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Abstract: Escherichia coli K1 is a leading cause of neonatal meningitis. The asymptomatic carriage of
these strains in the maternal intestinal microbiota constitutes a risk of vertical transmission to the
infant at birth. The aim of this work was to evaluate the efficacy of phage therapy against E. coli
K1 in an intestinal environment and its impact on the intestinal microbiota. For this purpose, three
independent experiments were conducted on the SHIME® system, the first one with only the phage
vB_EcoP_K1_ULINTec4, the second experiment with only E. coli K1 and the last experiment with
both E. coli K1 and the phage. Microbiota monitoring was performed using metagenetics, qPCR,
SCFA analysis and the induction of AhR. The results showed that phage vB_EcoP_K1_ULINTec4,
inoculated alone, was progressively cleared by the system and replicates in the presence of its host.
E. coli K1 persisted in the microbiota but decreased in the presence of the phage. The impact on the
microbiota was revealed to be donor dependent, and the bacterial populations were not dramatically
affected by vB_K1_ULINTec4, either alone or with its host. In conclusion, these experiments showed
that the phage was able to infect the E. coli K1 in the system but did not completely eliminate the
bacterial load.

Keywords: phage therapy; bacteriophage; Escherichia coli K1; SHIME®; intestinal microbiota;
Galleria mellonella

1. Introduction

Escherichia coli is, with Group B streptococci (GBS), a leading cause of neonatal sepsis
and meningitis worldwide. These infections can occur before or after 72 h of life, which
differentiates between early-onset and late-onset. In pre-term newborns, E. coli is the
most commonly isolated bacteria in neonatal meningitis cases [1–3]. The associated risks
factors include low or very low birth weight, degree of prematurity, ruptured membranes
and maternal peripartum infection [3–5]. Despite the use of effective antibiotics, neonatal
meningitis has a mortality of 10% in developed countries and 40–50% in developing coun-
tries. Among the survivors, 50% develop devastating neurological sequelae and permanent
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disabilities [5–7]. The K1 capsular type is predominant in E. coli strains causing meningitis.
This important virulence factor allows the bacteria to survive and multiply in and outside
the gastrointestinal tract. In addition to being a major cause of meningitis and sepsis in new-
borns, E. coli K1 can cause urinary tract infections in humans and is also involved in several
animal diseases, including avian colibacillosis [8,9]. Beta-lactam antibiotics are usually
used in the empirical treatment of E. coli neonatal meningitis (ECNM), in combination with
gentamicin [10]. However, antibiotic resistance due to the emergence of strains producing
extended-spectrum beta-lactamase is becoming a concern, indicating the need to develop
alternative treatments [10–12]. The pathogenesis of E. coli K1 associated meningitis is not
fully understood. The early steps can include a gastro-intestinal colonization, followed by
a bacterial translocation from the small intestine and the colon into the systemic circula-
tion. The bacteriemia can lead to sepsis and/or meningitis by crossing the blood–brain
barrier (BBB) [13,14]. Various factors are involved in the pathogenesis. The expression of
a K1 capsule allows the passage and the intracellular survival of E. coli in human brain
microvascular endothelial cells’ (HBMEC) vacuoles by modulating their maturation and
by preventing fusion with lyzosomes [15,16]. In neonatal meningitis, this capsular type
was linked to several specific serotypes: O18:K1:H7, O1:K1, O7:K1, O16:K1, O83:K1 and
O45:K1:H7 [7,17]. Virulence factors OmpA and type 1 fimbriae have been associated with
the attachment to the BBB, and ibeA and CNF1 with the bacterial invasion [15]. Several
studies have focused on vaccinal prevention of ECNM [18,19]. It might be tempting to
develop a vaccine targeting the K1 capsule but its structure, composed of α2,8-linked
polysialic acid, is very similar to that of the human neural cell adhesion molecule, making
its application problematic [20].

A perinatal vertical transmission from mother to infant is highly suspected to be an
important first step in the onset of ECNM. Indeed, the presence of this bacteria in the
neonate cerebrospinal fluid and the feces of both mother and infant is an indication that the
maternal microbiota is a reservoir of ECNM strains. Extraintestinal E. coli, including E. coli
K1, are frequently found as commensal bacteria in the gut microbiota of pregnant women
and other healthy individuals. However, their ability to colonize other environments, like
the vagina of pregnant women, and subsequently the gastrointestinal tract of newborns,
are early steps for the development of ECNM. A rat model was able to reproduce some of
the key features related to pathogenesis [13,14,21–25]. After the colonization of the gastroin-
testinal tract of newborn pups with E. coli K1, the colonizing bacteria could translocate from
the lumen of the gastrointestinal tract to the bloodstream and reach the central nervous
system [26]. This model has also been used to assess potential treatments and preven-
tion solutions [27,28]. The SHIME® (Simulator of Human Intestinal Microbial Ecosystem)
(Prodigest, Ghent, Belgium) is a complex and dynamic in vitro gastro-intestinal model
useful for long-term experiments. It allows the study of the behavior and interactions of
bacteria, phages and gut microbiota within the digestive system. The SHIME® model has
shown promising results in several studies, highlighting its potential as a valuable tool in
phage research [29–32].

Phage therapy is a promising alternative to antibiotics and has already been evaluated
to treat ECNM through systemic delivery [33–35]. The efficacy of vB_EcoP_K1_ULINTec4
(K1_ULINTec4), a K1-dependent phage targeting E. coli K1, showed an improvement in
its survival on E. coli-infected Galleria mellonella larvae [33]. In this study, we investigated
the potential of phage therapy and the impact of this treatment on bacterial populations
and productions in the prevention of neonatal meningitis by specifically targeting E. coli
K1 in the gut microbiota of pregnant women, using the SHIME® model. Three different
experimental conditions were designed for assessment: the persistence and the effects of
the phage alone, the effect of E. coli K1 alone and the dynamics and effects of the phage
treatment in the presence of E. coli K1 on the intestinal microbiota.
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2. Results
2.1. Determination of the Optimal Phage Concentration in the Galleria mellonella Model

The preliminary experiment allowed the determination of the optimal dose of the
inoculation of E. coli K1 (C5) in the model, enabling a lethality between 90 and 100%. This
concentration, 106 CFU/10 µL, was used for the main experiment.

