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• Motivations 

– Composites (and others) are inhomogeneous/aperiodic materials

– Inhomogeneities affect structural strength

Stochastic multi-scale simulations
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• Step 1: Generate a synthetic data base of SVE responses 

Stochastic multi-scale simulations
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• Micro-scale

– Random grain orientation

• Can be measured from 

XRD

– Grain Material 

• Anisotropic tensor ℂm𝑖

• Same but for the 

orientation in each grain 𝜔𝑖

Case of linear elastic material: Polycrystalline Si
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• Generation of random Stochastic 

Volume Elements (SVEs) 

– Extraction of SVEs 𝜔𝑗 =∪𝑖 𝜔𝑖

• Large Voronoi tessellations

• Window technic: SVEs are separated by 

vector 𝜏

• Each SVE 𝜔𝑗 has several grains 𝜔𝑖 of 

different orientations

– Extraction of homogenised properties

• For each SVE 𝜔𝑗, we have a 

homogenised material tensor ℂ𝑀
𝑗

Case of linear elastic material: Polycrystalline Si
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• Step 2: Generate random field of meso-scale properties 

Stochastic multi-scale simulations
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• Meso-scale random field

– Of homogenised material tensor: ℂ𝑀 Ω

• Extract probability distribution &

• Spatial correlation

Case of linear elastic material: Polycrystalline Si
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• Step 3: Solve macro-scale stochastic finite elements 

Stochastic multi-scale simulations
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• Meso-Macro upscaling: SFEM

– Discretisation of random field of material 

tensor: ℂM Ω

• And generation of realisations

– Discretisation into finite-elements

• Size smaller than correlation length

• Allows spatial correlation to be accounted for

Case of linear elastic material: Polycrystalline Si
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• Meso-Macro upscaling: Property of interest

– Eigen-mode of MEMS resonator

Case of linear elastic material: Polycrystalline Si
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• Step 3: Solve macro-scale stochastic finite elements 

Stochastic multi-scale simulations
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• Input / output definition

– Input:

• Strain (history): 𝐅M

• Geometrical parameters: 𝝋m

• Material parameters: 𝜸m

– Output:

• Stress (history): 𝐏M

• History dependent behaviour

– 𝐅M − 𝐏M is not a bijection

– History should be tracked

• Typical material model

• 𝒁 are the internal/state variables

• In case of failure size objectivity is loss

– 𝐅M − 𝐏M relation depends on the SVE size

• Need for another size objective value

Difficulties in formulating the meso-scale surrogate
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• Challenge: meso-scale surrogate model for complex material systems  

Stochastic multi-scale simulations
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• Micro-mechanical models

– General for a micro-structure kind

• Geometrical parameters: 𝝋m

• Material parameters: 𝜸m

– Based on thermodynamic consistency

• Possesses extrapolation capabilities

– Delicate identification

• Neural networks

– Theoretically generic

• Geometrical parameters: 𝝋m

• Material parameters: 𝜸m

– No extrapolation capabilities

• Requires extensive data

• Deep material networks

– Based on thermodynamic consistency

• Possesses extrapolation capabilities

– Fixed micro-structure?

Meso-scale surrogate model for complex material systems
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• Micro-mechanical models

– General for a micro-structure kind

• Strain (history): 𝐅M
• Geometrical parameters: 𝝋m

• Material parameters: 𝜸m

– Based on thermodynamic consistency

– Possesses extrapolation capabilities

• Some works identifying (stochastic) parameters from SVE simulations

– Based on a macro-scale model (including phase-field)
• Yi, Chen, To, McVeigh, Liu (2008). Statistical volume element method for predicting micro-structure-

constitutive property relations. CMAME

• Hun, Guilleminot, Yvonnet, Bornert (2019). Stochastic multiscale modeling of crack propagation in random 

heterogeneous media. IJNME

– Based on Reduced-Order-Model
• Fish, Wu (2011). A nonintrusive stochastic multiscale solver. IJNME

– Based on micro-mechanical Mean-Field Homogenisation (MFH)
• Wu, Nguyen, Adam, Noels (2019), An inverse micro-mechanical analysis toward the stochastic 

homogenization of nonlinear random composites. CMAME

• Calleja, Wu, Nguyen, Noels (Revised) A micromechanical Mean-Field Homogenization surrogate for the 

stochastic multiscale analysis of composite materials failure. IJNME

Meso-scale surrogate model for complex material systems
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• Non-linear Mean-Field-Homogenisation (MFH)

– Principle 

• Consider an embedded inclusion

• Apply constitutive laws on the average phase fields

– Linear composites 

– Non-linear composites

Non-linear stochastic Mean-Field Homogenisation
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• MFH

– Based on an embedded inclusion

– How to account for stochastic effects?

