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ABSTRACT
Major achievements in bone research have always relied on animal models and in vitro systems derived from patient and animal
material. However, the use of animals in research has drawn intense ethical debate and the complete abolition of animal experimen-
tation is demanded by fractions of the population. This phenomenon is enhanced by the reproducibility crisis in science and the
advance of in vitro and in silico techniques. 3D culture, organ-on-a-chip, and computer models have improved enormously over
the last few years. Nevertheless, the overall complexity of bone tissue cross-talk and the systemic and local regulation of bone phys-
iology can often only be addressed in entire vertebrates. Powerful genetic methods such as conditional mutagenesis, lineage tracing,
and modeling of the diseases enhanced the understanding of the entire skeletal system. In this review endorsed by the European
Calcified Tissue Society (ECTS), a working group of investigators from Europe and the US provides an overview of the strengths
and limitations of experimental animal models, including rodents, fish, and large animals, as well the potential and shortcomings
of in vitro and in silico technologies in skeletal research. We propose that the proper combination of the right animal model for a
specific hypothesis and state-of-the-art in vitro and/or in silico technology is essential to solving remaining important questions in
bone research. This is crucial for executing most efficiently the 3R principles to reduce, refine, and replace animal experimentation,
for enhancing our knowledge of skeletal biology, and for the treatment of bone diseases that affect a large part of society. © 2023
The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and
Mineral Research (ASBMR).
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Introduction

After 1.4 million European citizens have signed a petition
entitled “Save Cruelty-Free Cosmetics,”(1) the EU parliament

will discuss and eventually decide whether to abandon all animal
experiments in the European Union. Similarly, in the US, there is a
growing public sentiment against animal experiments. In a Gal-
lup poll, the moral acceptance of medical animal research
dropped from 63% in 2002 to 52% in 2022.(2) Reflecting this sen-
timent, legislation approved in 2022 eliminated the previous
requirement that new drugs need to be tested in animals to
receive approval from the US Food and Drug Administra-
tion (FDA).(3)

In this context, local ethics committees decide about animal
licenses with increasing sensitivity toward the trade-off between
ethics and scientific rationale. In the US, Institutional Animal Care
and Use Committees (IACUC) are responsible for the oversight of
animal care and use programs. IACUCs review, at least semiannu-
ally, institutions’ experimental programs and inspect facilities to
report welfare concerns, make recommendations on aspects of
care, housing, or personnel training, and are authorized to sus-
pend activities involving animals. Importantly, IACUC, as well as
most grant agencies, require justification of animal numbers to
be supported by statistical power analyses.

Progress in in vitro cell-based systems as well as in silico
models is used as an argument to suggest that all animal exper-
iments have become dispensable. In this light, it appears neces-
sary for the skeletal research community to assess and defend
the general reasons for animal experiments in our field, in partic-
ular when systemic diseases are investigated that still cannot be
entirely modeled in vitro or in silico.

This review aims to provide a balanced view of the benefits
and pitfalls of various in vitro and in vivo models and to increase
awareness of their suitability to specific research questions. In
addition, it should equip scientists for a discussion on the topic
with laymen, stakeholders, and decision-makers with the final
goal to convince them that animal experiments in the field of
musculoskeletal research are still necessary, highly regulated
and supervised by competent institutional bodies, and used only
if in vitro and in silico models are not mimicking the systemic
bone physiology.

The Current Landscape of Animal Experiments
Used to Investigate Skeletal Diseases

Skeletal research focuses on understanding bone development,
growth, remodeling, and aging to discover new treatments for
numerous skeletal conditions including osteoporosis, arthritis,
low back pain, genetic diseases, and bone tumors/metastasis
that significantly impact public health systems. Their prevalence
is anticipated to rise because of the increasingly aging popula-
tion. Disability-adjusted life years and global deaths from low
bone mineral density–related fractures have increased signifi-
cantly in the last decade: 121.07% (4,436,789–9,808,464 cases)
and 148.65% (121,248–301,482 cases), respectively, with the
highest disease burden in India, China, US, Japan, and
Germany.(4)

Systemic bone diseases

Bone is crucial for systemic regulation of calcium and phosphate
homeostasis and serves as an endocrine organ. Understanding

bone pathophysiology in a systemic context is therefore essen-
tial for improving patient treatment options.

Metabolic bone diseases

Metabolic bone diseases can have genetic, hormonal, and/or
environmental causes (eg, malnutrition) and include, among
others, osteomalacia (rickets) and hyperparathyroidism. These
conditions cause weakened bone, frequent fractures, and possi-
ble growth retardation in children and are often investigated in
transgenic rodents.(5) Using such models, it was shown that the
knockout of some genes that were expected to result in dramatic
bone phenotypes was more subtle than expected (eg, estrogen
receptor alpha(6)), whereas other molecules involved in bone
metabolism like IL-5 were only first identified by revealing their
skeletal phenotype in transgenic mouse models.(7) Animal
models have, furthermore, been used to study the potential
effects of certain nutritional interventions, including the effects
of vitamin D and calcium supplementation on bone health,
influencing the development of dietary guidelines for prevent-
ing osteoporosis.(8-10)

Osteoporosis

Osteoporosis, another metabolic bone disease affecting millions
of people worldwide, is characterized by bone loss, leading to an
increased risk of fractures. For osteoporosis research, genetically
modified and/or ovariectomized or glucocorticoid treated
rodents—and more recently zebrafish(11)—are used to study
underlying mechanisms of menopausal or glucocorticoid-
induced bone loss, respectively, and to test the efficacy of new
treatments, such as bisphosphonates and selective estrogen
receptor modulators (SERMs).(12-15) In more translational set-
tings, large animals, mostly sheep,(16) and, rarely, non-human pri-
mate models are used.

Rare genetic bone diseases

Rare genetic bone diseases affecting the entire skeleton like
osteogenesis imperfecta, skeletal dysplasias, and osteopetrosis
are major concerns, as they manifest in early childhood and
can be life-threatening. The research of genetic diseases can
benefit from genetically modified cell lines, which can be used
to elucidate pathways and help to screen for potential treatment.
Ultimately, treatment effects and the success of potential drugs
must be investigated in vivo in vertebrate models to verify their
mechanisms of action.(17) For historical reasons, these models
have mostly been mice, but with the availability of CRISPR/
Cas9, options have increased dramatically.(18) In this context,
zebrafish offer a valuable alternative to mice because of their
ease of manipulation, transparent extra-uterine development,
and suitability for high-throughput drug screening even at
embryonic stages.(19)

Local diseases

Local diseases such as bone tumors (eg, giant cell tumors) per-
haps offer the best starting point for replacement methods.
Here, in vitro methods have tremendous potential in shedding
light on the cells and signaling involved and identifying possible
treatments.(20) Furthermore, these diseases are suited to test the
limits of in silico models or organ-on-a-chip.(21,22) Final valida-
tion, however, is still dependent on a vertebrate model.