The survival curves of the main experiment showed that infected phage-treated
larvae had significantly higher survival rates than infected, untreated larvae. No significant
differences were identified between the different treatment multiplicities of infection (MOIs).
Treated larvae had significantly lower survival rates than uninfected controls (PBS + PBS
and PBS + K1_ULINTec4 MOI 100). The survival curves are presented in Figure 1. Based on
these results, an MOI of 1 was chosen for the experiments conducted in the SHIME model.
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Figure 1. Survival curves of the main experiment assessing different MOIs of the phage K1_ULINTec4
in the G. mellonella model. C5: E. coli K1 strain C5, PBS: phosphate-buffered saline. Statistical
significance is indicated as p < 0.05 (*).

2.2. Triple-SHIME Experiments

The results related to the concentration of K1_ULINTec4 and E. coli K1 that were added
to the SHIME systems of the three different donors were analyzed together. However, due
to the large inter-individual variability between the microbiota of the donors, results related
to intestinal microbiota (metagenetics, qPCR, SCFA and AhR) were analyzed separately,
except for alpha diversity results.

2.2.1. Persistence and Evolution of the Concentration of K1_ULINTec4

The elimination of active K1_ULINTec4 from system 1 (inoculated with phage alone)
was close to the theoretical calculated elimination of inert molecules. This reflects a good
stability of the phage in the system, for several days at 37 ◦C and despite pH variations
between the proximal and distal colons. However, prolonged phage persistence above the
limit of quantification was detected for donor 2 at the end of the run (Figure S1). In system
3 (inoculated with both bacteria and phage), the phage concentration followed the same
trend at the beginning of the run, and then reached a stabilization at around 104 PFU/mL.
At day 46, this difference in phage persistence between systems 1 and 3 was significant in
both proximal and distal colons (p = 0.02). The curves representing the evolution of the
theoretical phage concentrations and those measured in systems 1 and 3 are presented in
Figure 2.
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2.2.2. Evolution of E. coli K1 Concentrations

The presence of E. coli K1 was detectable in systems 2 and 3 from day 21, which
corresponds to the first quantifiable sample after the inoculation of C5 performed in both
systems. Then, the bacteria could be quantified each day until the end of the run in
both systems. An increase in concentration was visible on day 28 in the distal colon of
system 2 (p = 0.01) (Figure 3a). On day 35, a significant decrease in concentration was
detected in the proximal colon of system 3. A trend of decreasing was also visible in
the distal colon, although it was not statistically significant (p = 0.0506) (Figure 3b). The
comparison of the relative quantification of systems 2 and 3 revealed no significant differ-
ences (Supplementary Materials Figure S2). Individual values of relative quantification are
presented in the Supplementary Materials, Figures S3 and S4.
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2.2.3. Impact on Pregnant Donors’ Microbiota

The analysis of alpha diversity showed no significant differences in the evolution of bacte-
rial diversity over time in both proximal and distal colons of the three systems (Supplementary
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Materials Table S1). The Shannon diversity indexes varied between 1.18 ± 0.31 and 1.85 ± 0.2
in proximal colons and 1.92 ± 0.55 and 2.53 ± 0.39 in distal colons. The Simpson indexes varied
between 0.53 ± 0.14 and 0.79 ± 0.02 in proximal colons and 0.68 ± 0.17 and 0.87 ± 0.03 in distal
colons The Piélou equitability indexes varied between 0.44 ± 0.08 and 0.62 ± 0.02 in proximal
colons and 0.52 ± 0.14 and 0.67 ± 0.05 in distal colons.

1. Donor 1

The metagenetic analysis of the fecal inoculum at day 0 showed a predominance of Bacillota
and Bacteroidota at the phylum level. The main genera and species represented in terms of relative
abundance were Bacteroides vulgatus, Faecalibacterium prausnitzii, genera of the Lachnospiraceae
family, Agathobacter sp., Subdoligranulum sp., Faecalibacterium sp., Bacteroides uniformis, genera of
the Oscillospirales order, Bacteroides sp. and Alistipes putredinis (Figure 4).
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Figure 4. Relative abundance in bacterial composition (16S rDNA) at the phylum (left) and
genus/species (right) levels in the fecal inoculum of donor 1.

The Beta-diversity of all samples are represented in Figure 5 using non-metric multidi-
mensional scaling. The HOMOVA statistical test showed no significant differences between
groups, either between systems or between days of experiment. A drift of diversity (not
significant) was visible over the days in the distal colon, but not in the proximal colon.

The evolutions of relative abundances of phyla and genera after 14 days of stabiliza-
tion are presented in Figure 6. The two main phyla were still represented by Bacillota and
Bacteroidota, followed by Pseudomonadota. The main genera and species were Enterocloster
clostridioformis, Bacteroides vulgatus, Bacteroides ovatus, Phascolarctobacterium sp. and Bac-
teroides caccae. E. coli was also graphically visible, mainly in the proximal colons of systems
2 and 3 (PC2 and PC3).

The monitoring of several bacterial groups by qPCR allowed variations over time to
be highlighted. The timeline of the experiment, including timepoints T1, T2, T3 and T4, is
described in Section 4.4. In system 1, Bacillota increased until T2 and then decreased at T3
in the proximal colon. In DC1, we observed an increase in Bacillota at T4. For Bacteroidota, a
decrease appeared in PC1 at T2, and an increase was detected in DC1 at the end on the run.
A decrease in Gammaproteobacteria was observed at T4 in DC1. Actinomycetes was decreased
at T2 in both colons and at T4 in DC1. An increase in Escherichia coli appeared in PC1 at T3
and T4. Akkermansia was decreased in both colons at T3.