• Stochastic MFH

– Infer MFH equivalent properties distribution

Non-linear stochastic Mean-Field Homogenisation
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• MFH

– Based on an embedded inclusion

– How to account for stochastic effects?

• Stochastic MFH

– Infer MFH equivalent properties distribution

Non-linear stochastic Mean-Field Homogenisation
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• Material model

– Pressure dependent elastic-plastic finite strain model

Generation of SVE responses
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• Material model

– Pressure dependent elastic-plastic finite strain model

– (Nonlocal) damaging process

• Triaxiality-dependent failure surface

• Damage evolution

Generation of SVE responses
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• Responses set

– Stress-strain responses

– Address loss of size objectivity? 

Generation of SVE responses

10 July 2023 NPU 2023 28

0

0.5

1
𝐷



• Responses set

– Stress-strain responses

– Address loss of size objectivity: 

• Fracture energy beyond strain softening onset

Generation of SVE responses
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• MFH

– Based on an embedded inclusion

– How to account for stochastic effects?

• Stochastic MFH

– Infer MFH equivalent properties distribution

Non-linear stochastic Mean-Field Homogenisation

10 July 2023 NPU 2023 30

Stochastic MFH with 

equivalent properties

෨ℂ0

෨ℂI

෨𝜃

𝑎

෨𝑏

µ-structure 

model

µ-structure 

simulations

Synthetic 

dataset

휀M

𝜎M

Inference of MFH 

equivalent properties



• Determination of MFH equivalent properties

– Linear part

– Non-linear part

Non-linear stochastic Mean-Field Homogenisation
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• Determination of MFH equivalent properties

– Softening part

• Identified to recover the right energy release rate

• For a given macro-scale nonlocal length 𝑙𝑐

Non-linear stochastic Mean-Field Homogenisation
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• Verification on some SVEs

– Identification results

• SVE matrix hardening 

laws

• SVE matrix post 

softening damage law

Non-linear stochastic Mean-Field Homogenisation
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• Verification on some SVEs

– Identification results

• SVE matrix hardening 

laws

• SVE matrix post 

softening damage law

– Stress-strain responses

Non-linear stochastic Mean-Field Homogenisation
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• Generator of MFH parameters

– Using data-driven sampling method

• Soize, Ghanem (2016) Data-driven probability concentration and sampling on manifold. JCP

Non-linear stochastic Mean-Field Homogenisation

10 July 2023 NPU 2023 35

ℂI



• Verification on ply tensile tests

– Discretizations

Non-linear stochastic Mean-Field Homogenisation
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• Verification on ply tensile tests

– Stochastic Full-field simulations vs. Stochastic MF-ROM multi-scale simulations

Non-linear stochastic Mean-Field Homogenisation
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• Comparison with experimental test

– Transverse compression test [J. Chevalier and P.P. Camanho and F. Lani and T. Pardoen, CS 2019]

Non-linear stochastic Mean-Field Homogenisation
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• Comparison with experimental test

– Transverse compression test [J. Chevalier and P.P. Camanho and F. Lani and T. Pardoen, CS 2019]

Non-linear stochastic Mean-Field Homogenisation
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• Micro-mechanical models

– General for a micro-structure kind

• Strain (history): 𝐅M
• Geometrical parameters: 𝝋m

• Material parameters: 𝜸m

– Based on thermodynamic consistency

– Possesses extrapolation capabilities

• Limitations

– Composite should be represented by an equivalent inclusion

• Possibility to extend to other geometries

– Needs to set up an identification process

• Automatise with Bayesian inference

Meso-scale surrogate model for complex material systems
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• Neural networks

– Theoretically generic

• Geometrical parameters: 𝝋m

• Material parameters: 𝜸m

– No extrapolation capabilities

• Requires extensive data

• Field of growing interest (non-exhaustive list)
– History-dependent material behaviours

• Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (2019). Deep learning predicts path-dependent plasticity. 

PNAS

• Ghavamian, Simone (2019). Accelerating multiscale finite element simulations of history-dependent materials 

using a recurrent neural network. CMAME

• Bonatti, Mohr (2021) On the importance of self-consistency in recurrent neural network models representing 

elasto-plastic solids, JMPS

– Surrogates for multi-scale simulations

• Wu, Nguyen, Kilingar, Noels (2020). A recurrent neural network accelerated multi-scale model for elasto-plastic 

heterogeneous materials subjected to random cyclic and non-proportional loading paths. CMAME.

