

Michaël De Becker

Space sciences, Technologies and Astrophysics Research (STAR) institute Department of Astrophysics, Geophysics and Oceanography (AGO)

What objects are we talking about?

Massive \rightarrow M > 8–10 M_{sol}

Hot \rightarrow T > 25000 K

Luminous \rightarrow L > 10⁴ L_{sol} (up to 10⁶ L_{sol} !)

Short-lived \rightarrow t_{evol} < 10 Myr

Rare $\rightarrow f_{popul} \sim 1 \text{ ppm}$

Important feature! → Stellar wind

Continuous outflow of stellar material driven by the strong radiation pressure (*reminder: high luminosity!*) \rightarrow conversion of radiative energy into mechanical energy

Two main properties:

- 1. Mass loss rate : $10^{-7} 10^{-5} M_{sol}/yr$
- 2. Terminal velocity : 1000 3000 km/s
- \rightarrow Wind kinetic power:

$$_{\rm kin} = \frac{1}{2} \, \dot{\mathrm{M}} \, \mathrm{V}_\infty^2$$

Important for energy budget considerations!

Р

Massive stars end their evolution through a core-collapse supernova episode <u>Convention adopted here:</u>

"pre-supernova" refers to any evolution stage prior to SN explosion

Various evolution	$\left(\right)$	$M \lesssim 15 M_{\odot}$	MS (OB) \rightarrow RSG (\rightarrow BSG in blue loop? \rightarrow RSG) \rightarrow SN II mass loss is relatively unimportant, \lesssim few M_{\odot} is lost during entire evolution
		$15 M_{\odot} \lesssim M \lesssim 25 M_{\odot}$	$\frac{MS(O) \rightarrow BSG \rightarrow RSG \rightarrow SN \text{ II}}{\text{mass loss is strong during the RSG phase, but not strong enough to remove the whole H-rich envelope}$
on the mass		$25 M_{\odot} \lesssim M \lesssim 40 M_{\odot}$	$MS (O) \rightarrow BSG \rightarrow RSG \rightarrow WNL \rightarrow WNE \rightarrow WC \rightarrow SN \ Ib$ the H-rich envelope is removed during the RSG stage, turning the star into a WR star
	$M\gtrsim 40~M_{\odot}$	MS (O) \rightarrow BSG \rightarrow LBV \rightarrow WNL \rightarrow WNE \rightarrow WC \rightarrow SN Ib/c an LBV phase blows off the envelope before the RSG can be reached	

Massive stars end their evolution through a core-collapse supernova episode <u>Convention adopted here:</u>

"pre-supernova" refers to any evolution stage prior to SN explosion All these pathways end with the SN

Various evolution pathways depending on the mass	$\left(\right)$	$M \lesssim 15 \ M_{\odot}$	MS (OB) \rightarrow RSG (\rightarrow BSG in blue loop? \rightarrow RSG) \rightarrow SN II mass loss is relatively unimportant, \lesssim few M_{\odot} is lost during entire evolution
		$15 M_{\odot} \lesssim M \lesssim 25 M_{\odot}$	$MS (O) \rightarrow BSG \rightarrow RSG - SN II$ mass loss is strong during the RSG phase, but not strong enough to remove the whole H-rich envelope
		$25 M_{\odot} \lesssim M \lesssim 40 M_{\odot}$	MS (O) \rightarrow BSG \rightarrow RSG \rightarrow WNL \rightarrow WNE \rightarrow WC \rightarrow SN Ib the H-rich envelope is removed during the RSG stage, turning the star into a WR star
	$M \gtrsim 40 \ M_{\odot}$	$M\gtrsim40~M_{\odot}$	MS (O) \rightarrow BSG \rightarrow LBV \rightarrow WNL \rightarrow WNE \rightarrow WC \rightarrow SN Ib/c an LBV phase blows off the envelope before the RSG can be reached

Massive stars end their evolution through a core-collapse supernova episode <u>Convention adopted here:</u>