In system 2, a decrease in Bacillota was observed in PC2 and DC2 at T4 and T3,
respectively. Bacteroidota was first increased at T1 and then decreased at T2 in PC2. In DC2,
an increase was observed at T2. A decrease in Gammaprotebacteria appeared in PC2 and DC2
at T3 and T2, respectively. Conversely, an increase in Actinomycetes was observed in PC2
and DC2 at T3 and T4, respectively. A decrease in E. coli in PC2 at T2 was also significant,
despite the injection of C5 during this period. Akkermansia also showed a decrease at T2,
which was visible until the end of the run.
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In system 3, a decrease in Bacillota appeared at T3 in the proximal colon. Several
significant variations were also demonstrated in both colons for Bacteroidota, with an overall
increase in their relative quantification. A significant decrease was observed for Gammapro-
teobacteria in PC3 at T2 and T3 and for Actinomycetes at T4 for both colons. The species E.
coli showed a significant decrease in its relative quantification in PC3 at T3, and with a
p-value = 0.055 in DC3 at T4. Akkermansia in the proximal colon showed a similar decrease
to the one observed in PC2. The qPCR results are shown in the Supplementary Materials,
Figure S5.

Some variations were observed in the SCFA concentrations and are presented in
Figure 7. In system 1, a significant increase in butyrate at the end of the run and an increase
in propionate at T3 and T4 were observed. Moreover, a decrease in acetate was detected
in PC1 at T4. In system 2, acetate was increased in both colons, at T3 in PC2 and from T1
to T4 in DC2. An increase in butyrate and propionate appeared, respectively, in PC2 and
DC2 at the end of the run. In system 3, a significant increase in propionate was visible from
T2 to T4 in DC3. The same trend was visible in PC3, with no significant results (CTRL-T2:
p = 0.0733, CTRL-T4: p = 0.0759). For butyrate, a decrease at T2 was followed by an increase
at T4 in DC3. In PC3, a trend of increasing was observed at T4 (T2–T4: p = 0.09). Moreover,
a significant decrease in acetate appeared at T4 in PC3. The AhR receptor was progressively
and significantly induced in PC1, PC2, and PC3 and remained stable in the distal colons
(Figure 8).

2. Donor 2

As for donor 1, the metagenetic analysis of the fecal inoculum at day 0 showed a
pre-dominance of Bacillota and Bacteroidota at the phyla level. Pseudomonadota and Ver-
rucomicrobia were also visible, as shown in Figure 9. The main genera and species rep-
resented in terms of relative abundance were Enterocloster clostridioformis, genera from
the Ruminococcacceae family, Citrobacter freundii, Bacteroides ovatus, Ruminoclostridium sp.,
Bacteroides vulgatus, genera from the Christensenellaceae family, Dialister invisus, Alistipes
putredinis and genera from the Lachnospiraceae family.
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The Beta-diversity of all samples are represented in Figure 10 using non-metric multi-
dimensional scaling. The HOMOVA statistical test showed no significant difference be-
tween groups, either between systems or between days of experiment. A drift in diversity
was visible (not significant) over the days between days 14, 21, 25 and 28 and days 35, 42,
49 and 53 in both colons.
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days of experiment (down) in proximal and distal colons of donor 2. D: day.

The evolution of relative abundances of phyla and genera after 14 days of stabili-zation
are presented in Figure 11. The main represented phyla were Bacillota, Bacteroidota and
Pseudomonadota in proximal colons. In distal colons, the third-most-represented phylum
was Verrucomicrobiota. The main genera were Enterocloster clostridioformis, Veillonella atypica,
Bacteroides ovatus, Akkermansia muciniphila and Parabacteroides distasonis. E. coli was also
graphically visible in both PC2 and PC3.

The results of the monitoring of bacterial groups by qPCR showed some variations
(Supplementary Materials Figure S6). In system 1, a significant decrease in Bacilllota
appeared at T3 in DC1. Regarding Gammaproteobacteria, a decrease at T2 was followed by
an increase at T3 and T4 in PC1, and decreases at T3 and T4 in DC1 were observed. A
decrease in Actinomycetes and Akkermansia also appeared in PC1 at T4, and at T3 and T4,
respectively. Conversely, increases in E. coli and Akkermansia were observed at T4 in DC1.

In system 2, a significant drop in Bacillota and Gammaproteobacteria occurred at T3 in
DC2. Conversely, an increase in Gammaproteobacteria in PC2 occurred at T4. Actinomycetes
and E. coli were significantly increased at T4 in DC2. E. coli also increased at T3 and T4 in
PC2. A variation of Akkermansia was observed in DC2, with a decrease at T2 followed by
an increase at T4.

In system 3, a significant decrease in Bacillota occurred at T4 in DC3. Bacteroidota were
decreased at T4 in PC3. A progressive increase occurred for Gammaproteobacteria, from T2
to T4 in PC3. An increase occurred for E. coli in parallel with a decrease in Akkermansia at
T4 in PC3.
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Figure 11. Evolution of relative abundances (16s rDNA) of phylum (a) and genus/species (b) from
day 14 (end of stabilization of the microbiota) to day 53 for donor 2. PC: proximal colon, DC: distal
colon, 1: system 1, 2: system 2, 3: system 3.

In system 1, increases in propionate and butyrate production appeared in both colons at
the end of the run. Moreover, a decrease in acetate was detected at T2 in PC1. In system 2,
acetate production dropped between T2 and T3 in both colons and then increased at T4 in PC2.
The same trend was observed for propionate in PC2. In DC2, propionate increased at T4. In
system 3, we also observed a decrease in acetate at T2, followed by an increase at T4 in DC3 and
an increase in propionate at T4 in both colons. The SCFA productions results are presented in
Figure 12. The AhR receptor was induced in DC1, with an increase at T3 and T4. An increase
was also observed at T2 in DC2 and in both PC3 and DC3 at T4. (Figure 13).
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Figure 13. Induction of the AhR receptor in proximal and distal colons of the three systems of donor
2. PC: proximal colon, DC: distal colon, 1: system 1, 2: system 2, 3: system 3. Statistical significance is
indicated as p < 0.05 (*) and p < 0.01 (**).

