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Note: Main stress on original graph and optimization models!
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problem

Kidney exchanges

Patient with a serious kidney disease may resort to:
* Dialysis
* Transplant from a deceased donor
 Transplant from a willing donor

Patient 1 Donor 1

Patient might not be compatible with the donor: e.g.,
+ Blood incompatibility
+ Tissue type incompatibility

Patient 1 Donor 1
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Patient 2 Donor 2
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G = (V,A) where:
+ V. ={1,..., n}: set of vertices representing all patient-donor pairs.

+ A: set of arcs representing compatibilities between the pairs:
(i,j) € Aif the donor in pair i is compatible with the patient in pair j.
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" Definition

o —— Given a digraph G = (V, A), an exchange is a set of vertex-disjoint cycles in G
problem (i.e., a cycle packing).

« Variants: paths may be allowed, and/or long cycles may be ruled out.
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Definition
o —— Given a digraph G = (V, A), an exchange is a set of vertex-disjoint cycles in G
problem (i.e., a cycle packing).

+ Variants: paths may be allowed, and/or long cycles may be ruled out.

* Assume weight function w on A, where w; ; represents the “quality” of a
transplant between donor i and patient j, for each arc (i, j) € A.

Definition
Given a digraph G = (V, A, w), the kidney exchange problem is to find an
exchange of maximum total weight in G.

+ Intensively studied since early 2000’s (including 2012 Nobel-prize work by
A.E. Roth).

* NP-hard even if w; ; = 1 for each (i, ) € A. Polynomial when restricted to
cycles of length 2 or when length is unrestricted.

» Several ILP formulations, efficiently solved by branch-and-price.
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Outline of presentation:
1 Optimization of kidney exchanges
2 Kidney exchanges with uncertainty
3 Cycle selections
4 Stable exchanges
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« Arc (i,j) € Aif i and j are initially assumed to be compatible based on
preliminary tests.
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» Arc (i,j) € Aif i and j are initially assumed to be compatible based on
preliminary tests.

« After an exchange cycle has been identified, more elaborate testing
(crossmatching) is carried out, and /i, j may turn out to be incompatible!
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» Arc (i,j) € Aif i and j are initially assumed to be compatible based on
preliminary tests.

« After an exchange cycle has been identified, more elaborate testing
(crossmatching) is carried out, and /i, j may turn out to be incompatible!

» As aresult, all transplants associated with the cycle may become infeasible
after crossmatching.
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* Assume: probability p; that arc (/, j) is feasible (independently).

« Various models by different authors:

, + maximize expected weight of the exchange (Dickerson et al. 2013, 2018; no
Uncertainty and .
robust KEP recourse);
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T * Assume: probability p; that arc (/, j) is feasible (independently).

« Various models by different authors:
+ maximize expected weight of the exchange (Dickerson et al. 2013, 2018; no
recourse);
« internal recourse: identify an exchange; if cycle C fails, allow for reoptimizing over
the vertices involved in C (Pedroso 2014);
« subset recourse: identify small, disjoint subsets of vertices; after crossmatching,
optimize over the remaining feasible arcs (Klimentova et al. 2016).

Uncertainty and
robust KEP

Figure: Internal recourse.
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Uncertainty and Smeulders, Bartier, Crama, Spieksma, Recourse in kidney exchange programs,
e INFORMS Journal on Computing 34 (2022) 1191-1206.

Generic two-stage framework:
+ (Selection) Select subset of arcs B C A for crossmatching.
+ (Testing) Test arcs in B. Say, R C B pass the crossmatching test.
* (Recourse) Solve the kidney exchange problem on Gg = (V, R).
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Uncertainty and Smeulders, Bartier, Crama, Spieksma, Recourse in kidney exchange programs,
e INFORMS Journal on Computing 34 (2022) 1191-1206.

Generic two-stage framework:
+ (Selection) Select subset of arcs B C A for crossmatching.
+ (Testing) Test arcs in B. Say, R C B pass the crossmatching test.
* (Recourse) Solve the kidney exchange problem on Gg = (V, R).