• Masi, Stefanou (2022) Multiscale modeling of inelastic materials with Thermodynamics-based Artificial Neural 

Networks (TANN), CMAME

– Combined with PCA

• Wu, Noels (2022) Recurrent Neural Networks (RNNs) with dimensionality reduction and break down in 

computational mechanics; application to multi-scale localization step, CMAME

– First step to stochastic-multi-scale

• Lu, Yvonnet, Papadopoulos, Kalogeris, Papadopoulos (2021). A stochastic FE2 data-driven method for 

nonlinear multiscale modeling. Materials

Meso-scale surrogate model for complex material systems

10 July 2023 NPU 2023 41



• Definition of the surrogate model

– Artificial neuron

• Non-linear function on 𝑛0 inputs 𝑢𝑘

• Requires evaluation of weights 𝑤𝑘

• Requires definition of activation function 𝑓

– Activation functions 𝑓

– Feed-Forward Neuron Network

• Simplest architecture

• Layers of neurons

– Input layer

– 𝑁 − 1 hidden layers 

– Output layers

• Mapping ℜ𝑛0 → ℜ𝑛𝑁: 𝒗 = 𝒈(𝒖)

Artificial Neural Network
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• Training

– Evaluate 

• The weights 𝑤𝑘𝑗
𝑖 , 𝑘 = 1. . 𝑛𝑖−1, 𝑗 = 1. . 𝑛𝑖

• The bias 𝑤0
𝑖

• Minimise error prediction 𝒗 vs. real 𝒗(𝑝)

• Requires an optimiser: Stochastic Gradient Descent 

– Training data 

• Input 𝒖(𝑝) & Output 𝒗(𝑝)

• Testing

– Use new data 

• Input 𝒖(𝑝)& Output 𝒗(𝑝)

• Verify prediction 𝒗 vs. real 𝒗(𝑝)

Artificial Neural Network

10 July 2023 NPU 2023 43

𝑢1

𝑢𝑛0

𝑣1

𝑣𝑛𝑁

𝑛1 𝑛𝑁−1

𝑛𝑖

𝒘𝟏 𝒘𝑵

𝑛0 𝑛𝑁

𝒘0
1 𝒘0

𝑁−1

𝒘0
𝑁

𝐿MSE 𝐖 =
1

𝑛


𝑖

𝑛

𝒗𝑖 𝐖 − 𝒗𝑖
𝑝

2

𝚫𝐖 = −ℱ
𝜕𝐿𝑖 𝐖

𝜕𝐖
,

𝜕𝐿𝑖 𝐖

𝜕𝐖

2

,

batch size, …



• Elasto-plastic material behaviour

– No bijective strain-stress relation

• Feed-forward NNW cannot be used

• History should be accounted for 

• Recurrent neural network

– Allows a history dependent relation 

• Input 𝒖𝒕

• Output 𝒗𝒕 = 𝒈 𝒖𝒕, 𝒉𝒕−𝟏

• Internal variables 𝒉𝒕 = 𝒈 𝒖𝒕, 𝒉𝒕−𝟏

– Weights matrices 𝐔,𝐖,𝐕

• Trained using sequences

– Inputs  𝒖𝒕−𝒏
(𝒑)

, …, 𝒖𝒕
(𝒑)

– Output 𝒗𝒕−𝒏
(𝒑)

, …, 𝒗𝒕
(𝒑)

History dependency
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• Recurrent neural network design

– 1 Gated Recurrent Unit (GRU)

• Reset gate: select past information 

to be forgotten 

• Update gate: select past information 

to be passed along 

• Need to define number of hidden 

variables 𝒉𝒕

– 2 feed-forward NNWs 

• NNWI to treat inputs 𝒖𝒕

• NNWO to produce outputs 𝒗𝒕

– Input and  Output 

• 𝒖𝒕 : homogenised GL strain 𝐄M (symmetric)

• 𝒗𝒕 : homogenised 2nd PK stress  𝐒M (symmetric)

History dependency
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• Data generation

– Elasto-plastic composite RVE

– Training stage

• Should cover full range of possible loading histories

• Use random walking strategy (thousands)

• Completed with random cyclic loading (tens)

• Bounded by a sphere of 10% deformation

History dependency
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• Testing process (new data)

– On random walk

History dependency
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• Testing process (new data)

– On cyclic loading

History dependency
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• Multiscale simulation

– Elasto-plastic composite RVE

– Comparison FE2 vs. RNN-surrogate

– Training data

• Bounded at 10% deformation

ANN as a mesoscale surrogate model 
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• Multiscale simulation

– Stress-strain distribution at point A

– Strain within the 10% training range

ANN as a mesoscale surrogate model 
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• Only homogenised output is predicted

– On random walk

• Quid of local fields?

