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We derive exact expressions for the mean value of Meyer-Wallach entanglement Q for localized random
vectors drawn from various ensembles corresponding to different physical situations. For vectors localized on
a randomly chosen subset of the basis, �Q� tends for large system sizes to a constant which depends on the
participation ratio, whereas for vectors localized on adjacent basis states it goes to zero as a constant over the
number of qubits. Applications to many-body systems and Anderson localization are discussed.
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I. INTRODUCTION

Random quantum states have recently attracted a lot of
interest due to their relevance to the field of quantum infor-
mation. Since they are useful in various quantum protocols
�1�, efficient generation of random and pseudorandom vec-
tors �2� and computation of their entanglement properties �3�
have been widely discussed.

Random states are not necessarily uniformly spread over
the whole Hilbert space. It is therefore natural to study the
entanglement properties of random states which are re-
stricted to a certain subspace of Hilbert space or whose
weight is mainly concentrated on such a subspace. Such
states can appear naturally as part of a quantum algorithm or
can be imposed by the physical implementation of qubits
through, e.g., the presence of symmetries.

In addition, random states built from random matrix
theory �RMT� have been shown to describe many properties
of complex quantum states of physical systems, especially in
a regime of quantum chaos. Yet in many cases physical sys-
tems display wave functions which are localized preferen-
tially on part of the Hilbert space. This happens, for example,
if there is a symmetry or when the presence of an interaction
delocalizes independent-particle states inside an energy band
given by the Fermi golden rule. A different case concerns
Anderson localization of electrons, a much-studied phenom-
enon where wave functions of electrons in a random poten-
tial are exponentially localized. Assessing the entanglement
properties of such states not only enables one to relate the
entanglement to other physical properties, but also has a di-
rect relationship with the algorithmic complexity of the
simulation of such states. Indeed, it has been shown �4� that
weakly entangled states can be efficiently simulated on clas-
sical computers.

For a vector � in an N-dimensional Hilbert space, local-
ization can be quantified through the inverse participation
ratio �IPR� �=�i��i�2 /�i��i�4 where �i are the components
of �. This measure gives �=1 for a basis vector, and �=M
for a vector uniformly spread on M basis vectors.

To investigate entanglement properties of localized vec-
tors, we choose the measure of entanglement proposed in �5�.
Meyer-Wallach entanglement �MWE� Q can be seen as an
average measure of the bipartite entanglement �measured by
the purity� of one qubit with all others. The quantity Q has
been widely used as a measure of the entangling power of

quantum maps �6� or to measure entanglement generation in
pseudorandom operators �2�. For a pure N-dimensional state
� coded on n qubits �N=2n�, Q=2�1− 1

n�r=0
n−1Rr�, where Rr

=tr�r
2 is the purity of the rth qubit ��r is the partial trace of

the density matrix over all qubits but qubit r�. It can be
rewritten as Q= 4

n�r=0
n−1G�ur ,vr�, where G�u ,v�= �u �u��v �v�

− ��u �v��2 is the Gram determinant of u and v, and ur �vr� is
the vector of length N /2 whose components are the �i such
that i has no �has a� term 2r in its binary decomposition.
Vectors ur and vr are therefore a partition of vector � in two
subvectors according to the value of the rth bit of the index.

Analytical computations will be made on ensembles of
random vectors. In this case, individual quantum states in a
given basis have components whose amplitudes, phases, and
positions in the basis are drawn from a distribution according
to some probability law. Quantities such as the IPR or en-
tanglement measure are then averaged over all realizations of
the vector. A simple example of a random vector localized on
M basis states can be constructed by taking M components
with equal amplitudes and uniformly distributed random
phases and setting all the others to zero. A more refined
example consists in using, as nonzero components, column
vectors of M �M random unitary matrices drawn from the
circular unitary ensemble of random matrices �CUE vectors�.