Smeulders at al. apply the framework with a budget constraint b on the size of B.
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Two-stage stochastic model

Resulting two-stage stochastic programming model:

max Z gs weight(xs)

seS
subjectto > Bi; < b
(ij)eA
Xs € P(Gs 5) Vses
Bij €{0,1} Y(i,j) €A

where
* B+ variables identifying the arcs to be crossmatch-tested;
+ S: set of all possible scenarios, i.e., all subsets of arcs;
* gs: probability of scenario s;
* Xs: exchange implemented under scenario s;

* P(Gs,): ILP description of the set of feasible kidney exchanges in the graph

restricted to arcs identified by g; ; and feasible under scenario s.
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Uncertainty and Main results:
robust KEP
o + Different variants are NP-hard (even when cycles are restricted to length 2).

+ Approximation: restrict to a random subset of scenarios.
- Different solution approaches are tested:

+ CPLEX branch-and-cut, with or without relaxed exchange variables (xs);
+ CPLEX Benders decomposition (fix 3; ;, solve slave kidney exchange problems).

+ Experimental observations:

« Model is difficult to solve.
» Expected number of transplants slightly better than with earlier models.
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Outline of presentation:
1 Optimization of kidney exchanges
2 Kidney exchanges with uncertainty
3 Cycle selections

4 Stable exchanges
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Two-stage stochastic model

max  _ gs weight(Xs)
seS

subjectto > Bi;<b
(if)€A
Xs € P(Gs,5)
Bij €{0,1}

“EQUIS

]
Bl AAcsB 4

VseS

v(i,j) € A
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max  _ gs weight(Xs) (5)

ses
subjectto > Bi;<b (6)
Cycle selections (i,j)EA

Xs € P(Gs,3) Vse S (7)
Bij €{0,1} v(i,j) € A. (8)

+ Benders decomposition: when constraints (7) are omitted, variables 3; ; may
select any subset of b arcs.
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max  _ gs weight(Xs) (5)
ses
subjectto > Bi;<b (6)
Cycle selections (i,j)EA
Xs € P(Gs ) Vse S (7)
Bij€{0,1} v(i,j) € A. (8)

* Benders decomposition: when constraints (7) are omitted, variables 3; ; may
select any subset of b arcs.

« Strengthening (Smeulders et al. 2022): express that we are only interested
in those subsets of arcs such that each arc is in at least one directed cycle.
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max  _ gs weight(Xs) (5)
ses
subjectto > Bi;<b (6)
Cycle selections (i,j)GA
Xs € P(Gs ) Vse S (7)
Bij€{0,1} v(i,j) € A. (8)

* Benders decomposition: when constraints (7) are omitted, variables 3; ; may
select any subset of b arcs.

- Strengthening (Smeulders et al. 2022): express that we are only interested
in those subsets of arcs such that each arc is in at least one directed cycle.

+ Leads to the next concepts and research questions (Baratto and Crama,
Cycle selections, Discrete Applied Mathematics 335 (2023) 4-24).
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ceseicions — Definition
A cycle selectionin G = (V, A) is
+ asubset B C Asuch that, in Gg = (V, B), each arc is in a directed cycle,
or equivalently,
+ a union of directed cycles of G.
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Definition
The Maximum Weighted Cycle Selection (MWCS) problem is defined as

follows: given a directed graph G = (V, A) and a weight w; € R for each arc
(1,J) € A, find a cycle selection B which maximizes w(B) = >_; < Wj-

Cycle selections

Objectives:
+ Complexity of the maximum weighted cycle selection (MWCS) problem.
+ Formulations of the problem.
+ Polyhedral study of the convex hull of the set of cycle selections.
* Numerical solution of the MWCS problem.
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Note: the maximization problem is trivial
+ when wj; > 0 for all (i,)) € A,
m—mr—— » when restricted to cycles of length 2.

MWCS problem
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Kidney exchange
problem

Note: the maximization problem is trivial
Uncertainty and
LIRS + when wj; > 0 forall (i,j) € A,
. « when restricted to cycles of length 2.

Complexity of the
MWCS problem

But in general:

The MWCS problem is strongly NP-hard even when restricted to cycles of length
at most 3.