3. Donor 3

The metagenetic analysis of the fecal inoculum at day 0 showed a predominance of Bacillota
and Bacteroidota at the phyla level (Figure 14). The main genera/species represented in terms of
relative abundance were genera and species from the Lachnospiraceae family, Faecalibacterium,
Blautia, Bacteroides vulgatus, Ruminococcus, Subdoligranulum variabile, Dialister, Coprococcus eutactus,
genera from the Oscillospirales order and genera from the Christensenellaceae family.
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Figure 14. Relative abundance in bacterial composition (16S rDNA) at the phylum (left) and
genus/species (right) levels in the fecal inoculum of donor 3.

The Beta-diversity of all samples is represented in Figure 15, using non-metric multi-
dimensional scaling. The HOMOVA statistical test showed no significant differences
between groups, either between systems or between days of experiment. A clustering was
visible by system in both colons. A drift in diversity (not significant) was also visible at
days 49 and 53 in the proximal colon.
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proximal colon stabilized differently in each system (system 1, 2 and 3), despite the fact
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that no anomalies in pH, temperature, or tightness were detected during this period. This
was mainly visible at the genus level, with a predominance of E. coli in PC1, Enterocloster
clostridioformis in PC2 and Klebsiella pneumoniae in PC3 with, as a repercussion, an important
representation of Pseudomonadota in PC1 and PC3 at the phyla level. Despite these data,
the results were analyzed by separating the systems and colons as performed for donors
1 and 2. It is important to keep in mind, however, that it was not possible to determine
whether one or none of the systems were able to represent the bacterial diversity present in
the starting inoculum. The evolution of the relative abundance is shown in Figure 16.
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Figure 16. Evolution of relative abundances (16s rDNA) of phylum (a) and genus/species (b) after
14 days of stabilization of the microbiota from donor 3. PC: proximal colon, DC: distal colon, 1:
system 1, 2: system 2, 3: system 3.

Some variations in the relative quantifications by qPCR were observed and are shown
in Figure S7. In system 1, increases in Bacillota and Gammaproteobacteria appeared at T4 in
PC1. In DC1, a decrease was detected in Gammaproteobacteria and Akkermansia at T3. An
increase in Actinomycetes was demonstrated at T3 and T4 in PC1 and DC1, respectively, and
a decrease at T4 for PC1. For E. coli, a significant increase appeared at T2 in DC1.

For system 2, increases were detected in PC2 for Bacillota at T2 and Bacteroidota at T4.
In DC2, significant increases in Gammaproteobacteria, Actinomycetes and Akkermansia were
observed at T4. In system 3, an increase in Bacteroidota at T4 was detected in PC3. No other
significant changes were highlighted in system 3.
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The SCFA production in system 1 remained stable during the run, except for an
increase in butyrate in DC1 at T4. In system 2, a decrease in acetate and an increase in
proprionate were observed at T4 in PC2. In DC2, an increase in butyrate appeared at the end
of the run. In system 3, acetate and propionate were increased at T3 and T4, respectively, in
PC3. In DC3, propionate and butyrate were both increased at T3 (Figure 17). The AhR was
more strongly induced at T4 for PC1, both PC2 and DC2, and PC3, despite a drop at T3 in
PC3 (Figure 18).
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3. Statistical significance is indicated as p < 0.05 (*) and p < 0.01 (**).
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3. Discussion

In this study, the aim was to evaluate the therapeutic potential of K1_ULINTec4 in
the elimination of an E. coli K1 strain in the microbiota of pregnant women to prevent its
transmission and the development of sepsis and meningitis in newborns. This preventive
treatment would not be enough to completely eliminate the risk of developing an infection
in the newborn. Indeed, these strains can come from other sources, such as the environment,
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equipment, and hospital staff [36,37]. Targeting these bacteria in the intestinal microbiota
of pregnant woman could nevertheless reduce the risk of infection. The aim of this study
was to evaluate not only the efficacy of phage therapy, but also its impact on the bacterial
populations of the intestinal microbiota.

The first objective was to select an appropriate phage concentration to be inoculated
into the SHIME® model. Different concentrations, expressed as multiplicity of infection
(MOI), had been previously tested in an in vivo G. mellonella model [33]. In this study,
this experiment was repeated with the C5 strain and three different MOI (100, 10 and 1)
of K1_ULINTec4. The treatment increased the survival rate of the larvae independently
of the tested concentrations. Therefore, an MOI of 1 was chosen for the experiments
conducted in the gastrointestinal model. This ratio corresponds to a concentration of
1010 PFU/administration in the SHIME model, corresponding to 108 PFU/mL after distri-
bution in the volume of the bioreactors, which is consistent with the doses generally used
therapeutically in humans [38]. Moreover, this dose was the highest achievable dose under
the amplification and concentration conditions used in this study.

The K1_ULINTec4 phage was found to be able to persist in the SHIME® model, as
evidenced by its persistence being similar to the theoretical persistence of the inert molecule
in the proximal colon. This aptitude is not commonly seen, as described in other studies
where phages tend to disappear more rapidly [29,30,39]. In most cases, this is certainly
due to the pH conditions experienced and/or the action of bile and pancreatin [39]. For
donors 1 and 3, the fact that the phage was eventually washed out of the system was also a
sign that K1_ULINTec4 could not find a host to support its replication in the commensal
bacteria of the intestinal microbiota. However, a low quantifiable phage titer was detected
at the end of the run in the distal colon of donor 2. It is therefore possible that the phage
replicated in this system in the absence of E coli K1 inoculation. This could be due to the
presence of low levels of E coli K1 in the donor’s intestinal microbiota not being detected
either by qPCR screening or by concentration monitoring during the run. In parallel,
it was observed that when both C5 and K1_ULINTec4 (system 3) were inoculated, the
phage concentration differed significantly from system 1 eighteen days after the last phage
inoculation in both colons, meaning that K1_ULINTec4 was able to replicate using the C5
strain in the model. Its concentration even tended to stabilize, highlighting the possibility
that the phage continues to replicate in the presence of its host bacteria without a complete
elimination.