In the first part of this paper we study entanglement prop-
erties of random quantum states which are localized, or
mainly localized, in some subset of the basis vectors. We
show that very different behaviors can be obtained depend-
ing on the precise type of localization discussed. The first
case we consider �Sec. II� consists in random states whose
nonzero components in a given basis are randomly distrib-
uted among the basis vectors. Moreover, these nonzero com-
ponents are chosen to have random values. Averages over
random realizations therefore imply that we average both
over position of the nonzero components among the basis
vectors and over the random values of these nonzero com-
ponents. We show that the mean entanglement can be ex-
pressed as a function of the number of nonzero components
of the vector. We then show that this result can be general-
ized. Indeed, for any vector with random values distributed
according to some probability distribution, the mean en-
tanglement can in fact be expressed as a function of the mean
IPR. Notably, this function tends to a constant close to 1 for
large system size. While the vectors in Sec. II are localized
on computational basis states which are taken at random, in
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Sec. III random vectors are localized on computational basis
states which are adjacent when the basis vectors are ordered
according to the number which labels them. In this case the
mean entanglement can again be expressed as a function of
the mean IPR, but in contrast this function tends to 0 for
large system size. Again, the averages are performed both on
position and values of the components. In the second part of
the paper, we compare these results to the entanglement of
various physical systems which display localization �Sec.
IV�.

The question of entanglement properties of localized
states has already been addressed in other works. The con-
currence of certain localized states in quantum maps has
been studied in �7,8�, but with an emphasis on the effect of
noise in quantum algorithms. In �9�, a relation between the
linear entropy and the IPR has been derived in the special
case where each qubit is an Anderson localized state. During
the course of this work, an e-print appeared which uses dif-
ferent techniques to relate the entanglement to the IPR �10�
in the case of vectors localized on nonadjacent basis states,
as in Sec. II. Interestingly enough, the formulas obtained in
�10� are fairly general. They are derived by different tech-
niques and rest on different assumptions. In particular, the
authors of �10� do not average over random phases. They
obtain a formula where entanglement is expressed as a func-
tion of the mean IPR calculated in three different bases, a
quantity that is often delicate to evaluate. Our work uses
different techniques and the additional assumption of random
phases to get a different formula �formula �3�� which in-
volves only the IPR in one basis, a quantity that can be easily
evaluated in many cases and is directly related to physical
quantities such as the localization length. For example, it
enables us to compute readily the entanglement for localized
CUE vectors �see Eq. �4��. However, there are instances of
systems �e.g., spin systems� where these different formulas
give the same results.

II. ANALYTICAL RESULTS FOR RANDOMLY
DISTRIBUTED LOCALIZED VECTORS

Let us first consider a random state � of length N=2n in
the basis 	�i�= �i0� � ¯ � �in−1� ,0� i�2n−1, i=�r=0

n−1ir2
r
 of

register states �where all �r
z are diagonal�. Suppose the state

� has M nonzero components which we denote by �i, 1
� i�M. Each nonzero component is random and addition-
ally corresponds to a randomly chosen position among basis
vectors. The corresponding average will be denoted by �¯�.
We make the assumption that these components have uncor-
related random phases and that ���p�2� and ���p�2��q�2� do not
depend on p ,q. We calculate the contribution to MWE of a
partition �u ,v� �we drop indices r�. Suppose u has k nonzero
components ui, i� I, and that v has M −k nonzero compo-
nents v j, j�J, with I ,J subsets of 	1, . . . ,N /2
. We define
T= I�J and the bijections � and � such that ui=���i� and
v j =���j�. Setting sp= ��p�2, the average G�u ,v� is given by

�G�u,v�� = � �
p���I�

sp �
q���J�

sq� − ��
i�T

s��i�s��i�� , �1�

where the nondiagonal terms in ��u �v��2 have vanished by
integration over the random phases of the �p. We assumed

that �spsq��p�q� does not depend on p ,q, and thus
�G�u ,v��= �k�M −k�− t��spsq�, the overlap t being the number
of elements of T. Since �u �u�+ �v �v�=1, we also have
�G�u ,v��=k��sp�− �sp

