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Outline

Outline of presentation:
1 Optimization of kidney exchanges

2 Kidney exchanges with uncertainty

3 Cycle selections

4 Stable exchanges

Note: Main stress on original graph and optimization models!
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Kidney exchanges

Patient with a serious kidney disease may resort to:
• Dialysis

• Transplant from a deceased donor

• Transplant from a willing donor

Patient might not be compatible with the donor: e.g.,
• Blood incompatibility
• Tissue type incompatibility
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Pool of pairs
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Feasible exchange
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Compatibility graph

G = (V ,A) where:
• V = {1, ..., n}: set of vertices representing all patient-donor pairs.
• A: set of arcs representing compatibilities between the pairs:

(i, j) ∈ A if the donor in pair i is compatible with the patient in pair j .
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Kidney exchange problems

Definition
Given a digraph G = (V ,A), an exchange is a set of vertex-disjoint cycles in G
(i.e., a cycle packing).

• Variants: paths may be allowed, and/or long cycles may be ruled out.

• Assume weight function w on A, where wi,j represents the “quality” of a
transplant between donor i and patient j , for each arc (i, j) ∈ A.

Definition
Given a digraph G = (V ,A,w), the kidney exchange problem is to find an
exchange of maximum total weight in G.

• Intensively studied since early 2000’s (including 2012 Nobel-prize work by
A.E. Roth).

• NP-hard even if wi,j = 1 for each (i, j) ∈ A. Polynomial when restricted to
cycles of length 2 or when length is unrestricted.

• Several ILP formulations, efficiently solved by branch-and-price.
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Uncertainty

• Arc (i, j) ∈ A if i and j are initially assumed to be compatible based on
preliminary tests.

• After an exchange cycle has been identified, more elaborate testing
(crossmatching) is carried out, and i, j may turn out to be incompatible!

• As a result, all transplants associated with the cycle may become infeasible
after crossmatching.
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Uncertainty

• Arc (i, j) ∈ A if i and j are initially assumed to be compatible based on
preliminary tests.

• After an exchange cycle has been identified, more elaborate testing
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Uncertainty
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Robust exchanges

• Assume: probability pij that arc (i, j) is feasible (independently).
• Various models by different authors:

• maximize expected weight of the exchange (Dickerson et al. 2013, 2018; no
recourse);

• internal recourse: identify an exchange; if cycle C fails, allow for reoptimizing over
the vertices involved in C (Pedroso 2014);

• subset recourse: identify small, disjoint subsets of vertices; after crossmatching,
optimize over the remaining feasible arcs (Klimentova et al. 2016).

1

2 3

Figure: Internal recourse.
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Two-stage stochastic model

Smeulders, Bartier, Crama, Spieksma, Recourse in kidney exchange programs,
INFORMS Journal on Computing 34 (2022) 1191-1206.

Generic two-stage framework:
• (Selection) Select subset of arcs B ⊆ A for crossmatching.
• (Testing) Test arcs in B. Say, R ⊆ B pass the crossmatching test.
• (Recourse) Solve the kidney exchange problem on GR = (V ,R).

Smeulders at al. apply the framework with a budget constraint b on the size of B.
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Two-stage stochastic model

Resulting two-stage stochastic programming model:

max
∑
s∈S

qs weight(xs) (1)

subject to
∑

(i,j)∈A

βi,j ≤ b (2)

xs ∈ P(Gs,β) ∀s ∈ S (3)

βi,j ∈ {0, 1} ∀(i, j) ∈ A (4)

where
• βi,j : variables identifying the arcs to be crossmatch-tested;
• S: set of all possible scenarios, i.e., all subsets of arcs;
• qs : probability of scenario s;
• xs : exchange implemented under scenario s;
• P(Gs,β): ILP description of the set of feasible kidney exchanges in the graph

restricted to arcs identified by βi,j and feasible under scenario s.
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Two-stage stochastic model

Main results:
• Different variants are NP-hard (even when cycles are restricted to length 2).
• Approximation: restrict to a random subset of scenarios.
• Different solution approaches are tested:

• CPLEX branch-and-cut, with or without relaxed exchange variables (xs);
• CPLEX Benders decomposition (fix βi,j , solve slave kidney exchange problems).

• Experimental observations:
• Model is difficult to solve.
• Expected number of transplants slightly better than with earlier models.
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Two-stage stochastic model

max
∑
s∈S

qs weight(xs) (5)

subject to
∑

(i,j)∈A

βi,j ≤ b (6)

xs ∈ P(Gs,β) ∀s ∈ S (7)

βi,j ∈ {0, 1} ∀(i, j) ∈ A. (8)

• Benders decomposition: when constraints (7) are omitted, variables βi,j may
select any subset of b arcs.