– This is an advantage of multiscale methods

– Useful to predict failure, fatigue etc.

– Can we get it back at low cost?

Localisation step
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• Also build a surrogate model of the internal variables

– Problem: The size of 𝒁M is large

• 𝒁M of size 𝑑 the number of Gauss points of the RVE × internal variables by Gauss point

overwhelming cost 

Localisation step
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• Optimise the method: reduce the size of the internal variables

– Principal Component Analysis (PCA) applied on 𝒁M to reduce the output of RNN

• Construct matrix                                                      from 𝑛 observations (1% from all data)            

• Extract 𝑛 ordered eigenvalues Λ𝑖 and eigen vector 𝑣𝑖 of 𝐙M
𝑇 𝐙M

• Build reduced basis                                            and reduced data                         of size  𝑝 < 𝑑

• Reconstruction 

• But not enough
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Localisation step
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• Dimensionality reduction & break down

– To further reduce the output dimension of RNN

• The surrogate modelling is carried out by a few small RNNs, instead of one big RNN

• The high dimension output is divided into 𝑄 groups, and each RNN is used to reproduce only 

a part of output

– PCA reduces  𝒁M to 180 outputs and we use 𝑄=6

Input 𝐄M
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Normaliz
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• Evaluation of equivalent plastic strain ҧ휀pl: Random loading (testing data)

Localisation step

10 July 2023 NPU 2023 60

ҧ휀pl–RNN 

3.78

1.89

0.00

ҧ휀pl –FEM 

3.8

1.9

0.0

Purple loading –

step 500



• Evaluation of equivalent plastic strain ҧ휀pl: Cyclic loading (testing data)

Localisation step
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• Study of PA lattices

– Input:

• Strain (history): 𝐅M

• Geometrical parameters: 𝝋m

• Material parameters: 𝜸m

– Output:

• Stress (history): 𝐏M

• Material model

– Viscoelastic-viscoplastic finite strain model

Geometrical parameters effect
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• Input / output Generation

– Input:

• Random strain (history): 𝐅M

• Random geometrical 

parameters: 𝝋m

– Output:

• Stress (history): 𝐏M

Geometrical parameters effect
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• Lattice cell 

– Test on new cells of random volume fraction for new cyclic paths

(per unit volume of polymer)

Geometrical parameters effect
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• Neural networks can account for

– Strain (history): 𝐅M
– Geometrical parameters: 𝝋m

– Material parameters: 𝜸m

• However, this requires

– Extensive training data

• Interpolation of neural network trained for different 

inclusions volume fraction 𝑓 is considered to reduced

the number of training data 

[Lu, Yvonnet, Papadopoulos, Kalogeris, Papadopoulos (2021). A 

stochastic FE2 data-driven method for nonlinear multiscale 

modeling. Materials]

– Identified geometrical features

• Quid for distribution effect?

• Possibility is to extract information from image 

analysis 

• e.g. using CNN 

[Rao, C., & Liu, Y. (2020). Three-dimensional convolutional neural 

network (3D-CNN) for heterogeneous material homogenization. 

CMS]

Meso-scale surrogate model for complex material systems
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• Deep material networks

– Based on thermodynamic consistency

– Possesses extrapolation capabilities in

• Strain (history): 𝐅M

• Material parameters: 𝜸m

• Emerging methodology

– Seminal work

• Liu, Wu, Koishi, (2019). A deep material network for multiscale topology learning and accelerated 

nonlinear modeling of heterogeneous materials. CMAME

– Reformulation and use as surrogate for arbitrary material law

• Gajek, Schneider, Böhlke, (2021). An FE–DMN method for the multiscale analysis of short fiber

reinforced plastic components. CMAME

• Nguyen, Noels, L. (2022). Interaction-based material network: A general framework for (porous) 

microstructured materials. CMAME

– Interpolate some geometrical features of micro-structure 𝝋m

• Huang, Liu, Wu, Chen, Wei (2022). Microstructure-guided deep material network for rapid nonlinear 

material modeling and uncertainty quantification. CMAME

Meso-scale surrogate model for complex material systems
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• Architecture of mechanistic building blocks

– Example for a 2-phase material

Deep Material Networks with laminate building blocks
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𝐏𝑝 𝑡 =𝐏𝑝 𝐅𝑖(𝑡), 𝒁(𝜏 ≤ 𝑡)