"pre-supernova" refers to any evolution stage prior to SN explosion Advanced evolution stages are characterized by significantly enhanced mass loss

All these pathways end with the SN

Various evolution pathways depending on the mass	($M \lesssim 15 M_{\odot}$	MS (OB) \rightarrow RSG (\rightarrow BSG in blue loop? \rightarrow RSG) – (SN II)
			mass loss is relatively unimportant, \lesssim few M_{\odot} is lost during entire evolution
		$15 M_{\odot} \lesssim M \lesssim 25 M_{\odot}$	MS (O) \rightarrow BSG \rightarrow RSG – SN II
			mass loss is strong during the RSG phase, but not strong enough to remove
			the whole H-rich envelope
		$25 M_{\odot} \lesssim M \lesssim 40 M_{\odot}$	$MS(O) \rightarrow BSG \rightarrow RSG \rightarrow WNL \rightarrow WNE \rightarrow WC \rightarrow SN Ib$
			the H-rich envelope is removed during the RSG stage, turning the star into a
			WR star
		$M\gtrsim 40~M_{\odot}$	MS (O) \rightarrow BSG \rightarrow LBV \rightarrow WNL \rightarrow WNE \rightarrow WC \rightarrow SN Ib/c
		an LBV phase blows off the envelope before the RSG can be reached	

What about particle acceleration by pre-SN massive stars?

Basically, particle acceleration consists in *energy transfer to particles from a given energy reservoir*... \rightarrow magneto-hydrodynamic shocks are quite good candidates

"Diffusive Shock	Perfect	Supernova remnants (SNRs)
Acceleration (DSA)" is known to be efficient at converting shock	example	Result of the sudden outflow of stellar material at high speed (up to 10^4 km/s) $\rightarrow E_{kin} \sim 10^{51}$ erg
mechanical energy into particle acceleration		Believed to be a major source of Galactic Cosmic Rays (GCRs), provided 10–20% of ${\rm E}_{\rm kin}$ converted
(Drury L. O. 1983, Rep. Prog. Phys., 46, 973)		into PA
		A bit difficult to reach the knee of the CR spectrum (~ PeV)
Efficient so	ource of non-	Active at DA fair at march a fair 1000 rm (alour darma
thermal radio radio and	high energy	of the shock front)
dor	nains	(Vink J. 2020, Physics and evolution of supernova remnants, A&A Library, Springer)

What about the potential particle accelerators among massive stars?

Particle-Accelerating Colliding-Wind Binaries (PACWBs)

Most promising pre-SN configuration!

Requirement: binary (or higher multiplicity) system \rightarrow ok, most MS are in multiple systems

~ 50 systems identified mainly through radio observations

Census affected by strong biases (free-free absorption, time variability...) \rightarrow population heavily underestimated

Catalogue of PACWBs: www.astro.uliege.be/~debecker/pacwb

> (De Becker & Raucq 2012, A&A, 558, A28 De Becker et al. 2017 A&A, 600, A47)

Particle-Accelerating Colliding-Wind Binaries (PACWBs)

Most used observatories...

Particle-Accelerating Colliding-Wind Binaries (PACWBs)

(Blomme et al. 2017 A&A, 501, 2478)

Take away message...

- Massive stars can contribute to particle acceleration even before the SN explosion (based on energy budget considerations) \rightarrow potential to contribute to GCRs
- Various stellar configurations may be considered, provided significant MHD shock are active
- The most promising one is that of Particle-Accelerating Colliding-Wind Binaries (PACWBs)
- The census of these particle accelerators relies mainly on radio measurements, and is heavily affected by observational biases
- The question of the acceleration of GCRs deserves to consider the combined action of various sources, even though SNRs are likely strong contributors

Thank you for your attention!

Bow-shock runaways (BSRs)

Massive stars ejected from their birth place

- \rightarrow traveling in sufficiently dense clouds
- \rightarrow shock with the ISM

Termination shocks

Strong massive star winds interacting with the surrounding medium \rightarrow shock with the ISM