2��− �k�k−1�+ t��spsq�. We then equate
both expressions and use our hypothesis that ���p�2� and
���p�4� are independent of p, which implies that �sp�=1/M
and �sp

2�= �1/�� /M, to get

�G�u,v�� =
k�M − k� − t

M�M − 1�
1 − � 1

�
�� . �2�

As this result depends only on �k , t�, the calculation of �Q�
comes down to counting the number of positions of the non-
zero components in vectors u and v yielding the same pair
�k , t�. The combinatorial weight associated to a given �k , t� is
� N/2

k
�� k

t
�� N/2−k

M−k−t
�. At fixed k, t ranges from 0 to min �k ,M −k�.

Summing all contributions yields

�Q� =
N − 2

N − 1
1 − � 1

�
�� . �3�

This result does not depend on M. It can in fact be derived
by an alternative method with less restrictive assumptions.
Let us sum up all the localization properties of � in the IPR
� alone, whatever the value of M. We define the correlators
Cxx= ��ui�2�uj�2+ �vi�2�v j�2� /2 and Cxy = �ui�2�v j�2, where the
overline denotes the average taken over all n partitions
�ur ,vr� corresponding to the n qubits and over all i , j
� 	1, . . . ,N /2
 with i� j �for Cxx� and all i , j� 	1, . . . ,N /2

�for Cxy�. Thus Cxx quantifies the internal correlations inside
u and v, and Cxy the cross correlations between u and v.
Normalization imposes that �1/��+N�N /2−1��Cxx�+ �N2 /2�
��Cxy�=1, and Eq. �1� leads to �Q�=N�N−2��Cxy�. The as-
sumption �Cxx�= �Cxy� is then sufficient to get Eq. �3�. This
derivation also shows that if the phases are uncorrelated and
formula �3� does not apply, then necessarily �Cxx�� �Cxy�.

Our result, Eq. �3�, involves only the mean IPR in one
basis and uses the assumptions that on average cross corre-
lations are equal to internal correlations for the partitions,
whatever the probability distribution of the components, and
that random phases are uncorrelated. This is to be compared
with the result in �10� where �Q� is related to the sum of the
IPR for three mutually unbiased bases. Their result does not
use the assumption of uncorrelated random phases, but re-
quires a stronger hypothesis on correlations �namely, that
vector component correlations in average do not depend on
the Hamming distance between the corresponding vector
component indices�. In particular, our formula �3� allows one
to compute �Q�, e.g., for a CUE vector localized on M basis
vectors; in this case, �= �M +1� /2 and we get

�Q� =
M − 1

M + 1

N − 2

N − 1
. �4�

In �11�, Lubkin derived an expression for the mean MWE for
nonlocalized CUE vectors of length N, giving �Q�= �N
−2� / �N+1�. Consistently, our formula yields the same result
if we take M =N. For a vector with constant amplitudes and
random phases on M basis vectors, �=M and
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�Q� =
M − 1

M

N − 2

N − 1
. �5�

Formula �3� can be easily modified to account for the pres-
ence of symmetries. For instance, suppose the system pre-
sents a symmetry which does not mix basis states within two
separate subspaces of dimension N /2. It is then easy to check
that N in Eq. �3� should be replaced by N /2.

III. ANALYTICAL RESULTS FOR ADJACENT
LOCALIZED VECTORS

Up to now we have considered random vectors whose
components were distributed over a randomly chosen subset
of basis vectors. However, in many physical situations vec-
tors are localized preferentially on particular subspaces of
Hilbert space. An important case consists in random vectors
localized on M computational basis states which are adjacent
when the basis vectors are ordered according to the number
which labels them. The general form of such a vector would
be �c� , . . . , �c+M −1� , 0�c�2n−1. Again, averaging over
random realizations of the coefficients of � we get Eq. �2�.
The calculation of �Q� therefore reduces to determine k and t
for all qubits and all possible choices of the basis vectors on
which � has nonzero components. For a given r, vectors u
and v correspond to a partition of the set of the components
�i of � according to the value of the rth bit of i. For in-
stance, for the qubit r=1, and M =9, N=16, a typical real-
ization of vectors u and v would be