Journal of Bone and Mineral Researchn 2 STEIN ET AL.

 15234681, 0, D
ow

nloaded from
 https://asbm

r.onlinelibrary.w
iley.com

/doi/10.1002/jbm
r.4868 by C

ochraneItalia, W
iley O

nline L
ibrary on [05/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Bone repair and regeneration

Bone repair and regeneration may be studied in a clinical setting
or with an interest in basic bone biology/physiology. Fin bone
injury or amputation models of zebrafish have been important
in determining factors involved in osteogenesis and bone regen-
eration.(23,24) Fracture models at specific anatomical locations
and with different surgical interventions are routinely done in
rodents. In the clinical setting, more emphasis is placed on
mechanical loading, thus requiring large animals.(25) These
models are less frequently used but are essential in translational
orthopedic settings.

For numerous reasons, about 90% of drug candidates, also
those with promising results in vivo, never make it to the
market,(26) but differences between animal and human physiol-
ogy are a minor issue in most cases. Certainly, all in vivo and
in vitro models have limitations but are in combination useful
to analyze and understand particular aspects of human diseases
(Fig. 1). It is noteworthy that not only in vitro but also in vivo
models have been drastically refined over the last decades and
years to more accurately reflect human diseases and to ensure
humane animal treatment. Animal models often allow a compre-
hensive analysis of bone pathophysiology; thereby, they provide
the basis for functional interference with essential disease fac-
tors, which can lead to the description of druggable targets
and the subsequent development of novel therapeutic strate-
gies. The following paragraphs provide an overview of the differ-
ent currently used models, their advantages, and caveats
(Table 1).

In Vitro Models for Skeletal Research

2D Cell culture models

Two-dimensional (2D) tissue culture models have dominated
bone research for half a century. Calvarial pre-osteoblast cells,
stromal mesenchymal cells from bone marrow, and outgrowths
from human bone specimens can be utilized to recapitulate
osteoblast differentiation.(27-31) Osteoclasts can be derived from
peripheral blood monocytes or bone marrow of rodents, birds
(mainly chickens), and rabbits to allow observation of their devel-
opment.(32-38) Osteocytes are a challenging bone cell type in cul-
ture, but particularly the development of cell lines has allowed
for the investigation of some osteocyte aspects in vitro (for a
review of in vitro and in vivo osteocyte models, see Kalajzic
and colleagues(39)). Induced pluripotent stem cells (iPSCs) have
recently become another prospect for bone regeneration and
disease modeling.(40)

A wide variety of in vitro screening approaches have been
employed to identify potential regulators of bone cell differenti-
ation.(41-45) For example, high-throughput siRNA(41,42) and com-
pound screens have identified small molecules such as
roscovitine, rapamycin, and FK506, which augment osteoblast
differentiation in vitro.(43) These approaches allow us to reduce
animal experimentation by testing potential drugs at a cellular
level. As such, only successful drug targets might be exploited
in animal models, limiting and specifying the use of animals.
Despite successes in identifying anabolic and catabolic factors,
strong limitations are obvious. The readout of early differentia-
tion markers such as alkaline phosphatase, for example, is not
always predictive for the entire process of bone formation.

One of the major limitations of 2D cell culture is the poor
equivalence of this environment to the conditions within the

bone.(46) There are numerous attempts now to combine multiple
cell types in vitro and to increase the levels of complexity. For
example, several research groups include hypertrophy and min-
eralization regimes in their in vitro cultures,(47,48) as well as alter-
ing pH and oxygen tension.(49,50) The highly mineralized nature
of bony tissue, in addition to anatomic structure, means that
plastic or other planar surfaces are a poor environmental proxy.
Importantly, these cultures are unable to maintain the pheno-
type of osteocytes and osteoclasts for more than several weeks.
As a consequence, much work has focused on the optimal cul-
ture of osteoprogenitors and osteoblasts on these surfaces. How-
ever, recruitment and control of osteoblasts in the human body
also rely on the presence of other cell types, with, for example,
EphA4(51) from osteoclasts stimulating osteoblast formation.
Osteocytes are by far the most abundant cells in bone and
orchestrate osteoblast and osteoclast function, yet they aremiss-
ing in most 2D cultures. Another major drawback comprises the
altered behavior and differentiation capacity of isolated primary
cells in culture (eg, calvarial cells differentiating into adipocytes).

Bone Organ Culture

To overcome the aforementioned limitations, bone organ cul-
tures are used, where harvested bone tissue is placed in a
nutrient-rich medium, allowing it to remain viable and functional
for several days to weeks.(52-54) These cultures were used to study
processes including bone growth, remodeling, and
repair.(52,55,56) Here bone cell interaction can be studied in the
absence of confounding factors present in vivo.(52) Furthermore,
treatment of the organ culture with substances instead of the
whole organism increases animal welfare. However, the tissue
may change in response to the stress of being removed from
the organism. Some limitations can be overcome by complex
co-culture models, which include multiple cell types to mimic,
among others, the remodeling of the tissue,(57) immune
responses to the differentiation processes,(58) vascularization,
and even the formation of a bone marrow niche.(59,60) Neverthe-
less, the use of isolated bone tissuemay not capture the complex
interaction between different cell types and tissues in vivo.

3D Cell Culture Models

Further developments extend to three dimensions using scaffold
structures. But even in “3D” foams(61) the cells do not receive
mechanical cues from all directions. To receive a continuous
mechanical 3D stimulus, for example, a fibrin matrix, attached
to a sparingly soluble calcium phosphate bracket has been
used.(62) Here embedded osteoprogenitor cells differentiated
and maintained an osteocyte phenotype for over a year and
even produced a lacuna-canalicular network. Similar results can
be achieved with fibroin.(63) These principles have allowed the
development of tricultures that maintain the phenotype of oste-
oblasts, osteoclasts, and osteocytes and have successfully been
used to explore the influence of unloading on the bone resorp-
tion process.(64) This system has also allowed new insights into
osteoid deposition and mineralization and may enable
researchers to focus on individual variables of bone remodeling,
which is not feasible in vivo. Such models may be harnessed in
screens with more variables and repetitions than would be ethi-
cally appropriate in vivo. Biological processes are also more eas-
ily controlled and monitored in these cultures than in vivo.
Although it is accepted that these systems still require significant
development to introduce an immune and neuronal
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component, vasculature, and surrounding tissue to properly rep-
licate the in vivo environment, it is clear that the combined use of

modern 3D cultures with in vivo models will serve to reduce ani-
mal use and help refine both in vitro and in vivo models.