• Strengthening (Smeulders et al. 2022): express that we are only interested
in those subsets of arcs such that each arc is in at least one directed cycle.

• Leads to the next concepts and research questions (Baratto and Crama,
Cycle selections, Discrete Applied Mathematics 335 (2023) 4-24).
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Cycle selections

Consider a directed graph G = (V ,A).

Definition
A cycle selection in G = (V ,A) is

• a subset B ⊆ A such that, in GB = (V ,B), each arc is in a directed cycle,

or equivalently,
• a union of directed cycles of G.
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Cycle selection problem

Definition
The Maximum Weighted Cycle Selection (MWCS) problem is defined as
follows: given a directed graph G = (V ,A) and a weight wij ∈ R for each arc
(i, j) ∈ A, find a cycle selection B which maximizes w(B) =

∑
(i,j)∈B wij .

Objectives:
• Complexity of the maximum weighted cycle selection (MWCS) problem.
• Formulations of the problem.
• Polyhedral study of the convex hull of the set of cycle selections.
• Numerical solution of the MWCS problem.
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Complexity of the MWCS problem

Note: the maximization problem is trivial
• when wij ≥ 0 for all (i, j) ∈ A,
• when restricted to cycles of length 2.

But in general:

Theorem
The MWCS problem is strongly NP-hard even when restricted to cycles of length
at most 3.
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Objectives

• Complexity of the maximum weighted cycle selection (MWCS) problem.
√

• Formulations of the problem.
• Polyhedral study of the convex hull of the set of cycle selections.
• Numerical solution of the MWCS problem.
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Formulations

Baratto and Crama (2023) propose several MILP formulations, including:

Exponential formulations:
• Arc formulation
• Cycle formulation

Extended compact formulations:
• Modified extended arc formulation
• Position indexed formulation
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Arc formulation

Variables
βi,j = 1 if arc (i, j) is selected, 0 otherwise, for all (i, j) ∈ A.

Objective function

max
∑

(i,j)∈A

wi,jβi,j

Constraints

βi,j ≤
∑

(l,k)∈A:l∈V\S,k∈S

βl,k ∀(i, j) ∈ A,∀S ⊆ V : i ∈ S, j ∈ V \ S

βi,j ∈ {0, 1} ∀(i, j) ∈ A.
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Return inequalities:

βi,j ≤
∑

(l,k)∈A:l∈V\S,k∈S

βl,k ∀(i, j) ∈ A,∀S ⊆ V : i ∈ S, j ∈ V \ S
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Cycle formulation

Variables:
• βi,j = 1 if arc (i, j) is selected, 0 otherwise, for all (i, j) ∈ A.

• xc = 1 if cycle c is selected, 0 otherwise, for all c ∈ Γ, where Γ is the set of
all cycles in G.

Constraints:

xc ≤ βi,j ∀c ∈ Γ,∀(i, j) ∈ c

βi,j ≤
∑

c∈Γ:(i,j)∈c

xc ∀(i, j) ∈ A

xc ∈ {0, 1} ∀c ∈ Γ

βi,j ∈ {0, 1} ∀(i, j) ∈ A.
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Modified extended arc formulation

• View a selection B as a union of exchanges (cycle packings) C1, . . . ,CL:
B = ∪L

`=1C`.

• We view each C` as the support of a binary circulation.
• Since each arc (u, v) ∈ B is contained in one of the exchanges C`, we need

at most |A| representative exchanges C(u,v), (u, v) ∈ A.

Variables:

x (u,v)
i,j = 1 if (i, j) ∈ C(u,v), ∀(i, j) ∈ A,∀(u, v) ∈ A

Constraints:

x (u,v)
i,j ≤ x (i,j)

i,j = βi,j ∀(i, j) ∈ A,∀(u, v) ∈ A∑
h:(h,i)∈A

x (u,v)
h,i =

∑
h:(i,h)∈A

x (u,v)
i,h ≤ 1 ∀i ∈ V ,∀(u, v) ∈ A

x (u,v)
i,j ∈ {0, 1} ∀(i, j) ∈ A,∀(u, v) ∈ A
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Position indexed formulation

Variables:

• φ`i,j,k = 1 if arc (i, j) is in position k in a cycle in graph copy G`, 0 otherwise.