Stable exchanges

Conclusions
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» Complexity of the maximum weighted cycle selection (MWCS) problem.
+ Formulations of the problem.

+ Polyhedral study of the convex hull of the set of cycle selections.
+ Numerical solution of the MWCS problem.
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Baratto and Crama (2023) propose several MILP formulations, including:

Exponential formulations:
* Arc formulation
+ Cycle formulation

Formulations

Extended compact formulations:
+ Modified extended arc formulation
+ Position indexed formulation
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Formulations

Variables

Arc formulation

Bij = 1ifarc (i,)) is selected, 0 otherwise, for all (i, j) € A.

Objective function

Constraints

Bij <
(I,K)EATEV\S,keS

Bij€{0,1}

max > W;;Bi;

Bk

(i)eA

V(i,j)) e AVSCV:ieSjeV\S

v(i,]) € A.
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Bij < > Bixk Vi, ))EAVSCV:ieSjeV\S
(1,k)eA:le V\S,keS

S

Formulations
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Variables:
* Bij = 1ifarc (i,)) is selected, 0 otherwise, for all (i,]) € A.

+ xc = 1if cycle c is selected, 0 otherwise, for all ¢ € ', where T is the set of
all cycles in G.

Formulations

Constraints:
Xc < Bij Ve eTl,vV(i,j)ec
Bij< D X V(i,j)EA
cerl:(i,j)ec
xc € {0,1} Veerl

Bi,j € {0a1} V(Ia/) €A
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Formulations

Modified extended arc formulation

+ View a selection B as a union of exchanges (cycle packings) C', ..., CL:
B=uUt_,Ct
«+ We view each C! as the support of a binary circulation.

- Since each arc (u, v) € Bis contained in one of the exchanges C*, we need
at most |A| representative exchanges C(“:Y), (u, v) € A.

Variables:
x4V = 1if (i) € CW,  V(ij) € AY(u,v) €A
Constraints:
X(Ju " < X/(;J) =8 v(i,j) € AV(u,v) € A
Z (u v) _ Z Xf(,l;fV) <1 Vie V,Y(u,v) e A
h:(h,i)€A h:(i,h)eA

x4 € {0,1} V(i,j) € AY(u,v) € A
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Formulations

Position indexed formulation

Variables:
. ¢fj « = 1ifarc (i,)) is in position k in a cycle in graph copy G, 0 otherwise.

{(1}iti=1
V(i,j) € AL €V, k€ r(i,j,0) where k(i,j,£) = { {2,...n}ifj=1
{2, n—1}yifij>1

* Bi;j=1ifarc (i,)) is selected, 0 otherwise. V(i,j) € A

Constraints:
Bii<>. > ik v(i,j) € A
LEV KEN(i],€)
& ix < Big Ve EV, (i) € A k € k(i ], €)
bk < 3 bnik_r VLEV,(i)) € A k€ k(i,], €), k> 1

hi(h,i)EAE Ak—1€ k(h,i,l)

bk < > B h ks Ve eV, (i) € A [ # Ik € K(i, ), €)

h:(j,h) AL Ak+1E K(j,h,1)

of;x € 10,1}, 8 € {0,1} Ve EV, (i) € A k € K(i, ], £)
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::\:jg‘(;y‘:zx(:h;mgf‘ Theorem
I CIE + Arc formulation = projection of the Modified extended arc formulation.

Cycle selections

« Arc formulation C projection of the Cycle formulation.

Formulations

« Arc formulation C projection of the Position indexed formulation.

Stable exchanges

» The inclusions are strict for complete digraphs.

Conclusions
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Stable exchanges

Conclusions

Relative strength of the formulations

Relation between the linear relaxations of the formulations:

Theorem
+ Arc formulation = projection of the Modified extended arc formulation.
« Arc formulation C projection of the Cycle formulation.
« Arc formulation C projection of the Position indexed formulation.

» The inclusions are strict for complete digraphs.

Theorem

The return inequalities can be separated in polynomial time, and hence the linear
relaxation of the arc formulation can be solved in polynomial time.