Fig. 1. The current use of in vitro and in vivo models in preclinical research of bone pathologies. The etiology of a given bone pathology as well as the
hypothesis investigated suggest one or more suitable model(s) to study the question. These may be sheep, teleost fish, rodents, or cells (from animals or
human patients). Cells may be analyzed directly or grown in 2D or 3D cultures or “on a chip.” Data gained from these experiments can be used for in silico
models. The combination of different models should allow elucidation of molecular mechanisms that can then be exploited for therapeutic strategies,
where the different models can be used as readout systems. For large screens to elucidate molecular mechanisms of bone diseases, cell culture and
organ-on-the-chip models as well as small fish are better suitable. Refinement and validation of screening results then have to be carried out in larger
animal models such as rodents or larger mammals or humanized systems. This allows the application of these assays for drug testing to discover novel
products to treat common and rare bone diseases.

Journal of Bone and Mineral Researchn 4 STEIN ET AL.
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Table 1. Advantages and Limitations of Various Models for Skeletal Research

Model Advantages Limitations

In vitro cell culture
(2D, 3D, organ-
on-a-chip)

• Ethically preferable to animals.
• Allows for analysis of isolated and relatively
homogeneous cell populations.

• Facilitates analysis of molecular pathways.
• Cheaper than most animal models.
• Amenable to high-throughput screens.
• Human cells allow for the modeling of patient-
specific genetic variants.

• No true bony matrix formation, innervation,
vascularization, or remodeling.

• Requires serum derived from animals (alternatives
very expensive).

• All in vitro models (2D, 3D, organ-on-a-chip) require
the use of animals as a source of primary cells as
existing cell lines do not recapitulate all the
properties.

• 3D systems are still in a phase of development.
• Assays often have issues of reproducibility between
laboratories.

• Requires specific artificial growth factors andmedia
for each cell lineage.

• Multi-tissue interactions difficult or impossible to
model.

• Sexual differences are difficult to assess accurately.
In silico (data-driven
and knowledge-
driven modeling)

• Data-driven: Genome and RNA sequencing is
increasingly being employed for diagnosis and
mechanistic understanding of genetic diseases.

• Data-driven: high-throughput and using human
samples.

• Knowledge-driven: allows integration of available
knowledge into a coherent framework.

• Knowledge-driven: allows testing of hypotheses
that are financially or ethically not feasible to test
in vivo.

• All: in silico screening allows for better planning of
subsequent experiments.

• Requires precise input (unknown variables as
confounders).

• Rigorous credibility analysis requires high-quality
physiological data.

• Development and validation take years.

Fish models • Reliably model many aspects of human skeletal
development and diseases.

• The Zebrafish genome contains orthologues of
�70% of human genes (up to 82% of disease-
related).

• A large number of preexisting mutant and
transgenic lines and efficient methods for
transgenesis and gene editing.

• Some teleosts (eg, killifish) have a short life span of
only a few months, making it attractive for the
study of skeletal aging.

• Transparent ex utero development allows for in
vivo imaging of osteogenesis.

• Small body size allows for high-resolution imaging
and characterization of the entire organism
including the skeleton.

• Mutations linked to human disease shown to alter
bone-quality markers similar to humans.

• Small size and low cost facilitate genetic and
chemical screens.

• Microgravity can be modeled as well, despite
aquatic environment.

• Killifish have a strong sexual dimorphism.

• Differences in bone architecture (eg, no osteonal
bone remodeling present in zebrafish).

• Investigation of endoskeletal fracture healing is
limited in small-sized teleost models.

• Some (patho)physiological processes that arise in
bone marrow (eg, edema) cannot be assessed in
teleost models as hematopoiesis takes place in the
kidney.

• Limited analysis of calcium dietary effects (uptake
through gills).

• Water conditions (eg, temperature, pH, salinity,
mineral composition, exchange rate) play a major
role during skeletal development andmaintenance
need to be controlled.

• Osteocyte-specific factors cannot be investigated
in some teleosts with anosteocytic bone, such as
medaka or killifish.

• Lack of bone marrow prevents analysis of cell
interactions between bone and BM progenitors.

• Bone growth continues with age similar to mice.

Murine models • Genes/mechanisms discovered in mice as
important for the formation, degeneration, and
repair of the musculoskeletal system are generally
conserved in humans.

• Morphophysiologically similar to humans.
• A large number of preexisting mutant models and
transgenic lines.

• Different ambulation type compared with human.
• Different metabolic activity.
• Incomplete knowledge of all cell types affected
by cre-recombination in particular transgenic
cre-lines.

• Lack of osteons (Haversian system) in cortical bone.

(Continues)
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Organ-on-a-chip (multichannel 3D microfluidic cell culture
platforms that simulate the mechanics, activities, and physiolog-
ical response of an entire organ), while in their infancy in the
bone field, will soon very likely advance in vitro bone models,
making them more attractive for basic and preclinical
research.(21,22)

Perspectives of in vitro models

Although it will be several years before some of these technolo-
gies and intricate in vitro models will be sufficiently developed to
replace in vivo models, some are already appropriate for more
simplified experiments, such as drug toxicity screening. For char-
acterization and discoveries of new structures in bone in vivo (eg,
innervation, blood, and lymphatic vessels), in vitro models are
not suitable because they rely on what is known from the
in vivo situation. However, researchers are already performing
more experiments in vitro and in silico before progressing into

in vivo models. This trend will only continue to grow but may
never entirely replace the intricacies of animals because of to
the reasons mentioned above.

In Silico Models for Skeletal Research: State of
the Art

Over the last decades, in silico computer models and simulations
(referring to “silicon,” the main component of computer chips)
have increasingly emerged in the biomedical sciences. Bone
research and disease management frequently use in silico tools,
although they might not always be perceived as such. An exam-
ple is MRI images, where a physics-based model is required to
transform the raw data into interpretable images. Different in
silico models allow virtual testing of biological hypotheses. Data
derived from these models is quantitative and, unlike many bio-
logical experiments, not limited to single endpoints. This data
can provide insight into underlying mechanisms with an

Table 1. Continued

Model Advantages Limitations

• Efficient genetic tools for the creation of new
mutant lines.

• Well-characterized models of bone diseases,
adaptation to loading, and healing.

• Lower cost and larger numbers of offspring
compared with large animal models.

• Quick maturation allows a large variety of genetic
and pharmacological studies with enough power
for solid interpretations.

• Bone acquisition and longitudinal bone growth
continue in mice and rats after sexual maturity.

• Lack of natural menopause.

Ectopic models • Can prevent having to create large bone defects in
an animal.

• Crucial stages of bone formation/healing
(inflammation, vascularization, osteoinduction) can
be recapitulated in ectopic locations without
confounding factors.