u = �0 0 0 �1 �4 �5 �8 �9� ,

v = �0 0 �2 �3 �6 �7 0 0� . �6�

Each vector u and v can be split into 2n−1−r blocks of length
2r. There are Nn ways of constructing such pairs �u ,v�, by
choosing a qubit r and a position c for �1. The numbers k
and t depend on three quantities: the label r� 	0, . . . ,n−1
 of
the qubit whose contribution is considered; the position cr
� 	0, . . . ,2r−1
 of �1 within a block, either in u or in v; the
remainder mr of M mod 2r+1. Let r0 be such that 2r0−1	M
�2r0. One has to distinguish the contributions coming from
qubits such that 0�r	r0 and qubits such that r
r0. First
consider 0�r	r0. Suppose �1 is a component of vector u.
One can check that I�J has k+ t+cr=M elements and I \T
has k− t=gr�mr+cr� elements, where gr�x�=2rg�x /2r� with
g�x�= �1− �1−x�, x� �0,3�. These two equations lead to k
= 1

2 �M −cr+gr�mr+cr�� and t= 1
2 �M −cr−gr�mr+cr��. Simi-

larly, when �1 is a component of vector v, we get k= 1
2 �M

+cr−gr�mr+cr�� and t= 1
2 �M +cr−2r+1+gr�mr+cr��. Alto-

gether this leads to 2�2r different contributions with multi-
plicity 2n−1−r �the number of blocks�. If r
r0, t is always
zero and as the position cr is varied, k runs over 	1, . . . ,M
−1
. Summing all contributions together we get

�Q� = �M − 2

M − 1
r0 +

2�2r0 − 1�
M�M − 1�

+
4

3

�M + 1��2n − 2r0�
2n+r0

−
1

M�M − 1� �
r=0

r0−1

�r�mr��1 − � 1

�
���1

n
, �7�

where �r�x�=�r�2r+1−x�=x2− 2
3x�x2−1� /2r for 0�x�2r.

Equation �7� is an exact formula for M �N /2. For fixed M
and n→�, n�Q� converges to a constant C which is a func-
tion of M and �. For M =2r0, r0	n, all remainders mr, r
	r0 are zero, and Eq. �7� simplifies to

�Q� = ��r0 +
4

3
�M2 − 2�r0 − 1�M −

10

3

M�M − 1�
−

4�M + 1�
3N

�
�1 − � 1

�
���1

n
. �8�

Numerically, this expression with r0=log2 M gives a very
good approximation to Eq. �7� for all M.

Equation �7� is exact for, e.g., uniform and CUE vectors,
and we will see in Sec. IV that it can be applied even when
� is not strictly zero outside an M-dimensional subspace.

IV. APPLICATION TO PHYSICAL SYSTEMS

We now turn to the application of these results to physical
systems. Localized vectors randomly distributed over the ba-
sis states may model eigenstates of a many-body Hamil-
tonian with disorder and interaction. Indeed, the latter ge-
nerically display a delocalization in energy characterized by
RMT statistics of eigenvalues within a certain energy range,
whereas the distribution of eigenvector components is
Lorentzian or Gaussian. As an example we choose the sys-
tem governed by the Hamiltonian

H = �
i

i�i
z + �

i	j

Jij�i
x� j

x. �9�

This model was introduced in �12� to describe a quantum
computer in presence of static disorder. Here the �i are the
Pauli matrices for the qubit i. The energy spacing between
the two states of qubit i is given by 2i randomly and uni-
formly distributed in the interval ��0−� /2 ,�0+� /2�. The
couplings Jij represent a random static interaction between
qubits and are uniformly distributed in the interval �−J ,J�.
For increasing interaction strength J eigenstates are more and
more delocalized in the basis of register states and a transi-
tion towards a regime of quantum chaos takes place, with
eigenvalues statistics close to the ones of RMT �12�. In par-
allel, this process leads to an increase of bipartite entangle-
ment in the system �13�. In the following, results will be
averaged over random realizations of the i and Jij in �9�
�“disorder realizations”�, which will be denoted by �¯�.