— Focus on the arc formulation

[ 4

s 4< g Management Schaol - Liege Université
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» Complexity of the maximum weighted cycle selection (MWCS) problem.
Formulations + Formulations of the problem.

+ Polyhedral study of the convex hull of the set of cycle selections.
+ Numerical solution of the MWCS problem.
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(I,k)EAIEV\S,kES

S= {ﬁe 0,13 : ;< BkVSCV, V(i,)eA:ieS,je V\S}

SL= {/3 c0, 15, < > BkVSCV,V(i,j)eA:ieS,je V\S}

(I,k)EAIEV\S,kES

Formulations

S* = conv(S)
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For a complete directed graph on n vertices:

Kidney exchange

problem Theorem

Uncertainty and

robust KEP S* is full dimensional: dim(S*) = n(n — 1) when n > 3.

Cycle selections
Theorem

The trivial inequalities and return inequalities are facet-defining for S*

Formulations

Stable exchanges

Bij <1 V(i,))eA
Bij =0 v(i,j) €A
Conclusions
Bij< > Bik VSCV,V(i,j)eA:i€SjeV\S
(I,k)eA:IeV\S,keS
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exchanges * Let E = {(i1,/1), (2, o), - - -, (it, jt) } be a subset of arcs, and let

Yves Crama I—{17 oy ey lth, = 1,’[27 ..,jt} ASSUmethat/ﬂJ ¢ and .
_____ | <|J] =t Let p and g be two distinct vertices not in / U J. We define the

out-star inequalities:
Kidney exchange
problem
Uncertainty and Z ﬁ’/’” + ﬂp q = < Z Zﬂk it Z Z ﬁ] K+ Z ﬁk,p’ ©)
robust KEP keV\I i€l jed kev ke V\(1uJ)
Cycle selections
Zﬂ,,,,,+6pq< STSTB DD Bkt D Bak (10)
Formulations keV\I icl jed kev ke V\(luJ)
Stable exchanges X . )
y P i2q g q
Conclusions
i, =i, iy o= =1
Theorem
The out-star inequalities are facet deflnmg for S*.
o - ACCREDITED p!
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Kidney exchange
problem

Uncertainty and
robust KEP

Cycle selections
Formulations

Stable exchanges

Conclusions

» Symmetrically, if we assume that that |J| < |/| = t, we define the in-star

inequalities:
Zﬁl,,],+5pq<225k:+z Z Bjk + Z Bi,p> (11)
keV iel JjE€J keVA\J ke V\(luJd)
Zﬂ,,,,+ﬂpq<ZZﬂk,+ZZﬂ,k+ ST Bk (12)
keV icl jE€J keV\J ke V\(IuJ)

Theorem
The in-star inequalities are facet defining for S*.

wo  sem * HEC LIEGE

equs g N AACSB 45 Managemmee SchaoLitge Univershd
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*************** Additional facet defining inequalities
Kidney
exchanges
T —. » Let!/={it,b,...,it} and J = {ji, jo, ..., jt} be two subsets of vertices with
_____ INnd=~0and|l| = |J| = t. Let pand g be two distinct vertices not in /U J,
PR we define the path inequalities:
problem .

Uncertainty and

mbu;tKEP ) 2,8,,7],+ZB117]I+1 +ﬁpq< Zzﬁk’+zzﬁlk+ Z ,ka

Cycle selections keV iel jeJ keV ke V\(IuJ)
(13)

Formulations

) Ja ) j
Stable exchanges t
Conclusions

I 12 3 [

Theorem
The path inequalities are facet defining for S*.

»
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Formulations

Objectives

+ Complexity of the maximum weighted cycle selection (MWCS) problem.

+ Formulations of the problem.

« Polyhedral study of the convex hull of the set of cycle selections.
» Numerical solution of the MWCS problem.
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max Z W;’/'ﬂ,',j
(i,j))eA
st B < > Bk VYSCV,V(i,j)eA:ieS,jeV\S
(I,k)eA:IEV\S,kES

Bi,je{071} v(lv./) EA

Relaxation

max > W

(i,j)eA
s.t. Bij < Z Bk,i V(i,j) € A
keV, k#i
Bij < Z Bk V(i )EA
keV, k#j

Bij€1{0,1r  V(i,j)€A
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Tests on random graphs.