• Possible to implant up to six small implants on the
back of a mouse or rat, thereby allowing inter-
animal variability to be addressed.

• No osteoconduction from the surrounding bony
environment.

• No physiological loading.

Large animal models
(sheep)

• Many new therapeutic approaches, such as new
implants, biomaterials, and surgical procedures can
only be tested in large animals because of their
bigger size.

• Mimic the human situation in terms of bone
dimensions, structure, and turnover, as well as
mechanical loading conditions.

• Essential for the development of new surgical
techniques, orthopedic implants, the development
of novel biomaterials, and tissue engineering
approaches.

• Metaphyseal fractures.
• Similar bone formation rate and fracture healing in
humans.

• The difficulty of genetic engineering.
• Ethical considerations.
• High costs for animal acquisition and maintenance
and limited obtainability of skeletally mature or
aged animals in sufficient numbers.

• Limited availability of transgenic organisms and
specific analytical tools (eg, antibodies).

• Application of drugs in an experimental setting can
be expensive because of the high body weight.

• Importantly, compared with humans, sheep have a
much higher bone mineral density and higher
mechanical strength.

• Seasonal changes in bone metabolism in sheep.
• The different gastrointestinal system of sheep as
ruminant animals impedes the oral administration
of drugs.

• Ovariectomy (OVX), which is commonly used in
rodents to mimic postmenopausal osteoporosis,
seems to be less effective in sheep.

Journal of Bone and Mineral Researchn 6 STEIN ET AL.
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accuracy not possible in biological experiments and can describe
outcomes and numerical values previously unknown.(65)

A plethora of bioinformatics andmachine learning (ML) tools are
now available for processing the enormous amount of data gener-
ated by omics and sequencing initiatives (eg, genomewide associ-
ation studies [GWAS]; see also Box 1). These data-driven models
allow insight into basic biology as well as clinical variation. One
example is the development of the skeletal cell atlas(66) bringing
together all available murine single-cell RNA sequencing data sets
into a comprehensive framework, making use of open-source bio-
informatics codes. This atlas provides a physiological blueprint of
the limb development process and a platform to investigate in
silico, for example, the effects of genetic mutations and knockouts.
Using Boolean modeling, additive modeling, or other systems biol-
ogy technologies allows us to turn these blueprints into actionable
gene regulatory models. These models can then be used to per-
form extensive in silico screening experiments to identify optimal
culture conditions (medium composition) or possible (combina-
tions of) druggable targets in skeletal diseases.(67) Eventually, these
targets will then have to be tested in vitro and/or in vivo. Agent-
based models that simulate actions and interactions of autono-
mous agents, such as individualmolecules or bone cells, have been
used to investigate different drivers for limb bud outgrowth,
including the combination of differential cell adhesion and elastic-
ity to determine limb bud shape(68) or filopodial tension to explain
the convergent extension of limb bud tissue.(69) Thesemodels may
be utilized to predict certain outcomes of knockout animal experi-
ments and might thereby restrict the generation of knockout
experiments to those that are likely to exhibit a clear function of
a gene product in an in vivo environment.

Tissue-level models describing bone (patho)physiology using
partial differential equations are currently the most prevalent type
of modeling in the bone field with applications ranging from limb
development over fracture healing to bone remodeling. An exam-
ple of a successful model predicted neotissue growth in 3D-printed
scaffolds.(70) This model was developed starting from the
curvature-based growth principle and subsequently confirmed by
in vitro experiments. It was then used to optimize the structure of
a 3D-printed scaffold for maxillofacial applications and tested in

an in vivo rat model, confirming the superiority of the in silico-
designed scaffold over the clinical golden standard.(71)

At the level of the whole organism, gait models are a standard
tool to assess mechanical loading inmuscles, joints, and bones in
animal experiments as well as clinical studies.(72) Finally, in silico
clinical trials can be used to plan, augment, or replace physical
trials. As an example, testing new drugs for osteoporosis using
fractures as primary clinical endpoints requires 1000 patients fol-
lowed up over many years. The biomechanical computed
tomography (BTC) provides a surrogate endpoint calculated
using quantitative CT images and continuum mechanics.(73,74)

The BTC is a good predictor of the patient’s bone biomechanical
strength (and hence fracture risk), and its use, once approved by
regulators, will allow for smaller cohort sizes.

In Vivo Models for Skeletal Research: State of
the Art

Teleost fish models

Preclinical bone research is carried out in in vivo models. In con-
trast to established rodent models in skeletal research, small-
sized laboratory teleost models (ie, bony fish models) have only
emerged over the last few decades. This was driven by sequenc-
ing of the zebrafish genome, which allowed for a greater under-
standing of its similarity to that of humans and other
vertebrates.(75) Because of evolutionarily conserved genetic,
developmental, and compositional similarities between bones
of teleosts and mammals, not only zebrafish(19,76-79) but also
medaka are used to model skeletal diseases and test drug tar-
gets.(11,19,76-81) The diversity of laboratory teleost species offers
additional advantages in the scope of both intervention studies
and studies of aging-related bone degeneration. Killifish with a
life span of up to 6 months, for example, might reduce time-
intensive experiments in longer-lived species.(82,83) Moreover,
because of the transparency of teleosts up to early larval stages,
they are commonly used in concert with transgenic modifica-
tions for direct visualization of the effects of genetic or chemical
perturbations on osteoblast and osteoclast differentiation, skele-
tal morphogenesis, and mineralization.(84-86) Because of the
small size even in adulthood, teleosts are amenable to high-
resolution, whole-body imaging, which enables deep phenotyp-
ing at a large number of skeletal sites.(87)

Despite teleost fish being suitable organisms to study many
aspects of bone development, matrix mineralization, modeling,
and even the effect of microgravity,(88) there are some important
differences to humans, highlighting their limitations (Table 1).
The bone matrix of some species, for example, medaka and killi-
fish, is anosteocytic, limiting their use for modeling diseases
affecting the osteocyte-lacunar network. Moreover, themamma-
lian bone remodeling process is not directly comparable to
small-sized teleosts, which have a different bone microarchitec-
ture (eg, lack of an osteonal cortex and extensive trabecular com-
partments). Given the aquatic environment of fish, further
species-related differences in terms of anatomy, mineral uptake,
andmusculoskeletal loading apply. In general, biological mecha-
nisms discovered in zebrafish should also be examined in mam-
malian models to assess their translational potential.