Regarding E. coli K1 inoculated in system 2 (C5 alone) and 3 (C5 + K1_ULINTec4),
it could be detected from the first sampling day until the last day of the run, reflecting
the persistence of the bacteria in the system even after the inoculations were stopped.
Unfortunately, despite the effective replication of the phage in system 3, the phage treatment
did not completely eliminate the bacterial load. A significant decrease and a decreasing
trend occurred at T3, respectively, in PC3 (p = 0.0179) and DC3 (p = 0.0506), which may
reflect a transient action of the phage. The coexistence of both phages and bacteria in
system 3 may indicate the appearance of resistant clones. One possible explanation is that
E. coli K1 identified by qPCR may have ceased production of their K1 capsule, resulting in
a decreased or inhibited phage replication. This may result in a reduction in the virulence
of the bacteria that were inoculated. This phenomenon has previously been observed
by other researchers, who have demonstrated that phages able to selectively degrade
the PSA capsule on the surface of E. coli K1 using endosialidases can alter its phenotype,
reduce bacteremia, and decrease mortality rates in rats [28]. The phage K1_ULINTec4
encodes an endosialidase, allowing it to target the K1 capsule of E. coli [33]. It would
be interesting to evaluate the virulence of E. coli K1 isolates after contact with the phage.
Indeed, the resistance mechanisms that bacteria deploy against phages generally lead to
fitness trade-offs that can reduce antibiotic resistance, virulence or colonization abilities [40].
Nevertheless, the phenomenon of pleiotropy can also generate trade-up effects, especially
demonstrated in terms of antibiotic resistance [41,42]. It is therefore important to study
these effects when evaluating phage-based treatments.
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In order to reflect diversity in the Triple-SHIME experiments, three different pregnant
donors were selected. However, the presence of donor inter-variability did not allow for an
analysis of the metagenetic results together. Therefore, each donor was analyzed separately.
To be able to go further into the statistical interpretation of the results, it would have been
interesting to carry out technical replicates of each donor, which could not be performed in
this study. Nevertheless, the different analyses carried out in the study are complementary
and help to reinforce the obtained results.

The metagenetic analysis of the donor 1 fecal inoculum led to its classification as
enterotype 1 due to the abundance of the genus Bacteroides [43,44]. After the stabilization
of the intestinal microbiota in the model, the main genera detected corresponded to those
of the starting inoculum, but with a different level of abundance. Indeed, the conditions
of the model favored the development of some species to the detriment of others in each
part of the colon. For example, the acidic pH of the proximal colons and the presence of
highly fermentable nutrients was more favorable to the development of bacteria of the
phylum Pseudomonadota. However, some differences are to be noted, such as the important
abundance of bacteria from the genus Enterocloster clostridioformis (formerly Clostridium
clostridioforme and Lachnoclostridium clostridioforme), an acetate and propionate producer
and member of the family Lachnospiracae, frequently found in abundance in the intestinal
microbiota [45]. When comparing the results of the monitoring of certain bacterial groups
by qPCR with the results of metagenetics, certain concordances were observed: a decrease
in the abundance of Bacillota in PC2, DC2 and PC3 at the end of the run, and an increase
in Bacteroidota in DC1, PC2 and DC2, PC3 and DC3. A decrease in Gammaproteobacteria
in PC3 and of E. coli, belonging to this class, in PC3 and DC3 seems to indicate an action
of the phage on the inoculated bacteria. A decrease in E. coli was also visible in PC2, but
was not maintained over time. The gut microbiota’s bacterial composition has a significant
impact on short-chain fatty acids (SCFAs) production in the colon. SCFAs are the result of
the fermentation of non-digestible dietary fibers by colonic bacteria, and different bacterial
species have specific preferences for fermentation substrates and therefore produce different
SCFAs in varying amounts [46]. In distal colons, the significant increase in propionate from
T3 is consistent with the qPCR increase in the Bacteroidota phylum and is represented by
a greater abundance of Bacteroides ovatus and Bacteroides vulgatus. In this study, the AhR
activity can be linked to SCFAs productions. Indeed, previous studies have shown that
butyrate, propionate and acetate can trigger AhR-responsive gene expression in vitro in a
dose-dependent manner, with a greater sensitivity of butyrate (from 0.5 mM), followed by
propionate (from 1 mM) and acetate (from 20 mM) [47,48]. SCFAs, particularly butyrate,
can increase AhR activity without directly binding to the receptor. Butyrate acts as a
histone deacetylase HDAC inhibitor (iHDAC), which results in increased AhR recruitment
in the presence of agonist tryptophan-derived metabolites [49]. Increases in butyrate and
propionate in PC1, butyrate in PC2 and propionate in PC3 resulted in significant AhR
activity in proximal colons.

The predominance of Bacillota, including Ruminococcus, classified donor 2 as enterotype
3 [43,44]. After stabilization, the predominant species present in the starting inoculum,
Enterocloster clostridioformis and Bacteroides ovatus, were maintained. The abundance of
Veillonella atypica and Akkermansia municiphila became more prominent in the proximal
colon for Veillonella, and in both colons for both species. A drop in Bacteroidota was visible
at the end of the run, using both qPCR and metagenetic analyses, in PC2 and PC3. An
increase in the Gammaproteobacteria class was detected by qPCR in the three proximal
colons, and followed the same trend in the relative abundances of Pseudomonadota. This
significant increase could be explained by the increase in Bilophila wadsoworthia species in
PC1, while it would rather reflect an increase in E. coli in PC2 and PC3, as supported by
the corresponding qPCR results. A decrease in Bacillota appeared in the three distal colons
at the end of the run. In parallel, the genus Akkermansia was significantly decreased in
PC1 and PC3 and increased in DC1 and DC2. Regarding volatile fatty acid production,
a decrease in acetate concentration occurred in PC1, PC2, DC2 and DC3 at T2 and then
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increased again until T4. At the end of the run, increases in propionate were visible in
all systems, and the butyrate increased in system 1 and DC3. The activation of the AhR
receptor was found to be significant in PC3 and appeared to correlate with propionate
production. In DC1 and DC3, the activity of the AhR receptor was increased at the end of
the run, as for propionate and butyrate productions.