The Hamiltonian �9� presents a symmetry which does not
mix basis states having an even and odd number of qubits in
the state �1�. Each symmetric subspace contains N /2 basis
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vectors among which for each qubit N /4 have value �1� and
N /4 have value �0�. In this case, as explained at the end of
Sec. II, N has to be replaced by N /2 in Eq. �3�. This sym-
metry has the additional effect of making the second term in
Eq. �1� vanish identically for all eigenvectors.

Before applying the results of Sec. II to the more generic
case ���0, we first briefly discuss the specific case ���0.
In this case, the energy spectrum of the system is divided
into bands corresponding to register states with the same
number nb of qubits in the �1� state. Delocalization takes
place inside each band separately, corresponding to a re-
duced Hilbert space of dimension Nb= � n

nb
�. In this case, all

the basis states on which the delocalization takes place have
nb qubits among n in the state �1�. This implies that the
components of the wave function are not symmetrically dis-
tributed on the two vectors u and v of Eq. �1�. Thus, the
correlation assumption breaks down and formula �3� does
not apply. However, we can derive a specific formula in this
case, starting back from Eq. �1�. The probabilities that a basis
vector with nb qubits in �1� enters into v and u are, respec-
tively, �=nb /n and 1−�. So we expect the norm of u to be
on average 1−� and the norm of v to be on average �. This
implies that for a homogeneously delocalized vector one has
�Q�→4��1−�� for n→� and � constant, since the presence
of the symmetry makes the second term in Eq. �1� vanish.
Applying this latter formula to the specific case nb=1, we
recover the result derived in �9�. Thus �Q� tends to a value
between 0 and 1 depending on the band, as can be seen
numerically in Fig. 1.

In the case where ���0, the bands become mixed by the
interaction and delocalization takes place inside the whole
Hilbert space. Formula �3� should apply, once modified to
take into account the symmetry of the Hamiltonian �9�. A
straightforward modification of the reasoning leading to Eq.
�3� yields �Q�= N

N−2
�1−� 1

�
��. It turns out that the presence of

this particular symmetry allowed the authors of �10� to make
explicit their formula in a similar case, yielding the same
expression as ours.

Figure 2 shows the entanglement of eigenvectors of
Hamiltonian �9� compared to this formula. The entanglement
goes to 1, but departs from the formula at some values of the
IPR �. The inset illustrates that this discrepancy corresponds
to a breakdown of the hypothesis �Cxx�= �Cxy�, because of
correlations. These correlations are probably due to the per-
turbative regime where delocalization takes place on a
strongly correlated subset of states. Figure 2 shows that if
these correlations are destroyed by random permutations of
the components, the results are in perfect agreement with the
theory, even though the distribution of the component ampli-
tudes is left unchanged. This confirms that Eq. �3� can be
applied if correlations are weak between the vector compo-
nents, whatever their distribution.

In the case of localization on adjacent basis vectors, for-
mula �7� can be compared to wave functions of electrons in
the regime of Anderson localization. Indeed, one-
dimensional disordered Anderson model is known to display
localized eigenstates for any strength of disorder. This type
of localization is a one-body phenomenon, but it has been
shown that it can be efficiently simulated on an n-qubit quan-
tum computer, � describing the particle in the position rep-
resentation �14�. The localization of the particle takes place
on a certain number of adjacent computational basis vectors,
and the entanglement of the quantum state is related to the
entanglement produced by the quantum algorithm. The wave
functions of the system are known to have an envelope of the
form exp�−x / l� where l is the localization length. For
N-dimensional CUE vectors with such an exponential enve-
lope, we checked that �Q� is in excellent agreement with Eq.
�7� with �= l and M =2� �stars in the inset of Fig. 3�. To test
the formula on actual wave functions of the Anderson model,
we consider a one-dimensional �1D� chain of vertices with
nearest-neighbor coupling and randomly distributed on-site
disorder, described by the Hamiltonian H0+V. Here H0 is a
diagonal operator whose elements �i are Gaussian random
variables with variance w2 and V is a tridiagonal matrix with