Genetic zebrafish models

As an experimental system, zebrafish are positioned between
in vitro and in vivo models, combining the ability to perform

Box 1. GWAS in the Bone Field
Genomewide association studies (GWAS) involve scanning
genetic markers across the whole genomes of individuals
within large cohorts to identify genetic variants associated with
disease-related traits. Over the past decade, GWAS have identi-
fied more than 500 genomic loci harboring genetic variants
associated with bone mineral density (BMD), as well as eBMD,
a correlate of BMDmeasured via ultrasound.(94-96) The majority
of BMD-associated variants are non-coding. Most likely some or
evenmost causal variants reside in cis-regulatory elements that
alter the expression of protein-coding genes in their proximity.
Importantly, genes at BMD-associated loci include key mem-
bers of pathways targeted by osteoporosis therapeutics, sug-
gesting that other actionable, unidentified drug targets reside
at other loci. Because the biological mechanisms underlying
BMD associations may involve developmental, mechanical,
autocrine, and paracrine factors that are difficult to model
in vitro, gene discovery in animal models is a critical approach
to identify causal genes underlying GWAS variants and there-
fore for the translation of GWAS findings into clinical targets.
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experimental manipulations traditionally confined to cell culture,
with the complex physiology of an intact organism. Because of
their small size, low cost, and ease of genetic manipulation, zebra-
fish are well suited for forward and reverse genetic screens. For
zebrafish, there is a powerful toolbox including CRISPR-based gene
editing,(89,90) the broad availability of mutants,(91) and resource
centers such as the Zebrafish International Resource Center
(ZIRC) and European Zebrafish Resource Center (EZRC). The pursuit
of these reverse genetic screens could augment and advance
ongoing systematic knockout mouse phenotyping projects, such
as the International Mouse Phenotyping Consortium
(IMPC)(79,92,93) and ancillary bone phenotyping projects,(94-96) for
example, by prioritizing screened genes and enabling more effec-
tive use of resources.(79) Zebrafish screens could significantly aid
follow-up functional studies to GWAS or sequencing studies by
allowing the generation of mutant phenotype data specifically
for genes at loci harboring trait-associated variants.

Models for several human genes whosemutations are linked to
rare and complex skeletal genetic conditions have been estab-
lished in zebrafish, for example, Plod2 (Bruck syndrome),(97) col11a2
(early-onset osteoarthritis),(98) col1a1a, col1a1b, and col1a2 (osteo-
genesis imperfecta),(99) lrp5 mutants (osteoporosis-pseudoglioma
syndrome),(100,101) enpp1 (ectopic mineralization),(102) and kif6
mutants for modeling spinal curvature disorders.(103) These and
numerous additional models have highlighted the value of teleost
models for elucidating the pathophysiology of genetic skeletal dis-
eases and mineralization defects.(19,104,105) Zebrafish mutants have
evolved as particularly powerful tools for screening the effects of
drugs and osteoactive compounds on the skeleton.(11,106,107) Mole-
culesmay be administered through the aquatic environment with-
out the need for injections. For instance, submerging embryos of
the Chihuahua zebrafish model of osteogenesis imperfecta in
water containing 4-phenylbutyric acid (4-PBA) resulted in amelio-
rated bone mineralization in larvae, and long-term treatment
reduced skeletal deformities.(108) Such in vivo approaches in zebra-
fish allow efficient and direct assessment of systemic effects and
are helpful to accelerate the search for treatment options.

The need for zebrafish to support human genetic research will
grow with continuing advances in whole-genome sequencing
(WGS) and associated genetic studies, which discover candidate
pathogenic variants at rates exceeding our ability to analyze
their functions.

Rodent models

More than any other in vivo model, the use of rats and mice is a
critical pillar of skeletal research and drug development. It was
indeed the advent of reverse genetics in rodents that allowed
researchers to decipher important factors for bone growth and
remodeling in a systemic context.(109) One prominent example
is the discovery of receptor activator of NF-κB ligand (RANKL)
during osteoclastogenesis: Pivotal studies in genetically
engineered mice with altered expression of the RANKL/
osteoprotegerin (OPG) system demonstrated its influence on
osteoclast formation and bone physiology.(110-112) Based on
these fundamental discoveries, the antibody denosumab against
RANKL was developed as a rational treatment for osteoporo-
sis.(113,114) Another success story includes the development of
romosozumab (anti-sclerostin).(115-120) Human GWAS candidates
like Wnt16(121-124) and RSPO3(125,126) involved in bone density
have also been validated in mouse models.

For 441 known genes where mutations cause human genetic
skeletal disorders, at least 260 mouse models have been

phenotyped (coverage of 59%).(127) Additionally, there are stan-
dard models for almost all bone diseases in rodents and other
vertebrates, such as postmenopausal and age-related osteopo-
rosis, diabetes-induced bone loss, inflammatory arthritis, and
fracture healing. All of these resemble the human diseases in
characteristic aspects.

In skeletal research, rats have been a preferredmodel for post-
menopausal osteoporosis induced by ovariectomy/orchiectomy,
steroid-induced bone loss, dietary interventions (eg, low cal-
cium), immobilization (by surgery or tail suspension),(128) jaw
osteonecrosis,(129) and fracture healing.(130) Molecular factors
involved in human bone (re)modeling are generally well con-
served in rodents, so most genetic skeletal diseases can be reca-
pitulated in mice.(127) Mice models, however, have limitations as
growth plates do not necessarily close as during skeletal matura-
tion in humans. Further, they do not show natural menopause,
and ovariectomy might not reflect this entirely, which resembles
an acute loss of estrogen in contrast to the slower decline of
estrogen in natural menopause. The rodent cortical bone also
does not harbor Harversian channels, and their quadruped gait
leads to different loading of the axial skeleton. With increasing
evidence of links between whole-body metabolism and
skeletal biology,(131) it is also necessary to keep inmind that mice
have a faster metabolism and are often not raised under
thermoneutrality.

Genetic mouse models

The emergence of reverse mouse genetics and the possibility of
global gene inactivation in “knockout” mice (KO) or the intro-
duction of specific mutations in “knock-in” (KI) mice have con-
tributed immensely to our knowledge of bone formation and
treatment of monogenic skeletal diseases. Successful examples
include the various forms of chondrodysplasia (for which antag-
onists of activated FGFR3 or downstream pathways are now clin-
ically tested), hypophosphatemia (now successfully treated with
a recombinant form of alkaline phosphatase), fibrodysplasia ossi-
ficans, or osteogenesis imperfecta.(132-134) In the most recent
IMPC data release (17.0), bone mineral density data in knockout
mice are available for about one-quarter of the protein-coding
genes (7141 of �25,000–30,000). After characterization at the
basal level, the skeletal phenotype of transgenic rodents may
be combined with additional challenges such as ovariectomy
(OVX) or systemic glucocorticoid (GC) treatment to mimic post-
menopausal or glucocorticoid-induced osteoporosis.