∀(i, j) ∈ A, ` ∈ V , k ∈ κ(i, j, `) where κ(i, j, `) =

 {1} if i = l
{2, ..., n} if j = l
{2, ..., n − 1} if i, j > l

• βi,j = 1 if arc (i, j) is selected, 0 otherwise. ∀(i, j) ∈ A

Constraints:

βi,j ≤
∑
`∈V

∑
k∈λ(i,j,`)

φ
`
i,j,k ∀(i, j) ∈ A

φ
`
i,j,k ≤ βi,j ∀` ∈ V , (i, j) ∈ A`, k ∈ κ(i, j, `)

φ
`
i,j,k ≤

∑
h:(h,i)∈A`∧k−1∈κ(h,i,l)

φ
`
h,i,k−1 ∀` ∈ V , (i, j) ∈ A`, k ∈ κ(i, j, `), k > 1

φ
`
i,j,k ≤

∑
h:(j,h)∈A`∧k+1∈κ(j,h,l)

φ
`
j,h,k+1 ∀` ∈ V , (i, j) ∈ A`, j 6= l, k ∈ κ(i, j, `)

φ
`
i,j,k ∈ {0, 1}, βi,j ∈ {0, 1} ∀` ∈ V , (i, j) ∈ A`, k ∈ κ(i, j, `)
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Relative strength of the formulations

Relation between the linear relaxations of the formulations:

Theorem

• Arc formulation = projection of the Modified extended arc formulation.

• Arc formulation ⊆ projection of the Cycle formulation.

• Arc formulation ⊆ projection of the Position indexed formulation.

• The inclusions are strict for complete digraphs.

Theorem
The return inequalities can be separated in polynomial time, and hence the linear
relaxation of the arc formulation can be solved in polynomial time.

→ Focus on the arc formulation
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relaxation of the arc formulation can be solved in polynomial time.

→ Focus on the arc formulation
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Objectives

• Complexity of the maximum weighted cycle selection (MWCS) problem.
√

• Formulations of the problem.
√

• Polyhedral study of the convex hull of the set of cycle selections.
• Numerical solution of the MWCS problem.
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Notation

S =

β ∈ {0, 1}|A| : βi,j ≤
∑

(l,k)∈A:l∈V\S,k∈S

βl,k ∀S ⊆ V , ∀(i, j) ∈ A : i ∈ S, j ∈ V \ S



SL =

β ∈ [0, 1]|A| : βi,j ≤
∑

(l,k)∈A:l∈V\S,k∈S

βl,k ∀S ⊆ V , ∀(i, j) ∈ A : i ∈ S, j ∈ V \ S



S∗ = conv(S)
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Polyhedral study

For a complete directed graph on n vertices:

Theorem
S∗ is full dimensional: dim(S∗) = n(n − 1) when n ≥ 3.

Theorem
The trivial inequalities and return inequalities are facet-defining for S∗

βi,j ≤ 1 ∀(i, j) ∈ A

βi,j ≥ 0 ∀(i, j) ∈ A

βi,j ≤
∑

(l,k)∈A:l∈V\S,k∈S

βl,k ∀S ⊆ V , ∀(i, j) ∈ A : i ∈ S, j ∈ V \ S
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Additional facet defining inequalities

• Let E = {(i1, j1), (i2, j2), . . . , (it , jt )} be a subset of arcs, and let
I = {i1, i2, . . . , it}, J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and
|I| ≤ |J| = t . Let p and q be two distinct vertices not in I ∪ J. We define the
out-star inequalities:

t∑
l=1

βil ,jl + βp,q ≤
∑

k∈V\I

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V\(I∪J)

βk,p, (9)

t∑
l=1

βil ,jl + βp,q ≤
∑

k∈V\I

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V\(I∪J)

βq,k . (10)

Theorem
The out-star inequalities are facet defining for S∗.
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• Symmetrically, if we assume that that |J| ≤ |I| = t , we define the in-star
inequalities:

t∑
l=1

βil ,jl + βp,q ≤
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V\J

βj,k +
∑

k∈V\(I∪J)

βk,p, (11)

t∑
l=1

βil ,jl + βp,q ≤
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V\J

βj,k +
∑

k∈V\(I∪J)

βq,k . (12)

Theorem
The in-star inequalities are facet defining for S∗.
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Additional facet defining inequalities

• Let I = {i1, i2, . . . , it} and J = {j1, j2, . . . , jt} be two subsets of vertices with
I ∩ J = ∅ and |I| = |J| = t . Let p and q be two distinct vertices not in I ∪ J,
we define the path inequalities:

t∑
l=1

βil ,jl +

t−1∑
l=1

βil ,jl+1 + βp,q ≤
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V\(I∪J)

βk,p.