�Nb/ξ�−1

n
2
�Q

�
4n

b
(n
−n

b
)

0.30.20.10

1

0.8

0.6

0.4

0.2

0

FIG. 1. �Color online� Scaled entanglement with respect to the
reduced localization length �Nb /��−1 with Nb= � n

nb
�. The blue thick

solid curves correspond to the second band �for n=11−20�, the red
thin dashed curves to the third band �for n=11−20�, the green thin
dotted curves to the fourth band �for n=13,15,17�, the black thin
solid curves to the fifth band �for n=10,11,13,15�, the yellow thick
dashed curve to the sixth band �for n=12�, and the violet thick
dotted curve to the seventh band �for n=14�.
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FIG. 2. �Color online� Scaled mean MWE �Q��N−2� /N of Eq.
�9� vs IPR for �=�0, n=10 �blue circles� and n=11 �green squares�.
Average is over N /16 central eigenstates and 100–200 disorder re-
alizations. Red solid line is the theory, and stars are the data for n
=10 with random shuffling of components. Inset: scaled correlator
�N /2��N /2−1��Cxx� with same parameters; red line is the result
when �Cxx�= �Cxy�.
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nonzero elements only on the first diagonals, equal to the
coupling strength, set to 1. For this system, �¯� therefore
means averaging over the diagonal random values. Figure 3
displays �Q� calculated numerically for eigenvectors of this
system, as a function of the number n of qubits for various
strengths of the disorder w. The expected decrease as C /n is
perfectly reproduced for large enough values of n. The inset
shows the value of the constant C compared to the theory
�7�, as a function of �. The deviation from Eq. �7�, in par-
ticular the saturation for large �, can be understood by look-
ing at the structure of eigenvectors in Anderson model: when
there is no disorder �w=0� the eigenvalues are Ek

=2 cos 2��k and eigenvectors are plane waves with fre-
quency �k. For weak disorder eigenvectors are exponentially
localized with localization length � but still oscillate at fre-
quencies distributed as a Lorentzian of width 1/� around �k.
We chose eigenvectors with energy Ek�0 ��k�1/4�, yield-
ing rapid oscillations of period 4 which strongly decrease
entanglement. It is easy to adapt the analysis leading to Eq.
�7� for � chosen as, e.g., a vector with � j =cos �j /2, c+1
� j�c+M, and zero elsewhere. For instance, for M =2r0,
r0	n, we get �averaging over c�

�Q� = 26

9
−

4

M
−

8�3r0 + 1�
9M2 −

4�M2 − 4�
3M2n �1

n
. �10�

Asymptotically n�Q� converges to a constant independent of
�=M /2. The inset of Fig. 3 shows that this theory captures
the behavior of the numerical �Q�, although the saturation
constant is different.

Let us now add to this system pN links between randomly
chosen vertices. This additional long-range interaction be-
tween few vertices turns the system into a quantum small-
world network. Such systems can be efficiently simulated on
a quantum computer and display a localization-delocal-
ization transition for fixed w when p is increased �15�. Figure
4 shows that this transition can be probed through the en-
tanglement of the system. Indeed, for small p all eigenstates
are exponentially localized; �Q� is given by Eq. �7� and de-
creases asymptotically as 1/n; when p is increased, the de-
localization transition takes place and �Q� is now given by
Eq. �3�: for large n, it saturates at 1− �1/��.

In conclusion, we have shown that in localized random
states the mean MWE can be directly related to the IPR �.
Entanglement properties are very different if the localization
is on adjacent basis vectors or not. Comparison with physical
systems shows that global entanglement properties are repro-
duced, although some discrepancies show that they are much
more sensitive than, e.g., level statistics to the details of the
system.
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