Homogenised behaviour

𝐏𝐌 𝑡 =𝐏 𝐅M(𝑡), 𝒁(𝜏 ≤ 𝑡)
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9 𝑊𝑖 𝐏𝑖 𝑡

𝐅M 𝑡 =∑𝑖=0
9 𝑊𝑖 𝐅𝑖 𝑡

Weight of node i 

(parameter)

Z. Liu, C. Wu, M. Koishi, A deep material network for 

multiscale topology learning and accelerated nonlinear 

modeling of heterogeneous materials
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• Alternative to laminate (e.g. for porous material)

• Mechanism 𝑗 = 0. .𝑀 − 1 of interaction  𝒱𝑗

– Homogenised deformation gradient 

• Construction of a strain fluctuation field

Deep Material Networks from the interactions viewpoint
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• Alternative to laminate (e.g. for porous material)

• Mechanism 𝑗 = 0. .𝑀 − 1 of interaction  𝒱𝑗

– Homogenised deformation gradient 

• Construction of a strain fluctuation field

– Constraints from strain averaging

•

– Weak form from Hill-Mandel 

•

Deep Material Networks from the interactions viewpoint
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• Offline stage on a 𝑝-phase RVE

– Topological parameters 𝛘

• Nodal weight:

• Direction of interaction 𝒱𝑗:

• Interaction weight:

– Using elastic data

• Random properties on RVE

• Cost functions to minimise

• By « stochastic gradient descent (SGD) » algorithm

Deep Material Networks from the interactions viewpoint
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• Offline stage on a 𝑝-phase RVE

– Topological parameters 𝛘

• Nodal weight:

• Direction of interaction 𝒱𝑗:

• Interaction weight:

– Using elastic data

• Random properties on RVE

• Cost functions to minimise

– Using non-linear response

• Random loading on RVE (strain sequence 𝐅M𝑠)

• Compare stress history 𝐏M 𝐅M𝑠 and quantity of interest 𝑍 𝐅M𝑠 (e.g. porosity)

• Cost function

• By « stochastic gradient descent (SGD) » algorithm

Deep Material Networks from the interactions viewpoint
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𝑵𝑗 , 𝑗 = 0. . 7
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ℂM 𝜸m

10 July 2023 NPU 2023 86

𝐿( ℂM, ℂM(𝛘)) =
1

𝑛


𝑠=1

𝑛
‖ ℂM(𝜸m𝑠) − ℂM(𝛘|𝜸m𝑠)‖

‖ ℂM(𝜸m𝑠)‖



• Online stage on a porous material

– Properties

• Elasto-plastic matrix

• Small strain

– Non-linear training

– Uniaxial tension

Deep Material Networks from the interactions viewpoint

Stress-strain Porosity
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• Online stage on a porous material

– Properties

• Elasto-plastic matrix

• Small strain

– Extrapolation capabilities

• Non-linear training with material parameters 𝛾m1

• On-line simulation with material parameters 𝛾m2

– Random loading

Deep Material Networks from the interactions viewpoint

Stress Porosity
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• Multiscale simulation

– Stress-strain distribution at point A

– For 25 material nodes

– Non-linear training

Deep Material Networks from the interactions viewpoint
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• Deep material networks can account for

– Strain (history): 𝐅M
– Material parameters: 𝜸m

• Because of thermodynamic consistency

– Possesses extrapolation capabilities

Reduced training dataset

• However, interactions are defined for

– Geometrical parameters: 𝝋m

– For an identified geometrical features

• Interpolation of DMNs for different 

inclusions volume fraction 𝑓 and fibre 

orientation distribution tensor 

[Huang, T., Liu, A., Wu, C.T., Chen, Wei (2022). 

Microstructure-guided deep material network for rapid 

nonlinear material modeling and uncertainty 

quantification, CMAME]

– Quid for distribution effect?

• Possibility is to extract information from 

image analysis ?

Meso-scale surrogate model for complex material systems
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• Micro-mechanical models

– General for a micro-structure kind

• Geometrical parameters: 𝝋m

• Material parameters: 𝜸m

– Based on thermodynamic consistency

• Possesses extrapolation capabilities

– Delicate identification

• Neural networks

– Theoretically generic

• Geometrical parameters: 𝝋m

• Material parameters: 𝜸m

– No extrapolation capabilities

• Requires extensive data

• Deep material networks

– Based on thermodynamic consistency

• Possesses extrapolation capabilities

– Fixed micro-structure?

Conclusions
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