The gut microbiota of donor 3 was classified as enterotype 3, as for donor 2 [43,44].
Very surprisingly, after the stabilization of the microbiota in the model, the composition of
the bacterial populations differed between the three systems. This was mainly visible in the
metagenetic results of the proximal colons. Only a few predominant taxa persisted in visible
abundance in the model: Lachnospiracae, Bacteroides vulgatus, Subdoligranulum, Ruminococcus
torques and Lachnoclostridium. Interestingly, the major taxa that persisted after stabilization
were the same as the predominant species found in donor 2, Enterocloster clostridioformis,
Bacteroides ovatus, Veillonella and Akkermansia municiphila, found in low abundance in
the starting inoculum. This reflected a bias in the model that reinforced certain genera
more adapted to the applied conditions. No technical problems were detected during the
stabilization phase, so these differences are difficult to explain. One hypothesis could be
undetected variations induced by the model during the stabilization phase. Referring to
donor 2, and taking into account the similarity at the enterotype level, system 2 seemed
to have stabilized in the most appropriate way. Few variations were highlighted in qPCR,
compared to other donors. The Bacteroidota phylum, composed of the main propionate-
producing species, was absent from the proximal colons throughout the experiment, except
at the end of the run [50]. This observation was confirmed by the metagenetics results, but
also by the SCFA production. In PC1, the propionate concentration, low at the start (4 mM),
became undetectable until T4, when production was observed again. This observation
differs from PC2 and PC3, where a production of propionate was found in the absence
of Bacteroidota until T3. The production of propionate in that case could be explained by
the presence of Veillonella in both PC2 and PC3, and not in PC1 [51]. The evolution of
the butyrate concentration followed the same trend as the propionate in PC1, with a low
concentration at the start followed by an absence of production and an increase at the
end. This was observed in the three proximal colons. These results were consistent with
the levels of AhR activation, and were correlated with the genus Bacteroides ovatus, which
appeared at the end of the run in the three bioreactors [52].

All the results related to the intestinal microbiota showed that the effects observed
were donor dependent. This was expected, given the inter-variability between donors.
Working with three different donors made it possible to evaluate the treatment, taking
into account the inter-individual variability, which would not be possible for a single
inoculum repeated three times, or an inoculum composed of a mixture of several donors.
Significant variations were observed in the different systems, but did not make it possible to
demonstrate a common and significant effect of the three applied treatments (phage alone,
bacteria and bacteria + phage) in the systems. In addition, most of the significant results
were observed at the end of the run, which can be explained by variations due to the long
duration of the experiments. These observations confirm a limited and donor-dependent
impact of the phage and E. coli K1 on the intestinal microbiota. In addition, Alpha- and Beta-
diversity analyses of the three donors did not reveal any significant differences, once again
demonstrating the limited impact of these treatments. However, the K1_ULINTec4 phage
inoculated into the model in the presence of E. coli K1 resulted in a decrease in bacterial
concentration after the cessation of injections, and a prolonged persistence of the phage
compared to its persistence when inoculated alone. These observations help to confirm
that K1_ULINTec4 replicated in the model using the inoculated E. coli K1. Additionally,
the possible appearance of phage-resistant mutants may have allowed E. coli K1 to persist
in the model. The genomic analysis and evaluation of these E. coli K1 mutants resistant to
phage K1_ULINTec4 could provide further insight into the pathogenicity of these strains.
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4. Materials and Methods
4.1. Strains and Culture

The neonatal meningitis E. coli (NMEC) strain C5 “Bort” (O18ac:K1:H7) was used
throughout the study. It was originally isolated in 1975 from cerebrospinal fluid of a
newborn [53]. It was purchased from the American-type culture collection (ATCC) (LGC
standards, Molsheim, France) and is referred to as Escherichia coli (Migula) Castellani and
Chalmers ATCC 700973. Cultures were grown in LB Lennox broth at 37 ◦C. The phage
vB_EcoP_K1_ULINTec4 was isolated in 2020 in Liège from wastewater using O18:K1 avian
pathogenic E. coli strains (APEC45). This K1-dependent phage, belonging to the Vectrevirus
genus, was characterized in vitro and in vivo using the Galleria mellonella model [33]. In
this study, cesium chloride phage purification was performed for the determination of the
multiplicity of infection (MOI) in G. mellonella, as described previously (Antoine et al. [33]).
Phage cultures used in the SHIME® model were grown following a previously described
propagation protocol, with some modifications [33]. After filtration (0.22 µm), phage lysate
was concentrated by ultracentrifugation at 50,000× g for 3 h. The pellet was resuspended
in phosphate-buffered saline solution (PBS) and ultracentrifuged a second time using the
same parameters. Finally, the pellet was resuspended in PBS and stored at 4 ◦C before use.
Phage titrations were performed using serial dilutions and a top agar overlay method [33].

4.2. Determination of the Optimal Phage Concentration in the Galleria mellonella Model

The preliminary and main experiments were performed as described previously
(Antoine et al. [33]). To the determine optimal bacterial inoculation dose, 6 groups of
10 larvae were inoculated with C5 at different concentrations, ranging from 102 CFU/10 µL
to 106 CFU/10 µL or PBS. The optimal inoculation dose was expected to result in 90–100%
lethality after 4 days.