Although global KO mice are still an important tool in skeletal
research, their usefulness may be limited by embryonic lethality
or by the inherent limitation of phenotypes caused by embry-
onic global gene inactivation. The latter hinders the interpreta-
tion of the phenotype at postnatal adult stages by having to
tease apart the primary and secondary effects of gene modifica-
tion. These drawbacks can be avoided by a conditional gene
knockout approach (cKO). Based on the Cre-LoxP system of gene
recombination, this approach allows deletion or expression of a
gene in a temporospatial manner(135) (Box 2). The remaining lim-
itations stem from the irreversible nature of the gene ablation
and the incomplete knowledge of which cells exactly express
the Cre-recombinase under selected promoters.(136,137) The
increasing number, availability, and lack of characterization of
Cre lines have raised concern about their authentication, but
solutions to this concern are being addressed.(138) Efficient
breeding strategies can limit the number of mice. To limit animal
numbers, scientists commonly collect multiple tissues, and
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power analyses are used to calculate necessary animal numbers
for the most efficient outcome.

Through the deletion of specific genes in restricted cell line-
ages, cKO mouse models can provide important information
about interactions within and between bone cells and other tis-
sues. cKO mice models combined with lineage tracing were piv-
otal in discovering the fate of skeletal stem cells, their
diversity,(139,140) and their importance in bone healing.(141)

Mouse models also enabled the discovery of a distinct type of
blood vessel(142) and, more recently, lymphatic vessels important
for regeneration after bone injury.(143)

Ectopic bone models

Human cell transplantations are often performed on matrix
structures to develop ectopic sites for bone. Rodents, in

particular mice, are employed to model bone formation and
bone physiology with human cells while avoiding tissue culture
artifacts (eg, the absence of vasculature and innervations). These
humanized structures can be used for drug testing but also for
basic research questions because they recapitulate all stages of
bone development or regeneration (Box 3). Furthermore, ectopic
bone formation offers an approach to investigate the osteogenic
potential of molecules or biomaterials needed to assist in bone
healing or augmentation.

Large animal models

Larger animals, such as rabbits, dogs, pigs, small ruminants
(sheep, goats), and non-human primates, are less frequently
used in skeletal research.(130,144-146) The main reasons are ethical
considerations. High costs, the limited obtainability of skeletally
mature or aged animals, and the time-consuming breeding
and experimental effort also restrict the use of large models. Fur-
thermore, the evaluation of molecular mechanisms is restricted
because of limited transgenic organisms and specific analytical
tools (eg, antibodies). Also, the application of experimental drugs
in large animals can be expensive because of their body weight.
Despite these disadvantages for basic molecular research, large
animals are of utmost importance in translational settings
because they most closely mimic the human situation in terms
of bone dimensions, structure, and turnover. Therefore, they
are particularly important to advance surgical techniques, ortho-
pedic implants, fracture fixation devices, novel biomaterials (eg,
bone grafts), and tissue engineering approaches and to investi-
gate fracture healing.(16,130,144,146) A further advantage of large
animal models is that the impact of mechanical loading can be
considered, which is not possible in mice or rats but important
for bone remodeling, the osseointegration of implants, and deg-
radation of biomaterials.(147)

After mostly abandoning dog models,(25,148) sheep have
proven particularly appropriate for skeletal research because
bone dimensions are similar to humans and the ease of hus-
bandry.(16,25,149-152) However, their bone microstructure differs
in some aspects.(148,153,154) The cortical bone of young sheep is
plexiform because of their fast body growth. With age, secondary
Haversian bone becomes more prevalent.(148,150) Importantly,
compared with humans, sheep have a higher bone mineral den-
sity and mechanical strength,(152,155) which must be taken into
account in experimental settings, especially for implant testing
or induction of osteoporosis. However, the bone formation rate
of sheep (1.2–1.5 mm/d) is similar to that of humans (1.0–
1.5 mm/d)(148,149) as is the healing rate of bone fractures.(148,156)
) Also, common human bone turnover markers, including alka-
line phosphatase, osteocalcin, and tartrate-resistant acid phos-
phatase, are useful to monitor bone status in sheep.(157)

Sheep are often used to test anti-osteoporotic drugs, treatments
for fractures, and the efficacy of implant fixation.(149,151,152,158) OVX
models only lead to transitional andmoderate bone loss(152,159-161)

and were therefore combined with a calcium and vitamin
D-restricted diet(162,163) and with additional GC treat-
ment.(152,161,162) GC application in sheep leads to considerable
bone loss, structural deterioration, and biomechanical impairment
comparable with GC-induced osteoporosis in humans and has
therefore been most widely used.(16,152,161,162) However, GC ther-
apy can provoke major side effects depending on the treatment
regime, such as susceptibility to infections and discomfort, raising
ethical concerns.(164)

Box 2. Cre-loxP System
The Cre recombinase was first discovered in the bacteria P1
phage. Since introducing it into transgenic modified mice in
the 1990s, it has become an extremely powerful tool to allow
conditional loss- and gain-of-function studies, including
lineage tracing. This requires a “Cre” mouse line in which
the Cre-recombinase is expressed under the control of a cho-
sen promoter active in a relatively specific population of cells
or tissues. This enzyme, once expressed and active, can
recognize bacteriophage-derived “LoxP” sequences inserted
into the genome of a second mouse line, generally in the 50

region of a gene to be inactivated, cut the sequence in
between, and join the two generated DNA ends to effectively
delete the sequence between two LoxP sites. Crossing these
two mouse lines leads to mice where gene inactivation
occurs in all cells where the Cre-recombinase is expressed
and active (and their progeny as this genomic event is not
reversible). Some “Cre” lines express modified forms of the
Cre-recombinase that are inactive but can be activated after
injection of an inducer, thereby rendering the system induc-
ible and allowing spatiotemporal control of gene inactiva-
tion. In the most widely used tamoxifen-induced system
(CreER[T2]) the Cre-recombinase is fused to a mutated
hormone-binding domain of the estrogen receptor and can
be activated by binding to tamoxifen, thus allowing translo-
cation of the cytoplasmic Cre into the nucleus and recombi-
nation. In another approach, doxycyclin (Dox) can be used
in transgenic tTA (Tet off) mouse models to prevent Cre tran-
scription, for example, in unborn mice by treating pregnant
females. (Repeated) withdrawal then leads to a (or several)
defined time window(s) of gene deletion. Less frequently, a
reverse tTA (rtTA) is used for a Tet-on approach that activates
recombination upon Dox treatment.

This Cre-loxP strategy also allows, thanks to the use of the
Rosa26 LoxP-STOP-LoxP allele, the expression of normal or
mutated or fluorescent genes in a specific tissue or cell line-
age and an inducible manner. This way, cell tracing can be
performed, thus allowing one to follow the fate of specific
cells during development, aging, or diseases, or to assess
the functional consequence of mutated genes in specific cell
populations. This system can also be used to ablate specific
cell populations by controlling the expression of “suicide”
genes in selected cell populations.
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One disadvantage of sheep as an osteoporosis model is that
there are seasonal changes in bone metabolism.(165) Another
drawback is the different gastrointestinal system, which impedes
the oral administration of drugs.