(13)

Theorem
The path inequalities are facet defining for S∗.
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Objectives

• Complexity of the maximum weighted cycle selection (MWCS) problem.
√

• Formulations of the problem.
√

• Polyhedral study of the convex hull of the set of cycle selections.
√

• Numerical solution of the MWCS problem.
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Numerical tests
Maximum weigthed cycle selection

max
∑

(i,j)∈A

wi,jβi,j

s.t . βi,j ≤
∑

(l,k)∈A:l∈V\S,k∈S

βl,k ∀S ⊆ V , ∀(i, j) ∈ A : i ∈ S, j ∈ V \ S

βi,j ∈ {0, 1} ∀(i, j) ∈ A

Relaxation

max
∑

(i,j)∈A

wi,jβi,j

s.t . βi,j ≤
∑

k∈V ,k 6=i

βk,i ∀(i, j) ∈ A

βi,j ≤
∑

k∈V ,k 6=j

βj,k ∀(i, j) ∈ A

βi,j ∈ {0, 1} ∀(i, j) ∈ A
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Numerical tests

Tests on random graphs.

Density [5,10,20,50,70]
Number of vertices [50,100,150,200,250,300]

• d% of arcs have a positive weight, uniform in [0, 1]; (100− d)% of arcs have
a negative weight, uniform in [−1, 0]

• Also tested: (random) kidney exchange compatibility digraphs
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Numerical tests

• Natural formulation is very strong on random and compatibility graphs.
• No additional cuts are needed.

• Note: with high probability (almost surely), each positive arc is contained in
a strongly connected component.

• More difficult instances arise when a constraint is placed on the number of
arcs in the selection.

• Embedding in the two-stage stochastic kidney exchange problem.
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Numerical tests

• Natural formulation is very strong on random and compatibility graphs.
• No additional cuts are needed.
• Note: with high probability (almost surely), each positive arc is contained in

a strongly connected component.
• More difficult instances arise when a constraint is placed on the number of

arcs in the selection.
• Embedding in the two-stage stochastic kidney exchange problem.
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Outline

Outline of presentation:
1 Optimization of kidney exchanges

2 Kidney exchanges with uncertainty

3 Cycle selections

4 Stable exchanges
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Stable exchanges

For each vertex i ∈ V , a preference ranking ri is given on the set of its
in-neighbors N−(i) := {j : (j, i) ∈ A}:

ri (j) < ri (k) if and only if patient i prefers donor j to donor k .
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Stable exchanges

Definition
A blocking cycle u for an exchangeM is a cycle that is not included inM and
such that, for every vertex i ∈ V (u), i prefers u toM.
We say that vertex i prefers the cycle u to the exchangeM if either

• i 6∈ V (M), or
• i ∈ V (M), (k , i) ∈ A(u), (k ′, i) ∈ A(M), and i prefers k to k ′.
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Definitions - Stability

Definition
A blocking cycle u for an exchangeM is a cycle that is not included inM and
such that, for every vertex i ∈ V (u), i prefers u toM.
We say that vertex i prefers the cycle u to the exchangeM if either

• i 6∈ V (M), or
• i ∈ V (M), (k , i) ∈ A(u), (k ′, i) ∈ A(M), and i prefers k to k ′.

Definition
Given a directed graph G = (V ,A), an exchangeM is called stable if there is no
blocking cycle forM.
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Stable exchanges - Weaknesses

Note: Not every digraph has a stable exchange: demanding solution concept!
Due to strong definition of blocking cycles.

Definition
A blocking cycle u for an exchangeM is a cycle that is not included inM and
such that, for every vertex i ∈ V (u), i prefers u toM.

Does the red cycle actually block the blue one?
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Locally stable exchanges

Definition
A locally blocking cycle u for an exchangeM is a cycle that is not included in
M but has a vertex in common withM and such that, for every vertex
i ∈ V (u), i prefers u toM.

Definition
Given a digraph G = (V ,A), an exchangeM is called locally stable (L-stable) if
there is no L-blocking cycle forM.
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What is new here?

Stability
• Classical concept: stable marriage problem, stable roommate problem

vs.

Local stability
• Every stable exchange is locally stable.
• Local stability has not been previously studied?
• In the context of KE, local stability seems more relevant than stability
• Graph theoretic interpretations
• Integer programming formulation(s) for maximum L-stable exchange
• Comparison with stability

Baratto, Crama, Pedroso and Viana, Local stability in kidney exchange programs,
Working paper, ULiège, 2023.

More on this topic: Marie, Tuesday 11:45am.
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Blocking digraph

Definition
Let CK (G) be the set of directed cycles of length at most K in the compatibility
digraph G = (V ,A).

Definition
Define a blocking digraph G′ = (V ′,A′) such that:

• V ′ = CK (G).
• The arc (u, v) ∈ A′ if

• either v blocks u,
• or v does not block u and u does not block v .
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Blocking digraph

Example: with K = 3.