In the main experiment, 180 larvae were divided in 6 groups (Table 1). The larvae
were injected twice at 1 h intervals, and the survival rate was assessed every 24 h for 96 h.

Table 1. Groups of larvae used in the survival experiment.

Groups 1st Injection 2nd Injection

1 C5 + ULINTec4 MOI 100 C5: 106 CFU/10 µL K1_ULINTec4: 108 PFU/10 µL
2 C5 + ULINTec4 MOI 10 C5: 106 CFU/10 µL K1_ULINTec4: 107 PFU/10 µL
3 C5 + ULINTec4 MOI 1 C5: 106 CFU/10 µL K1_ULINTec4: 106 PFU/10 µL
4 C5 + PBS C5: 106 CFU/10 µL PBS: 10 µL
5 PBS + ULINTec4 MOI 100 PBS: 10 µL K1_ULINTec4: 108 PFU/10 µL
6 PBS + PBS PBS: 10 µL PBS: 10 µL

PBS: phosphate-buffer saline, CFU: colony-forming unit, PFU: plaque-forming unit.

4.3. Fecal Material Collection and Screening

The collection of the human fecal material and its research use was approved by the
Ethical Committee of the Liège University Hospital (ULiège, Liège, Belgium; file number
2022/274). The three adult donors were, respectively, 30, 35 and 36 years old and met
the following criteria: being a healthy pregnant woman between 18 and 40 years old, not
following any particular diet (e.g., vegetarian, vegan, high protein, etc.), being antibiotic-
free for at least 3 months before feces collection, not presenting any medical conditions,
such as diabetes or gastrointestinal diseases.

Fecal samples were stored anaerobically at 4 ◦C before being processed as described
previously (Goya-Jorge et al. [47]). They were stored at −80 ◦C until their use for experi-
mentations.

A screening for naturally occurring E. coli K1 in the fecal samples from the donors was
performed using qPCR targeting the neuB gene [54]. DNA extraction was performed using
the QIAamp PowerFecal Pro DNA Kit (Qiagen, Hilden, Germany), following the manufac-
turer instructions. Real-time PCR was run using CFX96 Touch Real-Time PCR Detection
System (Biorad, Hercules, CA, USA), according to the manufacturer’s recommendations,
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in 20 µL reaction volume using the FastGene® Probe 2 × qPCR Universal Mix (Nippon
genetics, Tokyo, Japan). Details about primers, probes and cycle steps are described by
Antoine et al. [33]. Samples were run in triplicate, including positive, negative and no
template (NTC) controls.

The presence of phages from feces that could potentially infect the C5 strain was also
assessed using an enrichment method [55]. Briefly, 1 g of feces was diluted 10 times in PBS
and then filter-sterilized using a 0.22 µm sterile syringe filter (ref.514-0073, VWR, Leices-
tershire, UK). Then, the filtrate was added to an equivalent volume of twice-concentrated
LB Lennox (1 mM CaCl2, 1 mM MgSO4, Sigma-Aldrich, Saint-Louis, MO, USA), as well
as 100 µL of C5 culture at an optical density (OD) of 0.25. A sterility control and a growth
control were also included. All tubes were incubated at 37 ◦C until potential lysis occurred.
Samples were then centrifuged and filtered-sterilized (0.22 µm) before spreading on an LB
Lennox agar plate and covered with a bacterial overlay (OD: 0.25). Plates were incubated
at 37 ◦C for 24h to check the presence of plaques of lysis.

4.4. Human Gastrointestinal Model Set-Up and Experimental Design

Three independent triple-SHIME® runs were performed to reproduce the colon micro-
biota of the three different donors, using standard conditions, as previously described [56].
Each run was composed of three independent experiments conducted in three separate
dynamic systems, working in parallel. Each system was composed of bioreactors rep-
resenting the stomach/small intestine (ST/SM), the proximal colon (PC) and the distal
colon (DC). The temperature was maintained at 37 ◦C using a continuous warm water flow
between the double glass wall of the bioreactors. Anaerobic conditions were maintained
throughout the experiment and the headspace was flushed once a day with a nitrogen
flow (2.0 L/min). The pH of the colon bioreactors (PC: 5.6–5.9, DC: 6.6–6.9) was recorded
with internal pH probes and regulated with the automatic addition of acid (HCl 0.5M)
or base (NaOH 0.5M) solutions (ChemLab, Zedelgem, Belgium). Verifications of the pH
range were performed three times a week during the entire experiment with an external pH
measurement (Mettler-Toledo, Zaventem, Belgium). On the inoculation day, PC and DC
bioreactors were filled with 500 mL and 800 mL of nutritional medium, respectively (ref:
PD-NM001B, Prodigest, Ghent, Belgium), referred to as feed. Then, defrosted feces were
added to the bioreactors at proportional volumes (PC: 25 mL, DC: 40 mL). The 3 systems
were continuously maintained under agitation (300 rpm) and automatically fed three times
a day with 140 mL of feed and 60 mL of a medium simulating bile and pancreatic juice (PJ)
(NaHCO3-pancreatin-bile salts, Prodigest, Ghent, Belgium). The experimental set-up is
illustrated in Figure 19b.

