Abstract Submission

T4 - The dynamical world of minerals Spectroscopy of Earth materials from the crust to core

IMA2022-1596

Crystal-chemistry, structure, Raman and infrared behavior of vesuvianite from Oravița

Cristina Sava Ghinet^{* 1}, Stefan Marincea¹, Frederic Hatert², Fabrice Dal Bo² ¹Department INI, Geological Institute of Romania, Bucharest, Romania, ²Laboratoire de Minéralogie, Université de Liège, Liège, Belgium

What is your preferred presentation method?: Poster

Did you deposit data related to your abstract in an open-access archive?: No

Please designate the presenter/contributor author(s)?: Sava Ghinet Cristina

Publication Policy & Data: Yes, I agree

Abstract Content: As part of the efforts to characterize vesuvianite from the high-temperature skarns in Romania, vesuvianite from Oraviţa (Aninei Mountains, Banat, Romania) was characterized from crystal-chemical and structural points of view, using EMPA, X-ray based structural refinement, infrared and polarized Raman spectrometry. The analyzed vesuvianite occurs in the outer zone of a gehlenite-, and monticellite-bearing proximal skarn, as crystals of up to 4 cm across. The hosting skarn is developed on Crişenilor Brook, near the contact of a dioritic body of Upper Cretaceous age with limestones and marls of Mesozoic age. The crystal-chemical formula of the analyzed sample, normalized on the basis of 56 cations and 76(O,OH,F,CI) is:

 $(Ca_{18.864}K_{0.006}Na_{0.028})(Mg_{2.263}Fe^{2+}_{1.165}Mn_{0.020})Al_{8.000}(Al_{0.396}Ti_{0.006}Si_{0.598}O_4)_{10}(Si_{7.222}O_7)_4(OH_{6.900}F_{0.214}Cl_{0.016})$. The refinement was successfully performed with a final agreement index $R_1 = 0.0271$, in the "classical" space group *P*4/*nnc*. The cell parameters are a = 15.6042(2) Å and c = 11.8345(1) Å. The multiplicity of the bands assumable to the (Al,Si)O₄ structural groups in both the Raman and IR spectra seems $(1n_3 + 1n_1 + 1n_4 + 1n_2)$, being consistent with an ideal T_d punctual symmetry of the orthosilicate anion. The positions of the four bands in the polarized Raman spectrum are at: 937 (n₃), 859 (n₃), 486 (n₄) and 366 (n₂) cm⁻¹, respectively (962, 870, 488 and 372 cm⁻¹ in the infrared spectra). The multiplicity and relative position of the diorthosilicate "lateral" groups is identical to those recorded in gehlenite. The infrared bands at 372 cm⁻¹ and 318 cm⁻¹ (recorded at 366 and 312 cm⁻¹ in the Raman spectrum), can be attributed to O-Ca-O vibrations.

Disclosure of Interest: None Declared