1

2 3 4

5

6

7

8 9

A

B

C

D E F
1

2

1 2

1
1

1

1

21

2

1
1

A

B

C

D
E F

Remark: G′ is an orientation of the intersection graph of CK (G) (cycles of length
at most K in G).
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Kernel

Definition
S ⊆ V ′ is a kernel of G′ = (V ′,A′) if S is independent and absorbing:

• for all (u, v) ∈ A′ either u /∈ S or v /∈ S (independent)
• for every v /∈ S there exists w ∈ S such that (v ,w) ∈ A′ (absorbing)

S

w

v

Classical concept: von Neumann and Morgenstern (1953).

Theorem
The stable exchanges of G are exactly the kernels of G′.
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Kernel

Definition
S ⊆ V ′ is a kernel of G′ = (V ′,A′) if S is independent and absorbing:

• for all (u, v) ∈ A′ either u /∈ S or v /∈ S (independent)
• for every v /∈ S there exists w ∈ S such that (v ,w) ∈ A′ (absorbing)

S

w

v

Classical concept: von Neumann and Morgenstern (1953).

Theorem
The stable exchanges of G are exactly the kernels of G′.
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Kernel

Definition
S ⊆ V ′ is a kernel of G′ = (V ′,A′) if S is independent and absorbing:

• for all (u, v) ∈ A′ either u /∈ S or v /∈ S (independent)
• for every v /∈ S there exists w ∈ S such that (v ,w) ∈ A′ (absorbing)

S

w

v

Classical concept: von Neumann and Morgenstern (1953).

Theorem
The stable exchanges of G are exactly the kernels of G′.
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Local kernel

Definition
S ⊆ V ′ is a local kernel of G′ = (V ′,A′) if S is independent and if every
neighbor of S is absorbed by S.

S

w

v

u

Not so well-known: Galeana-Sánchez and Neumann-Lara (1984), Duchet and
Meyniel (1993).

Theorem
The locally stable exchanges of G are exactly the local kernels of G′.
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Local kernel

Definition
S ⊆ V ′ is a local kernel of G′ = (V ′,A′) if S is independent and if every
neighbor of S is absorbed by S.

S

w

v

u

Not so well-known: Galeana-Sánchez and Neumann-Lara (1984), Duchet and
Meyniel (1993).

Theorem
The locally stable exchanges of G are exactly the local kernels of G′.
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Local kernel

Definition
S ⊆ V ′ is a local kernel of G′ = (V ′,A′) if S is independent and if every
neighbor of S is absorbed by S.

S

w

v

u

Not so well-known: Galeana-Sánchez and Neumann-Lara (1984), Duchet and
Meyniel (1993).

Theorem
The locally stable exchanges of G are exactly the local kernels of G′.
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Local kernels

A few facts:

• Every kernel is a local kernel.
• Some digraphs have no kernel.
• The empty set S = ∅ is a local kernel. So, every digraph has a local kernel

(possibly empty).
• The cardinality of a maximum local kernel is at least as large as the

cardinality of a maximum kernel, and it can be strictly larger.

Theorem
Deciding whether a digraph has a nonempty local kernel is NP-complete.

• How difficult is it, in practice, to compute maximum local kernels?
• How different are they from kernels?
• Answers: Tuesday 11:45am.
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A few facts:

• Every kernel is a local kernel.
• Some digraphs have no kernel.
• The empty set S = ∅ is a local kernel. So, every digraph has a local kernel
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• The cardinality of a maximum local kernel is at least as large as the

cardinality of a maximum kernel, and it can be strictly larger.

Theorem
Deciding whether a digraph has a nonempty local kernel is NP-complete.

• How difficult is it, in practice, to compute maximum local kernels?
• How different are they from kernels?
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Local kernels

A few facts:

• Every kernel is a local kernel.
• Some digraphs have no kernel.
• The empty set S = ∅ is a local kernel. So, every digraph has a local kernel

(possibly empty).
• The cardinality of a maximum local kernel is at least as large as the

cardinality of a maximum kernel, and it can be strictly larger.

Theorem
Deciding whether a digraph has a nonempty local kernel is NP-complete.

• How difficult is it, in practice, to compute maximum local kernels?
• How different are they from kernels?
• Answers: Tuesday 11:45am.
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Conclusions

• Kidney exchange programmes save lives and raise interesting mathematical
questions.

• Many connections with classical graph-theoretic concepts, but also with new
or more confidential ones: cycle selections, local kernels, intersection graphs
of cycles.

• Hard computational challenges remain...
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