Density [5,10,20,50,70]
Number of vertices | [50,100,150,200,250,300]

+ d% of arcs have a positive weight, uniform in [0, 1]; (100 — d)% of arcs have
a negative weight, uniform in [—1, 0]

+ Also tested: (random) kidney exchange compatibility digraphs
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+ Natural formulation is very strong on random and compatibility graphs.
» No additional cuts are needed.

Numerical tests
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Numerical tests

Numerical tests

Natural formulation is very strong on random and compatibility graphs.
No additional cuts are needed.

Note: with high probability (almost surely), each positive arc is contained in
a strongly connected component.

More difficult instances arise when a constraint is placed on the number of
arcs in the selection.

Embedding in the two-stage stochastic kidney exchange problem.
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Outline of presentation:
1 Optimization of kidney exchanges
2 Kidney exchanges with uncertainty
3 Cycle selections
4 Stable exchanges

Numerical tests
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For each vertex i € V, a preference ranking r; is given on the set of its
in-neighbors N—(i) := {j : (j, ) € A}:

ri(j) < ri(k) if and only if patient i prefers donor j to donor k.

Definitions 1 @ 4 1 4
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Definition
A blocking cycle u for an exchange M is a cycle that is not included in M and
such that, for every vertex i € V(u), i prefers uto M.
We say that vertex i prefers the cycle u to the exchange M if either
s ig V(M),or
s i€ V(M), (k,i) € Alu), (K',i) € A(M), and i prefers k to k.

® ® O
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4 Definitions - Stability
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e G Definition
T A blocking cycle u for an exchange M is a cycle that is not included in M and

such that, for every vertex i € V(u), i prefers u to M.
We say that vertex i prefers the cycle u to the exchange M if either

- ig V(M),or
s i€ V(M), (k,i) € A(u), (K',i) € A(M), and i prefers k to k.

Definition
Given a directed graph G = (V, A), an exchange M is called stable if there is no
blocking cycle for M.

®
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_fvstEma Note: Not every digraph has a stable exchange: demanding solution concept!
Due to strong definition of blocking cycles.

Definition
A blocking cycle u for an exchange M is a cycle that is not included in M and
such that, for every vertex i € V(u), i prefers u to M.

®

© ®

Does the red cycle actually block the blue one?
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. Definition
A locally blocking cycle u for an exchange M is a cycle that is not included in
M but has a vertex in common with M and such that, for every vertex
i€ V(u), i prefers uto M.

Definition
Given a digraph G = (V, A), an exchange M is called locally stable (L-stable) if
there is no L-blocking cycle for M.

®\®

®

ocal stability

® ®©
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- Classical concept: stable marriage problem, stable roommate problem
VS,

Local stability
+ Every stable exchange is locally stable.
+ Local stability has not been previously studied?
+ In the context of KE, local stability seems more relevant than stability
+ Graph theoretic interpretations
* Integer programming formulation(s) for maximum L-stable exchange
+ Comparison with stability

ocal stability

Baratto, Crama, Pedroso and Viana, Local stability in kidney exchange programs,
Working paper, ULiége, 2023.

More on this topic: Marie, Tuesday 11:45am.
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Definition
Let Cx(G) be the set of directed cycles of length at most K in the compatibility
digraph G = (V, A).

Definition
Define a blocking digraph G’ = (V’, A’) such that:
» V' =Ck(G).
« The arc (u,v) € A’ if
- either v blocks u,
- or v does not block u and u does not block v.
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SECIESE Blocking digraph
Kidney

exchanges

Yves Crama Example: with K = 3.