Nonetheless, any osteosynthesis devices and treatment strate-
gies were evaluated in sheep under clinically relevant condi-
tions.(25,166,167) Furthermore, osteoporotic fractures in
metaphyseal regions can bemodeled in this species, which is diffi-
cult in small animals.(130,168,169) Other sheep models to study cen-
trally induced bone loss have been developed.(152,158,170-173) One
example is the study from Bindl and colleagues, which analyzed
metaphyseal fracture healing after surgical disconnection of the
hypothalamus and pituitary gland, resulting in delayed bone for-
mation, as it is often observed in osteoporotic patients.(174) These
complex models lead to a considerable decline of bone
mass(158,172) and closely resemble the human situation(170,171,174)

but are challenging and raise similar ethical questions as the GC
therapy.

Besides sheep, non-human primates and species like rhesus
macaques, Macaca mulatta, or Papio ursinus have been used
for bone research.(175-177) For ethical reasons, these experiments
are not possible in Europe. Several successful approaches high-
light the translational potential of these models, for example, in

Box 3. Ectopic Bone Models
Scientists employ ectopic models to assess several aspects of
bone formation and repair processes, especially when asses-
sing new approaches/materials/small molecules in the tissue
engineering and regenerative medicine (TERM) field. There
are instances where it can be desirable to use an ectopic loca-
tion to test the osteoinductive properties of a drug/small
molecule or a biomaterial.(193) Given the correct stimuli, it is
possible to recapitulate almost all aspects of bone formation
in an ectopic location. The most commonly used locations
include the kidney capsule, intramuscular locations, and sub-
cutaneous implantation. The benefits of the placement of a
construct/drug under the fibrous outer kidney capsule where
it undergoes spontaneous bone formation are the high level
of vascularization, lack of endogenous bone-forming cells
(which can be useful when assessing the biology of a specific
cell type or osteoinductive factor), and some level of the
mechanical load caused by compression of the fibrous cap-
sule. However, the model is technically challenging and inva-
sive and is not commonly used.(194,195)

Intramuscular implantation of cells, biomaterials, and
various growth factors/small molecules are often used as
an ectopic model of bone formation. Although this model
does not involve the creation of a defect, it is still relatively
invasive given the requirement for some level of blunt dis-
section to implant a construct and/or the space required
within the muscle for new bone to form. One advantage
of this model compared with other ectopic models is the
presence of a source of cells that have the osteogenic
capacity, the satellite cells. These cells can, for example,
undergo osteogenesis in the presence of bone morphoge-
netic proteins (BMPs).(196,197) By far the most commonly
used model of ectopic bone formation is the subcutaneous
implantation of various constructs to assess bone forma-
tion. In this scenario, all manner of biomaterial, in combina-
tion with various cell types and small molecules, can be
assessed for their ability to induce bone formation in the
absence of surrounding bone-forming cells or a bony envi-
ronment.(198-200) This can be very useful to remove any con-
founding effects of endogenous factors or cells on the
experimental outcome. The model has further advantages
of being minimally invasive and simple to perform.
Although these models do not contain the relevant func-
tional mechanical loading component, it may be argued
that neither do many long bone defects because of the
need for fixation/stabilization of the defect for reasons of
animal welfare and to allow healing to occur. Subcutane-
ous bone models are also being used in the field of oncol-
ogy, where researchers are actively developing new
models of bone metastasis using humanized models of
bone formation to create more clinically relevant
models.(201-203)

Others have shown a role in the process of endochondral
ossification in atherosclerosis in mice.(204) What all of these
models have in common is that the host animal provides a
vascular supply and all of the requisite cells required for bone
formation and remodeling to take place. This cannot occur in
in vitro systems.

Finally, to bring the bone environment to the ectopic
models, Andres Sastre and colleagues have developed a

Continued

Box 3 Ectopic Bone Models—cont’d
“semi-orthotopic” bone defectmodel that incorporates a via-
ble bovine bone plug in a subcutaneous pocket of a nude
mouse.(205) This allows for the creation of several bony
defects within this implanted bone plug in one animal with-
out the need to perform invasive surgery on the animal,
thereby having several defects an order of magnitude larger
in volume than could be created in a mouse femur. Whether
this approach might be used to replace some of the existing
experiments that would be performed in orthotopic and
ectopic settings remains to be seen. In general, a lot of skele-
tal research is based on previous cultivation and characteriza-
tion of bone cells; these may stem from cell lines or primary
human cells differentiated or cultured ex vivo. The models
described above can be applied in a huge range of manners
that address questions surrounding bone development and
healing as well as the formation of the marrow niche. They
are still necessary and are now being recognized as very rel-
evant for multiple models of cancer metastasis and leukemia
and also have great utility in understanding diseases of het-
erotopic ossification. Subcutaneous models have the advan-
tage of being “ectopic” and therefore are not influenced by
a surrounding bony environment. This allows the testing of
the true osteogenic potential of a cell, small molecule, or bio-
material without interference from the surrounding tissue. By
contrast, the inclusion of a bony environment in a subcutane-
ous pocket brings the advantage of being able to interrogate
crucial steps of bone healing, such as integration and remo-
deling, which is not possible in most subcutaneous models.

For implant testing, the osteoinductive properties of
materials such as calcium phosphate ceramic(206) or
β-tricalcium phosphate scaffolds(207) can also be tested
ectopically in large animals, for example, in sheep muscle.
Also, auto-transplanted mesenchymal stem cells were able
to induce bone formation in a ceramic bone substitute in
sheep without the additional need for BMPs.(208)
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demonstrating that alcohol is a risk factor for osteoporosis after
HIV infection.(175) Non-human primates have also been used to
test biologicals for osteoporosis treatment or fracture heal-
ing.(178,179) Particularly in translational bone research, non-
human primates are the most accurate model in terms of bone
metabolism and structure.

In summary, large animal models are indispensable for spe-
cific skeletal research questions because they can facilitate the
process from bench to bedside. A great drawback, the difficulty
of genetic engineering, could be overcome in the near future.
Indeed, the first CRISPR/Cas9 transgenic sheep model for hypo-
phosphatasia was recently generated and recapitulates dentoal-
veolar defects reported in humans.(18)

Discussion

Currently, scientists working with animal models in skeletal
research are faced with fast methodological progress and rapidly
changing legislative and ethical societal landscapes in which to
navigate. The relatively new ease of genetic manipulation on
the one hand and increased awareness of a reproducibility crisis
and demands for improved animal welfare calls for an assess-
ment of current animal experimentation and guidelines that
help scientists to conduct their research as sensibly and effec-
tively as possible and boost translation.

