ti and K; Group 2 represents
the slags with the largest concentrations of Fe, Mn, Cr and V, which in turn represents
the most interesting volume in terms of recovery; Group 3 and 4 refer to the materi-
als with an intermediate Fe-Mn concentrations but the materials of Group 4 present
a range of larger resistivities, which could be an indicator of a different type of slag.
Overall, we observe that defining elements of this methodology are: 1) a representa-
tive targeted sampling based on the results of the geophysical survey, to better infer
prior probabilities and 2) the bandwidth selection for the definition of the KDE’s,
where the examination of the geophysical volume-averaged field data distribution
is considered. Lastly, the integrated methodology can be adapted according to the
feature to investigate at the field scale. Thus, laboratory measurements can include
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mineralogical analysis to interpret the field data in terms of mineral composition, or
pedological descriptions, borehole-logs, back-scattered images, etc.

5.7 Data and materials availability

Codes and data necessary to reproduce the results presented here, from statistical
tools to the 3D probabilistic classification will be available once accepted for publi-
cation in: zenodo/
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FIGURE 5.7: Geophysical lab measurement of ERT, IP and SIP. First,
we present the measurements of a) resistivity and b) chargeability.
Each sample is plotted with their corresponding sampling depths at
1, 3 and 5 m, which are represented with a circle, square and trian-
gle respectively. Then, an overview of SIP spectra is presented for
some samples and a column filled with water. For clarity we only plot
the spectra of eight samples, each at one location (x, y) and different
depths. The image presents the c) magnitude of resistivity, d) phase,
e) real component of complex conductivity and f) imaginary compo-

nent of the complex conductivity.

FIGURE 5.8: Particle size distribution and percentage mass distribu-
tion for all samples. Each colorbar displays a) the calcium content, b)

iron content and c) silicon content.
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FIGURE 5.9: Particle size distribution and percentage mass distribu-
tion for all samples. Each colorbar displays a) the calcium content, b)

iron content and c) silicon content.

FIGURE 5.10: Matrix of Pearson’s correlation coefficients using
some geochemical variables and geophysical variables. Yellow

squares indicate the critical raw materials of the EU 2023.
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FIGURE 5.11: Crossplots of the time-domain laboratory measure-
ments of ERT- IP and complex conductivity at the frequency peak.
(a-c) Chargeability vs conductivity (1/ρlab) with colorbars represent-
ing the average content of a) Mn, b) Fe and c) Si. (d-e) Real vs imag-
inary component of the conductivity with colorbars representing the
average content of d) Mn and e) Fe. Lines represent the linear regres-
sions with samples of Group 2 (yellow), Group 3 (green) and Group 4

in blue.

FIGURE 5.12: Groups identified using a) unsupervised clustering and
b) lab measurements according to Table 5.1.
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FIGURE 5.13: (a-b) Samples represented in the axis of principal com-
ponents: a) PC2 vs PC1 and b) PC3 vs PC1. (c-e) Correlation coeffi-
cients between the variables and c) PC2 vs PC1, d) PC3 vs PC1 and e)
PC3 vs PC2. The radii of the circles represent a correlation coefficient

of 0.7 and 1.

FIGURE 5.14: Squared loadings for a) PC1, b) PC2, and c) PC3.
Variables are presented in decreasing values.
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FIGURE 5.15: (a-d) Joint probability density function using 2D KDE
in a regular grid together with the volume-averaged field data collo-
cated with the sampling for each group. (e-f) Classification of the field
data. The lab measurements are displayed with crosses as well as their
corresponding group color. The minimum joint probability is e) 33 %
(maximum transparency). We also show in f) the classification con-
sidering only joint probability values larger than 50 %, with a special

effect in boundaries of groups 2-4 and 1-2.
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FIGURE 5.16: a) Classification of the field data. Transparency along
the sections represent the resulting probability values. b) Joint con-
ditional probability sections. Both images integrate the sensitivity
threshold (>10-5.5). We also show the estimated volumes of c) group

1, d) group 2, e) group 3 and f) group 4.
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Chapter 6

General conclusions and perspectives

The aim of this work was to contribute to the development of more quantitative in-
terpretations of geophysical data applied in the characterization of anthropogenic
deposits. The first part was more focused in different types of landfills within the
framework of RAWFILL project, while the second part of this work is focused on
metallurgical residues and deposits as part of NWE-REGENERATIS.

Based on the literature review presented in Chapter 3 and on the investigated
sites during RAWFILL, we observed that the quantitative interpretation of several
geophysical methods could be challenging due to factors such as the infrastructure
of the landfill, the vegetation state and topography.

In general, the following conclusions can be stated with regards to the data acqui-
sition and processing stages:

• Magnetometry and electromagnetic induction methods can be strongly affected
by the metallic scraps that are often deposited in the surface of landfills. In ad-
dition, magnetic susceptibility modeling and the data inversion of both meth-
ods may be challenging in these environments.

• Seismic methods can be useful to roughly delineate the thickness of the waste
deposits. Detailed investigations to image small internal structures or processes
within the waste, may require more advanced data acquisition and processing,
e.g., Konstantaki et al., 2016. Nonetheless, buried refractors such as concrete
blocks and other types of CDW can limit the data acquisition and subsequent
processing.