Kernels and local
kernels

Remark: G’ is an orientation of the intersection graph of Cx(G) (cycles of length
at most K in G).
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& Kernel

Kidney
exchanges

" Definition
S C V'is akernel of G’ = (V/, A') if Sis independent and absorbing:
- forall (u,v) € A’ either u ¢ Sor v ¢ S (independent)
- for every v ¢ S there exists w € S such that (v, w) € A’ (absorbing)

S

Kernels and local
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Kernels and local

Kernel

Definition

S C V'is akernel of G’ = (V/, A') if Sis independent and absorbing:
- forall (u,v) € A’ either u ¢ Sor v ¢ S (independent)
- for every v ¢ S there exists w € S such that (v, w) € A’ (absorbing)

S

Classical concept: von Neumann and Morgenstern (1953).
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Kidney
exchanges
festeme o Definition
PR S C V'is akernel of G’ = (V’, A') if S is independent and absorbing:
problem - forall (u,v) € A’ either u ¢ Sor v ¢ S (independent)
I CIE - for every v ¢ S there exists w € S such that (v, w) € A’ (absorbing)
Cycle selections
S
Stable exchanges
"4

Kernels and local
kernels

Conclusions

Classical concept: von Neumann and Morgenstern (1953).
Theorem
The stable exchanges of G are exactly the kernels of G'.

e n P
-
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e Definition

S C V'is alocal kernel of G’ = (V/, A') if Sis independent and if every
neighbor of S is absorbed by S.

S

Kernels and local

kernels
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e Definition

S C V'is alocal kernel of G’ = (V/, A') if Sis independent and if every
neighbor of S is absorbed by S.

S

Kernels and local

Not so well-known: Galeana-Sanchez and Neumann-Lara (1984), Duchet and
Meyniel (1993).
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Local kernel
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exchanges

Yves Crama D
----- Definition

Kidney exchange S C V'is alocal kernel of G' = (V/, A') if S is independent and if every
s neighbor of S is absorbed by S.

Uncertainty and
robust KEP

Cycle selections S

Stable exchanges v

Kernels and local
kernels

Conclusions

Not so well-known: Galeana-Sanchez and Neumann-Lara (1984), Duchet and
Meyniel (1993).

The locally stable exchanges of G are exactly the local kernels of G'.
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I A few facts:
Kidney exchange « Every kernel is a local kernel.

problem

» Some digraphs have no kernel.

Uncertainty and
robust KEP + The empty set S = () is a local kernel. So, every digraph has a local kernel
Cycle selections (pOSSIbly empty)

+ The cardinality of a maximum local kernel is at least as large as the
cardinality of a maximum kernel, and it can be strictly larger.

Kernels and local Deciding whether a digraph has a nonempty local kernel is NP-complete.

kernels

Stable exchanges

Conclusions
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Kidney exchange
problem

Uncertainty and
robust KEP

Cycle selections

Stable exchanges

Kernels and local
kernels

Conclusions

Local kernels

A few facts:

+ Every kernel is a local kernel.
» Some digraphs have no kernel.

» The empty set S = 0 is a local kernel. So, every digraph has a local kernel
(possibly empty).

+ The cardinality of a maximum local kernel is at least as large as the
cardinality of a maximum kernel, and it can be strictly larger.

Deciding whether a digraph has a nonempty local kernel is NP-complete.

+ How difficult is it, in practice, to compute maximum local kernels?
» How different are they from kernels?

[ n P
-
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~~~~~~~~~~~~~~~~~ Local kernels
Kidney

exchanges
e A few facts:
Kidney exchange « Every kernel is a local kernel.
EQ,MT,‘ L - Some digraphs have no kernel.
robust KEP » The empty set S = 0 is a local kernel. So, every digraph has a local kernel
Cycle selections (possibly empty).

+ The cardinality of a maximum local kernel is at least as large as the
cardinality of a maximum kernel, and it can be strictly larger.

Kernels and ocal Deciding whether a digraph has a nonempty local kernel is NP-complete.

kernels

Stable exchanges

Conclusions

+ How difficult is it, in practice, to compute maximum local kernels?
» How different are they from kernels?
» Answers: Tuesday 11:45am.
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Conclusions

Conclusions

+ Kidney exchange programmes save lives and raise interesting mathematical
questions.

+ Many connections with classical graph-theoretic concepts, but also with new
or more confidential ones: cycle selections, local kernels, intersection graphs
of cycles.

+ Hard computational challenges remain...
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