Standards for animal experiments in skeletal research

Around the time of the early bone cell cultures, in 1959, Russel
and Burch published a milestone for humane animal research
and urged the implementation of the 3 Rs (replace, reduce,
refine).(180) It has become clear that these 3 Rs are not enough
and the data from these experiments also need to be robust, reg-
istered, and reported (6 Rs) to ensure scientific value.(181)

Since the EU Directive 2010/63/EU on the protection of ani-
mals used for scientific purposes took effect in 2013, the transi-
tion into the labs has been slow. The 3R-based directive has a
wider scope and defines strict regulations on housing standards,
experimentation, and care. Granted experiments require strict
minimization and assessment of pain and distress and categori-
zation of experimental severity. Furthermore, regular risk-based
inspections are carried out and transparency is improved
through retrospective assessments and the publication of non-
technical project summaries for the lay public. Still, the legisla-
tion on animal experiments has not changed as much as the
general awareness of the issue. It is, therefore, important to point
out that granting of the planned experiment by the local author-
ities ensures legal safety and strict ethical regulation. Transpar-
ency protects from legal charges, and careful experimental
planning with meticulous documentation ensures scientific
value. Nevertheless, the limited flexibility of granted experiments
and increased time demand for application and documentation
result in ethical problems of their own. Mendelian ratios and
gene manipulation effects may dictate a greater number of ani-
mals being born than will be used for the actual experiment. The
euthanasia of (surplus) animals should only be the result of a
careful breeding plan and evaluation of possible alternative
uses.(182) Before planning animal experiments, scientists have
to justify which species and strain, model, and tissues to analyze,
as well as the sex, age, and other treatments affecting mineral
and hormonal homeostasis of the bone, such as mechanical
strain and nutrition. In line with ethical regulations, projects are
under constant species-specific animal care supervision and

subjected to scientific and ethical approvals. There is thus cur-
rently an efficient system in place to guarantee the ethical and
minimal usage of animals for research.

One major step toward improving animal research and giving
scientists some guidelines came with ARRIVE in 2010: a list of
20 recommendations for correct reporting of small animal exper-
iments including, among others, study design, sample size, inclu-
sion/exclusion criteria, and randomization. These criteria were
developed in consultation with scientists, statisticians, journal
editors, and several public or federal funding agencies.(183)

Despite positive resonance, these guidelines are not comprehen-
sively followed, although more journals now require authors to
refer to them. Ten years later, ARRIVE has been revised to further
facilitate its use.(184) Other initiatives such as the European Qual-
ity in Preclinical Data (EQIPD) aim at improving the planning
stage of research.(185,186) Preregistration of experiments to
increase liability and visibility is also increasing.

For the bone field, Manolagas and Kronenberg proposed sev-
eral still-valid points to overcome the reproducibility crisis in
2014.(187) They urged scientists and journals to endorse and
use guidelines for the reporting of small animal skeletal pheno-
types to ensure consistency and reproducibility (currently for
animal experiments, the ARRIVE [2.0] guidelines [2020](184); for
bone histomorphometry, the ASBMR nomenclature guidelines
[2012](188); for μCT, the JBMR [2010] guidelines,(189) as well
as the ASTM standard F2721 [2014] for segmental bone
defects(190)). The authors also advocated an increased availability
of statistics and data reporting courses and encouraged the field
to not shy away from vigorous scientific debate. In grant applica-
tions and manuscripts, greater emphasis was asked to be placed
on scientific premises and rigor, instead of novelty and publica-
tion speed.

In addition, we believe that animal models should prioritize
clinical targets for functional studies. Further important improve-
ments toward the 6R pledge include developing well-annotated,
accessible reference variant-phenotype databases, adopting
phenotype description standards, data sharing, and systems to
collect validated alternatives. Around 20% of all animal testing
is performed for regulatory purposes.(191) Here, greater harmoni-
zation of the regulatory requirements between agencies of dif-
ferent countries can reduce required animal numbers.

Future developments for animal experiments in skeletal
research

Non-animal methods (NAMs) are not a by-product of research.
They require a clear vision, a dedicated development path, and
a strategy for validation, standardization, and regulatory
approval. Once alternatives are approved for drug testing, it
should no longer be allowed to perform the corresponding
in vivo experiments. This is currently the case in the toxicology
community, where organizations like the European Union Refer-
ence Laboratory for Alternatives to Animal Testing (EURL-
ECVAM, for validation of non-animal alternatives)(192) and the
Organization for Economic Co-operation and Development
(OECD, for guidelines, harmonization, and good practice devel-
opment) play an important role. Policy decisions and invest-
ments have allowed the development of new methodologies
like serum-free cell culture, organ-on-a chip, or advanced in silico
modeling, which will also benefit the bone field.

Nevertheless, recent discoveries using lineage tracing in
genetically altered animals for the characterization of skeletal
stem cells,(139-141) subtypes of vasculature,(142,143) and lymphatic
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vessels demonstrate the value of the use of animal experiments
for basic research that cannot be performed in in vitro models.

We believe it is obvious that the progress and success of skel-
etal research are highly dependent on the use of a variety of dif-
ferent models (Fig. 1). Each model has advantages and
limitations that are useful to be aware of. In vitro assays can pro-
vide answers in terms of cell signaling, gene expression, and cell
behavior, but in an often non-physiological, artificial context
with higher levels of oxygen and nutrients and without systemic
context. In contrast, in the whole animal, cellular behavior is
investigated within its physiological context and is thus more
likely to represent biologically relevant mechanisms. Further-
more, aging, a very important aspect of bone biology and health,
can be investigated realistically only in whole organisms. But the
complexity at the structural, cellular, mechanical, and endocrine/
paracrine levels makes it more challenging to correctly interpret
phenotypes. In silico approaches can integrate data and/or
knowledge acquired from in vitro or in vivo experiments and
provide a computational framework to test biological hypothe-
ses, run large-scale screening experiments, optimize treatment
design, and perform in silico (clinical) trials. Computer models
now allow the first predictions of loss and maybe gain of func-
tions of genes on cellular differentiation patterns in bone biol-
ogy, providing an excellent tool to decide whether a genetic
animal experiment is likely to reveal a phenotype and thus a
functional explanation of novel factors in bone growth and phys-
iology.(66) However, credibility assessment requires the availabil-
ity of high-quality dedicated data that cannot be sourced
sufficiently from the currently available in vitro models or human
clinical studies. The goal can only be to use the best possible
combination of methodology that involves scientific rigorous-
ness and considers ethical awareness and restrictions to under-
stand fundamental biology and develop advanced treatment
options for bone diseases.
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