• Geoelectric methods can be applied under several contexts except for landfills
with an upper plastic geomembrane that impedes the electrical current injec-
tion (where electromagnetic induction mapping is often used, e.g., Deidda et
al. 2022, Deleersnyder et al. 2023). These methods have been largely used
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in the static and dynamic characterization of landfills, e.g., leachate and gas
delineation, zonation and internal structure.

In terms of data interpretation, one essential step for the calibration (and also to
rely on more sophisticated machine learning approaches) is to have ground truth data
from excavations of boreholes or pits. Nonetheless, in practice:

• Excavations can be limited to mitigate costs and human/environmental risks.

• It is important to carry out data interpretations with information that can be
used as decision support tools in the sustainable management of the site.

The above-mentioned statements were the motivation of the work presented in
Chapter 4, where we introduced a probabilistic approach for the interpretation of
geoelectric data in a heterogeneous landfill. The probabilistic approach represent a
suitable tool to derive quantitative interpretations through a classification based on
the computation of joint conditional probabilities, given the categories or materials
found in trial pits. Consequently, it allows to integrate the uncertainty in the classi-
fication or the prediction results. As illustrated with a case study, this approach is
recommended in cases where the inverted models may present sharp heterogeneties
and/or artifacts, and when the accessible ground truth data is limited and sparsely
distributed.

The sites investigated during NWE-REGENERATIS were composed of metal-
lurgical residues from by-products of different types of industries. Compared to
the landfills investigated in RAWFILL, the deposits of each site are relatively more
homogeneous and in general derived from the same processes. Although the con-
clusions previously mentioned are also valid in these sites, more detailed investiga-
tions are needed to derive interpretations or resource distribution models in terms of
chemical composition and not only in terms of materials. Therefore, the collection
of samples (ideally at different depths) and laboratory measurements are needed to
calibrate geophysical data with geochemical data.

With this regard, Chapter 5 described an integrated methodology that aims to cal-
ibrate geochemical and geophysical data at lab scale, and extrapolate this link to the
geophysical field data. We illustrated the methodology using ERT and IP to investi-
gate a slag heap with materials derived from steel works and blast furnaces. At lab
scale we used also ERT, IP and in addition SIP. Similarly to Chapter 4 the interpreta-
tion was based on a probabilistic classification, but in this case, we used 2D KDE’s as
density functions and the categories were defined using a geophysical-geochemical
based grouping of the lab data. This methodology illustrates how we can integrate
lab and field measurements to develop a probabilistic classification in terms of the
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chemical composition of the materials, with the ultimate objective of their volume
estimation. This approach, which considers only zones of the inverted models reli-
able enough, allows to integrate uncertainty in the classification (interpretation) and
consequently in the estimation of volumes.

6.1 Perspectives

The method of induced polarization represents a promising tool to characterize sev-
eral types of landfills and metallurgical residues for static investigations and the study
of dynamic processes within the residues.

• As indicated by Flores-Orozco et al. (2020), the method is suitable to image
biogeochemical active zones (and hence it can be used as indicator of micro-
biological activity), since the polarization effect can resolve organic matter
variations.

• It has proved useful for the characterization of metallurgical residues due to the
strong polarization that metallic particles experience under the influence of an
electric field. As has been shown through petrophysical modeling and exper-
imental data, there is a linear relationship between the observed chargeability
and both the volume fraction of metallic particles as well as the chargeability
of the background material. Hence the ability of the method to infer on the
concentration of metallic minerals in unconsolidated materials (Revil et al.,
2022).

• In addition, IP has also proven useful in applications studying the dynamic be-
havior of metallurgical residues, although mostly at laboratory scale. An im-
portant extension of the presented work is to investigate how the polarization
signal of metallurgical residues is affected under different levels of water con-
tent/saturation, e.g., Martin et al. (2022). Furthermore, it has been suggested
that oxidation-reduction reactions and precipitation-adsorption of secondary
minerals can modify the surface of the investigated metallic particles, which in
turn change the IP signatures (Placencia-Gómez et al., 2015). A better knowl-
edge of the dynamic processes within these residues can lead to a more ac-
curate identification and quantification of metallic materials using geoelectric
methods.

Lastly, the probabilistic approach of Chapter 4 and the methodology presented in
Chapter 5 can be extended to multiple data sources and can be used for field data
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interpretation in 3D. Furthermore, the definition of classes or categories can be tai-
lored to investigate parameters of interest which have been measured in situ (through
boreholes) or in the lab (after the collection of samples) such as water content and
mineralogical composition. In the case presented in Chapter 5 we interpret field data
based on XRF analysis, but if more detailed lab studies are carried out, for instance
mineralogical analysis, the final interpretation could potentially be done in terms of
types of minerals forms. This may represent meaningful information for the site
management. Oppositely, when excavations or ground truth data are limited in depth
(compared to the thickness of the landfill or deposit), the interpretation in these zones
have to be inferred.
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