Each run was conducted for 8 weeks. After feces inoculation in the 3 systems, the
microbiota was stabilized for 2 weeks [57]. A 108 CFU/mL concentration was chosen based
on a previous study assessing the colonization of E. coli K1 in a mouse gastrointestinal
tract [21]. System 1 was inoculated with K1_ULINTec4 only, system 2 with C5 only and
system 3 with both C5 and K1_ULINTec4. Each inoculation had a volume of 10 mL of either
PBS resuspended culture of C5 at a concentration of 1010 CFU/mL PBS or K1_ULINTec4 at
a concentration of 1010 PFU/mL. Bacteria, phage and PBS were directly injected into the
bioreactors using a 10 mL syringe with needle. After stabilization, system 1 was inoculated
with PBS, while systems 2 and 3 were inoculated with C5 on a daily basis for one week.
Then, system 1 was inoculated with both PBS and K1_ULINTec4, system 2 with both C5 and
PBS and system 3 with both C5 and K1_ULINTec4 at one hour intervals, respectively. All
the systems continued to run for 4 more weeks. Samples in colon bioreactors were collected
three times a week and stored at −20 ◦C until extraction and analysis. Additional 2 mL
samples were collected to perform phage titrations by culture. A timeline summarizing the
main steps of the run is shown in Figure 19a.
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Figure 19. Timeline of experiment (a) and experimental setting of the Triple-SHIME (b). S1: system
1, S2: system 2, S3: system 3, D0: day 0 T1: timepoint 1 (days 14 and 21), T2: timepoint 2 (days 25
and 28), T3: timepoint 3 (days 35 and 42), T4: timepoint 4 (days 49 and 53), ST/SM: stomach/small
intestine, PC: proximal colon, DC distal colon, PJ: pancreatic juice, N2: nitrogen, WWB: warm water
bath.

The persistence of K1_ULINTec4 in systems 1 and 3 was compared to the theoretical
persistence in the system, which was calculated taking into account the transfer and removal
of fluids [29,30].

4.5. 16S rDNA Gene Sequencing and qPCR of Selected Bacterial Groups

The DNA was extracted and sequenced using the same pipeline described in Laforêt
et al. [29]. The selected timepoints were chosen to cover the most important periods of the
run (T1: D14-D21; T2: D25-D28; T3: D35-D42, T4: D49-D53). They are represented in the
timeline of Figure 19. Raw metagenetics data are available in the Supplementary Material.

Seven taxa were targeted by qPCR to follow specific bacterial groups: Bacillota (formerly
Firmicutes), Bacteroidota (formerly Bacteroidetes) and Actinomycetes (formerly Actinobacteria) as 3
of the main prevalent phyla of the intestinal microbiota, Gammaproteobacteria [58], E. coli [59]
and E. coli K1 [54] to follow the impact of phage and Akkermansia municiphila [60] as a gut
health marker. Indeed, Akkermansia municiphila is known as a probiotic for its beneficial effects
on health, and particularly its action on metabolic diseases, inflammatory bowel diseases,
diseases of the central nervous system and many others [61,62]. Real-time PCR assays were
performed using a CFX96 Touch Real-Time PCR Detection System (Biorad, Hercules, CA,
USA), in 96-well plates (Nippon Genetics Europe, Düren, Germany) in technical duplicates, in
20 µL reaction volume. Except for E. coli K1 (see protocol in Section 4.3), the enzyme used was
the Takyon™ No ROX SYBR MasterMix, and the primers and probe (Eurogentec, Seraing,
Belgium) were used at a final concentration between 300 nM and 500 nm, respectively. The
following steps were applied: initial denaturation at 95 ◦C for 5 min, followed by 35 cycles of
denaturation at 95 ◦C for 15 s, annealing at a specific temperature depending on the target
(Supplementary Materials Table S1) for 15 s and elongation at 72 ◦C for 30 s followed by a
final elongation at 72 ◦C for 5 min. Then, melt-curves (65–95 ◦C) were performed to assess the
specificity of the assay. A relative quantification using the 2−∆∆Ct method was performed to
standardize the results for the total bacterial population [63].
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4.6. Short-Chain Fatty Acids Analysis

Collected samples were centrifuged at 17,000× g for 5 min at room temperature. The
supernatants were filtered-sterilized at 0.22 µm using syringe filters (ref.514-0073, VWR,
Leicestershire, UK) to remove E. coli K1 before analysis. Solid-phase microextraction
(SPME) followed by gas chromatography coupled to mass spectrometry (GC–MS) was
used to quantify the short-chain fatty acids (SCFA), following the protocol developed by
Douny et al. [64] and described in Laforêt et al. [29].

4.7. AhR Activity and Cytotoxicity Assays

AhR activity assay was conducted as described previously by Goya-Jorge et al. [47].
To evaluate the activation of the AhR receptor, AhR_HT29-Lucia (Invivogen, Toulouse,
France), a human colon adenocarcinoma AhR-reporter cell line, was used. Cells were
cultured according to the manufacturer’s recommendations, in DMEM supplemented with
4.5 g/L glucose, 2 mM L-glutamine, 10% of FBS and antibiotics: 100 µg/mL Pen/Strep,
100 µg/mL of Normocin and 100 µg/mL of Zeocin. They were incubated in 75 cm2 culture
flasks at 37 ◦C in 5% CO2. Passages were performed when a confluence of 80–90% was
reached. Cells were washed with PBS and detached using a 0.25% solution of trypsin-EDTA
before seeding them in new flasks. For the experiment, AhR_HT29 Lucia cells were seeded
at a concentration of 3.0 × 105 cells/mL in CellStart® 96-well microplates and incubated
overnight before treatment. After 24 h of exposure to the supernatants of the bioreactor
samples, 20 µL of the cell supernatant was transferred to Nunc™ white 96-well plates before
adding 50 µL/well of Quanti-Luc™ assay reagent. Bioluminescence was measured using
a luminometer (ORION II, Berthold Detection System, Pforzheim, Germany). In parallel,
cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) bioassay [65,66]. The MTT formazan absorbance was read at 550/630 nm
using an ELX800TM microplate reader spectrophotometer (Agilent BioTek Inc., Winooski,
VT, USA). All assays were performed in technical triplicate.

4.8. Statistical Analysis

Diversity indexes were calculated using R with Rcmdr and vegan packages. All other
statistical analyses and graphical representations were performed using GraphPad Prism
version 8.0.2 for Windows, GraphPad Software (San Diego, CA, USA). After assessing the
normality of the results, a repeated measures ANOVA was performed paired with Tukey’s
multiple comparison test. A Friedman test paired with Dunn’s multiple comparison test
was used when the results were not normal.
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